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Abstract 20 

    The Lomagundi-Jatuli Event (LJE) is one of the largest and earliest positive carbon 21 

isotope excursions preserving δ13Ccarb values between +5 and +16‰ in Paleoproterozoic 22 

carbonates worldwide. However, the duration, amplitude and patterns of these excursions 23 

remain poorly constrained. The 2.14-1.83 Ga Hutuo Group in the North China Craton is a >10 24 

km thick volcano-sedimentary sequence, including >5 km thick well-preserved carbonates 25 

that were deposited in supra-tidal to sub-tidal environments. C-O isotopic and elemental 26 

analyses of 152 least altered samples of the carbonates revealed a three-stage δ13C evolution. 27 

It began with an exclusively positive δ13Ccarb (+1.3 to + 3.4‰) stage in the ~ 2.1 Ga carbonate 28 

in the Dashiling and Qingshicun Formations, followed by a transition from positive values to 29 

oscillating positive and negative values in ~3000 m thick carbonates of the Wenshan, 30 

Hebiancun, Jianancun, and Daguandong Formations, and end with exclusively negative 31 

δ13Ccarb values preserved in > 500m thick dolostones of the Huaiyincun and Beidaxing 32 
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Formations. It appears that much of the LJE, particularly those extremely positive δ13Ccarb 1 

signals, was not recorded in the Hutuo carbonates. The exclusively positive δ13Ccarb values 2 

(+1.3 to + 3.4‰) preserved in the lower formations likely correspond to the end of the LJE, 3 

whereas the subsequent two stages reflect the aftermath of the LJE and the onset of 4 

Shunga-Francevillian Event (SFE). The present data point to an increased influence of oxygen 5 

on the carbon cycle from the Doucun to the Dongye Subgroups and demonstrate that the 6 

termination of the LJE in the North China Craton is nearly simultaneous with those in 7 

Fennoscandia and South Africa. 8 

Keywords Paleoproterozoic; Lomagundi-Jatuli Event; Hutuo Group; carbon isotope; 9 

carbonate 10 

Introduction 11 

The Paleoproterozoic is known as a period of profound perturbations in marine 12 

environments and biogeochemical cycles due to the Great Oxidation Event (GOE) (Melezhik 13 

et al., 2005a). Among these is the Lomagundi-Jatuli Event (LJE), one of the largest magnitude 14 

and earliest known positive carbonate carbon isotope excursions preserving δ13Ccarb values 15 

between +5 and +16‰ and even higher (Martin et al., 2013a, and references therein). The 16 

global nature of the LJE was supported by published C isotope data on Paleoproterozoic 17 

sequences from all continents with the exception of Antarctica (e.g., Maheshwari et al., 2010; 18 

Bekker et al., 2006; Karhu and Holland, 1996; Melezhik and Fallick, 1996; Baker and Fallick, 19 

1989a; Schidlowski et al., 1976). Based on a compilation of age data from 22 sections in 20 

Fennoscandia, Norway, Scotland, Africa, North America and Australia, Karhu and Holland 21 

(1996) proposed a time span of 2.22 Ga to 2.06 Ga for the LJE. If true, the magnitude and 22 

extended duration of this carbon isotope anomaly suggest abnormally high rate of organic 23 

carbon burial and oxygen production which might have generated excess O2 between 12 and 24 

22 times the present atmospheric O2 inventory (Karhu and Holland, 1996). The following 25 

negative shift in δ13Ccarb up to -14‰, i.e., the Shunga-Francevillian Event (SFE), has been 26 

attributed to the attainment of atmospheric and groundwater oxygen levels sufficient to 27 
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oxidize the organic matter produced during the LJE (Kump et al., 2011). 1 

Despite intensive studies, the duration, amplitude and the internal structures of the 2 

Lomagundi-Jatuli C isotope excursions remain poorly constrained due to incomplete 3 

preservation of the geological record combined with a limited availability of reliable 4 

carbonate-bearing sections with good age constraints (Melezhik et al., 2013; Maheshwari et 5 

al., 2010; Melezhik and Fallick, 2010). Based on the C-isotope data available at the time, 6 

Melezhik et al (1999a, b) suggested that the Paleoproterozoic positive excursions of δ13Ccarb 7 

represent three positive shifts separated by returns to near zero values that occurred between 8 

2.40 and 2.06 Ga. Other investigations, however, supported the view of a single sustained 9 

event (Martin et al., 2013a; Maheshwari et al., 2010; Bekker et al., 2003; Karhu and Holland, 10 

1996). Alternatively, these excursions could have occurred locally and contemporaneously 11 

and thus do not represent global seawater, but rather a globally occurring phenomenon. 12 

Whether the terminations of the excursions occurred simultaneously all over the world also 13 

remains to be answered, because well constrained chronological framework has been 14 

established in relatively few successions in Fennoscandia and South Africa (Martin et al., 15 

2013a). On the basis of the review on published chronological data, Martin et al (2013a) 16 

proposed a maximum permitted range between 2306 ± 9 and 2057 ± 1 Ma and a minimum 17 

permitted range between 2221 ± 5 and 2106 ± 8 Ma for the LJE. Therefore, each new section 18 

containing a substantial carbonate record represents a valuable addition, and might improve 19 

our current understanding of the local and regional of the LJE. 20 

The North China Craton (NCC) is an Early Precambrian continental block with well 21 

exposed Paleoproterozoic sequences, including the Hutuo Group in the Wutai area of Shanxi 22 

Province, the Songshan Group in northern Henan Province, and the Liaohe Group in eastern 23 

Liaoning Province. During the last two decades or so, attempts have been made to locate 24 

positive δ13Ccarb excursions in these successions correspond to the global excursions (Lai et al., 25 

2012; Kong et al., 2011; Tang et al., 2011; Zhong and Ma, 1997). Available data have 26 

documented the presence of carbonates with δ13C up to 3.5‰ (Zhong and Ma, 1997) or 3.2‰ 27 

(Kong et al., 2011) in the Hutuo Group, to 4.2‰ in the Songshan Group (Lai et al., 2012), and 28 

to 5.9‰ in the Liaohe Group (Tang et al., 2011). Some of these studies, however, are based 29 

on problematic chronological framework (Fig. 1; Kong et al., 2011; Zhong and Ma, 1997) or 30 
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provide only limited data (Lai et al., 2012; Tang et al., 2011) which dampen the correlation 1 

with global events. In this study we conducted detailed study of the geology of the Hutuo 2 

Group in the Wutai area and obtained C-O isotopic and elemental composition data for 152 3 

carbonate samples. Combined with newly published high-precision chronological data, this 4 

documents transition from persistently positive δ13Ccarb to more variable positive and negative 5 

values in 2.1-1.9 Ga carbonates, which signals the termination of the LJE in the NCC. 6 

1. Geological settings  7 

The NCC refers to the Chinese part of the Sino-Korean Craton. It covers an approximately 8 

triangular area of ca. 1,500,000 km2 and consists of Eoarchean to Paleoproterozoic basement that 9 

underlies Mesoproterozoic to Cenozoic unmetamorphosed covers (Fig. 1). Zhao et al. (1999, 2005) 10 

divided the NCC into the Eastern and Western Blocks and the Trans-North China Orogen 11 

sandwiched in between. 12 

Paleoproterozoic volcano-sedimentary successions are widespread in the NCC, which 13 

include, but are not limited to, the Hutuo Group in the Wutai area, the Liaohe Group in the eastern 14 

Liaoning Province and the Songshan Group in northern Henan Province (Fig. 2). These might 15 

have deposited in a suite of Paleoproterozoic rift systems which started with the eruption of 16 

continental flood basalt and bimodal volcanics (Kusky and Li, 2003). This is supported by the 17 

geochemistry of the metabasalts in the lower part of the Hutuo Group which indicate eruption in a 18 

intra-plate rift setting (Du et al., 2009) and by the structural geology and regional stratigraphy 19 

(Guo et al., 2011). Other researches, however, argue that the Hutuo Group represents the 20 

sedimentary record of the foreland basin developed in response to the collision of the Western and 21 

Eastern Blocks at ca. 1.85 Ga (e.g., Liu et al., 2011). 22 

In the Wutai area, Neoarchean to Paleoproterozoic basement rocks are well exposed. The 23 

2.55-2.50 Ga Wutai Group consists mainly of mafic and felsic volcanic rocks interbedded with 24 

minor banded iron formations that is metamorphosed to the greenschist to amphibolite facies, 25 

whereas the Paleoproterozoic Hutuo Group is dominated by clastic rocks and carbonates which 26 

have undergone a lower greenschist facies metamorphism with the mineral association of 27 

metapelites in the Hutuo Group being chlorite + muscovite + quartz ± epidote ± albite (Bai, 1986). 28 
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 1 
Figure 1 (a) Tectonic divisions of the North China Craton highlighting exposed Archean and Paleoproterozoic 2 

rocks (modified after Zhao et al., 1999). (b) Simplified geological map of the Wutai area (modified after Bai, 3 

1986). 4 

The Hutuo Group represents the latest sedimentary record of the Early Precambrian in the 5 
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Wutai area, unconformably underlying and overlying the Mesoproterozoic Changcheng System 1 

and the Neoarchean Wutai Group, respectively. The total thickness is estimated to be > 10,000 m. 2 

The Hutuo Group is generally divided into three subgroups, i.e., the lower Doucun Subgroup, the 3 

middle Dongye Subgroup and the upper Guojiazhai Subgroup (Fig. 2) (Bai, 1986), although other 4 

researchers have proposed that the former two subgroups might represent contemporaneous 5 

sedimentation at different environments (Miao et al., 1999). Possible sedimentary hiatus between 6 

the Doucun and Dongye Subgroups is characterized by a paleo-weathering crust developed on the 7 

topmost metabasalts of the Qingshicun Formation (Bai, 1986). The stark contrast and sharp 8 

contact between the carbonates of the Dongye Subgroup and the red siliciclastic rocks of the 9 

Guojiazhai Subgroup marks a significant sedimentary hiatus bounded by an unconformity. 10 

 11 

Figure 2 Generalized stratigraphic column of the Hutuo Group with correlation to Paleoproterozoic successions in 12 

N Henan (Lai et al., 2011) and E Liaoning provinces (Tang et al., 2011). Previously published age dates and C 13 

isotope data are shown. 14 

The three subgroups are further subdivided into 14 formations according to their lithological 15 

assemblages (Bai, 1986). The Doucun Subgroup, which consists of the Sijizhuang, Nantai, 16 

Dashiling and Qingshicun Formations, is a fining-upward succession with a basal conglomerate 17 

associated with volcanic rocks (the Sijizhuang Formation), that represent the sedimentary record 18 

of the inception of a rift basin (Kusky and Li, 2003; Bai, 1986) or a graben-related environment 19 
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(Miao et al., 1999). The conglomerates grade upward to quartzites and phyllites, then to phyllites 1 

interbedded with dolostones, with occurrence of thickly bedded dolostones at the top. The Dongye 2 

Subgroup is subdivided into the Wenshan, Hebiancun, Jianancun, Daguandong, Huaiyincun and 3 

Beidaxing, and Tianpengnao Formations. It comprises a carbonate-dominated sequence with 4 

minor intercalations of metapelite and metabasalt. Stromatolites with various morphologies are 5 

present in all the formations excepting the Huaiyincun Formation. This part corresponds to the 6 

transgression maximum. Phosphorus-bearing horizons have been reported from the Hebiancun 7 

Formation (Dongye, 1989). The Guojiazhai Subgroup is a non-marine molasse deposit 8 

unconformably overlying carbonates of the Dongye Subgroup (Bai, 1986). It comprises an 9 

upward-coarsening sequence, which is > 900 m-thick in the NNW and rapidly pinches out in the 10 

SSE (Miao et al., 1999). A second phosphorus-bearing horizon has been reported from the basal 11 

sandstones and breccias of the sequence (Dongye, 1989), which is correlated to "Dongjiao Type" 12 

phosphorous deposit that resides in equivalent siliciclastic sequence in adjacent Hebei Province 13 

(Zhao, 1982). 14 

Conventionally, the Hutuo Group was thought to be deposited between 2.45-2.37 Ga (Wang, 15 

1997; Wu et al., 1986) or 2.37-1.90 Ga (Bai, 1986). Recently published high-precision 16 

geochronological data, however, have demonstrated that the Hutuo Group is significantly younger 17 

than previously thought and probably deposited between 2.14 and 1.83 Ga (Du et al., 2013; Du et 18 

al., 2011; Liu et al., 2011; Du et al., 2010; Wan et al., 2010; Wilde et al., 2004). SHRIMP zircon 19 

U-Pb dating of a metamorphosed basaltic andesite in the Sijizhuang Formation of the Hutuo 20 

Group yielded a mean weighted 207Pb/206Pb age of 2140±14 Ma (Du et al., 2010), constraining the 21 

lower limit of its depositional age. Wilde et al (2004) reported a SHRIMP zircon 207Pb/206Pb age 22 

of a felsic tuff from the Qingshicun Formation as 2087±9 Ma. Furthermore, the fact that the Hutuo 23 

Group is intruded by 1.83-1.77 Ga mafic dykes suggests ~1.83 Ga as the upper limit of the 24 

depositional age (Guo et al., 2011; Hou et al., 2005). Liu et al (2011) reported detrital zircons as 25 

young as 1.88 Ga from the Jianancun Formation, which further constrains that the Daguandong, 26 

Huaiyincun, Beidaxing and Tianpengnao Formations were deposited during a relatively short 27 

period between 1.88 and 1.83 Ga. 28 
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2. Sedimentary structures and depositional environments 1 

The Hutuo Group retains an archive of diverse primary sedimentary structures (Fig. 3). In the 2 

lowermost part of the Hutuo Group which is dominated by clastic rocks, cross bedding (Fig. 3a), 3 

ripple marks (Fig. 3b), flaser bedding and parallel bedding are commonly observed, whereas 4 

graded bedding and convolute bedding (Fig. 3d) locally occur. Casts and pseudomorphs of halite 5 

and desiccation cracks were also reported from the Dashiling Formation (Bai, 1986). These point 6 

to deposition mainly in peritidal environments, except for intermittent periods of turbidites 7 

deposition probably related the active rifting of the Hutuo basin (Bai, 1986). 8 

The >5000 m thick carbonate-dominated proportion of the Hutuo Group, however, is 9 

characterized by various stromatolite morphotypes that range from centimeter-size digitate forms 10 

to large bioherms up to 2 m in diameter (Fig. 3e-h), along with disturbed bedding and intraclastic 11 

structures (Fig. 3c). Stromatolite diversity in the Hutuo Group has been previously studied in 12 

detail (Zhu and Chen, 1992; Zhu, 1982), and 51 groups and 96 morphtypes has been recognized 13 

(Bai, 1986). Closely-packed decimeter-size columns of stromatolites are also observed (Fig. 3i), 14 

indicating accelerated growth of photosynthetic microbial communities. Oölites, low-angle cross 15 

bedding and tidal bedding have also been reported (Bai, 1986). Early diagenetic silicification is 16 

common in the Hutuo carbonates, usually forming high relief chert layers intercalated with low 17 

relief pure dolostones and helps to preserve primary sedimentary structures (Fig. 3j). In general, 18 

these sedimentary structures suggest that the Hutuo carbonates were deposited in supra-tidal to 19 

sub-tidal environments during the formation of a carbonate ramp. 20 

3. Samples and methods 21 

Over 300 samples were collected at the four investigated sections (Fig. 1b). Best available 22 

samples were selected from fresh outcrops lacking shear, foliation, or fractures although 23 

secondary veinlets and silicification could not be completely avoided. Prior to geochemical  24 

analyses, each of the samples was petrographically characterized with naked eyes and optical 25 

microscope. Among these, 152 least altered carbonates were analyzed for C and O isotope and 26 

elemental concentrations. 27 
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 1 
Figure 3 Sedimentary structures. (a) Herringbone cross-bedding, Wenshan Fm. (b) Ripple marks, Wenshan Fm. (c) 2 

Disturbed beds (black arrows), rounded intraclasts and flat pebbles (white arrows), Hebiancun Fm. (d) Convolute 3 

bedding, Qingshicun Fm. (e) Digitate stromatolite, Jianancun Fm. (f) Stromatolite bioherms, Jianancun Fm. (g) 4 

Stromatolite bioherms, Dashiling Fm. (h) Purple-colored wavy-Conical stromatolites, Wenshan Fm. (i) Oblique 5 

section of tightly-packed stromatolites, Daguandong Fm. (j) Cherty dolostone with alternating purplish chert layers 6 

(ch) and white dolomicrite layers (dol) indicating silicification during very early diagenetic stage, Hebiancun Fm. 7 

Hammers are ~40 cm long, and marker pen is 14 cm long. 8 
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 1 

Figure 3 continued. 2 

Rock samples were trimmed off weathered surfaces and crushed into pieces less than 1 cm in 3 

diameter. Rock chips devoid of veinlets or fractures were hand-picked. They were then cleaned by 4 

ultrasonication, repeatedly rinsed with distilled water, dried, and powdered. 5 

Analyses of elemental composition were conducted with a PerkinElmer Elan9000 ICP-MS at 6 

ALS Chemex (Guangzhou) co ltd. The detection limit is 0.1 % for Mg, Fe and Ca, 5 ppm for Mn 7 

and 0.2 ppm for Sr. Oxygen and carbon isotopes were determined with a Finningan MAT-251 8 

mass spectrometer at the State Key Laboratory of Geological Processes and Mineral Resources, 9 

China University of Geosciences (Wuhan), or with an Isoprime 100 mass spectrometer at the State 10 
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key Laboratory of isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy 1 

of Science. Carbon and oxygen isotopic compositions were measured on CO2 liberated from 2 

powdered carbonates using 100% phosphoric acid. Multiple measurements of standards (NBS19, 3 

IAEA-CO-8, GBW04405 and GBW04406) yielded analytical precision better than 0.15 ‰ for 4 

both C and O isotopes. The δ13Ccarb and δ18Ocarb data are reported in standard per mil (‰) relative 5 

to V-PDB. δ18OV-SMOW was calculated according to δ18OV-SMOW = 1.03086 × δ 18OV-PDB + 30.86 6 

(Nafi et al., 2004). 7 

In addition to the whole-rock analyses, 28 micro-drilled samples were also analyzed for C 8 

isotopes. Carbonates containing no carbonaceous material were selected based on optical 9 

microscopy. The slabs were polished with silicon carbide paper and then cleaned by 10 

ultrasonication, rinsed with deionized distilled water and dried. The least altered (lacking veins, 11 

discoloration, weathering rinds, and silicification) and finest -grained portions of the slabs were 12 

micro-drilled with a 2.0 mm diameter SiC drill bit to obtain pristine rock powders. For carbon 13 

isotope analyses, 1.6 - 5.8 mg of powders were weighed in Ag capsules pre-muffled at 600 ℃ for 14 

2 hours. Carbon isotope analyses were performed at Boston College with an ECS 4010 elemental 15 

analyzer (EA) linked to a ThermoFisher Delta V Plus IRMS through a Conflo IV interface as 16 

previously described (Papineau et al., 2010). δ13C values are reported as per mil (‰) deviation 17 

from V-PDB. External reproducibility determined by multiple measurements of NBS22 standards 18 

was better than 0.1‰ (1σ, n = 27), respectively. 19 

4. Results 20 

4.1 Petrographic characterization 21 

Petrographic observation were made on hand specimens, polished rock slabs and thin sections 22 

to evaluate the effects of post-depositional processes on primary textures. Most of the samples 23 

retained their original textures to variable extents, consistent with the low degree of 24 

metamorphism. In either the massive dolostones (Fig. 4a and b) or the laminated (stromatolitic) 25 

dolostones (Fig. 4c-f), crystal sizes are generally < 15 µm (Fig. 4 b and d). This, along with the 26 

preservation of organic-rich clots and laminae (Fig. 4c-f), show that the original textures and 27 

mineralogy were commonly unaltered and the samples likely preserve primary carbon isotope 28 



12 
 

signals. It should be noted, however, sub-millimeter wide veinlets, which are composed of quartz 1 

in most cases and are almost impossible to avoid during preparation of bulk-rock powders, are 2 

present in many samples (Fig. 4a and e). In order to assess the effect of these veinlets on the C 3 

isotope ratio, as mentioned above, δ13Ccarb of samples micro-drilled from polished rock slabs were 4 

also obtained and compared with those of bulk-rock powders from the same rocks. 5 

 6 

Figure 4 Petrographic features of the Hutuo carbonates. (a) Slab of an orange-colored massive dolostone 7 

micro-drilled for C isotope analysis, arrow showing the drill pit. (b) Pure microcrystalline dolostone with crystals 8 

generally smaller than 15 µm. (c) Primary laminae in stromatolitic dolostone. (d) Magnified view of (c) showing 9 

dolomite microcrystals and clots of carbonaceous material. (e) Alternated dark organic-rich and transparent 10 

dolomite laminae in a stromatolite. (f) Magnified view of (e) showing the dark organic-rich layers and clots. Note 11 
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also the disseminated hematite (Hem) particles and local occurrence of quartz (Qtz). 1 

4.2 Elemental concentrations 2 

Ca and Mg contents of the Hutuo dolostones vary from 6.6 to 21.7% and from 4.1 to 13.7% 3 

(n=152), respectively. Mg/Ca ratios, however, fall in a restricted range between 0.58 and 0.63. 4 

Cherty dolostones have lower Ca (5.32 - 21.00%) and Mg (3.09 - 11.55%) contents and slightly 5 

more variable Mg/Ca ratios (0.58-0.65). Mg/Ca ratios of the limestones are generally lower than 6 

0.1. 7 

The Hutuo dolostones contain variable amounts of Fe (0.02-3.35 %, 0.63 % on average), Mn 8 

(50 - 3610 ppm, 638.6 ppm on average) and Sr (5.5 - 329 ppm, 57.8 ppm on average). The cherty 9 

dolostones have generally lower Fe (0.13 - 0.85%, 0.47% on average) and Mn (87 - 901 ppm, 371 10 

ppm on average) but higher Sr (14.4 - 321 ppm, 91.5 ppm on average) abundances. The 11 

limestones are characterized by very high abundance of Sr ranging between 142.5 and 2050 ppm, 12 

with an average of 589.5 ppm. Their Fe (0.08 - 2.97%) and Mn (35 - 4180 ppm) contents are 13 

similar to those of dolostones. Mn/Sr ratios of the dolostones vary from 1.6 to 127.3, with an 14 

average of 16.6, whereas those of the cherty dolostones (14.4 - 155.0, 9.7 on average) and 15 

limestones (0.07 - 21.1 , 10.2 on average) are slightly lower overall. 16 

4.3 C- and O-isotopes of carbonates 17 

δ13Ccarb values obtained from whole-rock samples range between -5.2 and +3.4‰ (0.5‰ on 18 

average, n=152), whereas the δ18 Ocarb varies from to -16.3 to -2.7‰ V-PDB (-8.9‰ on average) 19 

(Table 1). The heaviest δ13Ccarb (+3.4‰) came from the Dashiling Formation, whereas the lightest 20 

δ13Ccarb (-5.2‰) were obtained at the top of the Hebiancun Formation. The Dashiling Formation, 21 

which represents the lowermost portion of the studied carbonate unit in the Hutuo Group, yielded 22 

exclusively positive and consistent δ13Ccarb values between +1.3 to +3.4‰ (+2.4‰ on average). 23 

Two samples from the Qingshicun Formation gave δ13Ccarb values between 0.3 and 0.7‰. The 24 

overlying Wenshan Formation are characterized by slightly positive δ13Ccarb from +0.2 to +1.8‰. 25 

The Hebiancun Formation, however, shows a general trend of decrease in δ13Ccarb from +2.7 to 26 

-5.2‰. Further up-section, the Jianancun Formation display variable δ13C values between -3.6 and 27 
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+1.6‰. δ13Ccarb of the Daguandong Formation show slight fluctuation below and above 0 ‰. The 1 

Huaiyincun and Beidaxing Formations are characterized by a transition from positive to negative 2 

δ13Ccarb values generally lighter than -2‰. 3 

Twenty-eight micro-drilled samples yielded results consistent with the whole rock data (Table 4 

1 and Fig. 6A). δ13C of twenty six samples from the Dashiling Formation range between +1.2 to 5 

+3.1‰, with an average of +2.4‰, which are almost identical to those of the whole rock δ13Ccarb. 6 

Two samples from the Daguandong Formation gave δ13C values of 0.4‰ and -1.7‰, similar to 7 

those obtained by bulk rock analysis (0.9‰ and -1.3‰, respectively). 8 

 9 

Figure 5 Stratigraphic variation of δ13C, δ18O and Mn/Sr ratios of the Hutuo Group. Three stages of the δ13C curve 10 

(A, B and C) are shown in detail in Fig. 6. 11 
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5. Discussion 1 

5.1 Impact of post-depositional processes on C and O isotope composition 2 

Depending on post-depositional process such as metamorphism, original carbon and oxygen 3 

isotope compositions of carbonate rocks could either be altered (e.g., Lewis et al., 1998; Bickle et 4 

al., 1997, 1995) or retained even under amphibolite-facies conditions (e.g., Melezhik et al., 2001; 5 

Boulvais et al., 1998; Baker and Fallick, 1989a, b). Diagenesis and metamorphism tend to result in 6 

a decrease in both δ13Ccarb and δ18Ocarb (Melezhik and Fallick, 2010; Bekker et al., 2005; Melezhik 7 

et al., 1999b; Guerrera et al., 1997). However, carbon isotope composition of most of the bulk 8 

rock samples are unlikely to change significantly during non-organic diagenesis because carbon 9 

content in carbonates is vastly greater than that in pore-water reservoir and because the 10 

fractionation between calcium carbonate and water is relatively small at near-surface temperatures 11 

(Emrich et al., 1970). A detailed study on Paleoproterozoic 13C-rich carbonates by Melezhik and 12 

Fallick (2003) has shown that non-organic diagenesis produced a very little effect on primary 13 

isotopic values. Oxygen isotope, on the contrary, are often subject to secondary alteration (e.g., 14 

Hudson, 1977). 15 

 16 

Figure 6 δ13C curves of the lower, middle and upper part of the Hutuo carbonates. 17 

Various parameters, including Mn/Sr, Fe/Sr, Ca/Sr and Rb/Sr ratios, and carbon and oxygen 18 

isotopes, are used as criteria for detecting the least altered carbon and oxygen systems. 19 
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Co-variation of δ13C an d δ18O values is generally regarded as an indicator for diagenetic (e.g., 1 

Bathurst, 1972) or metamorphic (e.g., Valley, 1986) resetting. A complete resetting of δ13C and 2 

δ18O by diagenesis or metamorphism results in a non-linear δ13C - δ18O alteration trend (e.g., 3 

Melezhik et al., 2005b; Jacobsen and Kaufman, 1999). Influence of meteoric diagenesis can be 4 

estimated by Mn/Sr ratios, because carbonates affected by meteoric fluids are usually depleted in 5 

Sr and enriched in Mn (Kaufman and Knoll, 1995; Veizer, 1983). Mn/Sr ratios greater than 10 6 

(Kaufman and Knoll, 1995) or 6 (Melezhik et al., 1999b) are considered to imply significant 7 

post-depositional alteration. However, application of this criteria is undermined by the fact that 8 

dolostone generally contains less Sr and more Mn and hence have higher Mn/Sr ratio than 9 

limestone (e.g., Gaucher et al., 2007). 10 

 11 

Figure 7 Cross-plots illustrating post-sedimentary alteration of the carbonates. 12 
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 1 

As shown in Fig. 7a, δ13C and δ18O values of the Hutuo carbonates do not show any evident 2 

co-variation. δ18Ocarb V-SMOW values of all the samples exceed 18‰, and most of them are >20‰, 3 

suggesting that the C-O isotopes are largely unaffected by post-sedimentary processes. The 4 

limestones have significantly lower Mn/Sr ratio compared with the dolostones and cherty 5 

dolostones (Fig. 7b), consistent with previous studies (Gaucher et al., 2007). The slightly positive 6 

correlation between Mn/Sr and δ18Ocarb of the dolostones argues against influence of meteoric 7 

diagenesis. As an alteration proxy proven to be useful for limestones, Mn/Sr ratio should not be 8 

applied without further considerations to dolostones, because chemistry and structure of dolomite 9 

allows less amounts of Sr but far more Mn and Fe to be incorporated into the crystal lattice (Kah 10 

et al., 1999; Deer et al., 1992). Therefore, the high Mn/Sr ratios in the Hutuo dolostones probably 11 

resulted from high seawater Mn concentrations (Maheshwari et al., 2010) rather than from 12 

diagenetic or metamorphic alteration. The limestones display significantly lower Mn/Sr ratios and 13 

somewhat lighter δ18Ocarb than the dolostones, with a slightly negative correlation between Mn/Sr 14 

and δ18Ocarb (Fig. 7b), probably indicating alteration by meteoric fluids. However, their δ13Ccarb 15 

values resemble those of the dolostones, arguing against significant resetting of the C isotopes. 16 

The similarities of the cherty dolostones and dolostones in δ13Ccarb, δ18Ocarb and Mn/Sr ratios 17 

imply that silicification did not alter the C-O isotope systematics and elemental concentration with 18 

exception of increasing Si content. This is consistent with field observations that chert layers 19 

generally follow the primary sedimentary laminae (Fig. 3j), as a result of silicification at very 20 

early diagenetic stage. 21 

Although care was taken during sample preparation for the bulk-rock C-O isotope analyses, it 22 

is impossible to completely avoid small secondary veinlets or fractures that might be related to 23 

secondary alteration. The close agreement between δ13C data obtained from bulk-rock powders 24 

and micro-drilled samples (Fig. 6A), however, documents that influence by secondary processes is 25 

insignificant. 26 

Good preservation of C-O isotope systematics in the Hutuo carbonates is not surprising 27 

because these rocks have undergone only lower greenschist facies metamorphism which is 28 

consistent with the well preserved sedimentary structures and microstructures. In summary, most 29 

of the Hutuo carbonates retain their original δ13C signal and can be used to document the carbon 30 
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cycles in the Hutuo Basin. 1 

5.2 δ13C trend of the Hutuo Group 2 

A three-stage evolutionary curve and a general tendency toward lower δ13Ccarb values can be 3 

observed in the Hutuo carbonates which is ca. 5000 m in thickness (Fig. 5 and 6). This starts with 4 

exclusively positive δ13Ccarb (+1.3 to + 3.4‰) in the lower carbonate members of the Dashiling 5 

and Qingshicun Formations (stage A), followed by a transition from positive values to 6 

oscillating positive and negative values in ~2500 m thick carbonates of the Wenshan, Hebiancun, 7 

Jianancun and Daguandong Formations (stage B). The trend ends with exclusively negative δ13C 8 

preserved in > 500 m thick dolostones of the Huaiyincun and Beidaxing Formations (stage C). The 9 

δ13Ccarb curve is generally consistent with previously published data (Kong et al., 2011; Zhong and 10 

Ma, 1997). Zhong and Ma (1997) noted the abrupt changes of δ13Ccarb near the 11 

Jianancun/Daguandong and Daguandong/Huaiyincun boundaries respectively, with the latter 12 

being also observed in this study. These were considered to reflect changes in the burial rate of 13 

organic carbon. Kong et al (2011) observed a decrease in δ13Ccarb values from the Wenshan 14 

Formation to the middle Daguandong Formation and a pronounced negative δ13Ccarb excursion at 15 

the boundary between the Daguandong and Huaiyincun Formations, which are interpreted by the 16 

authors as the response to global glaciations in the Paleoproterozoic. This interpretation, however, 17 

is based on a problematic chronological framework that has placed the Hutuo Group between 2.5 18 

and 2.2 Ga. Available geochronological data have constrained the depositional age of the Hutuo 19 

Group to between 2.14 Ga and 1.83 Ga (Fig. 2, Guo et al., 2011; Du et al., 2010), with the thick 20 

carbonate successions largely younger than 2.09 Ga and significantly postdating the 2.4-2.3 Ga 21 

Huronian glaciations (Hoffman, 2013, and references therein). 22 

The δ13Ccarb values of the Hutuo carbonates recorded changes in the marine carbon cycle 23 

during the late Paleoproterozoic. It is generally assumed that an increase or decrease in the burial 24 

rate of the 12C-enriched organic carbon leads to a heavier or lighter isotopic composition of the 25 

DIC (dissolved inorganic carbon) reservoir, and of the resulting carbonate precipitates. The 26 

persistent positive δ13Ccarb values in the lower Hutuo Group might reflect an increase in organic 27 

carbon burial related to high primary productivity, although increased weathering rates, as 28 
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indicated by the rise in 87Sr/86Sr of carbonates from 0.7022 to 0.7046 between 2.5 and 1.9 Ga, 1 

might also have been a major factor (Papineau, 2010 and references therein). This interval covers 2 

at least 300 m and possibly up to 1500 m of the lowermost carbonate units of the Hutuo Group 3 

(Fig. 5), which is characterized by orange-colored massive or stromatolitic dolostones almost 4 

devoid of organic matter. The lacking of organic-rich sedimentary rocks during this period remains 5 

to be elucidated and is consistent with general absence of organic-rich sedimentary rocks 6 

deposited during the LJE, but more common afterwards (Papineau et al., 2013; Melezhik et al., 7 

1999b). The negative δ13Ccarb values in the Huaiyincun Formation have been related to the decline 8 

of stromatolites (Zhong and Ma, 1997), although this coincidence does not necessarily support 9 

their genetic relations. Alternatively the negative δ13Ccarb values, along with the general trend of 10 

the decrease in δ13Ccarb from the Doucun to the Dongye Subgroups (Fig. 6), could have resulted 11 

from the oxidation (remineralization) of organic carbon produced during the preceding positive 12 

δ13Ccarb excursions. Massive accumulation of oxygen in the atmosphere and the shallow ocean 13 

resulted from enhanced organic carbon burial during the LJE might have triggered oxidative 14 

recycling of a fraction of the organic matter previously sequestered, i.e., the SFE (Kump et al., 15 

2011). The shift from oscillating positive and negative δ13Ccarb values in the Wenshan, Hebiancun, 16 

Jianancun and Daguandong Formations to exclusively negative δ13C probably recorded 17 

fluctuations in the redox states and the gradual oxygenation of the shallow ocean. 18 

5.3 Termination and the aftermath of the LJE in the NCC 19 

Numerous studies have shown that unprecedented positive δ13Ccarb excursions (generally > 5‰) 20 

in marine carbonates, i.e., the LJE, have been recorded in 2.2-2.06 Ga successions in all 21 

continents except Antarctica (Tang et al., 2011; Maheshwari et al., 2010; Bekker et al., 2006; 22 

Melezhik and Fallick, 1996; Schidlowski et al., 1976). The heaviest δ13Ccarb found in the Hutuo 23 

Group, however, are those from the lowermost part of the carbonate succession (the Dashiling 24 

Formation) which yielded δ13Ccarb ≤ +3.4‰. This is consistent with two previous studies that 25 

reported high δ13Ccarb values up to +3.5‰ (Zhong and Ma, 1997) and +3.2‰ (Kong et al., 2011) 26 

from the same member. Given the significant sedimentary hiatus between the Wutai Group 27 

greenstones (~2.5 Ga) and the Hutuo Group (≤ 2.14 Ga), it can be expected that much of the LJE, 28 
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particularly those extremely positive δ13Ccarb signals, was not recorded in the Hutuo carbonates. 1 

Instead, those slightly positive δ13Ccarb values (+1.3 to +3.4‰) preserved in the Dashiling 2 

Formation likely correspond to the "tail" of the LJE, because δ13C values of the overlying 3 

carbonates never exceed +3.0‰ and show a general decreasing trend superimposed with 4 

variations from slightly positive to negative values. δ13Ccarb values lower than +3.0‰ in the 5 

carbonates overlying those with δ13Ccarb > +5‰ has been used to mark the ending of the LJE 6 

(Martin et al., 2013a, and references therein). Detailed geochronological studies showed that 7 

termination of the LJE is largely synchronous in many successions investigated (Martin et al., 8 

2013a, b), including the North Transfennoscandian Greenstone Belt (2056.6  ± 0.8 Ma) and the 9 

Peräphoja Schist Belt (2050 ± 8 Ma) in Fennoscandia and the Transvaal Supergroup in South 10 

Africa (2054 ± 2 Ma) (Martin et al., 2013b). If the transition of δ13Ccarb from persistent positive 11 

values in the lower Hutuo Group to oscillating positive and negative values in the overlying 12 

carbonates marks the end of the LJE in the NCC, the latter can be constrained to < 2.09 Ga and 13 

possibly around 2.06 Ga in age. 14 

Recent investigations on Paleoproterozoic carbonate successions elsewhere in the NCC have 15 

yielded δ13Ccarb values up to +5.9‰ from the 2.24-2.02 Ga Liaohe Group (Tang et al., 2011) and 16 

+4.0‰ from the Songshan Group (Lai et al., 2012) which has a poorly constrained depositional 17 

age between 2.35 and 1.78 Ga (Liu et al., 2012). Although their depositional ages are roughly 18 

similar to that of the Hutuo Group according to available age dates, their slightly higher δ13Ccarb 19 

values may suggest lower stratigraphic positions if the Paleoproterozoic carbon isotope excursions 20 

can be strictly correlated across all continents. Nevertheless, available data indicates that 21 

extremely positive δ13Ccarb excursions might have not been preserved in the NCC due to 22 

significant sedimentary hiatus. 23 

It should be noted that a fourth stage of the carbon isotope curve characterized by persistent 24 

near-zero δ13Ccarb values appears to be present in the ~1500 m-thick Beidaxing Formation near top 25 

of the Hutuo carbonate successions (Zhong and Ma, 1997), similar to those of late 26 

Paleoproterozoic and Mesoproterozoic carbonates in the NCC (e.g., Luo et al., 2014; Guo et al., 27 

2013). This period of stable δ13Ccarb values probably marks the final return to normal carbon cycle. 28 

However, because of the lack of carbonate in the uppermost Guojiazhai Subgroup, it remains 29 

unclear whether this state of normal carbon cycle extends to the "Boring Billion" (Brasier and 30 
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Lindsay, 1998) or is followed by additional smaller perturbations. 1 

Conclusions 2 

The >10 km-thick volcano-sedimentary sequence of the 2.14-1.83 Ga Hutuo Group 3 

preserves a wealth of sedimentology, petrology and geochemistry of the termination and 4 

aftermath of the LJE. The carbonates in the Hutuo Group were largely deposited in supra-tidal 5 

to sub-tidal environments during the formation of a carbonate ramp in a synkinematically 6 

opening rift tectonic setting. 7 

The absence of a co-variation between δ13Ccarb and δ18Ocarb, the relatively high δ18Ocarb 8 

values and the good agreement between δ13Ccarb obtained from whole-rock samples and 9 

micro-drilled samples (most δ18Ocarb V-SMOW > 20‰) suggest that the C-O isotopes were not 10 

seriously affected by post-sedimentary processes, although alteration by meteoric fluids 11 

probably changed the Mn/Sr ratio of some samples. 12 

The Hutuo carbonates display a three-stage evolution in the δ13Ccarb curve. Carbonates in 13 

the Dashiling and Qingshicun Formations yield exclusively positive δ13Ccarb between +1.3 and 14 

+ 3.4‰. The overlying ~3000 m thick carbonates of the Wenshan, Hebiancun, Jianancun and 15 

Daguandong Formations show oscillating positive and negative δ13Ccarb values ranging 16 

between -5.2 and + 2.7‰. The trend ends with exclusively negative δ13Ccarb mostly below -2‰ 17 

preserved in > 500 m thick dolostones of the Huaiyincun and Beidaxing Formations. The first 18 

stage likely corresponds to the end of the LJE, whereas the subsequent two stages reflect the 19 

aftermath of the LJE and the onset of SFE. The SFE is characterized in part by the massive 20 

oxidation of organic matter, which produces negative δ13Ccarb values, and that was enabled by 21 

the prior accumulation of oxygen during the LJE. The new δ13Ccarb data presented here 22 

support that the termination of the LJE probably occurred shortly after 2.09 Ga in the North 23 

China Craton, and point to an increased influence of oxygen on the carbon cycle from the 24 

Doucun to the Dongye Subgroups. 25 
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Figure captions 1 
 2 
Figure 1 (a) Tectonic divisions of the North China Craton highlighting exposed Archean and 3 
Paleoproterozoic rocks (modified after Zhao et al., 1999). (b) Simplified geological map of the 4 
Wutai area (modified after Bai, 1986). 5 
 6 
Figure 2 Generalized stratigraphic column of the Hutuo Group with correlation to 7 
Paleoproterozoic successions in N Henan (Lai et al., 2011) and E Liaoning provinces (Tang et al., 8 
2011). Previously published age dates and C isotope data are shown. 9 
 10 
Figure 3 Sedimentary structures. (a) Herringbone cross-bedding, Wenshan Fm. (b) Ripple marks, 11 
Wenshan Fm. (c) Disturbed beds (black arrows), rounded intraclasts and flat pebbles (white 12 
arrows), Hebiancun Fm. (d) Convolute bedding, Qingshicun Fm. (e) Digitate stromatolite, 13 
Jianancun Fm. (f) Stromatolite bioherms, Jianancun Fm. (g) Stromatolite bioherms, Dashiling Fm. 14 
(h) Purple-colored wavy-Conical stromatolites, Wenshan Fm. (i) Oblique section of tightly-packed 15 
stromatolites, Daguandong Fm. (j) Cherty dolostone with alternating purplish chert layers (ch) and 16 
white dolomicrite layers (dol) indicating silicification during very early diagenetic stage, 17 
Hebiancun Fm. Hammers are ~40 cm long, and marker pen is 14 cm long. 18 
 19 
Figure 4 Petrographic features of the Hutuo carbonates. (a) Slab of an orange-colored massive 20 
dolostone micro-drilled for C isotope analysis, arrow showing the drill pit. (b) Pure 21 
microcrystalline dolostone with crystals generally smaller than 15 µm. (c) Primary laminae in 22 
stromatolitic dolostone. (d) Magnified view of (c) showing dolomite microcrystals and clots of 23 
carbonaceous material. (e) Alternated dark organic-rich and transparent dolomite laminae in a 24 
stromatolite. (f) Magnified view of (e) showing the dark organic-rich layers and clots. Note also 25 
the disseminated hematite (Hem) particles and local occurrence of quartz (Qtz).  26 
 27 
Figure 5 Stratigraphic variation of δ13C, δ18O and Mn/Sr ratios of the Hutuo Group. Three stages 28 
of the δ13C curve (A, B and C) are shown in detail in Fig. 6. 29 
 30 
Figure 6 δ13C curves of the lower, middle and upper part of the Hutuo carbonates. 31 
 32 
Figure 7 Cross-plots illustrating post-sedimentary alteration of the carbonates. 33 
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