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Abstract 

 Canine osteosarcoma is the most common bone cancer and an important cause of 

mortality and morbidity in large purebred dogs. Previously we constructed two multivariable 

models to predict a dog’s 5-month and 1-year mortality risk after surgical treatment for 

osteosarcoma. According to these models, dogs with a relatively low risk of 5-month 

mortality benefited most from additional chemotherapy treatment. In the present study, we 

externally validated these results using an independent cohort study of 794 dogs. External 

performance of our prediction models showed some disagreement between observed and 

predicted risk, mean difference: -0.11 (95% confidence interval [95%CI]-0.29; 0.08) for 5-

month risk and 0.25 (95%CI 0.10; 0.40) for 1-year mortality risk. After updating the intercept, 

agreement improved: -0.0004 (95%CI -0.16; 0.16) and -0.002 (95%CI -0.15; 0.15). The 

chemotherapy by predicted mortality risk interaction (P-value = 0.01) showed that the 

chemotherapy compared to no chemotherapy effectiveness was modified by 5-month 

mortality risk: dogs with a relatively lower risk of mortality benefited most from additional 

chemotherapy. Chemotherapy effectiveness on 1-year mortality was not significantly 

modified by predicted risk (P-value = 0.28). In conclusion, this external validation study 

confirmed that our multivariable risk prediction models can predict a patient’s mortality risk 

and that dogs with a relatively lower risk of 5-month mortality seem to benefit most from 

chemotherapy.  

 

MeSH/keywords: Canine; Clinical Prediction Rule; Chemotherapy, Adjuvant; Personalized 

Medicine; Oncology, Bone tumour.
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Introduction 

Surgically treated dogs with appendicular osteosarcoma (OS), a malignant tumor of 

mesenchymal origin that produces osteoid, have a median survival time of 5 months (Brodey 

and Abt, 1976; Cooley and Waters, 1997; McNeill et al., 2007; Norrdin et al., 1989; Ru et al., 

1998; Spodnick et al., 1992; Straw and Withrow, 1996). For the average patient, previous 

studies have shown that additional chemotherapy can extend median survival beyond these 5 

months (Bailey et al., 2003; Chun et al., 2005; Chun et al., 2000; Straw et al., 1991; Vail et 

al., 2002).  

 

Recently, using an Individual Patient Data Meta-Analysis (IPDMA), we constructed a 

multivariable prediction tool, predicting a dog’s risk of mortality at 5 months and 1 year after 

receiving surgical treatment for OS (Schmidt et al., 2013). This tool predicts mortality risk 

based on a patient’s age, weight, gender, neuter status, serum alkaline phosphatase (SALP) 

level, breed, and tumor location. In a nested study, we explored whether chemotherapy 

effectiveness differed between dogs with a different predicted risk (i.e., subgroup analysis; 

Manuscript 1). Results showed that chemotherapy (compared to no chemotherapy) was most 

effective in dogs with a relatively low predicted risk. This implies that perhaps dogs with a 

lower predicted risk of mortality should be preferentially treated with additional 

chemotherapy. Combining information on a dog’s mortality risk with a personalized estimate 

of treatment effect can aid veterinary professionals to better tailor treatment to a dog’s needs, 

which is relevant in terms of extending survival, healthcare costs and quality of life.  

 

In the present study, we validate these finding using an independent cohort study 

collected at the Flint Animal Cancer Center at Colorado State University (Selmic et al., 2014). 

Specifically, we first applied our previously developed “original” prediction model to these 
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external data and determined model performance. Second, we validated the differential 

chemotherapy effectiveness between dogs with different baseline mortality risks.  

 

Materials and Methods 

The external validation of the prediction models and the chemotherapy subgroup-

specific effects were evaluated using a subset of the Colorado State University cohort study 

(Selmic et al., 2014); data were collected based on a retrospectively review of electronic 

medical records. For the current analyses, dogs were eligible if they received surgical 

treatment (amputation or limb-spare) for OS. Because of the relatively rare occurrence, 49 

dog receiving cisplatin/carboplatin, cisplatin or any other kind of (combination) chemotherapy 

were excluded. Patients were also excluded if they received radiation therapy (n = 133), had a 

zero or negative follow-up time (n = 15, measured from date of surgery to date of last 

contact), had an erroneous date of metastasis (after the date of death, n = 9), there was 

confirmed or a suspicion of metastasis at baseline (n = 16), received pamidronate (n = 9) or 

were small purebred dogs (n = 5). Exclusion criteria were identical to our discovery paper 

(Manuscript 1), with the slight difference that (to prevent small exposure categories) dogs 

with cisplatin or doxorubicin combination therapy were excluded. Data were collected based 

on medical records, hence routine (scintigraphy based) staging information was not always 

available. Additionally, we emphasize that sample size was determined in an opportunistic 

manner, without formal sample size calculations; because of the retrospective nature of this 

cohort, this did not impact patient safety.  

 

For the 794 remaining patients, baseline data were available on age (years), weight 

(kg), gender (0 female, 1 male), neuter status (0 intact, 1 neutered), high serum alkaline 

phosphatase (SALP) defined as above 140 IU/dL, continuous monocytes count (109 cells/L), 
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continuous lymphocyte counts (109 cells/L), breed (0 other breed, 1 Rottweiler, 2 Golden 

Retriever, 3 Labrador Retriever, 4 Greyhound, 5 Doberman, 6 mixed breed) and tumor 

location (0 other, 1 proximal humerus, 2 distal femur or proximal tibia, 3 distal radius). 

Additionally, we recorded whether a dog received chemotherapy (0 no chemotherapy, 1 

carboplatin or 2 doxorubicin) and if it was alive at 5 months and 1 year (0 alive, 1 dead).  

 

On average, 11% percentage of these variables were missing, the percentage 

missingness per variable was: 1-year mortality 6.05%, 5-month mortality 2.90%, 

chemotherapy 27.83%, age 0.13%, weight 0.13%, gender 0.00%, neuter status 0.00%, high 

SALP 9.57%, monocytes 18.89%, lymphocytes 18.89%, breed 0.00%, and tumor location 

1.39%. Univariable analysis showed that missingness was dependent on observed variables 

(available upon request) indicating that a complete case analysis excluding missing 

observations would be biased (Groenwold et al., 2012; Rubin, 1976). Instead, we used the 

dependence between the missing observations and observed variables to impute missing 

values (Rubin, 1976) using the aregImpute algorithm from the Hmisc package version 3.14-5 

(Harrell, Jr. and Dupont, 2013). This algorithm was implemented using 5 burn-in iterations, 

predictive mean matching and 100 bootstrap samples to determine the (non) linear 

relationship between the continuous predictor variables and the missing values. To correct for 

the inherent underestimation of the variance, 15 imputed datasets were created (i.e., multiple 

imputation) (White and Carlin, 2010); results of the 15 imputed datasets were pooled using 

Rubin’s rules (Little and Rubin, 2002; Marshall et al., 2009). 

 

Data analysis: prediction model validation 

Based on the logistic regression version of our previous derived prediction model 

(Schmidt et al., 2013), a patient’s 5-month and 1-year risk of mortality was calculated by 
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summing the product of their baseline variables and the relevant coefficients (Table 1); please 

note that because dogs with combination doxorubicin or cisplatin therapy were excluded, the 

coefficients for these therapies become redundant. Formally, their predicted logit(mortality 

risk) was calculated using equation 1:  

 

𝑙𝑜𝑔𝑖𝑡(𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑟𝑖𝑠𝑘) = 𝑙𝑜𝑔𝑖𝑡(�̂�𝑖) = �̂�0 + ∑ �̂�𝑗𝑥𝑖𝑗
𝐽
𝑗=1  [equation 1] 

 

Where 𝑖 represent the 𝑖𝑡ℎ individual and 𝑗 the 𝑗𝑡ℎ variable presented in table 1, �̂�𝑗 the natural 

logarithm of the odds ratio for 5-month mortality and 𝑥 the variable status after surgical 

treatment. The predicted logit(1-year mortality risk) was estimated by replacing �̂�𝑗 by 𝜃𝑗. 

Finally, the mortality risk was calculated by taking the inverse of the predicted logit(mortality 

risk), Table 1. Note that for ease of notation, we will often drop the “predicted” from 

logit(mortality risk), however unless stated otherwise this always refers to an estimate from 

equation 1.     

 

Obviously, these calculations are only relevant for future patients if we can assume the 

model to be correctly specified (i.e., describe the relationship between the predictors and 

outcome sufficiently). To evaluate the models predictive performance in this independent 

validation study we calculated the c-statistic, calibration slope and calibration-in-the-large 

(Harrell, Jr. et al., 1996). Calibration was also graphically assessed by plotting the mean 

observed risk per deciles on the y-axis and the predicted risk on the x-axis (i.e., a graphical 

representation of the Hosmer-Lemeshow goodness-of-fit test) (Harrell, Jr. et al., 1996; 

Steyerberg, 2009; Steyerberg et al., 2010). Please, see the Appendix for a description of the 

metrics interpretability.  
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Besides this simple external validation, the prediction models were corrected for any 

systematic difference between observed and predicted risk (i.e., calibration-in-the-large ≠ 0) 

by re-estimating the intercept in “Update 1” (Moons et al., 2012; Steyerberg, 2009). Such 

recalibartion can be readily applied in clinical practice using a relatively small number of 

events (e.g., 30) (Steyerberg, 2009). To aid clinicians in updating the model to their local 

setting a computer code is provided in the Appendix.  

 

Data analysis: estimating chemotherapy effectiveness 

After determining the external performance of our prediction models (predicting 5-month and 

1-year mortality risk), we assessed whether the effect of “any chemotherapy” (carboplatin or 

doxorubicin) compared to no chemotherapy in preventing mortality differed between patients 

with different predicted risks of mortality. To explore consistency, all analyses are repeated 

for carboplatin compared to no chemotherapy and doxorubicin compared to no chemotherapy 

at 5-month and 1-year mortality.  

 

This approach to tailor chemotherapy effects was previously described in detail in 

Manuscript 1, which we briefly repeat here. To get an estimate of the risk of mortality if the 

patient remained untreated with chemotherapy, we re-calculated the logit(mortality risk) by 

setting (possible contrary to the fact) the chemotherapy variable to “no chemotherapy” in 

equation 1. Second, to test whether chemotherapy effects differed between patients with 

different logit(mortality risks) a product term (i.e., the product of the variables chemotherapy 

and logit(mortality risk)) was added to a logistic regression model. This model regressed the 

mortality variable (5 months or 1 year) on chemotherapy, the logit(mortality risk), the product 

term and the potential confounders: age, weight, sex, neuter status, SALP, monocytes, 

lymphocytes, breed and tumor location. Significance of this product term was tested using a 
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Wald based interaction test (Schmidt et al., 2014a). The chemotherapy effect for a patient 

with a specific logit(mortality risk) was calculated by adding the chemotherapy coefficient to 

the interaction term coefficient times the logit(mortality risk) (Manuscript 1).  

 

To increase precision of the interaction effect, this was combined with the estimate of the 

previous study (Manuscript 1). Results were pooled using the inverse variance weighted 

estimator and between study heterogeneity was tested using the Q-statistic (Higgins and 

Thompson, 2002; Schmidt et al., 2014a) 

 

Data analysis: sensitivity analyses 

To explore the robustness of our approach the following three sensitivity analyses 

were performed: 

 

Linearity of the continuous variables monocytes, lymphocytes, logit(mortality risk) 

and the chemotherapy by logit(mortality risk) with the outcome at 5 months and 1 year was 

assessed using restricted cubic splines with 5 knots (Harrell, Jr., 2001). No significant 

deviations form linearity could be found. Additionally, graphically exploring linearity showed 

that there was some deviation for the monocytes and lymphocytes (showing a slight sinus 

pattern) however, these could be approximated by a linear term. Previously, the linearity of 

age, weight and SALP was assessed using the same approach (Schmidt et al., 2013). In this 

analysis, SALP was observed to be non-linearly related with the outcome, because of this 

non-linear relationship SALP was dichotomized.  

 

As described above, we explored external performance of our “original” prediction 

models for 5-month and 1-year mortality risk, without and with updating the intercept. As 
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previously indicated (Schmidt et al., 2013), however, performance could perhaps be improved 

by adding more variables or recoding variables. To explore this we added the variables 

monocytes and lymphocytes to the model in “Update 2”. Additionally, to compare 

performance of our “original” model to a model optimally tailored to the current dataset we 

re-estimate the entire model with addition of the monocytes variable and a recoded breed 

variable (mixed breed, giant purebred, large purebred and medium purebred) in “Update 3”. 

Finally, to determine if reducing the model might improve performance, we performed a 

backward selection procedure using a P-value criterion of 0.30 (“Update ”). To correct for 

model optimism, model performance metrics for updates 1-4 were calculated in 200 bootstrap 

samples (Harrell, Jr. et al., 1996; Steyerberg, 2009; Steyerberg et al., 2010). Model 

performance of updates 2-4 was very similar to the performance of Update 1 and the external 

validation (see Appendix Tables 1-3). 

 

In the current cohort study chemotherapy was not allocated randomly. Thus it is likely 

that dogs receiving chemotherapy had a better prognosis than dog not receiving 

chemotherapy, which would bias our results. Besides adjusting for measured confounders as 

described above, we explored this further by repeating all analyses regarding the 

chemotherapy by logit(mortality risk) interaction excluding patients dying in the first 30 days 

(a similar analysis was conducted in Manuscript 1), excluding 23% and 9% of the mortality 

events at 5-month and 1-year. Results were very similar and are presented in Appendix Table 

4.  

 

All tests were applied using a significance level of 0.05 (unless stated otherwise), 

estimates are presented as odds ratios (OR) with 95% confidence intervals (95%CI). Analyses 
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were carried out using the R statistical package for windows version 3.1.1 (R Development 

Core Team, 2013).  

 

Results 

Baseline characteristics are presented in Table 2. The median follow-up time was 241 

days with 50% of the follow-up being between 146 days and 472 days. During follow-up 163 

dogs did not receive any chemotherapy, 172 received carboplatin, 238 doxorubicin and for 

221 patients the chemotherapy regime received was not recorded. Except for higher SALP 

levels, dogs not receiving chemotherapy were similar to dogs receiving carboplatin or 

doxorubicin therapy.  

 

Results: prediction model validation 

The external validation of the original prediction model for 5 months without any 

updating showed a slightly better c-statistic than in the original derivation data (0.67 95%CI 

0.61; 0.72), Table 3. The calibration slope (1.15 95%CI 0.77; 1.52) and the calibration-in-the-

large (-0.1050 95%CI -0.29; 0.08) indicated that there was slight model misspecification in 

tail areas and that the model systematically underestimated the risk (Figure 1). Updating the 

intercept corrected the systematic underestimation; calibration-in-the-large (-0.0004 95%CI -

0.16; 0.16).  

 

At 1 year the c-statistic (Table 4) was 0.62 (95%CI 0.58; 0.66), indicating that it was difficult 

to discriminate between patient experiencing an event and those, which remained event free. 

While the model misspecification in the tail areas was small (calibration slope: 0.95 95%CI 

0.63; 1.28), there was considerable overestimation, indicated by a calibration-in-the-large of 



 

12 
 

0.2519 (95%CI 0.10; 0.40). Updating the intercept resulted in an almost perfect calibrated 

model (Figure 1).  

 

Results: chemotherapy by mortality risk 

Given the good performance of the original models we estimated the logit(mortality 

risk) under no chemotherapy treatment. The median and range logit(mortality risk) under no 

chemotherapy were: -0.60 (-1.75; 0.85) for 5 months and 0.26 (-0.72; 2.14) for 1 year. 

Transformed to the risk scale this becomes: 0.35 (0.15; 0.70) and 0.56 (0.33, 0.90).  

 

For a patient with a 0.50 predicted risk of dying at 5 months [i.e., a logit(5-month 

mortality) of 0.00] the effect of “any chemotherapy” compared to no chemotherapy on 

preventing mortality was OR 0.45 (95% 0.25; 0.81; Table 5). The interaction effect showed 

there was considerable difference between patients with a different mortality risk: OR 1.89 

(95%CI 0.83; 4.33). To get a more precise estimate results were pooled with those from 

Manuscript 1, resulting in an interaction effect OR 2.31 (95%CI 1.18; 4.53; Table 5). While 

there was considerable difference in effectiveness in the current population, the majority of 

patients benefitted from chemotherapy (Figure 2).  

 

For a patient with a 0.50 risk of 1-year mortality, chemotherapy was slightly less 

effective in preventing mortality OR 0.57 (95%CI 0.35; 0.91; Table 5). Furthermore, the 

interaction effect OR of 1.26 (95%CI 0.60; 2.63) was closer to the 1.00 indicating a smaller 

difference in effectiveness. Combining results with those from the previous study (Manuscript 

1) resulted in a non-significant interaction effect: OR 1.39 (95CI% 0.76; 2.54; Table 5). 

Figure 2, indeed shows a small difference in chemotherapy effectiveness. This indicates that 

perhaps the interaction effect is redundant. Excluding the interaction effect resulted in a 
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chemotherapy effect that was equal for all patients regardless of their predicted risk: OR 0.60 

(95%CI 0.39; 0.92). 

 

Overall, the effects of any chemotherapy against no chemotherapy were comparable to 

the effects of carboplatin or doxorubicin against no chemotherapy (Table 5). The 

heterogeneity between the current study and the results from (Manuscript 1) were non-

significant (available upon request).  

 

Discussion  

In this study, we  described the external validation of two multivariable models 

predicting 5-month and 1-year mortality risk in dogs surgically treated for osteosarcoma (OS). 

Additionally, we reproduced a previously reported chemotherapy by predicted risk interaction 

effect, indicating that a dog’s predicted risk of mortality modifies the effectiveness of 

chemotherapy.  

 

Results showed that both prediction models (for 5-month and 1-year mortality risk) 

generalized well to the current independent dataset. For the 1-year mortality prediction model 

recalibration of the intercept (Update 1) was needed to correct for differences in mortality 

incidence. This recalibration is common when applying a prediction model to a new setting 

and can easily be implemented in clinical practice using the R code provided in the Appendix. 

Compared to the previous publication (Schmidt et al., 2013) (original model in Tables 3 and 

4), the discriminative ability (c-statistic between 0.62; 0.67) of both models was similar but 

modest. This indicates that the models have difficulty discriminating between subjects 

experiencing an event and those that did not. In part, this was caused by the fact that most 

patients had a similar risk. The good calibration (agreement between observed and predicted 
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risk) indicates that the clustering of risk is a characteristic of the patient population, not a 

modelling error. Given the modest discriminative ability but good calibration, these risk 

prediction models are perhaps best used for identifying patients at a high- or low risk of 

mortality, not for indicating which patient will actually die.  

 

The chemotherapy by predicted risk (strictly speaking the logit of the predicted risk) 

interaction showed that chemotherapy was more effective in preventing 5-month mortality in 

lower risk patients (risk cut off 0.52). Our findings imply that short term (i.e., 5 months) 

effectiveness of chemotherapy depends on a dogs predicted risk of 5-month mortality. 

Contrary to our previous study (Manuscript 1), most patients benefitted from additional 

chemotherapy. This difference in overall chemotherapy effectiveness was caused by a lower 

baseline risk in this population compared to the previous study. This also demonstrates that in 

the presence of a chemotherapy interaction (for 5-month mortality) the overall average effect 

estimate is inappropriate, instead an individualized chemotherapy effect estimate should be 

used (Schmidt et al., 2014b). Due to this interaction a different fraction of patients will benefit 

from chemotherapy depending on the population specific predicted risk distribution. If every 

dog in a particular population benefits from chemotherapy (e.g., because the entire population 

consists of low risk patients), individualizing treatments becomes less important. Potentially, 

however, in a setting where each dog benefits, difference in chemotherapy effectiveness may 

still be of interest from a health economic perspective. At 1 year, we did not find an 

interaction (similar to the previous study, Manuscript 1), however, due to the wide confidence 

interval around the interaction effect, we cannot exclude that such an interaction does exist 

(Schmidt et al., 2016). Based on the current evidence it seems most appropriate, however, to 

use the main effect of chemotherapy compared to no chemotherapy, estimated in a model 

without an interaction, of OR 0.60 (95%CI 0.39; 0.92) for all patients regardless of their 
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predicted risk. Finally, as in the discovery paper (Manuscript 1), we recognize that the above 

described interaction tests ignore the uncertainty in the predicted logit(mortality), 

underestimating the variance. To adjust for this, following the same approach as in our 

previous paper (Manuscript 1), we bootstrapped the original dataset refitting the prediction 

model (2,000 bootstrap sample per imputed dataset), re-estimating the predicted risk and the 

interaction effect. Unexpectedly this led to smaller confidence intervals than when ignoring 

the first stage uncertainty: interaction OR 1.89 (95%CI 1.20; 2.97) and OR 1.26 (95%CI 0.98; 

1.63), for 5 months and 1-year mortality. Possibly this decrease in variance is related to the 

fact that bootstrapping the original prediction models increases its external performance (i.e., 

fits external data better), decreasing differences between observed and predicted risk (Harrell, 

Jr., 2001). However, as shown above, at least for the 5-months prediction model, the predicted 

risk already fitted the observed risk reasonably well. Clearly, this issue of how to incorporate 

the first stage uncertainty needs further theoretical consideration.  

 

Our finding that chemotherapy effectiveness depends on a second variable has also 

been shown in other studies. An example would be the synergistic effect between 

immunotherapy and chemotherapy (MacEwen and Kurzman, 1996; Vail et al., 1995). To the 

best of our knowledge, we are the first to show that chemotherapy effectiveness may depend 

on multiple variables. 

 

The current study has some important limitations. First, in the current cohort study 

chemotherapy was not randomly allocated. While results were adjusted for potential 

confounding, it seems likely that there is still remaining bias due to residual or unobserved 

confounding. For example, decisions on euthanasia may partially dependent on the type of 

chemotherapy prescribed (e.g., due to differences in side effects), and almost certainly on the 
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decision to not use further chemotherapy. Instead of focussing on all-cause mortality (as done 

here), one might be tempted to focus on “naturally” occurring death and censor (using a 

survival model) or disregard (using logistic regression) dogs who were euthanized. However, 

confounding bias would likely remain and even in its absence this would introduce bias due to 

competing risks (Satagopan et al., 2004), an issue we addressed in Schmidt et.al (, 2013). On 

the other hand, because the decisions around chemotherapy may not only depends on a 

patients’ life expectancy but also on an owner’s willingness to pay, some degree of 

randomness might be expected. Nevertheless, we expect there to be some degree of residual 

confounding (by unmeasured variables affecting both chemotherapy decision and life 

expectancy (Hernan and Robins, 2006)) in the estimates presented, and therefore, we hope 

that our findings might lead to the initiation of new, or re-analysis of historical, randomized 

clinical trials (RCTs) further exploring the validity of our results.  

Second, as reported, some observations were missing. Instead of focusing on complete 

observation, which (by ignoring dependencies) leads to selection bias, missing values were 

imputed (Groenwold et al., 2012; White and Carlin, 2010). Third, no correction for multiple 

testing was applied. Given the modest amount of tests and that similar findings were reported 

in a second independent study (Manuscript 1), we feel that such a correction is redundant. 

Fourth, we emphasize that this is only a single validation study, based on a sample collected 

in a university hospital in the USA, hence results may differ from a primary care setting in 

another region. Before implementing the prediction model in a clinical setting, we suggest to 

validate the model anew, using for example historical medical records and if need recalibrate 

the model using the code provided in Appendix 1. Based on a recent publication from Collins, 

Ogundimu and Altman (, 2015) it seems that such a validation study needs at the very least 

100 events to provide moderatly precise and unbiased estimates of model performance (i.e., 

calibration and discrimination).  
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Nevertheless, given the performance in this single external validation study we would 

expected, even in settings where the predicted risk does not does agree with the the 

underlying true risk, that ranking of high- versus low risk patients would still be possible 

using these models. Because of this we have included an excel spreadsheet to aid in 

calculating a patient’s risk of mortality (see Appendix II). To reiterate, unless a local 

validation study is performed, we would not expected the predicted risk from this spreadsheet 

program to match the true risks. Therefore, we are hesitant to provide thresholds to categorize 

high-, moderate- and low-risk patients, instead we suggest practitioners use this tool to help 

rank patients to identify relatively high- or low-risk patients (compared to the “average” 

patient encounters in their practice). After multiple validation studies, perhaps a consensus 

could be reached on risk thresholds. For example, in human cardiovascular heart disease 

(CHD), risk threshold were decided by consensus in guideline groups based on information 

on external validation of CHD prediction models [e.g., the Framingham (D'Agostino, Sr. et 

al., 2008)], treatment efficacy (e.g., statins) and safety, and cost-effectiveness (Hingorani and 

Hemingway, 2011; Hingorani and Psaty, 2009). Due to the mentioned lack of randomization 

we have not included the interaction with chemotherapy in the spreadsheet, we feel that this is 

best included after (historical) RCT data have confirmed this interaction.  

 

Conclusions 

Based on our results, we conclude that a dog’s risk of mortality, after surgical 

treatment for osteosarcoma, can be predicted using the models presented. Dogs with a lower 

predicted risk of 5-month mortality seem to benefit most from additional chemotherapy. 
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Figure captions 

 

Figure 1. Calibration plot comparing predicted probabilities to observed probabilities. 

 

[Figure 1] 

 

Perfect calibration is indicated by the solid diagonal line. The dotted line indicates the non-

parametric line going through the decile specific estimates (triangles). The solid curve 

indicates the smoothed polynomial loess curve between the predicted risk and the event 

indicator. The spike histogram indicates the frequencies of the predicted risk.  

 

Figure 2. Estimated effect of any chemotherapy compared to no chemotherapy on 5-

month (left) and 1-year (right) mortality incidence in surgically treated dogs with 

osteosarcoma. 
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Figure shows the odds ratio (OR) of any chemotherapy treatment (solid line) with 95% 

confidence intervals (dotted lines) for dogs with different predicted risks of 5-month 

mortality. The horizontal solid line indicates a neutral OR of 1.00. At the bottom a spike 

histogram is given, corresponding to the patient frequencies of the x-axis measurement.  

 


