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ARTICLE INFO ABSTRACT

Aniclle history: In brain regions containing crossing fibre bundles, voxel-average diffusion MRI measures such as fractional an-
Received 27 February 2015 isotropy (FA) are difficult to interpret, and lack within-voxel single fibre population specificity. Recent work
Accepted 15 May 2015 has focused on the development of more interpretable quantitative measures that can be associated with a spe-

Available online 22 May 2015 cific fibre population within a voxel containing crossing fibres (herein we use fixel to refer to a specific fibre pop-

ulation within a single voxel). Unfortunately, traditional 3D methods for smoothing and cluster-based statistical

g‘:ﬁ;gd;' inference cannot be used for voxel-based analysis of these measures, since the local neighbourhood for smooth-
MRI ing and cluster formation can be ambiguous when adjacent voxels may have different numbers of fixels, or ill-
Statistics defined when they belong to different tracts. Here we introduce a novel statistical method to perform whole-
Fixel brain fixel-based analysis called connectivity-based fixel enhancement (CFE). CFE uses probabilistic tractography
Connectivity to identify structurally connected fixels that are likely to share underlying anatomy and pathology. Probabilistic
Analysis connectivity information is then used for tract-specific smoothing (prior to the statistical analysis) and enhance-

ment of the statistical map (using a threshold-free cluster enhancement-like approach). To investigate the char-
acteristics of the CFE method, we assessed sensitivity and specificity using a large number of combinations of CFE
enhancement parameters and smoothing extents, using simulated pathology generated with a range of test-
statistic signal-to-noise ratios in five different white matter regions (chosen to cover a broad range of fibre bundle
features). The results suggest that CFE input parameters are relatively insensitive to the characteristics of the sim-
ulated pathology. We therefore recommend a single set of CFE parameters that should give near optimal results
in future studies where the group effect is unknown. We then demonstrate the proposed method by comparing
apparent fibre density between motor neurone disease (MND) patients with control subjects. The MND results

illustrate the benefit of fixel-specific statistical inference in white matter regions that contain crossing fibres.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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a) Grey Matter

b) White Matter

Fig. 1. a) In grey matter, it is reasonable to assume image intensities are spatially correlated with neighbours isotropically for the purposes of smoothing and cluster formation. [llustrated in
yellow is a voxel of interest with neighbouring voxels coloured red. b) White matter anatomy is oriented and extended in nature, therefore an isotopic neighbourhood is not appropriate.
Shown is a fractional anisotropy map coloured by the direction of the primary tensor eigenvector (red: left-right, green: anterior-posterior, blue: inferior-superior). Not all voxels adjacent
to the voxel of interest (yellow voxel within the optic radiation) are relevant for smoothing and cluster formation since neighbouring voxels contain different fibre tracts (e.g. tapetum of
corpus callosum and arcuate fasciculus). In this example only the voxels anterior and posterior (shown in red) should be considered as neighbours for clustering and smoothing.

Introduction

Voxel-based analysis (VBA) is an image analysis technique for
performing whole-brain voxel-wise statistical tests across and within
groups of subjects, originally introduced in the form of statistical para-
metric mapping (SPM; Friston et al., 1991). A particular strength of
the VBA approach is that, in addition to enabling specific hypotheses
to be tested, it has the ability to localise group differences or correlations
without any prior spatial hypothesis. Over the last two decades, VBA has
been applied in many fields of neuroimaging to investigate quantitative
information derived from image intensity (e.g. positron emission tomog-
raphy (Worsley et al,, 1992) and functional MRI (Friston et al., 1995)) and
image morphology (e.g. voxel-based morphometry (Ashburner and
Friston, 2000) and tensor-based morphometry (Ashburner, 2000; Gee,
1999)).

VBA commonly involves four key steps:

1. Obtain anatomical correspondence by transforming all subject im-
ages to a common template using an image registration algorithm.

2. Smooth images to boost the signal-to-noise ratio, alleviate registra-
tion misalignments, and improve the normality of residuals when
performing parametric statistical analysis.

3. Perform a statistical test at each voxel resulting in a test-statistic
image (also known as a statistical parametric map).

4, Statistical inference (assign p-values to voxels, peaks or clusters of
voxels).

One caveat in VBA is the need to account for the large number of
multiple tests during statistical inference. Random field theory (RFT)
(Worsley et al, 1992) and non-parametric permutation testing
(Nichols and Holmes, 2002) are two commonly used methods to com-
pute family-wise error (FWE) corrected p-values. While these methods
can be used to make voxel-level inferences, they can also be applied to
derive FWE-corrected p-values for clusters of contiguous voxels above
a predefined threshold (Friston et al., 1994; Poline and Mazoyer,
1993). Cluster-level inference can be more sensitive than voxel-level in-
ference by exploiting spatial correlations in voxel intensities due to
shared underlying anatomy and pathology (Friston et al., 1996).

In the field of diffusion-weighted imaging (DWI), VBA is being used
increasingly to study white matter development, aging and pathology.
The vast majority of these studies have involved quantitative measures
derived from the diffusion tensor model, such as mean diffusivity (MD)
and fractional anisotropy (FA) (Basser and Pierpaoli, 1996). Since these
tensor-derived measures are scalar quantities, traditional VBA software
packages (such as SPM (www.fil.ion.ucl.ac.uk/spm/) and FSL (www.
fmrib.ox.ac.uk/fsl)) can be used to analyse the resultant 3D images.

More recently, several diffusion-specific VBA approaches have been
proposed that perform statistics on a tract skeleton (Smith et al.,
2006) or surface (Maddah et al., 2011; Yushkevich et al., 2008; Zhang
etal, 2010). By projecting local quantitative measures onto a tract skel-
eton or 2D surface, these methods aim to reduce the impact of imperfect
image registration on anatomical correspondence. However, not all
white matter tracts can be modelled by a skeleton or surface, and there-
fore these methods suffer from other problems related to inaccurate
tract representation and projection (Bach et al,, 2014).

Two issues relevant to VBA of white matter that have been largely
neglected to date are as follows:

1. A white matter voxel can contain multiple populations of fibres, each
belonging to a specific white matter tract with a unique function (a
scenario often referred to as crossing fibres). Recent evidence sug-
gests up to 90% of white matter voxels contain two or more fibre
populations (Jeurissen et al., 2012). Ideally VBA of diffusion MRI
should be able to attribute any significant effect to a specific fibre
population in regions with crossing fibres.

2. White matter contains anatomical structures that are oriented and can
span many voxels in the image. Spatially distant voxels can share the
same underlying anatomy, yet adjacent voxels may share no anatomy
(e.g. at a bundle interface). It is therefore reasonable to assume that
correlations in quantitative measures can occur anywhere along a
fibre tract, but not necessarily with all voxel neighbours isotropically
(as is assumed to be the case in grey matter) (see Fig. 1).! This is
based on the assumption that axons are likely to be affected by devel-
opment, pathology or aging along their entire length.

Both issues 1 and 2 are problematic for appropriate smoothing and
cluster-based statistical inference. A neighbourhood for traditional isotro-
pic smoothing and cluster formation is ambiguous when adjacent voxels
have multiple fibre populations, and ill-defined when adjacent fibre pop-
ulations belong to different fibre tracts. Note that in the aforementioned
surface- and tract-skeleton-based methods (Maddah et al., 2011; Smith
et al.,, 2006; Yushkevich et al,, 2008; Zhang et al., 2010), parameterisation
of the tract enables smoothing and clustering with a more appropriate
neighbourhood. However, 2D surfaces or 3D skeletons cannot appropri-
ately represent all white matter tracts (e.g. fanning of the corpus
callosum), and current methods do not account for crossing fibres.

In recent years, a number of quantitative measures have been pro-
posed that can be assigned to a specific fibre population within a

! Note that this may not be true for lesions in diseases such as Stroke and Multiple Scle-
rosis. However, these lesions tend to be spatially heterogeneous and therefore less suited
to multi-subject VBA.
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given voxel. Here we coin the term fixel? to refer to a specific population
of fibres within a single voxel. We note that while voxel-average summa-
ry statistics such as generalized fractional anisotropy (Tuch, 2004) can
be used to characterise model-free data derived via Diffusion Spectrum
Imaging (Wedeen et al., 2005) or Q-Ball imaging (Tuch, 2004), it is im-
possible to derive fixel-specific quantitative measures without making
some assumptions about the diffusion within a single fixel. As a conse-
quence, all fixel-specific quantitative measures to date are based on
mixture models. For example, in the ‘composite hindered and restricted
model of diffusion’ (CHARMED) model, the volume fraction of each fixel
is estimated by assuming a restricted model of diffusion for each fixel
(Assaf and Basser, 2005). In a similar concept, the apparent fibre density
(AFD) and hindrance modulated orientational anisotropy (HMOA) are
measures also related to the volume of the intra-axonal restricted com-
partment (Dell'Acqua et al., 2013; Raffelt et al., 2012b). The motivation
behind these measures is that the intra-axonal restricted compartment
should be sensitive to various white matter pathologies that affect the
number of axons. In more recent work, Scherrer and Warfield (2012)
use a novel acquisition scheme and fitting procedure (called cube and
sphere multi-fascicle model, CUSP-MFM) to model the intra-axonal dif-
fusion for each fixel with a diffusion tensor. In CUSP-MFM fixel-specific
volume fractions and diffusivities can be estimated.

All of these fixel-based measures have the potential to give more
specific information than tensor-derived measures by identifying spe-
cific white matter tracts that are affected in regions with crossing fibres.
However, due to issues 1 and 2 outlined above, traditional 3D statistical
software packages cannot be applied to perform VBA on these fibre-
specific measures.

In this work we propose a novel statistical framework entitled
connectivity-based fixel enhancement (CFE) for performing group com-
parisons or correlations of fixel-specific measures within all of the white
matter (i.e. a fixel-based analysis, FBA). We use whole-brain probabilis-
tic tractography on a group average template to define the connectivity
between each fixel and all other fixels in the brain, and use this fixel-
fixel connectivity information for both smoothing (i.e. fixel-specific
measures are smoothed only with other fixels that share common
streamlines), and to boost the belief in (enhance) the test-statistic of
each fixel based on information from structurally connected fixels. We
investigate the proposed method using quantitative simulations, and
demonstrate its utility by comparing a cohort of motor neurone disease
patients with healthy controls.

Methods
Fixelfixel connectivity

To visually demonstrate the concept of fixel connectivity, consider
the example shown in Fig. 2. Fig. 2a, b shows a group-average template
generated via registration of fibre orientation distribution (FOD) images
(Raffelt et al., 2011). The location and direction of all white matter fixels
can be computed via segmentation of each FOD lobe in the group-
average template (Fig. 2¢). FOD segmentation was performed using
the method outlined in Smith et al. (2013), which involves segmenting
each lobe/fibre using zero crossings of the FOD and their directions
based on peak amplitude (note that while we use the spherical
deconvolution model in this example, some diffusion MRI models com-
pute fixels directly, and therefore may not require an explicit

2 Previous publications have used the word ‘fibre’ (Assaf and Basser, 2005; Behrens
etal.,, 2007)(Assaf and Basser, 2005), ‘fascicle’ (Scherrer and Warfield, 2012) or ‘fibre pop-
ulation’ (Behrens et al., 2007; Raffelt et al., 2012b) to refer to a specific population of fibres
within a single voxel. However, these terms can be ambiguous in certain contexts. For ex-
ample, when attributing a quantitative measure to a ‘fibre’, it may be misinterpreted as be-
longing to the entire fibre bundle. Here, we introduce a new word ‘fixel’ to eliminate this
ambiguity when discussing fixel-specific measures and fixel-based analysis (FBA).

segmentation step). For this example, consider fixel f indicated by the
blue arrow in Fig. 2d. Probabilistic streamlines are used to compute
the connectivity to all other white matter fixels (Fig. 2d shows only
those streamlines extracted from the whole-brain tractogram that tra-
verse fixel f). We define the connectivity from fixel f to fixel i, cs, as
the proportion of the streamlines traversing fixel f that also traverse
fixel i. Note that since c5 is the number of shared streamlines relative
to all streamlines associated with f, this measure is not symmetric, (i.e.
¢ * Cip). In Fig. 2e, each fixel is coloured by c5: this demonstrates how
the use of probabilistic tractography provides a mechanism to quantify
fixel-fixel connectivity based on uncertainty in the estimated fibre ori-
entations, i.e. we are more confident that fixels with a high density of
the dispersing streamlines are likely to share underlying anatomy
(and therefore be correlated) with fixel f.

When computing the whole-brain fixel-fixel connectivity matrix,
streamlines are assigned to fixels in the template based on the local
streamline tangent. The streamline tangent is computed by the entry
and exit point through the voxel. For practical reasons, we remove all
fixel-fixel connectivity values, ¢; that are less than 0.01. This eliminates
many fixels connected by spurious probabilistically-unlikely stream-
lines, and also increases the sparsity (and therefore decreases the re-
quired memory) of the whole-brain fixel-fixel connectivity matrix.

Connectivity-based smoothing

The first application of fixel-fixel connectivity is to weight
neighbourhood fixels for the purposes of pre-smoothing data. In 3D
voxel-based analysis data is typically smoothed with a local isotropic
neighbourhood using a Gaussian kernel. In this work we also smooth lo-
cally, however we compute smoothing weights (Fig. 2g) by multiplying
Gaussian kernel weights (Fig. 2f) with the fixel-fixel connectivity
weights (Fig. 2e). Connectivity-based smoothing ensures that fixel-
specific measures are smoothed locally with fixels belonging to the
same fibre tract, and preferentially smooths data with fixels with high
connectivity values, whose fixel data are most likely to correlate strong-
ly with that of the fixel of interest. We note that smoothing could be
achieved by using connectivity weights only (Fig. 2e), since values are
larger in local fixels due to probabilistic streamline dispersal. However,
by spatially restricting smoothing with a Gaussian kernel, data are less
likely to be smoothed with remote fixels containing very different
values. This may be an issue for some quantitative measures that vary
along a bundle’s length (e.g measures related to fixel volume fraction
will vary based amount of crossing with other fibres).

Connectivity-based fixel enhancement

The second application of fixel-fixel connectivity is in statistical in-
ference. Here we present a novel approach for fixel-based statistics
called connectivity-based fixel enhancement (CFE).

Conventional cluster-based statistical analysis involves applying a
pre-specified threshold to the test-statistic image to identify co-
located (clustered) voxels. The motivation behind cluster-based analy-
sis is to identify extended areas of group differences that are more
spatially extended than would be expected due to the noise coherence
alone. Once clusters of voxels have been identified, the likelihood
(p-value) that each cluster (of a certain size) has occurred due to
chance can be computed by comparing the cluster size to the null distri-
bution of cluster sizes (estimated via Gaussian random field theory
(Worsley et al., 1992) or permutation testing (Holmes et al., 1996)).

One dilemma in any method for cluster-based inference is the choice
of an arbitrary threshold. While the choice of threshold does not impact
on the validity of the results, it can greatly affect the outcome and
therefore complicate scientific interpretation. Smith and Nichols
(2009) proposed an alternative to threshold-based cluster analysis
called “threshold-free cluster enhancement” (TFCE). In the Smith and
Nichols (2009) 3D TFCE implementation, the enhanced test-statistic at
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Fig. 2. lllustration of fixel-fixel connectivity and smoothing. a) A group-average FOD template colour-coded by direction (red: left-right, blue: inferior-superior, green: anterior-posterior).
b) Zoomed in region from a, showing individual FODs within the group-average FOD template. ¢) The direction and number of fixels in each voxel was computed by segmenting each FOD
in a (coloured by fixel orientation). d) A single exemplar fixel f (blue arrow, belonging to the superior longitudinal fasciculus), with associated probabilistic streamlines. e) Fixels colour-
coded by ‘connectivity’ to fixel f. The connectivity, c; between exemplar fixel fand fixel i is defined as the proportion of streamlines traversing fixel f that also traverse fixel i. f) A spatial Gaussian
kernel centred on fixel, f, is multiplied with fixel connectivity in d to estimate the fixel-specific smoothing neighbourhood weights shown in f. g) Smoothing neighbourhood weights for fixel, f,

used to smooth fixel data prior to analysis.

voxel v, is equal to the sum of the cluster extents, e, as the statistic image
is thresholded at various heights, h, up to the height of v, h,. More spe-
cifically TFCE is defined as:

hv
TFCE(v) — / el Hdn (1)

with default values of constants E = 0.5, H = 2. Note that these defaults
are justified by theory and empirical results in Smith et al. (9). By setting
H to more than 1 the TFCE output gives more weight to extents (clus-
ters) at larger levels of h, while setting E to less than 1 ensures the
TFCE output scales less than linearly with cluster size (something that
is desirable at low thresholds when clusters are large and do not provide
useful spatial specificity (Smith and Nichols, 2009)).

CFE is a TFCE-like approach that exploits connectivity information to
enhance the test-statistic of each fixel based on the support lent to it by
other structurally connected fixels. In the original TFCE paper (Smith
and Nichols, 2009), the cluster extent e is defined as the number of
supra-threshold voxels spatially connected to voxel v. However in CFE,
we redefine e as the weighted sum of fixels structurally connected to
the fixel being enhanced, f. Precisely, CFE is defined as:

CFE(f) = [Me(f, h)Eh"dh 2)

e(f,h) = X1 WepC 3)

where n(h) is the total number of supra-threshold fixels connected to f,
cg is the connectivity defined as the proportion of streamlines traversing
fixel f that also traverse fixel i, and C is a constant. By weighting each
fixel by cz, highly connected fixels (i.e. those that we are more certain
share many axons) contribute more to the enhancement than fixels
with low connectivity. Furthermore, ¢ is raised to the power C, which
enables the option to modulate the strength of this connectivity depen-
dent enhancement. For example when C = 0 all connected fixels

contribute evenly to the enhancement, whereas when C = 1 they con-
tribute with a weight proportional to their measured connectivity.

It is worth emphasising that in the original TFCE method, a voxel
may contribute to the enhancement of another only if they are spatially
connected by coexisting within a supra-threshold cluster. However in
CFE, a supra-threshold fixel may enhance another as long as it is struc-
turally connected, without any requirement that the fixels are spatially
connected within a suprathreshold cluster. This distinction arises from
the fact that in CFE, we have additional information provided by
tractography. This enables us to determine whether fixels are likely to
share underlying anatomy and pathology, without any need to assume
that supra-threshold fixels must be spatially contiguous.

Illustrative example

Fig. 3 contains an illustrative example of connectivity-based smooth-
ing and CFE enhancement to an artificially generated signal + noise
image. A tract-of-interest (the arcuate fasciculus, Fig. 3b) was extracted
from the whole-brain tractogram (Fig. 3a) computed on the FOD tem-
plate (Fig. 2a, b) (see the following section for details). Fixels belonging
to the arcuate fasciculus were identified (via streamline visitations) and
assigned a signal value of one (Fig. 3d). All non-arcuate (background)
fixels were assigned a value of zero. A signal + noise image was created
by adding random Gaussian noise with a standard deviation of 0.5, cor-
responding to a signal-to-noise ratio of 2 (Fig. 3e). We then applied the
following enhancements to separate the signal from the noise:

» Connectivity-based smoothing only, F¥\HM = 10 mm (Fig. 3f);

* CFE only (no smoothing), E = 1,H = 2, C = 0.5 (Fig. 3g);

 Connectivity-based smoothing then CFE, FWHM = 10 m,E=1,H =
2,C = 0.5 (Fig. 3h).

To best visualise that the arcuate ‘signal’ fixels are separated from
the background fixels, all images in Fig. 3e-h are windowed such that
the colour bar range extends from the 1st to 99th percentile of the back-
ground fixel values. Fixels indicated in white are therefore larger than
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Fig. 3. Illustrative example. a) Whole-brain probabilistic tractogram computed on the group-average FOD template. Streamlines were used to derive fixel-fixel connectivity for smoothing
and enhancement. Streamlines are coloured by direction (red: left-right, blue: inferior-superior, green: anterior-posterior). b) A tract-of-interest, the arcuate fasciculus, was extracted
from the whole-brain tractogram in a (note that only streamlines belonging to the slice are shown). ¢) Individual fixels belonging to the arcuate fasciculus were identified based on stream-
line visitation. All arcuate fixels were assigned a ‘signal’ of one. d) Zoomed in region of the ‘signal only’ image in c showing the arcuate fasciculus fixels in white and background (zero) fixels
in black. e) Signal + noise image after adding Gaussian noise (signal-to-noise of 2) to the signal only image in d. f) Connectivity-based smoothing of e. g) CFE of e. h) Both connectivity-
based smoothing and CFE of e. To best visualise the separation of signal from background, all images e-f are windowed based on the 1st to 99th percentile of the background fixel values.

(separated from) the vast majority of background values. As shown in
Fig. 3f and g, both smoothing alone and CFE alone separate many signal
fixels from the background; however the combination of smoothing
and CFE achieves the best result (Fig. 3h).

Computing a fixel analysis mask and obtaining correspondence across
subjects

Whole-brain fixel-fixel connectivity is computed between all fixels in
template space. We define the location and orientation of all template
fixels using a “fixel analysis mask”. The approach used to generate this
mask may differ depending on the diffusion model being analysed; how-
ever, ideally it should be representative of the population under
investigation.

In this work (see Section 2.8), we compute the fixel analysis mask by
first computing a population-specific FOD template using an iterative up-
date approach (Raffelt et al., 2011). Accurate alignment of white matter is
achieved by using FOD images to drive registration (Raffelt et al., 2011),
and fixel orientations are corrected by reorientation of each FOD
(Raffelt et al., 2012a). The FOD template is computed by averaging the
spherical harmonic coefficients across all registered FOD images. To iden-
tify all fixels in the FOD template, we segment each FOD lobe using the
method outlined in Smith et al. (2013). When correspondence and FOD
alignment is poor across subjects (for example at the grey/white matter
interface where inter-subject variation is greatest and registration is im-
perfect), the FOD lobes will not average constructively and their size
will be small. We exclude these fixels from the analysis mask by
thresholding the fixel AFD (as computed by integrating the FOD ampli-
tude within each FOD lobe (Smith et al., 2013)). We note that

thresholding fixels based on the AFD may undesirably exclude other
fixels in crossing fibre regions that have low AFD (due to partial volume
effects). We therefore compute the fixel analysis mask using a two-step
process. First a relatively high AFD threshold (>0.33) is used to exclude
all unwanted fixels with poor correspondence near the grey matter inter-
face. From this result we then compute a 3D voxel mask defining all voxels
that contain at least 1 fixel. The AFD threshold is then relaxed (>0.1) to
include fixels with small AFD values (i.e. those in crossing fibre regions)
while excluding all fixels outside the 3D voxel mask.

The benefit of using a study-specific fixel analysis mask is that the lo-
cation and orientation of fixels are representative of the population. The
mask is therefore a good candidate for obtaining fixel correspondence
across subjects by matching each template fixel to the nearest fixel in
each of the subject images. Note that if no fixel exists in a subject
image for a given template fixel (with a maximum angular tolerance
of 30°), then it is assigned a quantitative value of zero. If a fixel exists
in the subject that does not map to a template fixel then it is ignored.

Statistical inference

In multiple testing problems, a family-wise error (FWE) refers to one
or more false positives among the set of tests; such an error occurs if and
only if the maximum over the set exceeds the decision threshold, imply-
ing that a suitable threshold to control the FWE rate (or equivalently,
FWE-corrected p-values) can be obtained from the null distribution of
the maximum-statistic (Nichols and Hayasaka, 2003). Permutation test-
ing provides a non-parametric empirical null-distribution by recording
the maximume-statistic computed for multiple permuted versions of
the data, resting on the assumption of exchangeability under the null

Fig. 4. Schematic of the quantitative CFE evaluations performed using simulated test-statistic images. A FOD template (a) was used to generate a whole-brain tractogram (b) that was then
filtered using SIFT (c). The SRI24 atlas (d) was used to extract tract ROIs (e), which were combined with a FOD template-derived white matter fixel-mask (f) to define fixel ROIs (g). h) For
all mask fixels, connectivity to other fixels was computed using the tractogram in c. For each ROI, 1000 simulated test-statistic images were created by adding noise (i) to all fixelsinfand g,
to generate a noise only (j) and signal + noise image (k). Fixel images were smoothed with a range of kernel extents (I-n) and CFE enhanced (o) using a range of values for parameters E, H
and C. Enhanced images (p and q) were evaluated by computing the area-under the curve (AUC) (s) of an AFROC curve (r).
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hypothesis (Holmes et al., 1996; Nichols and Holmes, 2002). For a gen-
eral linear model, under the assumption that the (unobservable) errors
are exchangeable, permutation of appropriate statistical residuals pro-
vides an approximate test that performs well in practice (Winkler
et al.,, 2014). Here, complete images are permuted as a whole, preserv-
ing the complicated dependence structure, and the maximum is
computed over all fixels' test statistics after CFE (i.e. the CFE procedure
is applied to the statistic image for every permutation, effectively
becoming part of the definition of the test statistic, as for TFCE or for
the smoothed-variance t-map described by Nichols and Holmes,
2002). P-values are then assigned to each fixel by computing the pro-
portion of the maximal CFE statistic distribution that is as-or-more ex-
treme than the CFE value estimated using the original labelling of the
data. For example, if 1000 permutations are performed (including the
original labelling), and the original maximum is the 5th largest of
these 1000, then its corrected p-value is 5/1000.

Quantitative evaluation of CFE

We assessed the performance of CFE by generating a series of test
statistic signals within an in vivo population-average template image.
We explored the influence of CFE parameters E, H and C while varying
the test statistic signal region-of-interest (ROI), signal-to-noise ratio
(SNR) and smoothing spatial extent. Performance was assessed using
a receiver-operator characteristic (ROC)-based evaluation.

In vivo data and pre-processing

Diffusion-weighted images were acquired from 80 healthy control
subjects on a 3 T Siemens TIM Trio system (Erlangen, Germany), 60 dif-
fusion directions, b = 3000 s/mm?, 2.3 mm. Motion correction, bias field
correction and intensity normalisation were performed as described in
Raffelt et al. (2012b). Fibre orientation distributions (FODs) were com-
puted using robust constrained spherical deconvolution at l,x = 8
(Tournier et al., 2013).

Group-average FOD template and tractography

All FOD images were registered to a group-average template using a
FOD-based symmetric diffeomorphic registration algorithm (Raffelt
et al,, 2011) (Fig. 4a). During registration and the final spatial transfor-
mation, FODs were reoriented using apodised point spread functions
(Raffelt et al., 2012a). Whole-brain probabilistic tractography was per-
formed on the FOD template image to generate 30 million streamlines
(Fig. 4b). This was performed using the iFOD2 tractography algorithm
(Tournier et al, 2010), as part of the MRtrix software package
(Tournier et al., 2012) (https://github.com/MRtrix3) (parameters: step
size 0.625, angle 22.5, max length 250 mm, min length 10, power 0.5).
To reduce tractography reconstruction biases we applied the spherical
deconvolution informed filtering of tractograms (SIFT) method to give
a final count of 3 million streamlines (Fig. 4c) (Smith et al., 2013).

Regions-of-interest

We chose to evaluate CFE by generating a test-statistic signal in five
different regions-of-interest (ROI) (Fig. 5). ROIs selected were the arcu-
ate fasciculus, corticospinal tract, cingulum, posterior cingulum, and an
Alzheimer's-like pathology. ROIs were selected to cover a broad range of
properties (fibre bundle length, thickness, curvature and number of
crossings). The arcuate fasciculus has a large proportion of crossing fi-
bres with high posterior curvature (Fig. 5, top row). The corticospinal
tract is a relatively large bundle that contains some crossings and a
high degree of fanning (Fig. 5, 2nd row). The cingulum bundle is long
and thin with a low proportion of crossing fibres (Fig. 5, middle row).
The posterior cingulum was selected to test small and focal pathology
(Fig. 5, 4th row). While it is our assumption that white matter patholo-
gy/maldevelopment generally should occur along the entire length of a
bundle, the cingulum bundle contains many “on/off ramps” into the cin-
gulate cortex, and therefore it is feasible that only a portion of the

cingulum may be affected. The last ROI tested was an Alzheimer's-like
pathology, chosen to represent diseases that affect several white matter
bundles (Fig. 5, bottom row). Alzheimer's-like fibre bundles included
the left arcuate fasciculus (yellow), cingulum (dark blue), anterior com-
missure (pink), uncinate fasciculus (green), anterior corpus callosum
(red), and posterior corpus callosum connecting the left and right
precuneus (light blue).

To identify each fibre ROI (Fig. 4e), streamlines were extracted from
the template-generated tractogram using grey matter include-regions
defined by the SRI24 atlas (Fig. 4d) (Rohlfing et al., 2010). The SRI24
atlas was co-registered to the group-average template using fractional
anisotropy and mean diffusivity maps simultaneously (using the ANTS
software package; http://picsl.upenn.edu/software/ants/). Spurious
streamlines were removed with exclude-regions defined by a neurolo-
gist. In addition we cropped streamlines in regions where the stream-
line density was less than 2% of the maximum density within that
tract. This ensured that final ROIs did not contain regions traversed by
relatively few (probabilistically unlikely) streamlines.

Generating test-statistic images

We computed a white matter fixel mask as described in the section
‘Computing a fixel analysis mask and obtaining correspondence across
subjects’ (Fig. 4f). A binary fixel signal image for each ROI (Fig. 4g)
was created by mapping streamlines (Fig. 4e) to associated fixels in
the template mask (Fig. 4f). We then generated 1000 instances of ran-
dom Gaussian noise (N(0,1)) (Fig. 4i) to give 1000 ‘noise only’ (Fig. 4j)
and 1000 ‘signal + noise’ images (Fig. 4k). Different SNR levels of the
signal + noise images were created by modifying the signal in the ROI
fixels (SNR =1, 2, and 3).

Smoothing and enhancement parameters

To test the effect of the proposed connectivity-based smoothing, we
smoothed the ‘noise only’ and ‘signal + noise’ images with kernels of 0,
5, 10, and 20 mm full width half maximum (FWHM) (Fig. 41). The
smoothed data (Fig. 4m, n) was renormalised so that the noise standard
deviation was equal to 1. Variance renormalisation ensures that
smoothing of the simulated test statistic image is equivalent to smooth-
ing of the original data (as performed in a typical VBA) (Smith and
Nichols, 2009). We tested CFE performance with various combinations
of parameters E, H and C (Fig. 40). Specifically, we selected E = 0.5, 1,
2,3,4,5,6,H=105,1,2,3,4,5,6,and C = 0,0.25, 0.5, 0.75, 1.0.

ROC-based evaluation

We assessed the performance of CFE using a receiver operator curve
(ROC)-based approach. ROC curves are typically used to evaluate a sin-
gle inference by plotting the true-positive rate (TPR; sensitivity) verses
the false-positive rate (FPR; 1—specificity) while a discrimination
threshold is varied. In fixel-based analysis, we are interested in the per-
formance of many inferences, while controlling for the family-wise error
rate. To account for these multiple comparisons we assessed CFE perfor-
mance using the Alternative Free-response ROC (AFROC) method
(Chakraborty and Winter, 1990) (as also performed in Smith and
Nichols (2009)). The AFROC method controls the family-wise error
rate (FWER) by defining the false-positive rate (FPR) as the fraction of
realisations with any false positive fixels anywhere in the image, while
the true-positive rate (TPR) is computed as the average number of
true-positive fixels across realisations.

Specifically, the ROC curves (Fig. 4r) were computed by varying a
threshold applied to the enhanced statistic images (Fig. 4p, q). The
same thresholds were applied to the ‘enhanced noisy only’ image and
‘enhanced signal + noise’ image (between zero and the maximum en-
hanced signal + noise value).

To quantitatively assess each ROC curve we computed the area
under the curve (AUC). As per Smith and Nichols (2009) we limit the
AUC calculation to FPR values less than 0.05 (since we are not interested
in FWER over 0.05) and divide the AUC by 0.05 so that it ranges from 0
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Fig. 5. Fibre tractography regions-of-interest used to identify fixels with a test-statistic signal. All tracts were extracted from a whole-brain tractogram (Fig. 4c) using the SRI24 atlas
(Fig. 4d) and edited by a neurologist. All tracts in rows 1-4 are coloured by streamline direction (red: left-right, blue: inferior-superior, green: anterior-posterior). The bottom row illus-
trates tracts that would be affected in an Alzheimer's-like pathology, chosen to simulate diseases that have a more global pathology. Alzheimer's-like fibre tracts include the left arcuate
fasciculus (yellow), cingulum (dark blue), anterior commissure (pink), uncinate fasciculus (green), anterior corpus callosum (red), and posterior corpus callosum connecting the left and

right precuneus (light blue).

to 1 (Fig. 4s). We visualised the AUC results using heat maps generated
with the ggplot2 R software package (Core R Team, 2013)

Application to motor neurone disease

To illustrate an in vivo application of the proposed CFE statistical in-
ference method, we performed an AFD fixel-based analysis comparing a
group of motor neurone disease (MND) patients with healthy controls.
MND is characterised by progressive degeneration of motor neurons
resulting in clinical symptoms that include muscular atrophy, muscular
paralysis, and spasticity. Previous diffusion MRI studies have identified
significant differences in white matter pathways involved in the
motor system, including the corticospinal tract and corpus callosal fi-
bres associated with the primary motor cortex. For a recent review of
MND diffusion MRI studies see Foerster et al. (2012, 2013).

Participants, data and pre-processing

Participants included in this study were recruited as part of a MND
study described in our previous work (Raffelt et al., 2012b). For a com-
prehensive description of participant details, acquisition protocols, and
pre-processing methods the reader is referred to Raffelt et al. (2012b).
However, for completeness we have included a brief summary of
these details below.

We acquired data from 24 healthy control subjects and 24 patients
with probable or definite MND, as defined by the revised El Escorial
criteria (Brooks et al., 2000). All patients included in this analysis were
classified as having upper motor neurone disease (Primary Lateral Scle-
rosis). Twenty-four healthy control participants were also recruited
who had no history of hypertension or cerebrovascular disease and
were not on any medications. All of the subjects gave their informed
written consent, in line with the Declaration of Helsinki, and as ap-
proved by the local Human Research Ethics Committee.
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MRI data were acquired using a 3 T Siemens Tim Trio (Siemens,
Erlangen, Germany) and with a 12 channel head coil. The diffusion im-
aging parameters were: 60 axial slices, TR/TE 9200/112 ms, 2.5 mm slice
thickness, 2.3 mm in plane image resolution, and an acceleration factor
of 2. Sixty-four diffusion-weighted images (b = 3000 s/mm?), and one
b = 0 image were acquired using echo planar imaging. Gradient
encoding vectors were uniformly distributed in space using electrostatic
repulsion (Jones et al., 1999). The acquisition time for the diffusion
dataset was 9:40 min.

Pre-processing of diffusion MRIs included EPI correction (Jenkinson,
2003), motion correction (Raffelt et al., 2012c), bias field correction
based on the b = 0 image (Tustison et al., 2010), and up-sampling by
a factor of 2 using b-spline interpolation (Raffelt et al., 2012b). Diffusion
MR images were intensity normalised across subjects based on the me-
dian b = 0 intensity within a white matter mask. Note that the
corticospinal tract and mid body of the corpus callosum were manually
excluded from the normalisation white matter mask since T2 hyper-
intensities are observed in MND. FODs were computed using robust
constrained spherical deconvolution at l,.x = 8 (Tournier et al.,
2013). As described in Raffelt et al. (2012b), we used a group average re-
sponse function to estimate FODs in all subjects.

Fixel-based analysis

We compared AFD between the MND and control group over all
white matter fixels. AFD is a quantitative measure derived from the
FOD (Raffelt et al,, 2012b). At typical diffusion gradient pulse durations
(~30 ms) and high b-values (b = 3000 s/mm?), the FOD amplitude (i.e.
the AFD) along a given direction is proportional to the intra-axonal vol-
ume of axons aligned with that direction. In this work we compute a
fixel-specific measure of AFD by integrating the FOD within each lobe.
As described in Smith et al. (2013), FOD lobes are first segmented
based on FOD amplitude zero crossings, and the AFD of each lobe is in-
tegrated using a non-parametric numerical integration using a dense
sampling of the FOD over a hemisphere.

Spatial normalisation of subjects and template-based tractography
were performed as previously described in the section ‘Quantitative
evaluation of CFE". AFD data in each fixel were smoothed using the pro-
posed connectivity-based smoothing (10 mm FWHM). The white mat-
ter analysis fixel mask and fixel correspondence was computed as
previously explained in the section ‘Computing a fixel analysis mask
and obtaining correspondence across subjects’.

To illustrate the effect of different CFE parameters on in vivo data, we
performed several statistical tests. We chose a range of CFE parameters
(E=0.5,2,4,H=0.5, 3,6 and C = 0.5) based on the AUC results from
the quantitative evaluations. Statistical inference was performed using a
general linear model (GLM) and non-parametric permutation testing
(Freedman and Lane, 1983; Nichols and Holmes, 2002; Winkler et al.,
2014), with 5000 permutations. Significant fixels (FWE p < 0.05) were
displayed using the mrview command in MRtrix 3 (https://github.
com/MRtrix3).

Analysis using tract-based spatial statistics

Tract-based spatial statistics (TBSS) is currently the most commonly
used method for VBA of white matter using diffusion MRI (Smith et al.,
2006). Numerous clinical studies have used the tools available as part of
the FSL software package to investigate population differences in
tensor-derived indices. We therefore included an additional analysis
to investigate the TBSS results using the MND cohort. All pre-
processing steps were performed as described above. Fractional anisot-
ropy images were computed with a non-linear tensor fit using MRtrix3
(https://github.com/MRtrix3). The default TBSS pipeline was used by
performing registration, skeletonisation and statistical analysis as
per the TBSS user guide (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/
UserGuide).

Results
Quantitative evaluation of CFE

We evaluated CFE performance with every combination of ROI, SNR,
smoothing extent, and CFE parameters C, E and H shown by the orange
boxes in Fig. 4. After careful investigation of all combinations, we includ-
ed three figures to best illustrate the influence of each of the tested pa-
rameters (Figs. 6-8). For all Figs. 6-8 the heat map plots are coloured by
the area under the curve (AUC) computed on the AFROC plots (FWE-
FPR < 0.05).

Fig. 6 demonstrates the influence of CFE parameters C, E and H on
a simulated test-statistic in 5 regions-of-interest (with a constant
SNR = 1 and smoothing kernel = 10 mm FWHM). Fig. 7 demon-
strates the influence of SNR on the optimal ratio of E verses H (with
constant C = 0.5 and smoothing kernel = 10 mm). Fig. 8 demon-
strates the influence of smoothing spatial extent with different effect
sizes (with constant C = 0.5 and arcuate fasciculus ROI).

Based on these results a number of interesting observations were
made:

1. Despite the fact that the ROIs have a broad range of properties (spa-
tial extent, curvature and crossings), the optimal H, E and C are not
heavily ROI-dependent (Fig. 6). As indicated by the red squares,
values H = 3, E = 2, C = 0.5 achieves good results for all ROIs tested.

2. As Cincreases, the optimal ratio of E and H shifts towards a larger E
(Fig. 6). This effect can be explained by the fact that a larger C value
reduces the contribution of spatial extent to the enhancement rela-
tive to the height (by reducing the influence of long range fixels
with lower connectivity).

3. The optimal Cvalue is somewhat ROl dependent (Fig. 6). For example
in the arcuate, corticospinal and Alzheimer's like ROIs, higher C
values have reduced AUC values. However in both cingulum bundle
ROIs lower C values perform poorly.

4. Atahigher SNR, better AUC values are obtained over a wider range of
E and H values (Fig. 7). Values H = 3, E = 2 give good results for all
SNRs (as indicated by the red squares).

5. As shown in Fig. 8, connectivity-based smoothing improves the AUC
results, but only up to a smoothing extent of 10 mm FWHM. There is
no change in AUC when increasing the smoothing extent from 10 to
20 mm. Fig. 8 demonstrates the influence of smoothing only on the
arcuate fasciculus ROI; however this trend was observed for all
ROIs tested (data not shown).

Motor neurone disease results

Fixel-based analysis results

As shown in Fig. 9, a significant decrease in AFD was observed in
motor neurone disease patients compared to healthy controls. All signif-
icant fixels in the brain were projected onto a coronal slice, coloured by
fixel orientation (red: left-right, blue: inferior-superior, green: anterior—
posterior) and overlaid on a single coronal slice of the mean AFD template
image.

As expected the affected fixels were restricted to the motor path-
ways, namely the corticospinal tract and the interhemispheric callosal
fibres interconnecting the left and right motor cortex. In addition we ob-
served a significant reduction in AFD in the fornix. This is an interesting
finding since many studies have linked MND with frontotemporal
dementia, a disease that affects episodic memory and the fornix
(Hornberger et al., 2012).

As demonstrated by the spatial extent of the significant region, the
sensitivity of different CFE parameter combinations matches the trend
observed in the simulation results shown in Fig. 6. We note that CFE
values of H= 3, E = 2 and C = 0.5 (those that give consistently good
results in the simulations) result in a large spatial extent, including
many fornix fixels.
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Fig. 6. Influence of CFE parameters C, E and H on simulated pathology in five regions-of-interest. Plots are colour-coded by AFROC area under the curve (AUC). All plots were generated with
SNR = 1 and a connectivity-based smoothing kernel of 10 mm FWHM. As indicated by the red squares, values H = 3, E = 2, C = 0.5 achieve good results for all regions-of-interest.
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Fig. 7. Influence of SNR and CFE parameters (E and H) on simulated pathology in five regions-of-interest. Plots are colour-coded by AFROC area under the curve (AUC). All plots were gen-
erated with C = 0.5 and a connectivity-based smoothing kernel of 10 mm FWHM. Red squares indicate recommended values (H = 3,E = 2).



50 D.A. Raffelt et al. / Neurolmage 117 (2015) 40-55

Smoothing = 0Omm Smoothing = 5mm

Smoothing = 10mm

Smoothing = 20mm
= R | | || | ]

AucC

o
=
5
&

Fig. 8. Influence of connectivity-based smoothing kernel size with different SNR and CFE parameters (E and H). Plots are colour-coded by AFROC area under the curve (AUC). All plots were
generated by simulating a test-statistic signal in the arcuate fasciculus, and enhancing with C = 0.5. Red squares indicate recommended values (H = 3, E = 2).

Fig. 9b illustrates a single slice of fixels colour-coded by p-value. As
shown by the zoomed in region of the pons (Fig. 9¢), the CFE method
detects a group difference in fixels specific to the corticospinal tract,
while the transpontine fibres are not statistically significant.

Tract-based spatial statistic results

Shown in Fig. 10 are the results from the TBSS analysis on the MND
cohort. A significant decrease (p < 0.05) was detected in FA in MND pa-
tients compared to controls in the corpus callosum motor pathways
(Fig. 10a). No significant differences were detected in the corticospinal
tract. Supra-threshold voxels could be observed in the corticospinal
tract by relaxing the p-value threshold to p < 0.2 (Fig. 10b); however,
as might be expected at such a lenient threshold, many voxels are also
then supra-threshold in regions that are not typically associated with
MND.

Discussion

We have outlined a novel connectivity-based fixel enhancement
method for multi-subject whole-brain analysis of quantitative measures
derived from higher-order diffusion MRI models. The CFE approach uses
tractography-derived information to smooth and enhance between
fixels that are structurally connected (and therefore likely share underly-
ing anatomy and pathology). This is in contrast to 3D cluster-based
methods (including TFCE), where a voxel may contribute to the en-
hancement of another if they are spatially connected by coexisting with-
in a supra-threshold cluster (even if both voxels belong to different fibre
tracts). In addition to the bundle-specific smoothing and enhancement,
the primary motivation behind the CFE method is the ability to perform
tract-specific statistical inference at an individual fixel level.

Quantitative evaluation of CFE

Using in vivo data with a simulated test-statistic signal, we have
demonstrated that the optimal CFE parameters are relatively insensitive

to the signal ROI and SNR (Fig. 7). This is encouraging for future fixel-
based analyses since close to maximum sensitivity should be obtained
for most studies with H = 3, E =2 and C = 0.5.

In all simulations larger AUC values were obtained with E > 1, which
causes the enhancement to increase more than linearly with extent size
(Figs. 6-8). This is in contrast to the original TFCE method (Smith and
Nichols, 2009), where the recommended E = 0.5 causes enhancement
to be scaled less than linearly with extent size. In 3D VBA of grey matter
E <1 is desirable because “at the lowest values of h the sections (clusters)
can become very large, but these large low areas of support are not provid-
ing very useful spatial specificity” (Smith and Nichols, 2009). However, in
CFE the extent is constrained to anatomically related fixels by
tractography-based connectivity. Therefore at low values of h, unrelated
fibre bundles cannot enhance each other.

Because we weight each fixel's contribution to the enhancement
based on the probabilistic streamline connectivity, cs (Eq. (3)), fixels
with larger connectivity values (i.e. those that we are more certain
share underlying anatomy) contribute more to the enhancement. In addi-
tion we raise c; to the power of C to tune the influence of connectivity; for
example when C < 1 the contribution from lower connectivities (e.g. over
long ranges) is increased. As shown by Fig. 6, C = 0.5 gives good results
for all ROIs. When C > 0.5 the arcuate, corticospinal, and Alzheimer's-
like ROIs have a reduced AUC, while the two cingulum ROIs have a re-
duced AUC when C < 0.5. A possible explanation for the different behav-
iour observed in the cingulum ROIs is the mismatch between our
simulated signal and the cingulum tractography. The signal was simulat-
ed in only the ‘core’ of the cingulum bundle (Fig. 5), however the
tractography streamlines branch frequently along the entire length into
the cingulate cortex (as they do in reality), which results in many weakly
connected fixels located outside the ROL A larger C value still enables
strongly-connected core fixels to contribute to the enhancement, while
decreasing the contribution of more weakly connected fixels.

As shown by the simulation results in Fig. 8, connectivity-based
smoothing improved AUC values up to a smoothing kernel of 10 mm
FWHM. We note that a FWHM = 10 mm kernel is relatively large
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Fig. 9. Fixel-based analysis results demonstrating a significant decrease (FWE-corrected p < 0.05) in apparent fibre density (AFD) in motor neurone disease (MND) patients compared to
healthy controls. a) Significant fixels detected using various combinations of CFE parameters E and H. Fixels are coloured by direction, red: left-right, blue: inferior-superior, green:
anterior-posterior. b) Fixels coloured by FWE-corrected p-value. ¢) Zoomed in region of the pons. As shown by the many crossing fibres in this region, the proposed CFE-based method
enables fibre tract-specific analysis by attributing p-values to each fixel in voxels containing multiple fibre populations.

compared to the sigma = 1.5 mm (FWHM = 3.5 mm) suggested in
TFCE (Smith and Nichols, 2009), however connectivity-based smooth-
ing ensures minimal blurring occurs across unrelated fibre tracts, as
discussed earlier in relation to the E parameter.

The simulations included an Alzheimer's-like ROI to investigate CFE
performance with a widespread pathology containing several fibre bun-
dles. As shown in Figs. 6 and 7, the Alzheimer's-like ROI gives a similar
relationship between E and H to the other ROIs tested. This is in contrast
to what would be expected in TFCE, where an extensive pathology is
likely to benefit from a larger E/H ratio. The relative insensitivity of
CFE input parameters to small vs. extensive multi-bundle pathology is
likely another consequence of the tract-specific enhancement.

Motor neurone disease

The proposed CFE method has been recently applied in preliminary
analyses of Alzheimer's disease (Raffelt et al., 2013), temporal lobe epi-
lepsy (Raffelt et al., 2014c), adolescents born preterm (Raffelt et al.,
2014a), grey matter heterotopia (Farquharson et al., 2014), Dravet syn-
drome (Raffelt et al., 2014b), and glaucoma (Raffelt et al., 2015),

however this is the first time we have used CFE to study MND (Fig. 9).
The significant reduction in AFD of the corticospinal tract of MND pa-
tients corroborates histopathological findings (Hughes, 1982), and
clearly demonstrates the tract specificity of the CFE method in the
brain stem region (Fig. 9c). The MND results in Fig. 9a support the CFE
simulations with significant group differences being widespread with
H=3,E=2,and C = 0.5. We note that in these results the group effect
is more extensive in the right corticospinal tract (left side of the image)
compared to the left corticospinal tract. This is an encouraging finding
given that most patients in this MND cohort reported a left-sided
onset of disease (15 left, 5 bilateral, 9 right).

Inter-dependence of structurally connected fixels

The CFE method assumes that group effects in white matter should
be correlated along a fibre bundle since the underlying axons should ex-
perience similar pathology along their entire length. While this assump-
tion is sound for most developmental and neurodegenerative diseases,
it may not hold for focal lesions found in diseases such as multiple scle-
rosis, stroke or traumatic brain injury. However, we point out that these
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Fig. 10. Tract-based spatial statistic (TBSS) results demonstrating a reduction in fractional anisotropy in the MND population compared to controls. a) Significant voxels (p < 0.05) are over-
laid on the template FA skeleton. Differences were observed in the corpus callosum region associated with the motor cortex, with no voxels being significant in the corticospinal tract.
b) When the p-value threshold is relaxed to 0.2, supra-threshold voxels are observed in the corticospinal tract; however at this threshold other regions not typically associated with
MND are also supra-threshold. For both images the orientation shown is coronal (top left), sagittal (top right) and axial (bottom left).

diseases tend to be less suited for all VBA methods due to the spatial het-
erogeneity of the lesions across subjects. We also note that axon degen-
eration secondary to the site of the lesion is often of more interest,
which is likely to be correlated along a fibre bundle's length.

By not requiring that fixels are spatially connected by supra-
threshold fixels, a benefit of the CFE method is that two distant regions
of the same fibre bundle may enhance each other even if the
interconnecting fixels are sub-threshold. While this is unlikely to
occur if axons are affected along their entire length, it is feasible that
non-stationary variance (for example at fibre crossings) may reduce
the test-statistic of interconnecting fixels that would otherwise prevent
the co-enhancement of distant yet structurally related regions.

Fixel analysis mask construction and fixel correspondence

When performing a traditional 3D voxel-based analysis, a mask is
often used to restrict the analysis to voxels of interest. In the case of a
fixel-based analysis, not only do we need to identify the voxel locations
to be investigated, but also the number and orientation of fixels within
the voxels.

In this work we compute the fixel analysis mask by segmenting the
study-specific FOD template, then thresholding the fixel AFD. Previous
work suggests that using an unbiased study-specific template may
give better sensitivity and specificity to detect white matter abnormal-
ities (Van Hecke et al., 2011). An additional benefit in the case of fixel-
based analysis is that the fixel orientations computed from the FOD
template will also be representative (an average) of the population.
We note that even with a robust neighbourhood-based FOD estimation
(Tournier et al., 2013), combined with FOD registration and reorienta-
tion (Raffelt et al., 2011, 2012a), fixel orientations may still vary across
subjects. Correspondence is therefore achieved by matching the
study-specific template fixel orientation to the closest fixel in all sub-
jects (using a maximum angular tolerance of 30 degrees). This can be
thought of as a projection step in the angular domain (akin to a TBSS
spatial projection).

Generation of the fixel mask uses a two-step approach to empirically
select AFD thresholds to ensure that fixels at the grey/white interface
(where the AFD and fixel orientation across subjects is variable due to
imperfect registration and partial volume with grey matter) are exclud-
ed, while fixels within crossing fibre regions in deep white matter are
included. It is worth emphasising that the issue of choosing the optimal
analysis mask threshold is not unique to the proposed fixel-based anal-
ysis method (Ridgway et al., 2009). However the advantage of white
matter fixel-based analysis (e.g. compared to grey matter voxel-based
analysis) is that white matter axons are extended in nature, and there-
fore while false-negative fixels may arise from increased variance at the
periphery or an inappropriate mask threshold, group differences are
still likely to be detected in more central (connected) regions where
good registration and fixel correspondence is obtained.

Analysis of quantitative measures other than AFD

While we have investigated fixel-specific AFD differences in this
study, the proposed CFE method can be applied to other fixel-specific
quantitative measures derived from the ‘composite hindered and re-
stricted model of diffusion’” (CHARMED) model (Assaf and Basser,
2005) and the cube and sphere multi-fascicle model (CUSP-MFM)
(Scherrer and Warfield, 2012). In other preliminary work (Raffelt
et al,, 2014c), we used the proposed CFE method to investigate popula-
tion differences in white matter morphometry, using in a novel
technique called fixel-based morphometry (FBM). In FBM, the fixel-
specific measure is based on morphometric differences in fibre-bundle
cross-sectional area derived entirely from the non-linear transforma-
tions of each subject to the template.

We also note that while the proposed method was designed to in-
vestigate fixel-specific measures, the CFE method could also be used
to investigate voxel-average quantities (e.g. myelin water fractions).
This would be achieved by mapping the value at each voxel to all fixels
within that voxel, then using CFE as described in this work. While this is
not optimal since the quantitative measure is not fixel-specific in
regions with crossing fibres, smoothing and enhancement would still
be more tract-specific than if performed using traditional 3D
smoothing and clustering, and the estimated p-value of fixels with-
in the same voxel will differ based on the different connectivity-
derived neighbourhoods.

Contrast to previous methods

The reduced sensitivity in the TBSS result (Fig. 10 vs. Fig. 9) may be
due to differences in the quantitative measure (FA vs AFD), the use of a
fixel vs. voxel-based measure, sub-optimal tensor b-value (3000 s/mm?
in this study), the registration algorithm, tract-specific vs isotropic
smoothing, or the statistical method (projection vs whole-brain, spatial
vs connectivity enhancement). To eliminate most of these confounds
and compare the smoothing and statistical method only, one could com-
pare CFE to the multi-fibre version of TBSS approach (Jbabdi et al., 2010).
This would require images to be aligned with the FOD-registration-
derived warps, before projecting fixel-specific AFD values onto the FA-
skeleton. However, the multi-fibre TBSS method can only analyse a max-
imum of two fixels per voxel. The centrum semiovale (a region containing
significant fixels in the MND result) contains many voxels with three
fixels (corticospinal tract, superior longitudinal fasciculus, and corpus
callosum) and therefore it is not possible to correctly convert/map AFD
fixel images to the MF-TBSS two-fixel format. In addition to this issue, a
comprehensive and fair comparison of TBSS and CFE sensitivity and spec-
ificity should ideally be performed using ground truth simulated patholo-
gy (in several white matter regions) and is therefore beyond the scope of
this current work.
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We included an ‘off-the-shelf TBSS analysis in this paper since TBSS
is the most commonly used method for voxel-based analysis in diffusion
MRI. However, TBSS is very different in kind to the whole-brain fixel-
based analysis presented in this work. TBSS is often cited as a whole-
brain voxel-based method; however only a very small percentage of
the white matter is investigated since the skeletonisation and projection
step is based on regions with high FA (and therefore the majority of
white matter voxels with crossing fibres and low FA are excluded
from analysis). Part of the motivation behind the projection step in
TBSS is to improve alignments in FA-based registration. However, recent
work suggests that using more advanced DTI registration improves
white matter alignment, while the TBSS projection step actually reduces
detection accuracy and produces less biologically plausible results
in vivo compared to a whole-brain VBA (Bach et al., 2014; De Groot
et al.,, 2013; Schwarz et al., 2014). In this present work, we perform reg-
istration using FOD images that contain high contrast within white mat-
ter (Raffelt et al., 2011), and therefore good correspondence is achieved
across subjects at the fixel-level for all major fibre tracts. Furthermore,
the TBSS projection step may also fail to capture group differences in pa-
thology (where the FA is low), since the projection step is based on high
FA voxels. In the context of the multi-fibre TBSS method (Jbabdi et al.,
2010), high FA voxels are more likely to contain single fibre populations,
and therefore voxels with multiple fixels (that typically have low FA)
are also less likely to be included in the analysis.

Tract-based spatial statistics (TBSS) is the most commonly used
method for VBA of white matter using diffusion MRI (Smith et al.,
2006). Furthermore, TBSS is insensitive to cases where pathology may
affect a low FA subset of axons belonging to a bundle (since the projec-
tion step preferentially selects high FA voxels). The fixel-based analysis
method proposed in this work tests all white matter regions and there-
fore does not suffer from this limitation.

More recent work has extended the TBSS framework to investigate
higher order models with multiple fixel-specific quantitative measures
per voxel (Jbabdi et al., 2010). However this approach still relies on
tract skeleton projection and therefore only tests a relatively small frac-
tion of white matter. Moreover, the tract skeletonisation and projection
procedure rely on high FA voxels that are more likely to contain single
fibre populations, and therefore voxels with multiple fixels are less like-
ly to be included in the analysis.

To our knowledge, the only other VBA method to test fibre-specific in-
formation from higher order diffusion MRI models was presented in our
previous work (Raffelt et al., 2012b). This approach enabled group com-
parisons of AFD that was derived by sampling the FOD uniformly over
many directions within each voxel. That method is therefore limited to
quantitative measures derived from continuous spherical functions, and
is very sensitive to subtle miss alignments in fibre orientations due to im-
perfect image registration. In contrast, the proposed CFE method is not
sensitive to small fibre orientation misalignments since we obtain fixel
correspondence using the group-average fixel analysis mask with an an-
gular tolerance of 30°. Furthermore, since a single scalar quantity is test-
ed per fixel, other fixel-specific diffusion MRI measures can be
investigated using CFE (as discussed in Section 4.5).

Implementation considerations

We implemented the proposed CFE statistical inference method in a
command called fixelcfestats, as part of the freely-available open-source
cross-platform MRtrix software package (https://github.com/MRtrix3).
The fixelcfestats command is multi-threaded and therefore computation
time decreases linearly with the number of CPU cores. At typical DWI
resolution (2.5 mm), 5000 permutations can be completed in several
hours on a standard desktop PC. On high resolution data (1.25 mm)
5000 permutations can be completed overnight, however more memo-
ry is required (>64 GB).

When computing the whole-brain tractogram the total number of
streamlines should be sufficient to achieve precise fixel-fixel connectivity

estimates. In this work we used 30 million streamlines, which were sub-
sequently filtered with SIFT to a total 3 million streamlines (Smith et al.,
2013). We chose 3 million since this was the maximum possible given
memory limitations, however in practise 2 million streamlines should
be sufficient. Note that SIFT is an important step to remove tractography
biases (e.g. over seeding in large tracts) and improve fixel-fixel connec-
tivity estimates. Other work conceptually related to SIFT suggests that
weighting streamlines to fit the underlying data may also help to remove
false-positive connections (Daducci et al., 2014).

Limitations

In a similar approach to Smith and Nichols (2009), we assessed CFE
performance using a test-statistic image generated by adding stationary
Gaussian noise to a fake signal, and smoothing with a stationary kernel.
However in vivo generated test-statistic images are inherently nonsta-
tionary due to spatial variations in scanner SNR and anatomical variabil-
ity. Nonstationary smoothness is problematic because larger clusters
are expected in smoother areas by chance. Stationary random field the-
ory cluster-based approaches can fail to control the FWER in such cases.
The random field theory approach has been adapted for non-stationary
smoothness (Worsley et al., 1999), but has been found to work well
only for high degrees of freedom and high smoothness (Hayasaka
et al., 2004). Importantly, permutation-based approaches control
FWER in all cases, though versions wrongly assuming stationarity will
exhibit non-stationary sensitivity, motivating non-stationary versions.
Hayasaka et al. (2004) evaluated a permutation approach that used
the estimated local smoothness, while Salimi-Khorshidi et al. (2011) ad-
just cluster sizes using a resampling-based estimate of nonstationarity.
The latter approach can be employed to adjust both cluster sizes and
TFCE (or CFE) output. It is important to note that while cluster-extent
is strongly affected by non-stationary smoothness, methods that com-
bine extent and height, such as cluster-mass and TFCE, are expected to
be more robust to non-stationary smoothness, since the larger clusters
in smoother areas will tend to have reduced heights. This was supported
by experimental results for TFCE by Salimi-Khorshidi et al. (2011), and
is likely to hold for CFE as well. Nevertheless, the lack of non-
stationary effects in our simulations must be acknowledged as a limita-
tion, and we plan to investigate approaches like that of Salimi-Khorshidi
et al. (2011) in future work. Our results on real (presumably non-
stationary) MND data provide reassurance that the optimal parameters
identified in the simulations should still be appropriate for in vivo
studies.

Edden and Jones (2011) identified an orientational bias in the statis-
tical sensitivity of TBSS method: fibre pathways in the tract-skeleton
that are oblique to the image grid are represented with more voxels
and are more likely to be significant than those aligned with the grid.
In CFE there is no tract skeleton, but when computing the fixel-fixel
connectivity, more streamlines are likely to traverse through a voxel
when the fibre is oriented obliquely. It's therefore possible that an
oblique fixel may be structurally connected to more fixels and have a
larger extent, e, compared to a fixel aligned with the image axis. Future
experiments will investigate this, alongside potential adjustments like
that of Salimi-Khorshidi et al. (2011).

Our simulations encompassed 50,700 combinations of ROI, effect
size, smoothing and CFE parameters. However, we did not explore the
effect of different tractography algorithms and parameters on the com-
puted fixel-fixel connectivity matrix. Certain parameters may influence
the tractography output (e.g. probabilistic spread) and therefore the ac-
curacy and sparsity of the connectivity matrix. Further investigation on
this is warranted but is beyond the scope of this work.

Conclusion

In this work we have introduced a novel approach for whole-brain
statistical analysis of fixel-based measures derived from higher order
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diffusion MRI models. The CFE method exploits connectivity informa-
tion derived from probabilistic tractography to ensure pre-smoothing
and enhancement is performed using fixels that are likely to share un-
derlying anatomy and pathology. Simulations suggest that enhance-
ment parameters are relatively insensitive to the simulated pathology
ROI and SNR, and therefore we can recommend a single set of parame-
ters (H=3,E = 2,C = 0.5) that should give near optimal results in fu-
ture studies where the group effect is unknown. We demonstrated the
proposed method by comparing a group of MND patients to control sub-
jects and achieve good results with the simulation-derived parameters.
In addition to providing tract-specific smoothing and enhancement, the
key benefit of the CFE method is to permit fixel-specific statistical infer-
ence that should yield more interpretable results in white matter re-
gions that contain crossing fibres.
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