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We study the asymptotic behaviour of the Random Walk Metropolis al-
gorithm on “ridged” probability densities where most of the probability mass
is distributed along some key directions. Such class of probability measures
arise in various applied contexts including for instance Bayesian inverse prob-
lems where the posterior measure concentrates on a manifold when the noise
variance goes to zero. When the target measure concentrates on a linear mani-
fold, we derive analytically a diffusion limit for the Random Walk Metropolis
Markov chain as the scale parameter goes to zero. In contrast to the exist-
ing works on scaling limits, our limiting stochastic differential equation does
not in general have a constant diffusion coefficient. Our results show that in
some cases, the usual practice of adapting the step-size to control the accep-
tance probability might be sub-optimal as the optimal acceptance probability
is zero (in the limit).

1. Introduction. Optimal scaling of Metropolis–Hastings (MH) algorithms
in high dimensions and analysis of their asymptotic behaviour has been a fruitful
area of research in the last three decades. Initiated by [16], a long list of papers has
been devoted to deriving the optimal scale of various local-move Markov Chain
Monte-Carlo (MCMC) algorithms [2, 3, 5, 13, 17, 18]. A main result in most of
these works is identifying the proper scale for the proposal distribution at which
the average acceptance probability is nontrivial for increasing dimension, and ob-
taining an associated diffusion limit. The limiting Stochastic Differential Equa-
tion (SDE) in all of the earlier works has a constant diffusion coefficient which
uniquely characterizes its “speed measure”, with the latter being controlled by
the step-size of the local-proposal and the average acceptance probability. For the
Random-Walk Metropolis algorithm (RWM), maximizing the speed of the limiting
diffusion leads to an average acceptance probability of 0.234; this was first proven
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in [16] for i.i.d. targets of the type
∏

i f (xi) for a one-dimensional density func-
tion f : R→ [0,∞), under the assumptions of f being twice continuously differ-
entiable, f ′/f being Lipschitz continuous and E[(f ′/f )8(X)], E[(f ′′/f )4(X))],
with X ∼ f , being finite. Thus the theoretical asymptotic analysis provides a sim-
ple optimality criterion that can be used as a guideline for practical implementa-
tions of these algorithms. Most of the papers cited above assume that the target
measure is a product of one-dimensional densities as this facilitates explicit calcu-
lation of the diffusion limit for a single coordinate, with dynamics that are inde-
pendent of the state of other components. However, the product form assumption
is not essential, and there are now a number of recent generalisations to target
measures that are not of a product form [4, 12, 14].

We adopt a different point of view in this paper, and study the behaviour of
the RWM algorithm on a class of target distributions that have “ridges” in certain
directions. Such target distributions arise in a number of examples in applied con-
texts. For instance, in Bayesian inverse problems, when the variance parameter in
the likelihood model is small, the posterior distribution (as parametrized by the
noise variance) will concentrate on a manifold or along a hyperplane as the noise
variance goes to zero. In contrast to the works cited above on scaling, the parame-
ter space in our problems needs not be high dimensional. The key issue pertaining
to the mixing of MCMC algorithms in these contexts is that there is a natural sep-
aration of scale in the target distribution: a larger scale along certain key directions
of interest where most of the probability mass is distributed and a smaller scale in
the “orthogonal directions” where there is relatively little mass. Thus in the context
of previous works cited above, the role of the dimension is played by this scale.
Our contributions are summarised as follows:

(i) Motivated by inverse problems, we first describe a natural class of target
distributions which have two scales [of magnitudes O(1) and ε � 1]. Next, we
study the RWM with step-sizes of the same scale for all coordinates; indeed, in
most situations, it is not possible to adapt the covariance structure of the RWM
jumps in a sensible way and adopting isotropic jumps is the only viable solution.
This remark will be expanded in next section when we give a more precise descrip-
tion of the algorithm. We focus on the case where the target distribution concen-
trates on a linear hyperplane as ε → 0. Adapting the RWM steps in the direction
of smaller scale ε, we derive a diffusion limit for the RWM for the coordinates
with O(1) scale. In contrast with all previous results on diffusion limits of MCMC
algorithms, our limiting SDE will in general have nonadditive noise, that is, the
diffusion term will not have constant coefficients. We also look at the case when
the step-size is allowed to vary according to the local curvature and obtain a cor-
responding diffusion limit. We show that diffusion limits can be useful in certain
situations for providing optimality criteria in these problems. We mention that in
the case of a linear manifold, the user can easily adapt the different RWM step-
sizes along the various directions to obtain a very effective algorithm of cost O(1).
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The real practical interest lies with nonlinear structures. We have focused on a lin-
ear manifold to facilitate the development of theory. We also provide a conjecture
for the diffusion limit in the practical case of a family of nonlinear manifolds, but
analytical derivations will require considerable future work.

(ii) When the dimension of the manifold where the target measure concen-
trates lags that of the entire state space only by one, we find that the usual practice
of adapting the step-size to control the acceptance probability is not optimal. In
particular, our diffusion limits imply that a more efficient chain can be obtained by
keeping a large step-size and allowing the acceptance probability to drop to zero.
In this case, we show that as ε → 0, the optimally-scaled RWM algorithm does not
converge weakly to a diffusion; rather it converges to a continuous-time Markov
jump process.

In general, practitioners should thus be aware that, when tuning the standard
RWM algorithm, the general strategy consisting in choosing the largest jump size
that yields an acceptance rate bounded away from a predetermined threshold (e.g.,
acceptance rate larger than 25%) is sometimes sub-optimal; indeed, our analysis
shows that for “multiscale densities”, optimal strategies can yield arbitrarily small
acceptance rates.

(iii) In contrast, when the dimension of the manifold where the target measure
concentrates lags that of the entire state space by at least 3, we find that the diffu-
sion regime is optimal. Intuitively, the cost of attempting large moves (as measured
by small acceptance probability) is just too large in this case. In the critical case
when the dimension of the manifold where the target measure concentrates lags
that of the entire state space by exactly 2, the cost of low acceptance probability is
of the same order as the benefit of larger moves, so that the optimal scaling strategy
can vary depending on the specific form of the target density.

(iv) As mentioned before, the most important practical benefit from deriving a
diffusion limit is that it leads to an automated choice of the step-size: choose the
step-size that maximizes the diffusion coefficient of the limiting SDE [16]. Doing
so maximizes the speed measure of the limiting diffusion which also translates to
minimizing its integrated autocorrelation time for a large class of test functions;
see, for example, [17]. Since our limiting diffusions generally do not have a con-
stant diffusion coefficient, this approach of maximizing the diffusion coefficient
for choosing the step size is not valid any more. In general, there is no optimal
value for the jump size of the RWM algorithm when applied to the target measures
analyzed in this paper. We prove nevertheless that, if the jump size is allowed to be
position dependent, optimality results can then be recovered. When the dimension
of the coordinates with scale ε is large, our results yield a “local” 0.234 rule that
generalize the standard global 0.234 of [16], that is, it is asymptotically optimal to
tune the local jump size so that the local acceptance rate equals 0.234.

(v) Technically, our proofs for the diffusion limits are different from the usual
optimal scaling literature, as the scale parameter in our target measure needs not
be related to the dimension. Our main argument relies on the fact that by suitably
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rescaling the coordinates corresponding to the scale ε, the RWM algorithm mixes
in these directions at a much faster rate than its O(1) counterpart. This fast mixing
on the Markov chain in the smaller scale will lead to an “asymptotic decoupling”
of the two scales which then will give the diffusion limit on the larger scales. The
proof technique developed here could be applicable to other contexts and is thus
of independent interest.

The class of target measures we analyze in this paper should be considered as
surrogates for distributions arising from real applied problems where components
have various length scales that differ by orders of magnitude. We can consider the
following generic model structure:

(1) y = T (θ) + ξ ; T :Rn →R
n′

, n, n′ ≥ 1,

with y ∈ R
n′

corresponding to data, θ ∈ R
n to a vector of unknown parameters and

ξ ∈ R
n′

to the noise, such that along a number of directions the noise is small (in
the context or our paper, it is of standard deviation ε with ε → 0). The objective
is to learn about the posterior of θ , and a main algorithmic challenge is that in the
above setting the distribution of interest will concentrate on a manifold (for typical
choices of T ) as ε → 0. Almost nothing is known about the behaviour of MCMC
algorithms in such a general context, to the best of our knowledge, and our work
aims to provide some explicit analysis in this setting.

We provide MCMC results from two simple, yet illustrative, examples to mo-
tivate our investigations. Figure 1 shows RWM runs over the posterior of (θ1, θ2)

given datum y ∼ N(θ2
1 + θ2

2 , ε2) with ε = 0.01, and prior (θ1, θ2) ∼ N(0, I2); true

parameter values were θ
†
1 = θ

†
2 = 3. The left (resp., right) panel shows the RWM

scatterplot when scaling the step-size to achieve average acceptance probability
of 14.8% (resp., 0.16%). Figure 2 considers the same toy-example, for several
choices of ε. Here, we compared the Integrated Autocorrelation Time (IACT) for
two strategies. For the first strategy, we chose a RWM covariance jump structure
equal to ε2I2. This ensures that the acceptance rate stays bounded away from zero
as ε → 0, as described by the theory developed in this article; we observe em-
pirically that this strategy yields an acceptance rate of ≈ 50% as ε → 0. For the
second strategy, we let the covariance matrix of the RWM jumps be equal to the
identity, irrespectively of the value of ε. Indeed, and as described by our theory,
the acceptance rate shrinks to zero as ε → 0; still, as demonstrated in this text
and empirically observed in Figure 2, this strategy outperforms the first one by
several orders of magnitude as ε → 0. At Figure 3 we consider the ODE model
x′
t = θ1 + θ2xt + 2 sin(θ3xt ), x0 = 1

2 , with datum y ∼ N(x25,0.012) and priors
as given at the figure caption; the true values were θ† = (2.2,0.004,0.5). The
red, blue and green dots show RWM runs corresponding to average acceptance
probabilities 17%, 0.57% and 0.03% respectively; the shaded surface shows the
2D-manifold x25(θ) = x25(θ

†). In both above cases, acceptance probabilities very
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FIG. 1. Two RWM runs (over equal amount of time) for the posterior of θ = (θ1, θ2), given datum
y ∼ N(|θ |2,0.012) and prior θ ∼ N(0, I2). The left (resp., right) panel is the MCMC scatterplot for
step-size giving average acceptance probability 14.8% (resp., 0.16%).

close to zero seem to provide better mixing for the algorithms, fully contradicting
prevailing practices for RWM.

In statistics, there are many examples that can be placed within our setting—
we provide here a few, including our motivating scenario from Bayesian inverse
problems.

• In inverse problems, situations where the posterior distribution concentrates in
the neighbourhood of a nonlinear manifold abound; see, for example, [6, 10, 15].
A typical situation involves the posterior distribution of a high-dimensional vec-

FIG. 2. RWM runs for the posterior of θ = (θ1, θ2), given datum y ∼ N(|θ |2, ε2) and prior
θ ∼ N(0, I2). The “Scaled” (resp., “Constant”) strategy consisted in choosing a RWM covariance
jump structure equal to ε2I2 (resp., I2). The RWM algorithms were run for 106 iterations and 90%
confidence intervals for the IACTs were obtained through 50 repetitions per value of ε > 0. As will
become clear from the theory developed in this article, the IACT of the “scaled” strategy is of order
O(ε−2) while the IACT of the “constant” strategy is of order O(ε−1).
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FIG. 3. RWM runs for the posterior of (θ1, θ2, θ3) given datum y ∼ N(x25(θ),0.012) with
x′
t = θ1 + θ2xt + 2 sin(θ3xt ), x0 = 1

2 ; priors are θ1 ∼ IG(μ = 2, σ 2 = 4) (i.e., Inverse Gamma

distribution of mean 2 and variance 4), θ2 ∼ U(0,1), θ3 ∼ IG(μ = 1
2 , σ 2 = 4), independently over

the three components. The red, blue and green dots show the runs—each produced within 30 mins—-
corresponding to average acceptance probabilities 17%, 0.57% and 0.03%, respectively; the shaded
surface represents the 2D-manifold x25(θ) = x25(θ†).

tor x ∈ R
n observed through a low dimensional, possibly noisy, nonlinear mea-

surement function � : Rn → R
d with d � n; the data collected is distributed

as y ∼ �(x) + (noise). As the intensity ε > 0 of the noise decreases to zero,
the posterior distribution π(x|y) typically concentrates in a neighbourhood of
thickness ε around the manifold M ≡ {x ∈R

n : �(x) = y}.
• Suppose that we have a sequence of posterior distributions {πn(θ)}, indexed by

the data size n, where we can write θ = (θ1, θ2) with θ1 representing the com-
ponents of the posterior which are identifiable while θ2 remains unidentifiable
so that its standard deviation remains O(1) for increasing n. For example, con-
sider the posterior πn(σ,μ) associated to n ≥ 1 observations yk = Xk/n of the
diffusion process dX = μdt + σ dW on [0,1]; as n → ∞, only the volatility
coefficient is identifiable. In the so-called regular case, we might expect the
marginal posterior of θ1 to contract at rate n−1/2 for instance. Therefore, it is
very natural to see a scale divergence as n → ∞.

• Consider the context of maximum likelihood estimation (MLE) for nonregular
likelihood functions, For such problems, super-efficiency of MLEs is a well-
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known phenomenon (see for example [20]) in which the standard deviation of
the MLE shrinks to 0 faster than n−1/2 for data size n. It may be that super-
efficiency applies only to some of the model parameters, leading to the kind of
heterogeneously scaled target distributions we consider here. For concreteness,
we consider the specific problem where the data is assumed to be drawn i.i.d.
from the model X ∼ Exp(λ) conditioned on X ≤ θ . It is well known that for this
kind of example the posterior for λ contracts at the regular rate of n−1/2 while
that for θ contracts at the much more rapid rate of n−1. Thus again we get scale
divergence as n → ∞.

The paper is structured as follows. In Section 2, we describe the RWM algorithm
for a density concentrating on a hyperplane with rate ε > 0. In Section 3, we state
the regulatory conditions and write the diffusion limits as ε → 0. In Section 4, we
prove the stated results. In Section 5, we prove a limiting result involving a Markov
jump-process, when the step-sizes are order O(1), so are not adapted to the size
of the smallest coordinate. In Section 6, we describe in some detail a conjecture
for generalizing our diffusion limit results in the context of nonlinear manifolds.
Throughout, we provide comments about the implications of the theoretical results.
We finish with some conclusions and description of future work in Section 7.

2. Random-walk Metropolis on affine manifold. As explained above, we
prove analytically rigorous results in the case when the manifold is flat, that is, an
affine subspace of the general state space. We discuss later on in the paper exten-
sions to more general manifold structures. We model the affine scenario as follows.
We consider the target distribution πε :Rnx ×R

ny →R, for integers nx,ny ≥ 1 and
n = nx + ny , with density with respect to the n-dimensional Lebesgue measure

πε(x, y) = πX(x)πY |X(y|x) = 1

εny
eA(x)eB(x,y/ε),(2)

for a “small” scalar ε > 0. The x-marginal has density πX(x) = eA(x) indepen-
dently of ε. The distribution πε is a scaled version of the probability distribution

(3) π(x, y) ≡ π1(x, y) = eA(x)eB(x,y).

As ε → 0, the support of the sequence of distributions πε concentrates on the linear
subspace M defined as

(4) M = {
(x, y) ∈ R

nx ×R
ny : y = 0

}⊂ R
nx+ny ,

of dimension nx . Integer nx can sometimes be thought of as the dimension of the
nonidentifiability and integer ny as the part of dimension that is fully specified. For
instance, in a small-noise or increasing-data context, one can consistently estimate
ny-parameters out of n. Parameter ε can be thought of as the thickness of the
support of πε at a neighbourhood of (x,0) ∈ M.
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To obtain samples from πε , we consider the RWM algorithm proposing moves(
X′

ε

Y ′
ε

)(
Xε

Yε

)
+ 	h(ε)

(
Zx

Zy

)
(5)

for a scaling factor h(ε), tuning parameter 	 > 0 and noise (Zx,Zy) ∼ N(0,

Inx+ny ). In this setting, it would be more efficient to choose different scales for
the x and y coordinates. Recall, though, that we are in fact interested in the more
general situation where the manifold M is not linear—our choice of linear mani-
fold is only a mathematical convenience for gaining insight into the general case.
For nonlinear manifolds, there is no sensible way of choosing a priori the covari-
ance structure of the jumps of the RWM algorithm. This is the motivation for
studying the algorithm (5) that employs isotropic jumps. Factor h(ε) determines
the scale of the jumps of the RWM algorithm and the tuning parameter 	 allows to
control the acceptance rate of the algorithm. When the context is clear, we write
simply (X,Y ) instead of (Xε,Yε). For the purpose of the analysis, we introduce
the rescaled coordinate Uε and associated proposal U ′

ε ,

Uε = Yε/ε; U ′
ε = Y ′

ε/ε = Uε + 	
h(ε)

ε
Zy.

If (Xε,Yε) ∼ πε , then (Xε,Uε) ∼ π . To finish the description of the MCMC algo-
rithm, we need to choose an accept-reject function F . To obtain detailed balance
w.r.t. πε , one can choose any (0,1]-valued function F satisfying the reversibility
condition

erF (−r) = F(r), r ∈ R.(6)

The usual Metropolis–Hastings accept/reject correction corresponds to the choice
F(r) = FMH(r) = min(1, er), so that the move (X,Y ) �→ (X′, Y ′), or equivalently
(X,U) �→ (X′,U ′), is accepted with probability

F ◦ log
(

πε(X
′, Y ′)

πε(X,Y )

)
.

We allow for a general accept–reject function F(r) for two main reasons. First,
enforcing some smoothing upon F removes several inessential technicalities when
proving diffusion limits in the sequel. Second, we would like to emphasize that the
results obtained in this paper (and many others), can straightforwardly be adapted
to this more general setting; for example, our setting accommodates the Barker’s
accept–reject function u �→ 1/(1+eu) [1]. For the target density (2) the acceptance
probability can be written analytically as a(X,U,h(ε)Zx,h(ε)ε−1Zy) where the
function a(·, ·, ·, ·) reads

a(x,u,wx,wu)
(7)

= F
(
A(x + 	wx) − A(x) + B(x + 	wx,u + 	wu) − B(x,u)

)
.

The above proposal and acceptance probability give rise to the MCMC trajectory
{(Xε,k, Yε,k)}k≥0.
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2.1. Notation. For (ε, x,u) ∈ R
+ × R

nx × R
ny , we write Eε,x,u[·] (or sim-

ply Ex,u[·]) to represent conditional expectations E[·|(Xε,0,Uε,0) = (x, u)]. For
functions e = e(x,u), we write Eπ [e(x,u)] to indicate that the expectation is con-
sidered under the standardised law (x, u) ∼ π . We denote by ‖ · ‖p the Lp-norm
of a random variable, p ≥ 1. | · | denotes the standard norm on an Euclidean space
R

n and 〈·, ·〉 the corresponding inner product, for any n ≥ 1. We use the notation
oL1(π)(1) to designate any sequence of functions whose expectation under π con-
verge to zero (as ε → 0). We use the symbol (�) to indicate inequalities that hold
under multiplication with a constant which does not depend on critical parameters
implied by the context.

3. Diffusion limit. We study in this section the behaviour of RWM, as ε → 0,
for a scaling factor of the form

h(ε) = ε.(8)

Note that it is straightforward to prove that, under the below described regularity
Assumption 2 on the functions A and B , any other scaling factor h(ε) such that
h(ε)/ε → ∞ would lead to an algorithm with an acceptance rate that decreases
to zero as ε → 0. This corresponds to an algorithm that proposes too large moves
and such a context is investigated in Section 5. A scaling factor of the form (8)
thus provides the largest choice of jump-sizes for an algorithm with acceptance
rate that does not degenerate to zero in the limit ε → 0. To state one of our main
results, we introduce the quantity

a0(x, 	) =
∫
R

ny
Ex,u

[
F
(
B(x,u + 	Zy) − B(x,u)

)]
eB(x,u) du,(9)

which corresponds to the limiting average acceptance probability, as ε → 0, of the
RWM algorithm when assuming stationarity for U |X = x, conditionally on a fixed
position for the x-coordinate. In this article, we always assume that the functions
A and B are continuous, although more stringent assumptions are required at dif-
ferent places. Under this continuity assumption, one can verify via the bounded
convergence theorem that

a0(x, 	) = lim
ε→0

E
[
a(X,U, εZx,Zy)|X = x

]
,(10)

assuming (X,U) ∼ π . We prove a diffusion limit for the trajectory of the x-
coordinate, after considering a proper continuous time-scale for its discrete-time
trajectory {Xε,k}k≥0, where k denotes the number of MCMC iterations. In our set-
ting, it is not interesting to study the scaling limit of y; indeed, y is of order ε and it
will become clear from our analysis that only the behaviour of the slow-coordinate
x dictates the complexity of the RWM algorithm in the regime ε → 0. We set

c(ε) = ε−2.
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Our main result states that the sequence of accelerated, continuous time, càdlàg
processes

X̃ε,t := Xε,�t ·c(ε)�(11)

converges weakly, as ε → 0, to a nontrivial diffusion process; thus c(ε) corre-
sponds to the “diffusive time-scale”.

REMARK 1. For a given positive density function π :Rn → (0,∞), for n ≥ 1,
and a scalar volatility function σ :Rn → (0,∞) we introduce the function Dπ,σ 2 :
R

n →R
n,

Dπ,σ 2 : x �→ 1

2
∇σ 2(x) + 1

2
σ 2(x)∇ logπ(x).(12)

Consider the stochastic differential equation (SDE),

dX = Dπ,σ 2(X)dt + σ(X)dW,(13)

where W denotes an n-dimensional Wiener process. Under standard regularity
assumptions, SDE (13) has a unique global solution and is reversible with respect
to the law π(dx). The case σ ≡ const. corresponds to the Langevin diffusion dX =
σ 2

2 ∇ logπ(X)dt + σ dW .

We begin with an assumption on the accept/reject function F introduced in (6).

ASSUMPTION 1. The accept–reject function F is differentiable. F and F ′ are
globally Lipschitz and bounded over the real line.

Assumption 1 allows for straightforward use of Taylor expansions in the proofs
that follow. It could probably be relaxed given substantial technical work. To work
with the standard Metropolis–Hastings ratio would involve dealing with the dis-
continuity of the derivative at 0. We believe that this is a technical distraction that
would not bring new insights into the behaviour of the algorithm and would make
the proofs much more opaque. Notice that any F satisfying the reversibility con-
dition (6) is dominated by the Metropolis–Hastings function FMH in the sense that

F(r) ≤ FMH(r)

holds for any r ∈ R. To obtain our scaling limit, we assume the following regularity
conditions for functions A and B involved in the specification of the density πε .

ASSUMPTION 2 (Regularity conditions on πε). Functions A : Rnx → R and
B : Rnx ×R

ny → R are differentiable and their derivatives are globally Lipschitz.
Moreover, we assume that the distribution π ≡ π1 in (3) possesses finite second
moments so that

Eπ

[|X|2 + |U |2]< ∞.(14)
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Assumption 2 is repeatedly used to control the error terms associated to the use
of second-order Taylor expansions; the second moment bound allows the use of
the Cauchy–Schwarz inequality. Note that these assumptions could be relaxed in
several directions at the cost of increasing complexity in the proofs; for example,
one could assume only a polynomial growth on the derivatives and higher mo-
ments for π . We also need the following assumption to control the behaviour of
the diffusion limit identified below.

ASSUMPTION 3. The function x �→ 1
2∇(a0(x, 	) logπX(x)) is bounded on

R
nx and there exists a μ ∈ (0,1] such that∣∣a0(x, 	) − a0

(
x′, 	

)∣∣+ ∣∣∇(a0(x, 	) × logπX(x)
)− ∇(a0

(
x′, 	

)× logπX

(
x′))∣∣

�
∣∣x − x′∣∣μ.

The main theorem of this section is the following. The proof is given in Sec-
tion 4.

THEOREM 1. Let T > 0 be a fixed time horizon. Assume that the RWM algo-
rithm is started in stationarity, (Xε,0, Yε,0) ∼ πε , and Assumptions 1–3 hold. Then,
as ε → 0 the sequence of processes {X̃ε,t }t∈[0,T ] defined via (5), (11) converges
weakly in the Skorokhod space D([0, T ],Rnx ) to the diffusion process {Xt }t∈[0,T ]
specified as the solution of the SDE

dX = DπX,σ 2(X)dt + σ(X)dW(15)

for volatility function σ 2(x) ≡ 	2a0(x, 	) and initial position X0 ∼ πX(x) = eA(x).

D([0, T ],Rnx ) denotes the space of Rnx -valued functions on [0, T ] that are right
continuous with left-side limits. For a definition of the distance on D([0, T ],Rnx )

giving rise to a metric space and to the corresponding Skorokhod topology; see [7],
Chapter 3. Assumption 3 is as stated in [7], Chapter 4, Theorem 1.6, and it implies
that the limiting diffusion (15) is well defined, that is, does not explode in finite
time, and has a unique strong solution. Furthermore, Assumption 3 yields that for
a smooth and compactly supported test function ϕ the function x �→ Lϕ(x), with

(16) L = 	2

2
∇{a0(x, 	) logπX(x)

} · ∇ + 	2

2
a0(x, 	)(∇ · ∇)

the generator of the limiting diffusion (15), is μ-Holderian. The diffusive time
scale c(ε) = ε−2 implies that the algorithmic complexity of RWM grows as
O(ε−2) as the thickness ε approaches zero; see [19] for general results on the
complexity analysis of MCMC algorithms through diffusion limits. In the case
where the function (x, y) �→ B(x, y) does not depend on the x-coordinate, the
limiting acceptance probability a0 does not depend on the local position x, that
is, a0(x, 	) = a0(	). In this case, the optimal value for the parameter 	 is given by
	� = argmax	2a0(	). In the general case, however, the optimal choice of 	 will
depend on the current x-position.



MCMC 2977

3.1. Extending Theorem 1. We can also adopt slightly more general proposals
where the variance of the proposals is allowed to depend on the current position.
That is, the tuning parameter 	 = 	(x) > 0 is now allowed to depend on the x-
coordinate: (

X′
ε

Y ′
ε

)
=
(
Xε

Yε

)
+ 	(Xε)ε

(
Zx

Zy

)
.(17)

We state the required assumptions on the function x �→ 	(x) that allows the rele-
vant diffusion limit results to hold.

ASSUMPTION 4 [Regularity assumptions on x �→ 	(x)]. Function 	 is pos-
itive, bounded away from zero and infinity. The first two derivatives of 	 are
bounded.

We choose to work in the limited setup of Assumption 4 so that the proof of
the next theorem is a straightforward adaptation of Theorem 1. The accelerated
version (11) of the x-coordinate process again converges to a diffusion process.

THEOREM 2. Let T > 0 be a fixed time horizon. Assume that Assumptions 1–4
hold and that the RWM algorithm is started in stationarity. As ε → 0, the sequence
of processes {X̃ε,t }t∈[0,T ] defined via (17), (11) converges weakly in the Skorokhod
space D([0, T ],Rnx ) to the diffusion process {Xt }t∈[0,T ] specified as the solution
of the SDE

dX = DπX,σ 2(X)dt + σ(X)dW,(18)

where the local volatility function is σ 2(x) ≡ 	2(x)a0(x, 	(x)). The initial distri-
bution is X0 ∼ πX .

The only difference with Theorem 1 is the form of the volatility function σ .
As before, the limiting distribution (18) is reversible with respect to πX and the
associated Dirichlet form reads

D(ϕ) ≡ 1

2

∫
Rnx

∣∣∇ϕ(x)
∣∣2	2(x)a0

(
x, 	(x)

)
πX(dx).(19)

Since the parameter 	 = 	(x) is a function of the x-coordinate, the optimal choice
	�(x) for the tuning parameter 	 is

	�(x) ≡ argmax
	>0

	2a0(x, 	).(20)

As described in [18], the choice (20) maximises the expected squared jumping dis-
tance, the spectral gap of the limiting diffusion (18) and minimizes the asymptotic
variance of MCMC estimators.
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3.2. High-dimensional asymptotics and local 0.234 rule. In this section, we
investigate the behaviour of the optimal jumping rule x �→ 	�(x) in the regime
where the dimensionality of the identifiability is large, that is, ny � 1. We adopt
the setting where the dimension nx remains fixed while the dimension ny grows to
infinity. For simplicity, we postulate a product form for the y-conditional density.
That is, we investigate the sequence of densities

π
(ny)
ε (x, y) = 1

εnx
eA(x)+B(ny)(x,y/ε), x ∈ R

nx , y ∈ R
ny ,

in the regime where ny → ∞ and ε → 0, with

B(ny)(x, u) =
ny∑

j=1

b(x,uj ),

where b : Rnx × R → R is such that for any x ∈ R
nx the function u �→ eb(x,u)

is a proper density function on R. We denote by 	
(ny)
� (x0) the optimal value of

the jump size when the x-coordinate of the MCMC algorithm exploring π
(ny)
ε

stands at x0 ∈ R
nx . With the obvious notation, the previous sections show that

	
(ny)
� (x0) = argmax{	2a

(ny)

0 (x0, 	) : 	 > 0} where

a
(ny)

0 (x0, 	) = E

[
F

( ny∑
j=1

b
(
x0,U

(x0)
j + 	Zj

)− b
(
x0,U

(x0)
j

))]

for an i.i.d. sequence {U(x0)
j }j≥1 of R-valued random variables with distribu-

tion eb(x0,u) du and an i.i.d. sequence of standard Gaussian random variables
{Zj }j≥0. We assume the following regularity conditions on the marginal density
u �→ eb(x0,u) ≡ μ(x0)(u); this is the equivalent to conditions (A1) and (A2) of [16].

ASSUMPTION 5. The density μ(x0)(u) is twice differentiable, the function
u �→ μ′

(x0)
(u)/μ(x0)(u) is Lipschitz continuous and the random variable U(x0) with

density μ(x0) is such that

E

[(μ′
(x0)

μ(x0)

(
U(x0)

))8]
< ∞; E

[(μ′′
(x0)

μ(x0)

(
U(x0)

))4]
< ∞.

A simple adaptation of Corollary 1.2 of [16] yields that, under Assumption 5,
we have

lim
ny→∞a

(ny)

0

(
x0, 	n

−1/2
y

)= E
[
F
(
N
(−I 2

(x0)
/2, I 2

(x0)

))]≡ a0(	);

I 2
(x0)

= E

[(μ′
(x0)

μ(x0)

(
U(x0)

))2]
.
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Corollary 1.2 of [16] corresponds to the special case F = FMH where a closed-
form expression for a0(	) exists; for concreteness, we will also consider the spe-
cial case F = FMH although generalization to arbitrary accept–reject functions
is straightforward. The function 	 �→ 	2 × a0(	) is maximized for 	� such that
a0(	�) = 0.234 (to three decimal places) [16]; in other words, as ny → ∞, the
optimal jumping rule 	�(x) can be chosen such that the local acceptance rate at
x0 ∈ R

nx equals approximately 0.234. Indeed, the derivation of this rule-of-thumb
relies on the product form assumption of the y-marginal and is only valid in the
asymptotic regime ny → ∞. Nevertheless, this type of analysis has been shown to
be empirically and theoretically [2–5, 12, 14] relevant to more general distribution
structures.

4. Proof of diffusion limit. This section gives rigorous proofs of Theorems 1
and 2. We first give a high-level description of the proof of Theorem 1. We intro-
duce an intermediate time scale

c̃(ε) = ε−γ for some exponent γ ∈
(

0,
1

2

)
,

and consider the sub-sampled process {(Sε,k,Vε,k)}k≥0 defined as{
(Sε,0, Sε,1, Sε,2, . . .) = (Xε,0,Xε,�c̃(ε)�,Xε,�2c̃(ε)�, . . .),
(Vε,0,Vε,1,Vε,2, . . .) = (Uε,0,Uε,�c̃(ε)�,Uε,�2c̃(ε)�, . . .).

On this time-scale the x-process evolves slowly (i.e., Sε,k ≈ Sε,k+1) whereas the y-
process is allowed enough time to mix (i.e., Vε,k+1 is approximately independent
from Vε,k). We define the continuous-time accelerated processes

S̃ε,t = Sε,�t ·c(ε)/c̃(ε)� ≡ Sε,�t ·εγ−2�; Ṽε,t ≡ Vε,�t ·εγ−2�.(21)

Note that it is natural to accelerate time by a factor c(ε)/c̃(ε) in the definition
(21) since we expect that, after acceleration by a factor c(ε), the original process
Xε converges to a nontrivial diffusion limit; with this choice, we thus expect the
sequence S̃ε,t to also converge towards the same diffusion limit. See Figure 4 for a
graphical representation of all four main processes involved in our derivations. The
proof is divided into two steps. First, we show that process S̃ε converges weakly in
the Skorokhod space to the diffusion (15). Then we prove that the supremum norm

‖S̃ε,· − X̃ε,·‖∞,[0,T ] ≡ sup
{|S̃ε,t − X̃ε,t | : t ∈ [0, T ]}

converges to zero in probability. By the definition of the Skorokhod metric [7],
this also means that the difference (S̃ε,· − X̃ε,·) converges to zero in probability as
ε → 0, in the Skorokhod space. Consequently, by Slutsky’s lemmas, the sequence
X̃ε itself converges weakly in the Skorohod space towards the diffusion (15).

We define some quantities needed in the sequel. Recall the definition in (16) of
the generator L of the limiting diffusion (15). We define the appropriate space of
test functions

C = {
ϕ :Rnx →R : ϕ is smooth with compact support

}
.
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FIG. 4. The four processes involved in the diffusion limit result. The discrete-time process {Sε,k}k≥0
corresponds to a thinning (of frequency 1/�ε−γ �) of {Xε,k}k≥0; the first process is illustrated
with the filled rectangles, the latter with the filled circles. Then the continuous-time càdlàg pro-
cess {S̃ε,t }t≥0 is illustrated with the filled lines and the {X̃ε,t }t≥0 one with the empty lines (the
time instances indicated by the rectangles or the circles correspond to the jump times of the relevant
processes).

Assumption 3 implies that C is a core for the generator L in (16). For test functions
ϕ ∈ C and vectors (x, u) ∈ R

nx ×R
ny , we define the operators Lε , L̃ε as follows:{

Lεϕ(x,u) = Eε,x,u

[
ϕ(Xε,1) − ϕ(x)

]
/ε2,

L̃εϕ(x,u) = Eε,x,u

[
ϕ(Sε,1) − ϕ(x)

]
/ε2−γ .

(22)

We will refer to Lε , L̃ε as the “generators” of the càdlàg processes {X̃ε,t }t≥0,
{S̃ε,t }t≥0, respectively, with an abuse in terminology as these processes are not
Markovian with respect to their own filtration. Thus, though the domain of ϕ is
R

nx , functions Lεϕ and L̃εϕ are defined on R
nx ×R

ny .

4.1. Proof of weak convergence of S̃ε to the limiting diffusion (15). Our deriva-
tion of the diffusion limit proof is based on the following critical result connecting
an L1-limit between generators with weak convergence of the processes them-
selves. Recall that L is as defined in (16).

PROPOSITION 1. Let Assumptions 1–3 hold. If the following limit holds

lim
ε→0

Eπ

∣∣L̃εϕ(x,u) −Lϕ(x)
∣∣= 0(23)

for any ϕ ∈ C, then as ε → 0 the sequence of processes {S̃ε,t }t∈[0,T ] (started at time
0 from the distribution πX) converges weakly in D([0, T ],Rnx ) to the diffusion
process (15).

PROOF. The proof is given in the Appendix. We mention here that we are
based on two results: (i) [7], Chapter 4, Theorem 8.2, Corollary 8.5, which give
conditions under which the finite-dimensional distributions of a sequence of pro-
cesses converge weakly to those of a Markov process; (ii) [7], Chapter 8, Corol-
lary 8.6, which provides further conditions for this sequence of processes to be
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relatively compact, and thus establish weak convergence of the stochastic pro-
cesses themselves in D([0, T ],Rnx ). We show in the Appendix that under As-
sumptions 1–3, the limit (23) implies the required conditions for the relevant re-
sults in [7]. �

It now remains to prove (23) for any ϕ ∈ C. We will achieve this via the series
of Lemmas 1–4 that follow.

The telescoping sum

ϕ(Sε,1) − ϕ(Sε,0) = ϕ(Xε,1) − ϕ(Xε,0) + · · · + ϕ(Xε,�c̃(ε)�) − ϕ(Xε,�c̃(ε)�−1)

yields that

L̃εϕ(x,u) ≡ 1

ε−γ

�ε−γ �−1∑
j=0

Eε,x,u

[
Lεϕ(Xε,j ,Uε,j )

]
.(24)

As a first step, we prove that Lεϕ(x,u) converges, in the appropriate sense, to the
quantity Aϕ(x,u) given by

Aϕ(x,u) = 	2〈
Ex,u

[
F ′(DB)∇x

{
A(x) + B(x,u + 	Zy)

}]
,∇ϕ(x)

〉
(25)

+ 	2

2
Ex,u

[
F(DB)

]
ϕ(x),

where for notational convenience we have defined DB = B(x,u+	Zy)−B(x,u).
Also, we have used the Laplacian notation  = ∑nx

i=1 ∂2
xi

. In general, Aϕ(x,u)

does not correspond to the generator of a Markov process. Note that if ϕ ∈ C,
under Assumptions 1–2 we have that |Aϕ(x,u)|� 1 + |u|.

LEMMA 1. Let Assumptions 1–2 be satisfied and ϕ ∈ C be a test function.
Then we have that |Lεϕ(x,u) − Aϕ(x,u)| � ε(1 + |x| + |u|), thus the following
limit holds:

lim
ε→0

Eπ

∣∣Lεϕ(x,u) −Aϕ(x,u)
∣∣= 0.(26)

PROOF. See Appendix A.2. �

LEMMA 2. Let Assumptions 1–2 be satisfied and ϕ ∈ C be a test function.
Then we have that the following limit holds:

lim
ε→0

Eπ

∣∣∣∣∣L̃εϕ(x,u) − 1

ε−γ

�ε−γ �−1∑
j=0

Eε,x,u

[
Aϕ(x,Uε,j )

]∣∣∣∣∣= 0.(27)
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PROOF. See Appendix A.3. �

To treat the term

1

ε−γ

�ε−γ �−1∑
j=0

Eε,x,u

[
Aϕ(x,Uε,j )

]
in (27), we need to introduce a new Markov process coupled with the original one
{(Xε,k,Uε,k)}k≥1, but with the x-coordinate pinned at its initial position. To this
end, note that the Markov chain {Xε,j ,Uε,j }j≥0 can be described as follows. The
initial position is defined as (Xε,0,Uε,0) = (X,U) for some variables (X,U) ∼ π .
For a sequence {ξj }j≥0 of i.i.d. random variables uniformly distributed on (0,1)

and a sequence {(Zx,j ,Zu,j )}j≥0 of i.i.d. random variables distributed as N(0, In)

we then have(
Xε,j+1 − Xε,j

Uε,j+1 − Uε,j

)
= 	

(
εZx,j

Zy,j

)
× 1

(
ξj ≤ a(Xε,j ,Uε,j , εZx,j ,Zy,j )

)
,

where the accept-reject function a(·, ·, ·, ·) is defined in (7). The new Markov chain
{X�

j ,U
�
j }j≥0 is defined as follows. For the same random variables (X,U) and

{ξj }j≥0 and {(Zx,j ,Zy,j )}j≥0, we set (X�
0,U

�
0 ) = (X,U) and(

X�
j+1 − X�

j

U�
j+1 − U�

j

)
= 	

(
0

Zy,j

)
× 1

(
ξj ≤ a

(
X,U�

j ,0,Zy,j

))
.

Critically, the x-coordinate of the new process {X�
j ,U

�
j }j≥0 remains still and the

process does not depend on the parameter ε. Also, conditionally on X = x, the
process {U�

j }j≥0 is simply a RWM Markov chain with target distribution on R
ny

proportional to u �→ exp (B(x,u)). Thus, it readily follows from the ergodic theo-
rem for Markov chains that for any smooth and compactly supported test function
ϕ we have

(28) lim
ε→0

Eπ

∣∣∣∣∣ 1

ε−γ

�ε−γ �−1∑
j=0

Ex,u

[
Aϕ
(
x,U�

j

)]− ∫
u∈Rny

Aϕ(x,u)eB(x,u) du

∣∣∣∣∣= 0.

Furthermore, a routine calculation, whose details can be found in Section A.4,
gives the following result.

LEMMA 3. For any x ∈ R
nx and any ϕ ∈ C, we have∫

Aϕ(x,u)eB(x,u) du = Lϕ(x).(29)

There is one result remaining to prove weak convergence of S̃ε to the limiting
diffusion.
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LEMMA 4. Let Assumptions 1–2 be satisfied and ϕ ∈ C be a test function.
Then we have that the following limit holds:

lim
ε→0

Eπ

∣∣∣∣∣ 1

ε−γ

�ε−γ �−1∑
j=0

Eε,x,u

[
Aϕ(x,Uε,j )

]
(30)

− 1

ε−γ

�ε−γ �−1∑
j=0

Ex,u

[
Aϕ
(
x,U�

j

)]∣∣∣∣∣= 0.

PROOF. It suffices to establish that, for X0,ε = X ∼ πX ,

lim
ε→0

1

ε−γ

�ε−γ �−1∑
j=0

∥∥Aϕ
(
X,U�

j

)−Aϕ(X,Uε,j )
∥∥

1 = 0.

Under Assumptions 1–2 and due the fact that ϕ ∈ C, we have that |Aϕ(x,u)| �
1 + |u| so that |Aϕ(X,U�

j ) − Aϕ(X,Uε,j )| is bounded by a constant multiple
of 1(U�

j �= Uε,j ) × (1 + |U�
j | + |Uε,j |). Recall that both chains are started from

(X,U) ∼ π . Also, from stationarity, we have that U∗
j has the same law as U .

By the Cauchy–Schwarz inequality, since E|U |2 < ∞ from Assumption 2, the
conclusion follows once it is proved that

lim
ε→0

1

ε−γ

�ε−γ �−1∑
j=0

P
(
U�

j �= Uε,j

)1/2 = 0.

The definition of the coupling between ({X�
j ,U

�
j )}j≥0 and ({Xε,j ,Uε,j )}j≥0

shows that U�
j = Uε,j if, and only if, 1(ξk ≤ a(Xε,k,Uε,k, εZx,k,Zy,k)) = 1(ξk ≤

a(X,Uε,k,0,Zy,k)) for all 0 ≤ k ≤ j − 1. It readily follows that

P
(
U�

j �= Uε,j

)
= E

[
1 −

j−1∏
k=0

(
1 − ∣∣a(Xε,k,Uε,k, εZx,k,Zy,k) − a(X,Uε,k,0,Zy,k)

∣∣)]

≤
j−1∑
k=0

E
∣∣a(Xε,k,Uε,k, εZx,k,Zy,k) − a(X,Uε,k,0,Zy,k)

∣∣,
where we have made use of the inequality 1 − ∏j−1

k=0(1 − ak) ≤ ∑j−1
k=0 ak , for

sequences ak ∈ [0,1]. Under Assumptions 1–2, we have that the difference
|a(Xε,k,Uε,k, εZx,k,Zy,k) − a(X,Uε,k,0,Zy,k)| is less than a constant multiple
of

ε
(
1 + |X| + |Xεk

| + |Zε,k|)× |Zx,k| + (1 + |X| + |Xεk
| + |Uε,k| + |Zε,k|)

× |Xε,k − X|.
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Notice also that due to the RWM chain we have |Xε,k − Xε,0| � ε
∑k−1

l=0 |Zx,l|.
Bringing everything together, we have shown that

E
∣∣a(Xε,k,Uε,k, εZx,k,Zu,k) − a(X,Uε,k,0,Zu,k)

∣∣� kε.

Therefore, P(U�
j �= Uε,j )� j2ε. This implies that

εγ
�ε−γ �−1∑

j=0

P
(
U�

j �= Uε,j

)1/2 � ε1/2−γ .

Since γ ∈ (0, 1
2), the conclusion follows. �

The combination of Lemmas 2 and 4, together with the ergodic result in (28) and
the identity in Lemma 3 provide the proof of equation (23). Thus by Proposition 1,
one can conclude that of the sequence of processes {S̃ε,t }t∈[0,T ] converges weakly
in the Skorokhod space D([0, T ],Rnx ) to the diffusion process (15).

4.2. Proof of weak convergence of X̃ε to the limiting diffusion (15). We have
proven in Section 4.1 that the sequence of processes {S̃ε,t }t∈[0,T ] converges weakly
in D([0, T ],Rnx ) to the limiting diffusion (15). This also implies that the sequence
of processes {X̃ε,t }t∈[0,T ] converges towards the same limiting diffusion if one can
establish that these two processes are close to each other in the sense that

lim
ε→0

E
[
sup
{|X̃ε,t − S̃ε,t | : t ∈ [0, T ]}]= 0.(31)

Since the process S̃ε,t is obtained from the sequence {Xε,j } by sub-sampling at rate
c̃(ε) ≡ ε−γ , the triangle inequality yields that the supremum in (31) is less than a
constant multiple of

ε × sup

{�c̃(ε)�∑
j=1

|Zi,j | : 1 ≤ i ≤ ⌊T c(ε)/c̃(ε)
⌋}

(32)

for independent centred and standard Gaussian random variables {Zi,j }i,j≥0 in
R

nx . To show that the above quantity converges to 0 in expectation, one can for
instance work as follows. We define

Ri,ε := ε

�c̃(ε)�∑
j=1

|Zi,j |.

Then, for any α > 0, Markov’s inequality gives P(R3
i,ε > α3) ≤ E[R3

i,ε]/α3 ≤
Cε3−3γ /α3 for a constant C > 0. We also define Rε := sup{Ri,ε : 1 ≤ i ≤
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�T/ε2−γ �}. Simple calculations give

E[Rε] =
∫ ∞

0
P(Rε > α)dα =

∫ ∞
0

[
1 − {

1 − P(R1,ε > α)
}�T/ε2−γ �]

dα

≤
∫ ∞

0

[
1 −

{
1 − C

α3 ε3−3γ

}�T/ε2−γ �]
dα(33)

=
∫ ∞

0

[
1 −

[{
1 − C

α3 ε3−3γ

}ε−3+3γ ]δ(ε)]
dα

with δ(ε) = ε3−3γ · �T/ε2−γ � vanishing in the limit since γ ∈ (0,1/2). Now, for
a δ > 0, we have that for big enough α{

1 − C

α3 ε3−3γ

}ε−3+3γ

≥ e−(C/α3)(1+δ).

Using this bound in (33) and then calling upon the dominated convergence theorem
proves that E[Rε] → 0 as required.

4.3. Proof of Theorem 2. The proof is entirely similar to the proof of The-
orem 1. We only describe the modifications necessary to deal with this more
general setting. We define the quantities Sε, S̃ε,Lεϕ, L̃εϕ the same way as in
the proof of Theorem 1. The acceptance probability of the move (X,U) →
(X + 	εZx,U + 	Zy) reads

F ◦ log
(

πε(X
′,U ′)pε((X

′,U ′) → (X,U))

πε(X,U)pε((X,U) → (X′,U ′))

)
,

where pε[(X,U) → (X′,U ′)] is the likelihood of the move (X,U) → (X′U ′).
Proposition 1 still holds but the limiting quantity Aϕ(x,u) = limε→0 Lεϕ(x,u) is
now defined as

Aϕ(x,u) = E
[
F ′(DB) × {

	2(x)∇x

(
A(x) + B(x,u + 	Zy)

)+ ∇x	
2(x)

}] · ∇ϕ(x)

+ 1

2
	2(x)E

[
F(DB)

]
ϕ(x).

The proof uses a Taylor expansion of Lεϕ(x,u) with Assumptions 1–4 invoked to
give a control on the error terms. Under boundedness assumptions on the function
x �→ 	(x) the coupling used in the last part of the proof of Theorem 1 is still
valid and the rest of the proof then follows exactly the same lines as the proof of
Theorem 1.

5. Vanishing acceptance probability. We now consider the scenario where
the target distribution πε is explored by a RWM algorithm that employs jump
proposal of size O(1); in other words and with the notation of the previous section,

h(ε) = 1.
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At an heuristic level, as ε → 0, a proposal (X,Y ) �→ (X′, Y ′) is accepted only if
|Y ′| is of order ε, which happens with probability O(εny ). In order to obtain a
nontrivial limiting object, one thus needs to accelerate time by a factor ε−ny and
in this case the rescaled RWM trajectories converge, as ε → 0, to a Markov jump
process limit. In particular, we now consider the process t �→ (X̃ε,t , Ũε,t ) defined
as

(34) (X̃ε,t , Ũε,t ) = (Xε,�t ·ε−ny �,Uε,�t ·ε−ny �),
where, as in the previous section, we have used the rescaled coordinate Uε ≡ Yε/ε.
Thus, in this case we have the proposal (X′,U ′) = (X + 	Zx,U + 	ε−1Zy) where
(Zx,Zy) is a standard Gaussian random variable on R

nx ×R
ny .

We will again be following [7], starting from [7], Chapter 8, Theorem 3.1 which
identifies the core of the generator for the limiting jump process (essentially, the
space of test functions) under conditions on the jump rate and transition kernel.
Then the proof of weak convergence follows similarly as in the diffusion case
earlier. To apply the results in [7], we need to bound the space of u-coordinate,
thus we now impose the following condition.

ASSUMPTION 6. Function A : Rnx → R is continuous. Also, function B =
B(x,u) appearing in the definition of the target in (2) maps H := R

nx × M → R,
for a compact set M ⊂ R

ny , and is continuous on its domain H .

We redefine the acceptance probability as in (7) with an adjustment for the
boundedness of u,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a(x,u,wx,wu)

= F
(
A(x + 	wx) − A(x) + B(x + 	wx,u + 	wu) − B(x,u)

)
if u,u + 	wu ∈ M,

0 otherwise.

We note that smoothness assumptions are not needed in this setting, and F is al-
lowed to be the standard Metropolis–Hastings acceptance probability.

The appropriate space of test functions is now

C′ = {ϕ : H →R : ϕ is continuous with compact support}.
For ϕ ∈ C′, the generator of the process t �→ (X̃ε,t , Ũε,t ) reads as

Gεϕ(x,u) = ε−nyEx,u

[(
ϕ
(
x + 	Zx,u + 	ε−1Zy

)− ϕ(x,u)
)
a
(
x,u,Zx, ε

−1Zy

)]
=
∫
H

(
ϕ(x,u) − ϕ(x,u)

)
Q(x,u, x,u) exp

{−ε2|u − u|2/(2	2)}d(x,u),

where the function Q(·, ·, ·, ·) is given as

Q(x,u, x,u) = F(A(x) − A(x) + B(x,u) − B(x,u)) exp{−|x − x|2/(2	2)}
(2π	2)n/2 .
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Notice that the second argument in ϕ(x + 	Zx,u + 	ε−1Zy) appearing in the def-
inition of Gε above can take values outside M , but the acceptance probability is
then 0, so we have ignored this issue; alternatively, one can redefine ϕ(x,u) for
u ∈ R

ny and specify it to be 0 when u /∈ M . We will show that the sequence
t �→ (X̃ε,t , Ũε,t ) converges to a Markov jump process t �→ (X̃t , Ũt ) with transi-
tion kernel K(x,u, x,u) and jump rate function r(x,u) defined as

K(x,u, x,u) = Q(x,u, x,u)/r(x,u); r(x,u) =
∫
H

Q(x,u, x,u) d(x,u).

The Markov process t �→ (X̃t , Ũt ) can be described as follows: when found at
(x, u), the process waits an exponential time with parameter r(x,u) before jump-
ing to the new position (x,u) whose density is given by K(x,u, x,u). Note that
under Assumption 6, supH r(x,u) < ∞. The generator G of this jump process is

Gϕ(x,u) = r(x,u)

∫
H

(
ϕ(x,u) − ϕ(x,u)

)
K(x,u, x,u) d(x,u).(35)

Using an approach similar to the one of the previous section, one can prove the
following result.

THEOREM 3. Assume that the process (X̃ε, Ũε) is started at time 0 from the
equilibrium distribution π . Under Assumption 6, for a fixed horizon T > 0, the
sequence of processes {(X̃ε,t , Ũε,t }t∈[0,T ] converges weakly in the Skorokhod space
D([0, T ],H) to the time-homogeneous jump process (X̃t , Ũt ) with generator G
in (35).

The homogenization argument of the previous section is not necessary since
the u-coordinate does not need to be averaged out, so the proof is much simpler.
Since time must be accelerated by a factor ε−ny in order to observe a nontrivial
limit, Theorem 3 shows that the algorithmic complexity of RWM algorithm with
jump proposal of order O(1), when used to explore the distribution πε , scales
as O(ε−ny ). Note nevertheless that it is not straightforward to optimize the free
parameter 	 > 0 since the limiting Markov jump processes obtained from different
values of 	 are generally not related by a simple linear change of time, as was the
case for example in the original article [16].

5.1. Proof of Theorem 3. As in the case of the diffusion limit, we relate the
convergence in the Shorokhod space with properties of the generators.

PROPOSITION 2. Let Assumption 6 hold. If the following limit holds,

lim
ε→0

Eπ

∣∣G̃εϕ(x,u) − Gϕ(x,u)
∣∣= 0(36)

for any ϕ ∈ C′, then as ε → 0 the sequence of processes {(X̃ε,t , Ũε,t )}t∈[0,T ]
(started at time 0 from the equilibrium distribution π ) converges weakly in the Sko-
rokhod space D([0, T ],H) to the Markov jump process with generator G in (35).
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PROOF. See the Appendix. The proof is similar to the one of Proposition 1.
We briefly mention here, that under Assumption 6, [7], Chapter 8, Theorem 3.1,
identifies the family C′ as the core for the generator of the limiting jump pro-
cess. Then [7], Chapter 4, Theorem 8.2, Corollary 8.5 provides the convergence of
the finite-dimensional distributions and [7], Chapter 4, Corollary 8.6, the required
weak convergence on the path space. �

It remains to prove (36) for any ϕ ∈ C′. Recall that we have the bound F(r) ≤
FMH(r) = 1 ∧ er , r ∈ R. We have

Eπ

∣∣Gεϕ(x,u) − Gϕ(x,u)
∣∣

≤
∫
H

|Dϕ|(π(x,u) ∧ π(x̄, ū)
)(

1 − e
− ε2|ū−u|2

2	2
)
e
−|x̄−x|2

2	2
d(x,u, x̄, ū)

(2π	2)n/2

�
∫
�

min
(
π(x,u),π(x̄, ū)

)(
1 − e

− ε2|ū−u|2
2	2

)
e
−|x̄−x|2

2	2 d(x,u, x̄, ū),

where Dϕ ≡ ϕ(x̄, ū) − ϕ(x,u); we have used the fact that since ϕ has com-
pact support, say �, the norm ‖Dϕ‖∞ is finite and Dϕ is zero outside of � =
(H × �) ∪ (� × H). Notice that∫

�
min

(
π(x,u),π(x̄, ū)

)
d(x,u, x̄, ū) ≤ 2

∫
�

dx du

∫
H

π(x,u) dx du < ∞,

so (36) follows from the dominated convergence theorem.

5.2. Jump process versus diffusion limit. The general heuristic forming the
basis of most diffusion (or jump process, through the work in this paper) limit
approaches is the following. Consider a sequence of MCMC algorithms {M(ε)

k }k≥0
indexed by a parameter ε; if, as ε → 0, the time-rescaled sequence of Markov
chains obtained by accelerating time by a factor ε−κ converges towards a nontrivial
limiting process (in this article, either a nontrivial ergodic diffusion or Markov
jump process), it can be argued that, in the setting ε → 0, the Markov chain Mε

requires O(ε−κ) steps to mix. We refer the reader to [19] for rigorous results that
form the basis of this approach.

When using the RWM algorithm to explore πε , the scaling limit Theorems 2
and 3 reveal that in the case where the dimension of identifiability equals one, that
is, ny = 1, it is asymptotically more efficient (as ε → 0) to apply jump proposals
of size O(1), and thus use an algorithm with vanishing acceptance probability that
behaves like a Markov jump process. This is more effective than adopting jump
proposals of size O(ε) which leads to an acceptance rate bounded away from zero
and one; indeed, we have proven that in this case, jumps sizes of order O(1) lead
to an algorithm whose complexity scales as O(ε−1) whereas jump sizes of order
O(ε) yield to a complexity that scales as O(ε−2). The standard rule-of-thumb that
advocates tuning the mean acceptance probability of the random walk algorithm to
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a given optimal value a� ∈ (0,1), for example, a� = 0.234 in the high-dimensional
setting of [16] does not generally apply in the setting investigated in this article.

In the case where ny = 2, a similar argument shows that the approaches con-
sisting in setting a jump size of O(1) or O(ε) both yield to algorithms whose
complexity scales as O(ε−2). In the case where the dimensionality of the weak
identifiability is large, that is, ny ≥ 3, it is preferable to adopt jump proposal sizes
of order O(ε); the resulting algorithm scales as O(ε−2) whereas the choice of
jump sizes O(1) scales as O(ε−ny ).

6. Towards a diffusion limit for a larger class of manifolds. We give here
a conjecture for a diffusion limit for the case of a nonlinear manifold. An analytic
proof is left for future work. The presentation will sidestep technicalities and will
also serve to highlight the main building blocks of the earlier proof of Theorem 1.

We define an nx-dimensional manifold by assuming existence of an invertible
global coordinate chart r : Rnx →R

nx+ny , so we have

M = {
v ∈ R

nx+ny : v = r(x), x ∈ R
nx
}
.

We denote by TvM the tangent space of M at v = r(x). The plane TvM is nx -
dimensional with a canonical basis comprised of the linearly independent vectors
{(∂r/∂xi)(x)}nx

i=1. The mapping r gives rise to the metric tensor:

G(x) = (〈
(∂r/∂xi)(x), (∂r/∂xj )(x)

〉)nx

i,j=1 ∈ R
nx×nx .

We will use the standard decomposition in terms of the tangent and its perpendic-
ular normal space NvM defined via the linear system:

(37) NvM = {
w ∈ R

nx+ny : 〈w, (∂r/∂xi)(x)
〉= 0,1 ≤ i ≤ nx

}
.

That is, we have R
nx+ny = TvM ⊕ NvM. Let (qi(v))

ny

i=1 denote an orthonormal
basis for NvM. This could for instance be generated after applying Gram–Schmidt
iteration on the solutions of the linear system in (37). Some care is needed in the
basis construction to ensure smoothness of v �→ qi(v), 1 ≤ i ≤ ny . For w ∈ NvM,
we denote by Qvw the ordered coordinates of w w.r.t. the basis (qi(v))

ny

i=1. We
assume well posedness of the projection projM : Rnx+ny → M, mapping each
element of Rnx+ny to its closest on M defined as

projM(w) = r ◦
{
arg min

x∈Rnx

∣∣r(x) − w
∣∣2}.

We will need the derivatives for the projection mapping. For a mapping H : Rk →
R

l , we denote DH(x) = (∂Hi/∂xj )1≤i≤l,1≤j≤k . We have

D
(
r−1(projM)

)
(v) = G−1(x)

{
Dr(x)

}�
,(38)

DprojM(v) = Dr(x)G−1(x)
{
Dr(x)

}�
.(39)
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The above can be found by standard Taylor expansion of the distance metric
|r(x) − w|2 around its maximiser, akin to the procedure used for proving a CLT
for the MLE; see, for instance, Chapter 18 of [8]. For w ∈ R

nx+ny , a natural de-
composition to be used in this set-up is

w = (x, y) ≡ (
r−1(projM(w)

)
,Qv

(
w − projM(w)

)); x ∈ R
nx , y ∈ R

ny .

The target distribution is assumed to be of the form

πε(dw) = πε(dx, dy) = 1

εny
eA(x)+B(x,y/ε) dx dy.(40)

To standardize, we set u = y/ε. As in (5), we consider the standard RWM on
R

nx+ny with target πε(x, y) and proposal

w′ = w + 	εZ, Z ∼ N(0, Inx+ny ).

These dynamics give rise to the RWM trajectory {(Xε,k, Yε,k)}k≥0, and the
standardised trajectory Uε,k = Yε,k/ε. We have that w′ = (x′, y′) with x′ =
r−1(projM(w′)). A straightforward Taylor expansion using (38)–(39) will give

x′ = x + 	εJ (x)Z +O
(
ε2);

u′ = u + 	K(x)Z +O(ε),

where we have defined

J (x) = G−1(x)
{
Dr(x)

}�
,

K(x) = Q(v)�
(
I − Dr(x)G−1(x)

{
Dr(x)

}�)
for Q(v) = [q1(v), . . . , qny (v)]. We thus get that

ϕ
(
x′)− ϕ(x) = (

	εJ (x)Z +O
(
ε2))(∇ϕ(x)

)�
+ 1

2
	2ε2〈J (x)Z,∇2ϕ(x)J (x)Z

〉+O
(
ε3).

We now turn our attention to the acceptance probability term, and we have

F
(
A
(
x′)− A(x) + B

(
x′, u′)− B(x,u)

)
= F

(
B
(
x,u + 	K(x)Z

)− B(x,u)
)+O(ε).

Similar to (9), we define the limiting average acceptance probability at position x:

a0(x, 	) =
∫
R

ny
E
[
F
(
B
(
x,u + 	K(x)Z

)− B(x,u)
)]

eB(x,u) du.(41)
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Following the crux of the analytical proof for the case of affine manifold, we start
by looking at the one-step generator:

Lεϕ(x,u)

= E

[
ϕ(Xε,1) − ϕ(Xε,0)

ε2

∣∣∣Xε,0 = x,Uε,0 = u

]

= Ex,u

[
ϕ(x′) − ϕ(x)

ε2 · F (A(x′)− A(x) + B
(
x′, u′)− B(x,u)

)]
(42)

= Ex,u

[(
	ε−1J (x)Z +O(1)

)
F
(
B
(
x,u + 	K(x)Z

)− B(x,u)
)] · (∇ϕ(x)

)�
+Ex,u

[
1

2
	2〈J (x)Z,∇2ϕ(x)J (x)Z

〉 · F (B(x,u + 	K(x)Z
)− B(x,u)

)]
+O(ε).

Notice that due to the orthogonality of TvM,NvM, we have that

K(x)�J (x) = 0,

which implies the independence J (x)Z ⊥ K(x)Z. Thus, continuing from (42) we
have that

Lεϕ(x,u) = 〈
O(1),∇ϕ(x)

〉
+Ex

[
1

2
	2〈J (x)Z,∇2ϕ(x)J (x)Z

〉]
(43)

×Ex,u

[
F
(
B
(
x,u + 	K(x)Z

)− B(x,u)
)]

+O(ε).

Following closely the affine case, we consider the sped-up process S̃ε,t =
Sε,�t ·c(ε)/c̃(ε)� ≡ Sε,�t ·εγ−2� for the sub-sampled trajectory Sε,k,Vε,k . Recall that the
idea here is the u-trajectory will have enough time to mix during the sub-sampled
times, whereas the x-trajectory will still make local moves and provide a diffusion
limit. Thus, we make the following conjecture for the generator L̃ε of the process
S̃ε:

L̃εϕ(x,u) = 1

ε−γ
E

[�ε−γ �−1∑
j=0

Lεϕ(Xε,j ,Uε,j )|Xε,0 = x,Uε,0 = u

]

= Ex

[
Lεϕ(x,u)

]+ o(1)

= 〈
O(1),∇ϕ(x)

〉+Ex

[
1

2
	2〈J (x)Z,∇2ϕ(x)J (x)Z

〉] · a0(x, 	) + o(1).

It is easy to check that {Dr(x)}�Dr(x) = G(x). Thus, the above expression, and in
particular the quantity involving ∇2ϕ(x), suggests a diffusion limit with diffusion
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coefficient σ such that (
σσ�)(x) = G(x)−1a0(x, 	)	2,

with a corresponding expression for the limiting SDE

dX = drift
(
πX,σσ�)(X)dt + σ(X)dW(44)

for D0 ∼ exp{A(x)} and drift(πX,σσ�) = 1
2σσ�∇ + 1

2(σσ�)∇ logπX , with
πX(x) = exp{A(x)}. The expression we obtained for the diffusion coefficient is
the same as the one for the Langevin SDE on a manifold obtained in [9, 11] with
the addition of the average acceptance probability term a0(x, 	)	2.

7. Conclusions/future work. As far as we are aware, ours is the first attempt
towards analytically studying the behaviour and complexity of MCMC algorithms
when applied to target densities with a multi-scale structure. We acknowledge here
that the practical advice stemming out of our results are probably not as strong
as in the case of diffusion limits in high dimensions. Still, we believe that our
analysis provides inroads for the investigation of MCMC algorithmic performance
in a different direction from the one followed so far in the literature. Our work
opens up a number of avenues for future work in this area. We highlight a few of
these below:

• In many practical problems, the limiting manifold will be nonlinear and the
directions of small size can vary in different parts of the state space, and thus one
cannot predetermine narrow directions and adjust the step-sizes. The conjectures
about diffusions limits on manifolds in Section 6 thus have immediate impact in
applications but might require substantial amount of work to be proved in full
generality.

• In a wider perspective, we believe that the results in the paper open new di-
rections also for the study of MCMC algorithms that better exploit the man-
ifold structure of the support of the target distribution; this direction also con-
nects with recent advances in the development of Riemannian MALA and HMC
methods as in, for example, [9, 11]. The set-up in our paper is a bit more in-
volved as the manifold can be of smaller dimension that the general space (in
the above works it is of the same dimension). To be more explicit, following the
notation of Section 6, it would be of interest, for instance, to study RWM with
location-specific step-sizes, say of the form

w′ = w + 	(∂r/∂x1, ∂r/∂x2, . . . , ∂r/∂xnx |q1, q2, . . . , qny )

(
h(ε)Zx

εZy

)
= w + 	h(ε)Dr(x)Zx + 	εQ(v)Zy,

so that the method moves along the tangent space TvM with a step of size
h(ε) and along the perpendicular normal space with step of size ε (as this is the
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size of the probability mass around M). Of interest here would be the optimal
selection for h(ε) and the specification of the computational cost for the method.
For example, consider the case when the manifold M corresponds to a circle
of radius 1 in R

2. Then it appears that controlling the acceptance probability
would require h(ε) = √

ε, as this is the order of the size of the string of the
circle which is perpendicular to a radius at position of distance ε from the circle
surface. Such questions could be investigated for general manifold structures.
The above of course corresponds to an idealized algorithm, when the method
uses explicit information about the tangent and normal space. In practice, it will
be of interest to investigate also practical recent algorithms using for instance
information about the curvature of the log-target distribution or the Hessian to
scale the step-sizes in the different directions, and contrast their effect with the
idealised scenario.

• It is of interest to provide connections with locally adaptive methods currently
looked at in the literature. Further exploration of such advanced methods in a
similar manifold setting may provide analytical results that should be contrasted
with the ones here and illustrate their superiority.

• Finally, all of our results assume that the Markov chain is at stationarity. There
is a parallel literature on the scaling and the behaviour of MCMC algorithms
in the transient phase. The limiting process in the transient phase is usually an
ordinary differential equation instead of an SDE. It is natural next step to obtain
analyze the transient phase of our algorithm.

APPENDIX: PROOFS

Notation. Recall that we use the expression “e = e(ε, x,u) = oL1(π)(1)” to
indicate that for given function e(ε, x,u) we have limε→0 Eπ |e(ε, x,u)| = 0.

A.1. Proof of Proposition 1. For clarity, the proof is divided into two main
steps. First, one proves that the finite dimensional distributions of S̃ε converge to
those of the limiting diffusion. Second, one proves that the sequence S̃ε is relatively
weakly compact in the appropriate topology.

Convergence of the finite dimensional distributions of S̃ε .
We follow closely [7], Chapter 4, Theorem 8.2 and Corollary 8.5, and apply

those results for the set of functions E = {(ϕ,Lϕ) : ϕ ∈ C}. Under Assumption 3,
[7], Chapter 8, Theorem 1.6, gives that the closure of E generates a Feller semi-
group {T (t)} (corresponding to the solution X of the SDE) on the Banach space
L of continuous functions vanishing at infinity. Thus, all conditions at the state-
ment of [7], Chapter 4, Theorem 8.2, are satisfied; it remains to prove part (e)
of [7], Chapter 4, Corollary 8.5. Given an arbitrary test function ϕ ∈ C, we set
fε(x,u) = ϕ(x) and gε(x,u) = L̃εϕ(x,u). We need to prove equations (8.8)–(8.9)
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and (8.11) of [7], Chapter 4, Theorem 8.2, [equation (8.10) is trivially satisfied];
that is, one must show that

sup
ε>0

sup
t≤T

E
∣∣ϕ(S̃ε,t )

∣∣< ∞;(45)

sup
ε>0

sup
t≤T

E
∣∣L̃εϕ(S̃ε,t , Ṽε,t )

∣∣< ∞;(46)

lim
ε→0

E

[(
L̃εϕ(S̃ε,t , Ṽε,t ) −Lϕ(S̃ε,t )

) k∏
i=1

hi(S̃ε,ti )

]
= 0,(47)

for any k ≥ 1, any times 0 ≤ t1 < · · · < tk ≤ t ≤ T , and any functions hi that
can be assumed to be bounded. Indeed, [7], Chapter 8, Theorem 1.6, shows that
the above equations involving the generators and expectations at infinitesimally
small increments from instance t can imply convergence over finite times. The first
requirement follows from the boundedness of ϕ; the second requirement is implied
by the stationarity of (S̃ε,t , Ṽε,t ), equation (23) and the fact that Eπ |Lϕ(x)| < ∞
[we have that supx∈Rnx |Lϕ(x)| < ∞ from the boundedness of the gradient of the
drift function of the limiting diffusion on compact domains, since it is continuous
from Assumption 3]. The third requirement is also implied from (23). We have
now proven the required convergence of the finite dimensional distributions of S̃ε,t

to those of the solution of the limiting SDE (15).
Relative weak compactness of S̃ε . We follow [7], Chapter 4, Corollary 8.6.

First, we remark that the process S̃ε is started at stationarity and the space
C ⊂ L of smooth functions with compact support is an algebra that strongly sep-
arates points. As noted in the proof of [7], Chapter 4, Corollary 8.5, the pair
(fε(S̃ε,t ), gε(S̃ε,t , Ṽε,t )), with fε, gε as defined above, in general does not belong
to the approximate generator defined in equation (8.6) of [7], Chapter 4, and one
needs to consider instead the pair(

fε(S̃ε,t ) + (
t − ⌊εγ−2t

⌋
/εγ−2)gε(S̃ε,t , Ṽε,t ), gε(S̃ε,t , Ṽε,t )

)
to account for the fact that the process (Xε,Yε) is a discrete time Markov chain
(note here the typo in equation (8.28) of [7], Chapter 4; the correct term involves
the quantity t − �αnt�/αn). Since (t − �εγ−2t�/εγ−2) < ε2−γ , to prove equations
(8.33) and (8.34) of [7], Chapter 4, Corollary 8.6, we must show that, for some
exponent p > 1, some ε0 > 0 and for (X,U) ∼ π , we have

sup
ε∈(0,ε0)

∥∥L̃εϕ(X,U)
∥∥
p < ∞;

lim
ε→0

ε2−γ ·E
[

sup
t∈[0,T ]

∣∣L̃εϕ(S̃ε,t , Ṽε,t )
∣∣]= 0.

(48)

These will imply that the sequence S̃ε is relatively weakly compact in the Sko-
rokhod topology. Note that we have exploited the fact that the algorithm is started
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at stationarity. For the first result in (48), we choose 1 < p < 2. Then the telescop-
ing expansion (24) yields that

∥∥L̃εϕ(X,U)
∥∥
p ≤ 1

ε−γ

�ε−γ �−1∑
j=0

∥∥Lεϕ(Xε,j ,Uε,j ) −Aϕ(Xε,j ,Uε,j )
∥∥
p

+ 1

ε−γ

�ε−γ �−1∑
j=0

∥∥Aϕ(Xε,j ,Uε,j )
∥∥
p

�
∥∥Lεϕ(X,U) −Aϕ(X,U)

∥∥
p + ∥∥Aϕ(X,U)

∥∥
p.

In the second line, we have exploited the fact that the RWM chain is started at
stationarity. The required result follows immediately from the given upper bound
in Proposition 1 and Assumption 2. For the second result in (48), since the process
t �→ L̃εϕ(S̃ε,t , Ṽε,t ) makes at most �T/ε2−γ � jumps on the interval t ∈ [0, T ],
it suffices to show that each jump is o(1) in L1-norm; equivalently, due to the
stationarity assumption, one needs to prove that the expectation ‖L̃εϕ(Sε,1,Vε,1)−
L̃εϕ(Sε,0,Vε,0)‖1 converges to zero as ε → 0. Adding and subtracting Lϕ(Sε,1) −
Lϕ(Sε,0), equation (23) and the stationarity assumption yield that∥∥L̃εϕ(Sε,1,Vε,1) − L̃εϕ(Sε,0,Vε,0)

∥∥
1 ≤ o(1) + ∥∥Lϕ(Sε,1) −Lϕ(Sε,0)

∥∥
1.

Under Assumption 3, for a smooth and compactly test function ϕ, the function
x �→ Lϕ(x) is μ-Holderian so that it suffices to show that ‖Sε,1 −Sε,0‖1 converges
to zero as ε → 0; this is immediate since

‖Sε,1 − Sε,0‖1 � ε

�ε−γ �∑
j=1

‖Zx,j‖1 � ε1−γ

and γ was chosen inside the interval (0, 1
2).

A.2. Proof of Lemma 1. Recall the definition of the one-step generator Lε in
(22). Using the notation v = ∇ϕ(x) ∈ R

nx , S = ∇2ϕ(x) ∈ R
nx×nx , a second-order

Taylor expansion yields

Lεϕ(x) = ε−2
Eε,x,u

[(
ϕ(x + 	εZx) − ϕ(x)

)× a(x,u, εZx,Zy)
]

= 	ε−1
Eε,x,u

[〈v,Zx〉 × a(x,u, εZx,Zy)
]

+ 1

2
	2
Eε,x,u

[〈Zx,SZx〉 × a(x,u, εZx,Zy)
]+ oL1(π)(1),

where the remainder term has been identified as oL1(π)(1) for ε → 0 as its absolute
value is upper bounded by CεE|Zx |3, for a constant C > 0, due to ϕ being smooth
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and of compact support. Thus, to prove the stated limiting result, it suffices to
prove that the following two identities hold:

ε−1
Eε,x,u

[〈v,Zx〉 × a(x,u, εZx,Zy)
]

= 	Ex,u

[
F ′(DB)

〈
v,∇A(x) + ∇xB(x,u + 	Zy)

〉]
(49)

+ oL1(π)(1),

Eε,x,u

[〈Zx,SZx〉 × a(x,u, εZx,Zy)
]

(50)
= Tr(S) ×Ex,u

[
F(DB)

]+ oL1(π)(1).

Recall the shorthand notation DB = B(x,u + 	Zy) − B(x,u). Expression (7) for
the acceptance probability function a(·, ·, ·, ·) together with regularity Assump-
tion 2 on functions A and B yield

a(x,u, εZx,Zy) = F(DB) + 	εF ′(DB)
〈∇A(x)

+ ∇xB(x,u + 	Zy),Zx

〉+ ε × oL1(π)(1).
(51)

The remainder term has been identified as ε × oL1(π)(1) as it is upper bounded in
absolute value by Cε2(1 + |x| + |u| + |Zx | + |Zy |) × |Zx |, for a constant C > 0,
due to F ′ being bounded and Lipschitz, and ∇A,∇B being Lipschitz; also, π

has finite absolute first moments. Using this expression gives that the quantity
ε−1

Eε,x,u[〈v,Zx〉 × a(x,u, εZx,Zy)] equals

	Ex,u

[〈v,Zx〉 × F ′(DB) × 〈∇A(x) + ∇xB(x,u + 	Zy),Zx

〉]+ oL1(π)(1),

which gives immediately (49) after taking the expectation over Zx . Also, (50) fol-
lows immediately from (51). Finally, the stated upper bound in the proposition
follows immediately from the explicit upper bounds given above for the remainder
terms.

A.3. Proof of Lemma 2. Under Assumptions 1–2 (we require that F,F ′ are
bounded and Lipschitz, ∇A,∇B are Lipschitz), for a smooth and compactly sup-
ported test function ϕ, one can verify that

(52)
∣∣Aϕ(x,u) −Aϕ(x,u)

∣∣� (1 + |x| + |x| + |u|)|x − x|
for any x, x ∈ R

nx and u ∈ R
ny . We now make use of the telescoping equation (24)

to get that

Eπ

∣∣∣∣∣L̃εϕ(x,u) − 1

ε−γ

�ε−γ �−1∑
j=0

Eε,x,u

[
Aϕ(x,Uε,j )

]∣∣∣∣∣
≤ Eπ

∣∣Lεϕ(x,u) −Aϕ(x,u)
∣∣(53)

+ 1

ε−γ

�ε−γ �−1∑
j=0

E
∣∣Aϕ(Xε,j ,Uε,j ) −Aϕ(Xε,0,Uε,j )

∣∣.
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We consider the last term. Using (52) together with Cauchy–Schwarz, and the
RWM upper bound |Xε,j − Xε,0|� ε

∑j
k=1 |Zx,k|, we obtain

E
∣∣Aϕ(Xε,j ,Uε,j ) −Aϕ(Xε,0,Uε,j )

∣∣� ε

j∑
k=1

‖Zx,k‖2 =O(jε).

Thus, the last term in (53) is O(ε1−γ ) and vanishes in the limit since γ < 1. The
proof is complete.

A.4. Proof of Lemma 3. To keep the exposition as simple as possible, we
suppose that 	 = 1 and nx = ny = 1. The multi-dimensional case is entirely simi-
lar. The proof of (29) consists in verifying that for all x ∈R the following identity
holds: ∫

u∈R
Aϕ(x,u)eB(x,u) du = Lϕ(x),(54)

where L is the generator of the limiting diffusion (15), ϕ ∈ C is a test function in
the core of L and Aϕ(x,u) reads

Aϕ(x,u) = E
[
F ′(DB)

(
A′(x) + ∂xB(x,u + Zy)

)]
ϕ′(x)

+ 1

2
E
[
F(DB)

]
ϕ′′(x),

(55)

where DB = B(x,u + Zy) − B(x,u) and Zy ∼ N(0,1). The proof is a routine
calculation that is based on the symmetry of the Gaussian distribution and the
fact that the accept–reject function F verifies the reversibility condition (6). More
specifically, the derivative of equation (6) also reads

F(r) = F ′(r) + erF ′(−r).(56)

This identity also holds for the standard MH function FMH(r) = min(1, er) but has
to be interpreted in the sense of distributions. In the scalar case nx = 1 with 	 = 1,
the generator of (15) reads

Lϕ(x) = 1

2

(
a0(x)A′(x) + a′

0(x)
)
ϕ′(x) + 1

2
a0(x)ϕ′′(x),

where a0(x) ≡ a0(x,1) is the mean acceptance probability a0(x) =∫
u∈R E[F(DB)]eB(x,u) du. To prove (54), it suffices to verify that

E
[
F ′(DB)∂xB(x,u + Z)

]= 1

2
a′

0(x); E
[
F ′(DB)

]= 1

2
a0(x).(57)

Let us prove that the first identity holds. Assumption 2 justify the following deriva-
tion under the integral sign:

∂xa0(x) =
∫

E
[
F ′(DB)

(
∂xB(x,u + Zy) − ∂xB(x,u)

)
+ F(DB)∂xB(x,u)

]
eB(x,u) du.
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Equation (56) shows that F(DB) = F ′(DB)+F(−DB)eDB ; since eDBeB(x,u) =
eB(x,u+Zy), we have

∂xa0(x) =
∫

E
[
F ′(DB)∂xB(x,u + Zy)e

B(x,u)]du

+
∫

E
[
F ′(−DB)∂xB(x,u)eB(x,u+Zy)]du.

The symmetry of the Gaussian distribution Zy ∼ N(0,1) then shows that∫
E
[
F ′(DB)∂xB(x,u + Zy)e

B(x,u)]du

=
∫

E
[
F ′(−DB)∂xB(x,u)eB(x,u+Zy)].(58)

This concludes the proof of the first identity of (57). The proof of the second
identity is similar and even simpler, and thus omitted.

A.5. Proof of Proposition 2. The proof is very similar to the one of Propo-
sition 1. Thus, as a first step, we prove that the finite dimensional distributions
of (X̃ε, Ũε) converge to those of (X̃, Ũ). The proof is then concluded by prov-
ing that the sequence (X̃ε, Ũε) is weakly compact in the appropriate topology.
Before the above, we work with [7], Chapter 8, Theorem 3.1, identifying C′ as
the core of the generator of the limiting jump process. This requires us to prove
equations (3.3)–(3.5) at the statement of Theorem 3.1. Avoiding too many details,
we proceed as follows: (i) equation (3.3) follows trivially due to the bounded-
ness of the domain of the u-coordinate; equations (3.4), (3.5) also follow imme-
diately when someone specifies the γ and η functions appearing in the statement
as γ (x,u) = η(x,u) = exp{|x|2/(2c)} with c > 	 (this choice allows for analyti-
cal evaluation of the corresponding integrals once upped-bounding the acceptance
probability by 1).

Convergence of the finite dimensional distributions of (X̃ε, Ũε). [7], Chapter 8,
Theorem 3.1, implies that all conditions at the statement of [7], Chapter 4, Theo-
rem 8.2, are satisfied. We need only prove part (e) of [7], Chapter 4, Corollary 8.5.
Given a test function ϕ ∈ C′, we set fε(x,u) = ϕ(x) and gε(x,u) = Gεϕ(x,u). We
must now prove equations (8.8)–(8.9) and (8.11) of [7], Chapter 4, Theorem 8.2,
which are now expressed as

sup
ε>0

sup
t≤T

E
∣∣ϕ(X̃ε,t , Ũε,t )

∣∣< ∞;

sup
ε>0

sup
t≤T

E
∣∣Gεϕ(X̃ε,t , Ũε,t )

∣∣< ∞;

lim
ε→0

E

[(
Gεϕ(X̃ε,t , Ũε,t ) − Gϕ(X̃ε,t , Ũε,t )

) k∏
i=1

hi(X̃ε,ti , Ũε,ti )

]
= 0,
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for any ϕ ∈ C′, any k ≥ 1, times 0 ≤ t1 < · · · < tk ≤ t ≤ T , and bounded func-
tions hi . These are very similar to (45)–(47) in the proof of Proposition 1. The
first equation follows immediately due to stationarity of process; for the second
we add and subtract Gϕ(X̃ε,t , Ũε,t ) inside the absolute value, so the result follows
from (23) and the fact that Eπ |Gϕ(x,u)| < ∞; the last equation follows immedi-
ately from (23). (In both of the last equations, we also used the stationarity of the
processes.)

Relative weak compactness of (X̃ε, Ũε). As in the proof of Proposition 1
and (48), we follow [7], Chapter 4, Corollary 8.6, and have to prove that for some
ε0 > 0, p > 1,

sup
ε∈(0,ε0)

∥∥Gεϕ(X,U)
∥∥
p < ∞;

lim
ε→0

εny ·E
[

sup
t∈[0,T ]

∣∣Gεϕ(X̃ε,t , Ũε,t )
∣∣]= 0.

(59)

Following the definitions in the main text, we have that � is a compact set outside
which ϕ is zero and � = (H × �) ∪ (� × H). For the first equation in (59), we
have that, since the density π(x, y) = eA(x)+B(x,y) is strictly positive and continu-
ous,∥∥Gεϕ(X,U)

∥∥p
p

≤ 1

(2π	2)np/2

×
∫
H

{∫
H

|Dϕ|min
(

1

π(x,u)
,

1

π(x,u)

)
π(x,u) d(x,u)

}p

π(x,u) d(x,u)

≤ 1

(2π	2)np/2 2p‖ϕ‖p∞

×
∫
�

min
(

1

π(x,u)
,

1

π(x,u)

)p

π(x,u)π(x,u) d(x,u, x,u)

≤ 1

(2π	2)np/2 2p‖ϕ‖p∞ sup
{

min
(

1

π(x,u)
,

1

π(x,u)

)p

: (x, u, x,u) ∈ �

}

= 1

(2π	2)np/2 2p‖ϕ‖p∞ sup
{
π(x,u)−p : (x, u) ∈ �

}
< ∞,

which proves the required statement. For the second equation in (59), recall that
(X̃ε,t , Ũε,t ) is piece-wise constant on intervals of length εny , and attempts �T/εny�
transitions on [0, T ]. We can thus bound, due to stationarity,

E

[
sup

t∈[0,T ]
∣∣Gεϕ(X̃ε,t , Ũε,t )

∣∣]� ε−ny · ∥∥Gεϕ(Xε,1,Uε,1) − Gεϕ(Xε,0,Uε,0)
∥∥

1.

Thus, due to equation (36), it suffices to show that ‖Gϕ(Xε,1,Uε,1) −
Gϕ(Xε,0,Uε,0)‖1 converges to zero as ε → 0. The definition of G yields that for
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any bounded test function ϕ the function (x, u) �→ Gϕ(x,u) is also bounded. Con-
sequently,∣∣Gϕ(Xε,1,Uε,1) − Gϕ(Xε,0,Uε,0)

∣∣� 1
(
(Xε,1,Uε,1) �= (Xε,0,Uε,0)

)
.

Since, as ε → 0, the probability that (Xε,1,Uε,1) is different from (Xε,0,Uε,0)

converges to zero, the conclusion follows.
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