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Abstract—Prone-to-supine breast image registration has
potential application in the fields of surgical and radiother-
apy planning, image guided interventions, and multi-modal
cancer diagnosis, staging, and therapy response prediction.
However, breast image registration of three dimensional
images acquired in different patient positions is a challenging
problem, due to large deformations induced to the soft breast
tissue caused by the change in gravity loading. We present a
symmetric, biomechanical simulation based registration
framework which aligns the images in a central, virtually
unloaded configuration. The breast tissue is modelled as a
neo-Hookean material and gravity is considered as the main
source of deformation in the original images. In addition to
gravity, our framework successively applies image derived
forces directly into the unloading simulation in place of a
subsequent image registration step. This results in a biome-
chanically constrained deformation. Using a finite difference
scheme avoids an explicit meshing step and enables simula-
tions to be performed directly in the image space. The explicit
time integration scheme allows the motion at the interface
between chest and breast to be constrained along the chest
wall. The feasibility and accuracy of the approach presented
here was assessed by measuring the target registration error
(TRE) using a numerical phantom with known ground truth
deformations, nine clinical prone MRI and supine CT image
pairs, one clinical prone-supine CT image pair and four
prone-supine MRI image pairs. The registration reduced the

mean TRE for the numerical phantom experiment from
initially 19.3 to 0.9 mm and the combined mean TRE for all
fourteen clinical data sets from 69.7 to 5.6 mm.

Keywords—Image analysis, Image registration, Breast can-

cer, Biomechanics, Modelling, Finite difference method.

INTRODUCTION

Breast cancer is the most common female cancer
worldwide. The lifetime risk for a woman in Europe to
develop breast cancer is estimated to be one in eight.
Being diagnosed with breast cancer carries a high
psychological burden for any patient and thus im-
proved cancer management strategies are sought which
streamline the clinical workflow and could potentially
improve the clinical outcome whilst avoiding the risk
of over-diagnosis.

When a woman is diagnosed with breast cancer,
surgery is often part of her individual therapy plan
which can also include additional forms of treatment
such as chemotherapy and radiotherapy. Where pos-
sible lumpectomy combined with radiotherapy is the
preferred treatment of choice. This involves removing
only the cancerous tissue with a margin of healthy
breast tissue, therefore conserving the unaffected parts
of the breast. This has potential benefits over mastec-
tomy, the complete removal of breast tissue, of being
more acceptable to patients, offering good cosmetic
results and comparably low risk of local recurrence.26
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Early detection of breast cancer, for example
through national screening programmes, identifies a
significant proportion of lesions that might not be
palpable. This is often the case if their size is below a
diameter of 10 mm. For the surgical removal of such a
lesion, strategies have to be in place to localise the
cancerous tissue accurately without tactile guidance.16

Wire guided procedures are commonly used in these
cases but radioactive seed localisation strategies have
also been suggested.22

Once the cancerous tissue has been excised from the
breast, the surgeon places marker clips into the cavity
wall to provide information about the location of the
tumour bed for subsequent radiotherapy. These clips
are used to generate the radiation plan. The specimen
is then sent for further histopathological examination
to determine the presence, or otherwise, of cancerous
tissue at the resection margin. Negative or positive
margins are a strong predictor of local recurrence2

which may in turn influence the long-term survival.17

Routine, diagnostic, pre-surgical, dynamic contrast
enhanced (DCE) MR images contain valuable infor-
mation about the size and location of cancer in the
pendulous, prone orientated breast. However surgery
and radiotherapy are performed with the patient in the
supine position. In this paper we describe a novel
methodology for prone to supine, image-to-image reg-
istration. This has a number of potential applications:

– surgical planning, assuming an additional
structural MR image has been acquired repre-
senting the approximate position of the patient
in the operating room (OR),

– initial pre-incision surgical guidance, assuming
the same supine MR image as above has been
acquired and a methodology to transform the
supine image into the physical coordinate sys-
tem of the OR is also available (beyond the
scope of this study), and

– radiotherapy planning, by relating the pre-op-
erative MR image to a post-operative planning
CT scan. The multi-modal aspect of this regis-
tration problem is covered in the current study,
however, modelling of the tumour excision will
also be required and is beyond the scope of this
work.

Registration methods can broadly be classified into
image-to-image and image-to-physical-space registra-
tion. The former class of algorithms—which is referred
to as image registration for the remainder of this
article—establishes a spatial correspondence between
images. The latter registration type transforms image
information to a real-world coordinate system, which
makes it applicable for image guided procedures. Image
guidance was first successfully established in the field of

neurosurgery butwas further expanded to orthopaedics,
cardiac interventions, and thoraco-abdominal interven-
tions, primarily using the assumption of rigid body
alignment.11 In cases where the assumption of a rigid
body motion does not apply, biomechanical models
were employed to aid non-rigid alignment for instance
due to brain shift10,28,40 or during liver surgery.9,25,36

Breast biomechanical modelling has been investi-
gated by various research groups to aid different parts
of the clinical workflow. In the early work of Azar
et al.3 compression simulations with patient specific
models using a piecewise linear approximation of non-
linear tissue characteristics were carried out. These
were later reported by Whiteley et al.43 as being inap-
propriate for simulating breast tissue deformations
occurring in the prone and supine settings. Unloading
the gravity loaded MR based geometry of the breast
was addressed by Rajagopal et al.,33 as well as Path-
manathan.32 An overview of methods is presented in
the review article by Babarenda Gamage.5 Surgical
planning15 and guidance7 aims to provide pre-surgical
image information to the surgeon. The major challenge
to overcome in this task is that the position of the
patient during pre-surgical imaging differs significantly
from the surgical supine position. Alternative
approaches regarding the patient positioning have
been investigated but have not been adopted into
clinical practice to date.39 Recently the potential role of
supine MRI for image guided interventions was ad-
dressed by solving the image-to-physical-space regis-
tration task for which the comparably smaller
deformation between the image acquisition and the
surgical position was exploited.1,12 However, the au-
thors concede that the lower image quality of the su-
pine MR images may, in combination with the
flattened breast geometry, make acceptance of this
technology as a standard imaging procedure difficult.

Prone-to-supine image registration is to date an
active topic of research.4,8,20,23,29,30,35 An overview is
presented in Table 1. Rajagopal et al.35 and Babrenda
Gamage et al.5 aim to solve this registration task with a
pure biomechanical simulation approach. Their meth-
od uses a patient specific model, derived from prone
MR images, to first remove the effects of gravity33 and
subsequently reapply gravity loading into the supine
direction. However, the assumption that only the
direction of gravity changes from the prone imaging
position to the supine surgical pose is an oversimpli-
fication. In addition, contact of the breast with the coil
during the MR acquisition can introduce significant
deformations which cannot be easily corrected using
this method. In contrast Carter et al.,8 Lee et al.,30

Eiben et al.,20 and Han et al.23 also use a biomechan-
ical finite element model to estimate the gravity in-
duced deformation, but correct for the residual
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misalignment using a subsequent intensity based image
registration step. However, intensity based registration
methods that use generic transformation models might
allow physically implausible deformations. Further-
more, some biomechanical simulations do not consider
pre-stresses in the initial patient configuration.23,29

Motion of the breast tissue relative to the chest wall is
also considered differently: While some models do not
allow motion along the chest wall,29,30 others use
prescribed displacements,7,20 frictionless sliding23, or
an explicit model of the pectoralis muscle that also
includes sliding.5 Defining appropriate prescribed dis-
placements usually requires manual pre-processing
which is undesirable in a clinical context. Lastly, a
large variation in soft tissue elasticities might require
an optimisation of the corresponding material
parameters.23,24 In summary, a prone-supine registra-
tion approach that simultaneously: y1 considers pre-
stresses in the initial patient position, y2 allows con-
strained motion of the breast tissue along the chest
wall, y3 uses a biomechanically constrained deforma-
tion model y4 optimises the material parameters and y5
incorporates image information to correct residual
misalignment, does not currently exist.

Our proposed method addresses these issues by
integrating image registration components, i.e. image
derived forces, directly into patient specific biome-
chanical simulations. Our symmetric, biomechanical
image registration aligns the images in a central, vir-
tually unloaded configuration and considers gravity as
the main cause of pre-stresses in the breast as repre-
sented in the images. The algorithm is designed sym-
metrically, so that both the prone and the supine
images are transformed simultaneously (c.f. Fig. 1).
Hence the first step includes an unloading simulation,
which only considers gravity as a body force y1,y3.
Subsequently the alignment is improved by first
updating the global material parameters y3,y4, and
second by adding local image derived forces to the
system y3,y5. These account for the residual misalign-

ment and in turn update the unloaded configuration.
This results in a biomechanically constrained defor-
mation. We allow the breast tissue to move along the
chest wall by implementing a tangential motion con-
straint in the retro-mammari area y2. By choosing a
finite difference numerical solution scheme (FDM), we

TABLE 1. Overview of published prone-to-supine registration methods.

Author

Simulation Registration

Material type Unloading Element type Chest motion Deformation Similarity

Rajagopal 200834,35 Neo-Hookean Inverse finite deform.33 Cubic Hermetian Fixed FEM n.a.

Carter 20087 Neo-Hookean Iterative Hexahedra Prescribed FEM+Fluid NCC

Lee 201030 Neo-Hookean Not specified Cubic Hermetian Fixed FEM+FFD NMI

Babarenda Gamage 20124 Neo-Hookean Inverse finite deform.33 Cubic Hermetian Fixed FEM n.a.

Lago 201229 Mooney–Rivlin Simple inversion Not specified Fixed FEM n.a. (surf. disp.)

Eiben 201320 Neo-Hookean Iterative Tetrahedra Prescribed FEM+FFD NMI

Han 201424 Neo-Hookean Simple inversion Tetrahedra Sliding FEM+FFD NMI

For the subsequent registrations, the transformation methods are either free form deformation (FFD) or finite element methods (FEM), where

the similarity metrics are either normalised cross correlation (NCC) or normalised mutual information (NMI).

biomechanics

global image
information

local image
information

prone
loaded

supine
loaded

unload unload

update
material

prone
unloaded

supine
unloaded

unload
update

unload
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image
force

prone
registered
unloaded

supine
registered
unloaded

FIGURE 1. Overview of the biomechanics based registration
procedure. In a first step the effect of gravity is removed from
the prone and supine breast image assuming generic material
parameters. In a second step the material parameters are
repeatedly updated until the image similarity no longer im-
proves. The final step involves activation of image derived
forces which aim to correct modelling inaccuracies and gen-
erate the final aligned images in the unloaded configuration.
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furthermore avoid the need for an explicit mesh gen-
eration step as required by finite element procedures.
The implemented method is used to align prone-supine
MR image pairs, and, to our knowledge, for the first
time, prone MRI and supine CT breast images.

MATERIALS AND METHODS

Overview of the Image Alignment Approach

The computational framework presented here is a
symmetric, intensity based, biomechanically driven
image registration method to align prone and supine
breast images. It is a significant extension to our pre-
vious work20 and follows the idea that the main source
of geometric deformation of the breast between the
prone and the supine images arises from the relative
difference in gravity loading. Thus when the effect of
gravity is removed from the loaded breast configura-
tions, and the images being transformed accordingly,
the registration task becomes less challenging. The
remaining dissimilarities arise primarily from mod-
elling inaccuracies such as unknown material param-
eters, missing knowledge about the exact patient
specific constitutive relation of in-vivo breast tissue and
insufficient definition of boundary conditions due to
contact with imaging equipment or undefined motion
of the breast and muscle tissue on the chest wall.

Figure 1 shows an overview of the complete pro-
posed algorithm. The main building blocks are:

– A biomechanical deformation model (‘‘3D Fi-
nite Difference Simulation’’ section),

– the calculation of the patient-specific unloaded
configuration (‘‘Gravity Unloading’’ section),

– a tangential motion constraint to enforce the
motion of the pectoral muscle along the chest
surface (‘‘Surface-Based Motion Constraint’’
section),

– a material update scheme (‘‘Material Optimi-
sation’’ section), and

– image derived forces (‘‘Integration of Image
Derived Forces’’ section).

The algorithm is designed to start with a pure
biomechanical simulation but in the course of the
execution image information is incorporated progres-
sively directly into the unloading simulation: first on a
global and then on a local scale.

3D Finite Difference Simulation

Constitutive relations and corresponding material
parameters of breast tissues are open research topics.
Samani et al.37,38 carried out mechanical tests on

ex-vivo breast tissue samples. The mechanical proper-
ties of tissues however change significantly after re-
moval from the in-vivo environment. In a recent study
Eder et al.19 used a biomechanical finite element sim-
ulation based on prone MR images to simulate the
breast shape in the upright standing position of a pa-
tient. The simulation was evaluated against surface
scans of the same patients in the same position. They
report that the material relations proposed by Tanner
et al.41 and Rajagopal et al.34 produced the most
accurate simulations. Interestingly both cited
approaches use a simple neo-Hookean material con-
stitutive relation. Hence the proposed image registra-
tion framework assumes breast tissues biomechanical
description through this model, which requires only
two material coefficients (Lamé parameters: k and l).6

This is an advantage if the knowledge about the exact
material properties is limited either due to the lack of
in-vivo measurements or incoherent literature values.
Furthermore, in a clinical application scenario in-vivo
measurements are usually not available.

The basis for the non-linear biomechanical defor-
mation model is given by the principle of conservation
of linear momentum:

q0 @ttu ¼ r0 �Nþ q0f� r@tu ð1Þ

Here u is the displacement vector, q0 the mass density,
t the time, N the nominal stress or the transposed non-
symmetric first Piola–Kirchhoff Stress Tensor, f the
body force and r the speed proportional damping
coefficient. The first and second partial derivatives with
respect to time are indicated by the operators @t and @tt
respectively. The non-linear material response is de-
fined by the nominal stress tensor N which, for the neo-
Hookean model, is given by

NNH ¼ l I� C�1
� �

þ k lnðJÞC�1
� �

FT: ð2Þ

The deformation gradient tensor F provides the mea-
sure of deformation between a point in the unde-
formed, X, and a point in the deformed configuration,

x, and is defined by while C ¼ FTF is the
right Cauchy deformation tensor. The final quantity
required to evaluate the material stress given in (2) is
the volume change J which is the determinant of the
deformation gradient: J ¼ detðFÞ.

Explicit time integration of Eq. (1) is obtained via a
discrete central difference with respect to time which
can be solved directly for the displacement at the next
time step. The first and second time derivatives of the
displacement vector field u can be approximated by the
following forward and central differential operators

@tu � @þ
t U

n
i;j;k ¼

1

ht
Unþ1

i;j;k �Un
i;j;k

� �
ð3Þ
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@ttu � @�
tt U

n
i;j;k ¼

1

h2t
Unþ1

i;j;k � 2Un
i;j;k þUn�1

i;j;k

� �
ð4Þ

where Un
i;j;k is the discrete version of the continuous

and time dependent deformation vector field uðX; tÞ
with spatial indices i, j, k corresponding to the position
X and temporal index n corresponding to a point in
time t.

Substituting the internal and external forces of (1)
by k this equation can be rewritten:

@ttu ¼ k� r

q
@tu ð5Þ

Using the discrete time derivatives (3) and (4) and the
appropriate discrete version of k denoted by Kn

i;j;k, an

explicit time integration scheme is formulated by solv-

ing for Unþ1
i;j;k :

Unþ1
i;j;k ¼

2qþ htrð ÞUn
i;j;k � qUn�1

i;j;k þ h2tqK
n
i;j;k

qþ htr
ð6Þ

As this scheme is only conditionally stable, the critical
step size has to be obeyed.

Similar to the discrete differential operators (3) and
(4) which are defined with respect to time, discrete
spatial derivatives can be formulated by substituting
the time step ht with a spatial step hx; hy; hz. The mixed

spatial derivatives are required to solve (1) and can be
approximated by the following differential operator:

@xyu � @�
xyU

n
i;j;k ¼

1

4hxhy

�
Un

iþ1;jþ1;k þUn
i�1;j�1;k

�Un
i�1;jþ1;k �Un

iþ1;j�1;k

� ð7Þ

The spatial derivatives @yyu, @zzu, @yzu, and @xzu follow
by appropriate permutation of the discrete indices
i, j, k in the equations above.

To complete the initial boundary value problem, we
define an initial displacement of ut¼0 ¼ 0 and a
homogeneous Dirichlet boundary condition on the
boundary of the image domain.

Gravity Unloading

One of the major assumptions made up to this point
is that the geometry in the unloaded or stress-free state
is known. Of course the equation of motion still holds
true for pre-stressed objects as long as such stresses are
added separately. However, measuring tissue pre-
stressing in the context of in-vivo breast imaging is, to
our knowledge, not feasible. Thus the stress-free breast
geometry is unknown. However, the concept of the
unloaded configuration permits reduction of the scale
of the deformation problem at hand.

The method presented here applies the iterative
prediction-correction scheme8,20,21 into the FDM
framework. It uses the flexibility of the explicit time
integration to recover the unloaded configuration in
only one forward simulation by correcting the predic-
tion during the course of the simulation. In the FDM
framework the spatial material distribution of the
involved compartments in the loaded configuration,
namely chest, fat, gland, and background are directly
related to the segmentation of the clinical MR or CT
images. The loading aims to find the displacement
vector field (DVF) which points from the unknown
unloaded to the known loaded configuration as rep-
resented in the clinical images. Hence the DVF is
determined by the biomechanical simulation and is
unique for a given hyperelastic material configuration.

An overview of the developed unloading procedure
using the example of the prone breast is given in the
following: Starting with the geometry segmented from
the prone loaded MR image, we build the biome-
chanical model and begin the forward loading simu-
lation by applying gravity in the anterior direction.
This means, that the material parameters lðXÞ and
kðXÞ, the mass density qmðXÞ and body force fmðXÞ
define the simulation at unloading step m and are ini-
tially for m ¼ 0 identical with the configuration shown
in the clinical image

MmðXÞ :¼ fkmðXÞ; lmðXÞ; qmðXÞ; fmðXÞg: ð8Þ

The simulation itself describes the forward mapping
uðX; n;MmÞ ¼ x of a material point X. As a conse-
quence of the application of gravity, the breast extends
further anterior. Hence a correction of the basis of the
biomechanical model—the interim unloaded configu-
ration MmðXÞ—is required: The loaded spatial mate-
rial configuration as represented in the clinical images
is pulled back—or warped—from the tip to the start of
the vectors of the DVF, which means that the breast
virtually contracts into the posterior direction, moving
closer towards the estimated unloaded configuration.

Mmþ1ðXÞ ¼ M0ðuðX; n;MmÞÞ ¼ M0ðxÞ ð9Þ

In the field of image processing this step is known as
resampling and is equivalent to the inverse mapping

u�1 : x7!X. With the updated unloaded configuration,
the loading simulation is continued with repeated
resampling steps at given time points. If the update of
the material configuration becomes small such that
Mmþ1 � Mm, the unloaded configuration has been
recovered. This is the case, when the dynamic biome-
chanical simulation reaches a quasi-static state.

Inverting a deformation vector field to pull back M0

into the current estimate of the unloaded configuration
is usually an iterative and computational expensive
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procedure.13 However the backward Lagrangian per-
spective utilised in image transformation can be
applied and inherently yields the inverse deformation.
Thus the update procedure with the inverse displace-
ment vector field simplifies to an image resampling or
warping task known from image processing and effi-
cient implementations can be used.

Updating the material configuration M is not
required at each temporal simulation step n, since the
incremental deformations are sufficiently small. Hence
iteration steps m and n were kept separately. An
evaluation of the unloading scheme can be found in the
Appendix Unloading Evaluation.

Surface-Based Motion Constraint

The flexibility of the explicit time integration
scheme allows direct imposition of motion constraints
or displacement updates on selected nodes. Such nodes
are also sometimes known as slave nodes. This tech-
nique is used here to constrain nodes on the chest wall
to only move tangentially along the chest surface.

One alternative to constrain the chest nodes to re-
main on the chest could be to use a prescribed dis-
placement constraint on these nodes directly. This
however is difficult and possibly error prone as a point-
to-point correspondence on the chest between the
prone or supine loaded configuration and the corre-
sponding unloaded one is generally unknown. Fur-
thermore due to a limited number of features on the
retro-mammari region this patient specific correspon-
dence cannot be established easily a-priori.

In previous work, we assumed circumferential
stretching when simulating the unloaded configuration
from the prone and circumferential compression when
simulating the unloaded configuration from the supine
image.20 However, this assumption is an oversimplifi-
cation of the underlying anatomy and the prescribed
displacements compromise the alignment accuracy in
this area directly. Thus a more flexible approach is
followed here, where internal forces of the biome-
chanical simulation act as a regulariser for displace-
ments parallel to the surface, whereas normal to the
surface small correction displacements are applied.
Figure 2 shows the general principle of our approach
by depicting the course of a slave node during the
simulation.

From the segmented prone MR and supine CT
image, the target surface position of the chest is
established and a corresponding Euclidean distance
transformation is calculated. The gradient of the dis-
tance transform results in a correction vector field
cðXÞ. This then directs chest nodes, which during the
course of the simulation move outside the target sur-
face region, back to the surface. The chest-muscle

boundary is extracted from the segmentation of the
original prone and supine image and the corresponding
nodes are labelled as chest or slave nodes. The de-
formed position of these nodes is then given by xS.
During the course of the registration the position of
these nodes is observed and corrected to

x0n ¼ xn þ sðvsÞ cðxnÞ; ð10Þ

if a node does not lie on the target surface. The scaling
parameter sðvsÞ controls the speed of the imposed
surface alignment. This parameter has been chosen
such that the explicit time integration converges. We
here make the scaling dependent on the speed of a
node towards the target surface vs. When a slave node
moves above a certain speed limit in the correction
direction already, the amount of the correction will be
decreased with a logistic function. We chose this
function due to its smooth decrease above a specified
value but expect that other functions with similar
characteristics work equally well. The speed limit im-
proves the stability of the dynamic system since re-
peated correction displacements accelerate the slave
nodes which eventually might cause the system to di-
verge. The logistic function takes the form

sðvsÞ ¼ p 1þ elðvs�vmaxÞ
� ��1

ð11Þ

with and the constant correction
parameter p. We observed that through the introduc-
tion of the speed dependent correction, the system
became largely insensitive to the choice of p. We set
p ¼ 0:005 and vmax ¼ 0:05m=s for all experiments.

Additional flexibility regarding the motion con-
straint can be achieved by varying the design of the
correction vector field cðXÞ. As specified in (10), either
a tied surface boundary condition or a one-sided slid-
ing condition can be imposed.

xn−1

xn

x′
n

s c(xn)

FIGURE 2. Surface based motion constraint. A discretised
approximation of the target surface, depicted as grey shaded
voxels, is generated from the chest-pectoral muscle interface
based on the segmented image. From this a displacement
vector field is pre-calculated which points to the target sur-
face. This is used during the iterative solution process to
displace nodes back to the target which due to the underlying
material response might have moved out of this region.
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Summarising the algorithm to this point, Fig. 3
shows an overview of our approach as described in
detail in this and the previous section.

Material Optimisation

Significantly different breast tissue stiffness has been
reported in the literature. As a result, strategies to
optimise the material parameters of a selected model
have been investigated previously.18,23,24

We initialise our generic unloading simulation with
an extremal material property—either very soft or
stiff—and observe the influence of the changes to the
material parameters on the image similarity measure
(see ‘‘Integration of Image Derived Forces’’ section). If
the similarity value improves, stiffening or softening
steps are simulated until the image similarity does no
longer improve. To cover a wider range of material
parameters in less number of steps, a constant multi-
plicative factor is used to update the shear modulus
repeatedly. This approach does not find the best pos-
sible parameters but a better starting position for the
intensity based alignment.

Integration of Image Derived Forces

In image registration an essential building block is a
similarity or distance metric. But where in classical
image registration only image forces act to align
objects—usually counter balanced by a regularisation
to obtain a smooth solution—here we consider the
physical forces such as gravity as well as image forces

simultaneously. The underlying hyperelastic material
law acts as an implicit regulariser. Image forces lack
physical meaning, but they are essential to drive the
model in the direction required to align the images and
thus help overcome modelling inaccuracies as de-
scribed earlier.

For a mono-modal alignment task, the simplest and
most widely used distance metric is the sum-of-squared-
differences (SSD) which is defined as

SSSD :¼ 1

2

Z

X
PðXÞ � SðXÞð Þ2dX: ð12Þ

Here P and S denote the prone and supine image
respectively that were warped into the current un-
loaded configuration X. Since we are interested in
aligning the prone to the supine unloaded image
symmetrically, the forces need to be evaluated sepa-
rately for prone and supine by formulating the Euler–
Lagrange equation of (12), which gives31:

fSSDP ðXÞ ¼ � PðXÞ � SðXÞð ÞrPðXÞ ð13Þ

fSSDS ðXÞ ¼ � SðXÞ � PðXÞð ÞrSðXÞ ð14Þ

To incorporate the image forces into the simulation,
the image forces are accumulated incrementally, i.e.,

fimg ¼ sðtÞFNf
SSD
N þ

XN�1

j¼1

Fjf
SSD
j : ð15Þ

Note, since the image is resampled from the loaded
prone and supine configuration, the image forces are
transformed by the deformation gradient F computed
form the corresponding prone and supine unloading
simulations. Furthermore the last evaluated image
force is added using a polygonal loading function s(t)
where sð0Þ ¼ 0 and sðTÞ ¼ 1. In order to keep a con-
sistent record of the accumulated image forces, these
are recorded in the loaded configuration, from which
every quantity is subsequently resampled (see ‘‘Gravity
Unloading’’ section).

The proneMRI to supine CT image registration task
is obviously not of mono-modal nature. In this respect
two different strategies could be followed. Either a
multi-modal image similarity measure with corre-
sponding image forces could be used, or one of the
images is adapted so that the tissues appear with the
same intensity as in the other modality. Here the latter
approach was chosen since only two tissue classes are
present and thus a simple intensity inversion with a lin-
ear scaling is sufficient. Namely the MR images are
converted into pseudo CT intensities. An example for
this intensity modification is shown in Fig. 4.

function Inverse FDM-HE(u0, μ0, λ0, f0)
Un+1
i,j,k , Un

i,j,k, U
n−1
i,j,k ← u0

M0(X) ← {λ0(X), μ0(X), . . . , ρ0(X), f0(X)}
while n ≤ Nmax do

Un+1
i,j,k ← w1U

n
i,j,k + Un−1

i,j,k + Kn
i,j,k

if mod(i, ninvert) == 0 then
Mn+1(X) ← M0(ϕi(X))

end if
Un+1
i,j,k (Xchest) ← Un+1

i,j,k (Xchest) + s c(xn,chest)
Un+1
i,j,k (Xboundary) ← 0

n ← n + 1
end while

end function

FIGURE 3. The base algorithm to calculate the unloaded
configuration using a hyperelastic material, and the motion
constraint for nodes on the chest wall.
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Image Data

To evaluate the performance of the developed
algorithm, different types of images were used.

Numerical phantom images were generated to allow
evaluation of the registration quality with a known
ground truth deformation over the entire virtual
breast. The generation process of the numerical
phantom dataset is described in detail in section
‘‘Numerical Phantom Datasets.’’

The second set of image data consisted of nine
prone MR and supine CT image pairs (P1–P9) which
were acquired as part of the standard clinical proce-
dure for breast cancer patients. The MR images were
taken pre-operatively for diagnostic purposes and the
CT images were post-operative planning CTs acquired
just before radiotherapy. To avoid differences in the
images caused by surgical tissue removal, we focus on
the healthy contra-lateral breast.

We also added one prone-supine CT image data
pair as a tenth patient (P10*) to the clinical data set.
Since both images were acquired post-surgery, seven
marker clips were present and well visible in both
images. These clips are utilised to locate the tumour
bed for radiotherapy in the clinical workflow. In the
context of this study these clips could be used to gen-
erate a ground truth deformation between the two
loading positions. To this end the seven markers were
identified manually and warped according to the
deformation vector field produced by the registration
algorithm. The region of and around the markers was
assigned with a registration mask so that no image
forces were calculated here. Hence a bias in the regis-
tration result is avoided. Note however, that the clips
are located only in the region of the original tumour
location and thus cannot represent the registration
accuracy for the entire breast. Furthermore four
prone-supine MR image pairs were added to the clin-
ical data set to allow a comparison of the registration

performance between MRI–CT and MRI–MRI regis-
tration. A fifth dataset had to be excluded, since the
field of view of the supine image was too narrow to use
it as an input to our biomechanical registration.

To access and process the data, approval of the local
ethics committee was obtained and the study was ap-
proved by the research and development unit of the
clinical site. The T2 weighted MR images of the MRI–
CT datasets have a native resolution of 0:625�
0:625� 3mm3 and the CT images of 1:07� 1:07�
3mm3. The prone MR images of the MRI image pairs

have a native resolution of 0:7� 2:2� 0:7mm3 and
the corresponding supine images one of 0:7� 0:7�
2:5mm3.

Processing of the images involved resampling to an

isotropic resolution of 1� 1� 1mm3, a bias-field cor-
rection of the T2-weighted MR images and the seg-
mentation of both modalities into background, chest,
fibro-glandular and adipose tissue with our in-house
algorithm, which first determines the patient outline and
then the pectoralis-breast boundary. This area is further
segmented with an expectation maximisation algorithm
into fat and fibro-glandular tissue. As a last step the
chest wall of the supine image was manually rigidly
aligned to the chest of the prone image.

Numerical Phantom Datasets

In order to assess the feasibility and accuracy of the
developed algorithm in a controlled environment, a
numerical phantom dataset was generated. Ground truth
deformations were generated using a finite element sim-
ulation, againstwhich the registration couldbe compared.
Note, that the simulated deformations are an idealisation
of the deformations expected for the clinical cases.

To approximate the geometry of a breast in the
unloaded configuration, the surfaces of the chest wall
and the skin were approximated by simple geometric
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FIGURE 4. Intensity inversion of the prone T2 weighted MR image (a) is used to generate an image (b) which appears similar to a
CT image (c) in terms of tissue contrast such that a mono-modal image similarity measure and corresponding image forces can be
used.
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forms. The chest wall was defined by a cylinder with its
axis resembling the cranio-caudal patient axis. To de-
fine the skin surface, the height of a two-dimensional
Gaussian function was added to the anterior elevation
of the cylinder as shown in the first row of Fig. 5. The
boundaries were defined as axial coronal and sagittal
planes and set to fixed boundary condition for the FE
simulations. This geometry was meshed and a biome-
chanical model with homogeneous neo-Hookean
material properties was generated. Gravity was added
as a body force acting on the unloaded configuration in
the anterior and posterior directions to simulate the
prone and supine gravity loaded configurations using
NiftySim.27 The parameters of the geometry were
chosen such that the numerical phantom geometry was
comparable to amedium sized breast in terms of volume,
extent and chest diameter. The left-right, anterior-poste-

rior and superior-inferior extent of the numerical phan-
tomwere 160.4, 137.8, and 159.5 mmrespectively and the
enclosed volume was 1.14 L.

From the unloaded and simulated geometries cor-
responding images were generated by assigning the
image texture of an MRI breast dataset to the un-
loaded geometry and warping it according to the
simulated displacements.

RESULTS

Numerical Phantom Registration

In order to quantify the performance of the regis-
tration algorithm in a controlled setting with known
ground truth, the simulated prone and supine phantom
images were registered using the proposed algorithm.

R L

P

A

fpfs f = 0

build biomech. model

load proneload supine

FIGURE 5. A simplified geometric numerical phantom was used to evaluate the performance of the presented algorithm. A
cylinder represents the chest wall (black line in first row) and the skin is given by the function value of a two-dimensional Gaussian
function (grey area over the cylinder section). A mesh of this geometry is generated and the biomechanical finite element model is
built to simulate the effect of prone and supine gravity loading. The simulated prone and supine displacements are then used to
transform the glandular structure of an MR image into the prone and supine position.
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The chest wall was assigned with a prescribed zero-
displacement condition as the motion constraint used in
the registration was not available in the finite element
simulations. The registration was performed with an
isotropic simulation grid spacing of Dxsim ¼ Dysim ¼
Dzsim ¼ 9:07mm and an image similarity or force res-
olution of Dximg ¼ Dyimg ¼ Dzimg ¼ 2:27mm. The criti-

cal time step of the explicit time integration scheme
depends on the mesh density and thus a relatively
coarse grid was chosen for the purpose of accept-
able computational times. The image forces were
calculated two levels finer than the simulation itself
and transferred to the coarser resolution level to up-
date the simulated unloaded configuration. The
material update performed three stiffening steps with
a factor of 1.2 for the parameters l and k, and is
terminated when a decrease in the similarity was
detected, while the final unsuccessful update is dis-
carded.

Figure 6 shows the intermediate and final results
of the numerical phantom registration experiment.
One can observe, that the initial material parameter
estimates were indeed incorrect as the prone and
supine images deform beyond the unloaded state
(compare Figs. 6(a), 6(b), and 6(c) with Fig. 5).
After the material update step the alignment was
significantly improved, but not ideal. This can be
attributed to the coarse material optimisation steps
as well as to the coarse simulation resolution. This
step provides a better starting point to achieve the
final alignment. To this end image forces were
accumulated to update the unloaded configurations
accordingly. The final alignment is visually excellent
as can be seen in the difference image (Fig. 6i).
Furthermore the recovered unloaded configuration
coincides with the initial one.

The target registration error (TRE) was evaluated
for 500 landmarks randomly distributed across the
initial numerical phantom domain. The quantitative
results are given in Table 2. The mean TRE was re-
duced from 19:3� 16:2 to 0:9� 0:8mm. Note that the
relatively large maximum error of 6.1 mm after regis-
tration occurred at the border of the model, where the
boundary conditions of the finite element simulation
and the finite difference framework were not equiva-
lent. In order to allow more deformation at the image
borders, in the registration framework we apply pad-
ding around the image before registration. This differs
from the ground truth deformation and the absence of
image information in this region explains this beha-
viour. However, the initial maximum TRE was re-
duced by an order of magnitude.

Prone to Supine Registration of Clinical Data

In order to align prone MR images to the corre-
sponding supine CT images (P1–P9), the intensities of
the MR images were modified such that the grey values
of fat and glandular tissue appeared similar in both
images. To achieve this the intensity inversionwithin the
breast segmentation mask was applied as described in
section ‘‘Integration of Image Derived Forces.’’ Fur-
thermore we selected a region of interest which con-
tained the breast that was not operated to avoid effects
of tissue removal between the images. The supine CT
image was then manually rigidly aligned on the chest
wall and sternum using the costal cartilage and adjacent
rigid structures visible in both modalities. The prone-
supine CT image pair (P10*) and the four MR image
pairs (M1–M4) were processed in the same way except
for the modification of the image intensities.

The image registration was performed with three
progressively finer image resolution levels with
Dximg ¼ Dyimg ¼ Dzimg ¼ f4; 2; 1gmm following the

well established methodology of multi-scale registra-
tion. The simulation level was kept at a constant iso-
tropic resolution of Dxsim ¼ Dysim ¼ Dzsim ¼ 8mm.

Initial sensitivity experiments with twice the resolution
of the simulation grid resulted in near identical regis-
tration results with differences at the scale of the voxel
resolution. The difference in displacement measured
2:2mm ð�0:8mmÞ. For computational efficiency
therefore we decided not to choose a finer grid for the
registrations. Furthermore, no correlation between
registration error and breast size could be identified.

Manually picked landmarks were used for the eval-
uation of the alignment quality in the central configu-
ration. For each case eight to fourteen landmarks were
selected first by one observer, where local adipose-to-
fibroglandular tissue contrast allowed corresponding
features in the prone and supine images to be identified.
The left part of Table 3 (‘‘Single observer’’) shows the
corresponding TREs for all evaluated cases. Since the
images were aligned rigidly, the landmark distance be-
fore the registration allows measurement of the scale of
the tissue motion between prone and supine positions.
The mean landmark distance between the unregistered
prone and supine positions, for all cases, ranges between
38.8 and 133.1 mm and the maximum landmark dis-
tance between 56.4 and 154.2 mm.

A significant reduction in the TRE can be observed
by performing the unloading simulation and material
optimisation. This results in an overall mean TRE of
14.0 mm varying between 6.5 and 24.3 mm and a
maximum TRE between 11.9 and 34.4 mm. The
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number of successful material update steps that im-
proved the image similarity as well as final material
parameters for all cases are given in Table 4. Subse-
quently the final alignment was calculated by refining
the unloaded configuration by adding image forces to
the system. This resulted in a final overall mean TRE
of 5.9 mm varying between 2.9 and 9.6 mm and max-
imum TREs between 5.3 and 28.6 mm. The final mean
TRE for the MRI cases (M1–M4) is with 3.6 mm

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 6. Registration results for the simulated prone and supine images. The first column (a, d, g) shows the state of the prone
image during the course of the registration procedure, the second column (b, e, h) the corresponding states of the supine image and
the third column (c, f, i) the difference images. The first row represents the warped images after the unloading procedure with generic
material parameters (figures (a) and (b) show the initial unloaded prone and supine images respectively). Obviously the material
parameters were chosen to be too soft and thus were iteratively stiffened to obtain a better match in the unloaded configuration
(figures (d) and (e) show the unloaded prone and supine images after material parameter optimisation respectively). The alignment
was then improved by accumulating image forces leading to the results shown in the third row. The difference images (c, f, i) are scaled
so that the intensity range is equal for all difference images.

TABLE 2. Target registration error of the registration of the
numerical phantom dataset.

Registration step

TRE [mm]

Mean Std. Max.

No registration 19.3 16.2 58.7

Unloading, generic material 11.6 5.5 26.6

Material updated 5.4 2.9 20.1

Image forces 0.9 0.8 6.1
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smaller than the 6.8 mm achieved for the cases P1–
P10*.

The results for the lowest and highest final land-
mark difference achieved for the MRI–CT cases,
namely P3 and P4, are shown in Fig. 7. A good
alignment of internal structures can be observed in
both cases, however the residual alignment error
actually appears to be higher for P4 in the difference
image Fig. 7(i).

Figure 8 shows the landmark distance in the central
configuration as projections into the coronal, sagittal
and axial planes for all evaluated MRI–CT cases. The
landmarks transformed from the prone position are
depicted as circles whereas those transformed from the
supine position are shown as small squares. The cor-
respondence is visualised as connecting lines, and the
colour indicates the total Euclidean landmark distance.
This allows a visual assessment of the distribution of
the selected landmarks and of the registration accuracy
throughout the breast.

For a clinically applicable registration quality, a
registration error below 10.0 mm is desirable. This
figure was obtained following discussions with clini-
cians. The mean TRE fulfils this criterion, but the
maximum TRE of 28.6 mm does not. However, the
landmark selection process is inherently observer
dependent and potentially error prone, hence in a
second step the quality of the landmarks was assessed
by a second control observer with the aim to eliminate
unreliable landmarks. This control observer was pre-
sented with the prone landmarks only and then given
the task of selecting the corresponding landmarks in
the supine image. The results of this inter-observer
variability experiment are given in Table 5. Two
examples of the 149 landmarks are shown in Fig. 9.
The first example (Fig. 9a) shows a very good agree-
ment between the observers, which is reflected in a
landmark distance of 1.1 mm. Figure 9b on the other
hand shows poor agreement between the observers,
apparently due to visually similar structures. The
landmark distance for this case is 15.2 mm. Eliminat-
ing such landmarks increases the confidence in the
remaining landmarks to better reflect the actually
achieved TRE.

Landmarks for which the distance between the first
and the control observer were larger than 10 mm were
eliminated from the evaluation. Visual inspection of

the statistical distribution of all inter-observer dis-
tances as shown in Fig. 10 suggests a mixed distribu-
tion, with a cluster of values centred around 3.5mm
and a distinct drop at 10 mm. Furthermore with
increasing inter-observer distance, the chance that
different structures within the breast were identified
increases. For this reason 10 mm was taken to be a
plausible distance, above which two landmarks can be
considered placed on different features (see also 10 mm
mark in Fig. 9). The landmarks of the second observer
that were within 10 mm of the first observer were then
added to the evaluation.

The overall mean inter-observer distance was
7.1 mm before and 3.8 mm after the exclusion of the
outliers. The inter observer distance for the cases P1–
P10* is 7.3 mm and only slightly higher than the dis-
tance measured for the cases M1–M4, which is
6.4 mm. For both groups, P1–P10* and M1–M4,
about a quarter of the landmarks were excluded. This
suggests, that there is a negligible difference in the
accuracy of the landmark selection between MRI–
MRI and MRI–CT cases. Accordingly, the right-hand
side of Table 3 (‘‘Two observers, combined’’) shows
the registration evaluation for the trusted landmarks
only. The maximum TRE alignment error of 28.6 mm
observed for P4 was reduced to 20.2 mm, whereas the
overall mean registration error slightly reduced to
5.6 mm.

West et al.’s highly cited seminal paper from 199742

showed that sub-voxel (and sub-millimetre for the data
sets used) target registration accuracies could be
achieved using intensity based CT to MRI registration
methods. This ideal is dependent upon a number of
factors which considerably reduce the likelihood of
achieving such an accuracy for the prone-to-supine
breast image application considered here. In particular
the TREs reported in Ref. 42 were measured against an
accurate gold standard reference transformation
obtained using skull implanted fiducial markers; our
gold standard is provided by the considerably less
accurate manual identification of corresponding land-
marks in the two modalities. Further, prone and supine
breast images differ by a large non-rigid transforma-
tion, whereas the neurosurgical data sets in Ref. 42
could be accurately aligned using a rigid-body trans-
formation. However, in addition to the manually
selected landmarks as presented in Table 3, implanted

TABLE 4. Number of accepted material optimisation steps, Nopt, each of which reduced the initial shear modulus by 10%.

Case P1–P4 P5 P6 P7-P8 P9 P10* M1–M3 M4

Nopt 0 5 2 0 8 4 0 2

l ½Pa� 357.1 221.8 295.2 357.1 166.6 243.9 357.1 295.2

Only steps that improved the image similarity were accepted. The final shear modulus l for each case is given in the bottom row.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIGURE 7. Orthogonal slices through the initial images and registration result for the lowest and highest target registration error
reported in Table 3. The first column shows the prone, the second the supine and the third the corresponding difference images.
The first two rows show P3 for which a landmark distance of 4.4 mm was measured, whereas the lower two rows show P4 where a
mean landmark distance of 9.6 mm was measured after registration.
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fiducial markers could be used to evaluate the regis-
tration accuracy for the CT-CT case P10*, without
inter-observer variability but only for a small region of
the breast. In the prone configuration the axis aligned
bounding box enclosing the seven landmarks measured

11:0� 16:6� 10:1mm3. The rigid alignment of the

images on the chest resulted in a mean (maximum)
fiducial registration error (FRE) of 136.9 mm
(139.6 mm). After the unloading and material optimi-
sation the mean (maximum) FRE was reduced to
18.7 mm (22.4 mm). The final mean (maximum) FRE
with accumulated image forces measured 3.61 mm

(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

(g) P7 (h) P8 (i) P9

FIGURE 8. Visualisation of the target registration error in terms of landmark positions in the central virtually unloaded config-
uration. Landmarks were manually picked and transformed from the prone (circles) and supine (squares) position according to the
registration result. To provide an aid of localisation the coronal, sagittal and axial mean intensity projection of the unloaded prone
image are shown as grey-scale images.
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TABLE 5. Inter observer variability in the supine configuration before and after exclusion of unreliable landmarks.

Inter observer distance Distance after exclusion

NL NOMean Max. Std. Mean Max. Std.

P1 5.1 15.2 3.9 4.2 10.0 2.5 12 1

P2 5.7 15.1 4.8 3.1 7.3 1.9 8 2

P3 7.3 24.6 8.2 3.0 9.2 2.3 13 3

P4 9.6 29.9 9.2 4.7 7.2 1.6 11 3

P5 6.7 21.6 6.2 3.9 8.5 2.4 9 2

P6 8.3 18.3 4.8 5.4 8.9 2.3 9 3

P7 7.6 15.2 4.7 5.5 9.6 3.5 8 2

P8 7.0 21.7 5.9 4.5 9.7 2.7 10 2

P9 7.6 16.5 6.0 2.8 4.8 1.3 10 4

P10* 8.5 29.8 9.5 3.6 9.2 2.4 13 3

M1 10.9 22.1 7.1 4.0 6.0 1.4 11 6

M2 5.7 28.6 7.0 3.3 8.9 2.1 14 2

M3 7.2 16.4 5.1 3.6 4.7 0.8 11 4

M4 1.8 2.9 0.8 1.8 2.9 0.8 10 0

P1–P10* 7.3 4.1 24.3%

M1–M4 6.4 3.2 26.3%

P1–M4 7.1 3.8 24.8%

NL is the total number of landmarks and NO the number of outliers. In the last three rows the relative number of landmarks which were above a

threshold of 10 mm is given. Such landmarks were regarded as unreliable and excluded from the evaluation..

10mm

(a)

10mm

(b)

FIGURE 9. Orthogonal sections throughthe prone MRIand supine CT image of case P1 with corresponding landmarks selected by two
observers. The first observer selected corresponding points in the prone and supine images (left and centre), whereas the control
observer was asked to find the supine landmark when presented with the prone one (right). (a) shows an excellent agreement between
the two observers (red and green crosses in the supine CT) resulting in a landmark distance of 1.1 mm. (b) is an example where both
observers do not agree, identifying different structures with similar appearance resulting in a landmark distance of 15.2 mm.

Biomechanical Breast Image Registration 169



(5.13 mm). The fiducial markers present in this case
were also used to validate the material optimisation
with repeated update steps. To achive this, the image
similarity measure as well as the FRE were measured
during the course of the optimisation. The result is
shown in Fig. 11. It demonstrates that the image sim-
ilarity used to control the optimisation procedure, is a
valid surrogate for the alignment accuracy.

Last but not least the sensitivity of the final regis-
tration accuracy with respect to the initial rigid align-
ment is investigated. For this experiment the dataset
P10* was selected since this case represents a clinical
case with the additional benefit of implanted fiducial
markers as detailed above. For the sensitivity analysis,
we repeated the registration for this case with artificial
translational offsets of 5 and 10 mm that were added
to the translational component of the initial rigid
alignment, namely tx, ty, and tz. This results in a

misalignment prior to registration in the left-right
(LR), anterior-posterior (AP), and superior-inferior
(SI) direction respectively. Table 6 summarises the
registration accuracies using the implanted fiducials, as
well as the combined landmarks. It can be observed
that a misalignment of 5 mm has a negligible influence
on the registration accuracy, as has a misalignment of
10 mm in the LR and AP direction. Only a translation
of 10 mm in the SI direction decreases the registration
accuracy slightly more, however the increase of about
3 mm is still well below the original displacement.
Hence it can be concluded, that the registration is
within limits insensitive to the initial alignment.

CONCLUSION

This paper presents for the first time a symmetric
simulation based registration approach which accounts
for large deformations present in prone-MRI-to-su-
pine-CT breast image alignment. Our algorithm takes

0 5 10 15 20 25 30 35
IOD [mm]

0.00

0.05

0.10

0.15

0.20

0.25

FIGURE 10. Histogram of all inter-observer distances.
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FIGURE 11. Image similarity measure, SSSD, and the cor-
responding registration error, FRE (of the implanted fiducial
markers), for case P10* over the course of the material opti-
misation iterations. After the unloading simulation with the
generic material parameters ð0 ! 1Þ, five softening steps were
performed ð1 ! 6Þ, each of which decreasing the material
parameter value by about 10%. The fifth step ð5 ! 6Þ resulted
in an increased SSSD and was rejected. Note that the FRE is
not used to control the optimisation and only plotted to
emphasise the validity of the similarity measure as a surro-
gate for the actually achieved alignment quality.

TABLE 6. Sensitivity of the fiducial and target registration error with respect to artificial left-right (LR), anterior-posterior (AP) and
superior-inferior (SI) displacements which were added to the initial rigid transformation for case P10*.

Fiducials Two observers

Mean Max. Std. Mean Max. Std.

Baseline 3.6 5.1 1.2 4.0 8.2 2.3

LR: tx + 5 mm 3.5 4.3 0.8 4.0 8.7 2.2

LR: tx + 10 mm 3.2 4.3 0.7 3.8 8.3 2.1

AP: ty + 5 mm 3.7 4.9 1.0 3.7 7.4 2.0

AP: ty + 10 mm 3.9 5.8 1.5 4.0 8.3 2.1

SI: tz + 5 mm 3.8 6.2 1.6 4.2 8.1 2.3

SI: tz + 10 mm 6.3 10.5 2.7 5.1 10.5 2.8

The initial rigid transformation aligns the chest wall of the corresponding prone-supine image pairs. For the landmark evaluation the reliable

landmarks were used (c.f. rightmost three columns of Table 3).
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into account pre-loading of the breast geometry with
gravity and calculates a virtually unloaded configura-
tion. After an optimisation of soft tissues material
parameters, the unloaded configuration is updated by
accumulating image derived forces directly into the
unloading simulation such that the unloaded configu-
rations from prone and supine align. This results in a
biomechanically constrained deformation. We enforce
the motion on the chest wall to be parallel to the
boundary between the breast and chest wall. Our novel
unloading mechanism takes advantage of the duality
between the forward simulation displacement descrip-
tion and the well established image resampling proce-
dure which is inverse to the simulation.

To quantify the alignment accuracy, we performed
measurements of the TRE in the central position by
the means of manually picked landmarks. Although
this is—due to the scale of the deformation at han-
d—an inherently difficult task, we measured a mean
alignment error for all clinical cases of 5.6 mm.

Including prior knowledge of the gravity loading
into the biomechanically based image registration was
shown to be key to successful alignment. The pure
biomechanical unloading step accounted for the big-
gest reduction of the overall TRE from 69.7 to
14.1 mm and the corresponding deformation recovery.
The final corrections were image driven and smaller.
They reduced the overall TRE from 14.1 to 5.6 mm.

Although the scheme proposed was implemented
using the finite difference method, it can also be
adapted to integrate the symmetric image derived
forces into conventional finite element platforms.

The motion constraint presented here differs sig-
nificantly from the frictionless sliding used for example
by Han et al.23 and the fixed displacement constraint
widely used elsewhere. Ultimately it allows control of
sliding-like motion in a much more subtle way and
could provide an experimental platform to investigate
motion along the chest wall more precisely.

Having a supine target image is—especially in the
context of image guided surgery—typically not routine
clinical practice, and imposes a potential limitation on
all intensity based registration methods for prone-to-
supine breast image alignment. In the future we plan to
explore methods which will work with more readily
available target information, such as optical surface
scans of the patient’s chest. This will open new appli-
cations in terms of image-to-physical registration.

The use of a mono-modal image force based on the
sum of squared differences imposes a limitation on the
framework which can be overcome by implementing
image derived forces based on multi-modal similarity
metrics such as normalised mutual information or
other information theory based metrics. Possible

implementations can be based on previous work, for
instance that presented by Crum et al.14

APPENDIX

Unloading Evaluation

To test the newly developed unloading mechanism
as presented in section ‘‘Gravity Unloading,’’ a simple
mechanical loading-unloading experiment was con-

ducted. A box geometry of size 15� 15� 15mm3, with
a Young’s modulus of 500 Pa and a Poisson’s ratio of
m ¼ 0:45 was applied with a body force and the mate-
rial map resampled according to the forward simula-
tion. Then, using the same material parameters and the
warped geometry, the unloaded geometry was recov-
ered using our proposed method. The results are
shown in Fig. 12, where volume renderings of the
material maps are presented. The left box depicts the
original unloaded configuration, the central box the
geometry after application of gravity, and the right box
depicts the recovered unloaded configuration based on
the central one. One can observe that the overall
geometry was recovered well. Minor resampling arte-
facts can be observed. Since the unloading includes
image processing steps, these artefacts can be attrib-
uted to the subsequent forward and backward resam-
pling. Such artefacts however are not likely to be
observable in the registration scheme, since repeated
resampling is avoided in the symmetric design of the
algorithm. Since the unloading is computed using a
forward simulation only, the results can be compared
directly. With a maximum displacement error of
0.6 mm and a 95-th percentile displacement error of
0.1 mm, the error is as expected of the order of the size
of the image grid spacing, i.e., 0.5 mm.
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