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Abstract 
 

Cytokinesis is the final step of cell division that physically separates the cytoplasm 

of nascent daughter cells. The mitotic spindle plays a key role in positioning the 

cytokinetic furrow at the equator in animal cells but the exact mechanism is not yet 

understood. An important step during cleavage furrow formation is activation of 

small GTPase RhoA, which is brought about by the GEF factor Ect2. Our aim is to 

better understand the principles and regulation of cleavage furrow formation. 

Recent results in our lab have shown that the RhoGEF not only localizes to the 

spindle midzone after anaphase onset but also to the plasma membrane. Therefore 

we asked which lipids are involved in Ect2 membrane engagement and if the 

membrane translocation of Ect2 is an essential and rate-limiting step for cleavage 

furrow induction that confers spatial and temporal control of cytokinesis. 

Pharmacological interference with cellular lipids implicated PIP2 as an important 

anionic phospholipid for the association of Ect2 with the plasma membrane. We 

developed a chemical genetic system using hybrid proteins that allowed us to 

artificially target Ect2 to the plasma membrane. Our results demonstrate that the 

plasma membrane association of Ect2 is a prerequisite for cytokinesis in human 

cells. We also confirmed this finding by a complementary optogenetic approach of 

targeting Ect2 to the plasma membrane. Furthermore, light-induced membrane 

engagement of Ect2 highlighted the importance of local cortical Ect2 activity. Most 

current models for cytokinesis consider Ect2 recruitment to the spindle midzone as 

a key step in the furrow positioning in small animal cells. By replacing endogenous 

Ect2 with a mutated version that does not localize to the midzone, we have shown 

that this model cannot account for the placement and formation of the cleavage 

furrow at the cell equator. Unexpectedly, our results suggest that the midzone 

localization of Ect2 and the resulting equatorial gradient at the plasma membrane is 

dispensable for cytokinesis in mammalian cells. The equatorial concentration of 

Ect2 could still serve as a signal for furrow placement, but may be redundant with 

other not yet defined uncharacterized signals. In summary, our work firmly 

establishes plasma membrane engagement of Ect2 as a prerequisite for the 

execution of cytokinesis. It also reveals that prevailing models for how the cleavage 

furrow is placed in somatic cells are likely to be insufficient to explain the process. 
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Chapter 1. Introduction 

Life on Earth shows extreme diversity, but all living organisms share the simplest 

building unit, the cell. The original cell theory was postulated in the 19th century by 

Matthias Schleiden and Theodor Schwann and was completed by Rudolph Virchow 

in 1858 with his famous statement	“Omnis cellula e cellula” (Tan and Brown, 2006). 

All cells arise from pre-existing cells and even the most complex organisms arise 

from single cells by the process of cell division. A repeating cycle of cell growth and 

duplication of genetic material, followed by the equal separation of cell content into 

new cells is the basic principle of life. Consequently, mistakes occurring during cell 

division can have detrimental effect for life of the cell and the organism, and are 

linked to various diseases. Therefore, the understanding of this fundamental 

process is crucial for the prevention and treatment of many of these diseases 

(Nurse, 2000) (Morgan, 2006). 

1.1 The cell cycle 

The cell cycle is a series of highly regulated steps that allow the cell to duplicate its 

content and to faithfully divide itself into two new daughter cells. The eukaryotic cell 

cycle is usually divided into four stages. Two main periods are S phase (Synthesis 

phase) and M phase (Mitotic phase), which are separated by two Gap stages 

namely G1 and G2 (Figure 1). Importantly, cell progression through different stages 

is tightly regulated to ensure unidirectional progression through the cell cycle. The 

two most important stages in cell cycle, namely the duplication of genetic content in 

S phase and the division of DNA and cytoplasm in M phase, are separated in time 

to strengthen the control of the cell cycle and to prevent deleterious mistakes 

(Morgan, 2006). 

1.1.1 Cell cycle stages and checkpoints 

G1, S and G2 phases of cell cycle are collectively called interphase, to emphasise 

their differences to M phase, which is characterized by dramatic changes in cell 

morphology. The whole period of interphase serves as a preparation for the 

process of mitotic cell division. 
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G1 is the first gap phase that occurs right after the previous mitosis has finished 

and it is usually the longest phase of the cell cycle. The cell needs to double its size 

during interphase, therefore both gap phases are periods of intense transcriptional 

and translational activity.  

 

 
Figure 1 The cell cycle 
Schematic representation of the eukaryotic cell cycle, a highly regulated step-wise 
process, which is divided into four distinct stages – G1, S, G2 and M phase. The 
first three stages of the cell cycle, collectively named interphase, prepare the cell to 
undergo mitosis and cytokinesis. DNA replication during S phase and cell division 
in M phase are separated by two gap phases that provide time for the cell to grow 
and synthesize all the necessary components for the next stage. Cells can also 
temporarily or permanently leave the cell cycle by entering G0 phase. Error-free 
progression through the cell cycle is ensured by a series of checkpoints that 
monitor if the cell is ready to proceed to the next phase. Adapted from (Morgan, 
2006).  
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G1 is also the point from where cells can exit the cell cycle and enter a quiescent 

phase called G0. Cell cycle exit can be a reversible process, for example in cells 

waiting until favourable conditions for cell division occur, or irreversible in the case 

of terminally differentiated cells (Morgan, 2006). In late G1 phase the cell prepares 

for the onset of S phase and needs to pass the first G1-S checkpoint also known as 

the Start of the cell cycle. Here, the cell needs to assess if there are enough 

nutrients and enzymes available to progress to S phase. Additionally, an important 

DNA damage checkpoint halts progression through the cycle if necessary to give 

the cell time to repair its DNA. This is particularly important during G1-S transition, 

because during DNA replication unrepaired lesions can become fixed mutations 

that are passed on to the next generation (Li and Zou, 2005). After a cell enters 

S phase, DNA replication is initiated at multiple origins of replication. Replicative 

helicases unwind the DNA and create replication bubbles to allow bi-directional and 

semi-conservative replication of DNA (Masai et al., 2010). Once duplicated, the 

chromosomes (now called sister chromatids) are held together by a protein 

complex known as cohesin (Nasmyth and Haering, 2009). The genetic information 

stored in DNA needs to be replicated accurately, which is ensured by the S phase 

replication checkpoint, which shares many components with the DNA damage 

checkpoint. However, the S phase replication checkpoint also needs to coordinate 

the repair processes with the DNA synthesis (Gottifredi and Prives, 2005).  

 

In addition to controlling the DNA synthesis, cells also have to tightly regulate the 

duplication of centrosomes, the main microtubule-organizing centres of animal cells 

(Nigg and Stearns, 2011). In cycling cells, there is normally only one centrosome 

that is duplicated in S phase and separated in mitosis. Other organelles and 

cytoplasmic components are synthesized gradually throughout the cell cycle and 

symmetrically distributed to two daughter cells randomly or through specific 

regulated mechanisms. Some organelles disassemble before mitosis like the Golgi 

apparatus, while others remain intact like peroxisomes (Menendez-Benito et al., 

2013) (Jongsma et al., 2015). 

 

S phase is followed by the second gap phase G2, during which the cell continues 

to grow and to synthetize RNAs and proteins in preparation for mitosis. Another 
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DNA damage checkpoint controls the state of the DNA before the transition to 

mitosis (Li and Zou, 2005). 

  

M phase is distinguished from interphase because cells undergo a series of 

morphological changes in order to enable the faithful segregation and partitioning 

of chromosomes into two daughter cells. Firstly, the DNA condenses to form the 

structures known as chromosomes and the nuclear envelope breaks down. 

Chromosomes are then captured by microtubules, which attach to a large protein 

complex called the kinetochore, which is assembled in the centromeric region of 

the chromosome. Afterwards, sister chromatids are segregated by the mitotic 

spindle, a structure formed from microtubules nucleated by the centrosomes at 

opposite cell poles (Foley and Kapoor, 2013). The physical separation of the 

chromatids needs to be tightly controlled to prevent segregation errors and 

aneuploidy. A specific mitotic checkpoint, the spindle assembly checkpoint (SAC), 

plays a key role in ensuring the fidelity of chromosome segregation. The SAC acts 

prior to the metaphase-to-anaphase transition and ensures that all sister 

chromatids are correctly attached to kinetochore microtubules. Unattached 

kinetochores block anaphase onset until all chromosomes are correctly attached in 

a bioriented fashion, so that sister chromatids are connected to microtubules 

emanating from opposite spindle poles (Musacchio and Salmon, 2007).  

 

After SAC is turned off, the anaphase promoting complex (APC) is activated, and 

chromosomes segregate to the opposite poles, which is a point of no return in 

mitosis (Sullivan and Morgan, 2007). Afterwards, cytokinesis physically divides the 

cell into two new daughter cells and cells exit mitosis, which completes the cell 

cycle (Green et al., 2012). Daughter cells formed by mitosis are diploid, i.e. they 

have two homologous copies of each chromosome. Haploid cells, important for the 

production of gametes and sexual reproduction, arise from meiosis. The meiotic 

program is a specialized form of nuclear division that involves two rounds of 

chromosome segregation without an intervening round of DNA replication (Morgan, 

2006). 
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1.1.2 Cell cycle regulation 

Control mechanisms ensure that all the complex steps of the cell cycle occur in the 

right order and without mistakes. Deregulation of the cell cycle can lead to 

aneuploidy and affects genome stability, consequently impairing the viability of the 

cell and in severe cases the health status of the whole organism. In particular, cell 

cycle defects have been linked to cancer (Kops et al., 2005) (Malumbres and 

Barbacid, 2009). Many control mechanisms function in all cells to prevent these 

deleterious consequences. The cell proceeds to the next cell cycle stage only if it 

has successfully completed the previous steps, thus it needs to pass series of 

checkpoints discussed in the previous section (Hartwell and Weinert, 1989). 

 

In 1970, Rao and Johnson fused HeLa cells that were in different cell cycle stages 

to show that there are molecular factors regulating the cell cycle states and 

progression. For example, S-phase cell triggered DNA replication when fused to 

G1 cell and fusion to G1 cell prevented mitotic entry in G2 cell (Rao and Johnson, 

1970). Soon thereafter the elusive factor was named maturation promoting factor 

(MPF) by Masui and Markert, when they found that injection of cytoplasm from 

dividing oocytes could drive meiotic entry in oocytes arrested in G2 phase (Masui 

and Markert, 1971). Following studies have shown oscillations in MPF activity 

during the cell cycle, and proposed that MPF is a protein whose activity is regulated 

by a post-translational modification (Masui, 1982) (Gerhart et al., 1984). At the 

same time, Tim Hunt and his colleagues discovered proteins that appeared and 

disappeared from sea urchin egg extracts in a similar fashion as the proposed 

activity of MPF, and they proposed to call them cyclins (Evans et al., 1983). Later it 

was confirmed that MPF was a complex of a cyclin with another protein (Lohka et 

al., 1988). 

 

The identity of the second protein has been elucidated by Paul Nurse and 

colleagues by using yeast genetics (Nurse et al., 1976) (Thuriaux et al., 1978). 

They identified multiple Schizosaccharomyces pombe (S. pombe) mutants that 

could not undergo nuclear division. Amongst them, they discovered gene cdc2 and 

they showed the protein encoded by gene cdc2 was cyclin-dependent kinase 1 

(Cdk1). After years of research, Nurse lab also identified human homolog of Cdk1 
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encoded by CDC2 gene. Remarkably, Nurse and colleagues could also show that 

CDC2 was able to complement the role of the cdc2 gene in S. pombe, which 

demonstrated that the role of Cdk enzymes is conserved from yeast to human (Lee 

and Nurse, 1987).  

 

Nowadays, we know that Cdks lie at the heart of the cell cycle regulation. 

Cyclin-dependent kinases are heterodimeric enzymes with a catalytic 

serine/threonine kinase domain and a regulatory cyclin subunit. Cdks not bound to 

cyclins are inactive and the interaction with cyclins triggers structural changes in 

the Cdk catalytic subunit (Morgan, 1997). Protein levels of Cdks remain relatively 

constant during the cell cycle, but their activity is dependent on the associated 

cyclin subunits, the concentrations of which oscillate. Moreover, binding to different 

cyclin subunits affects the specifity of Cdks, thus driving the cell through the cell 

cycle stages by phosphorylating different substrates (Figure 2) (Jeffrey et al., 1995) 

(Kitagawa et al., 1996) (Ubersax et al., 2003) (Loog and Morgan, 2005).  

 

Cell cycle progression in yeast relies on a single Cdk only (Cdc2 in S. pombe and 

Cdc28 in Saccharomyces cerevisiae [S. cerevisiae]). Higher eukaryotes express 

more than ten different Cdks, but only two of them are essential for the cell cycle 

transitions Cdk1 (Cdc2) and Cdk2. This suggests that the combinatorial action of 

Cdks with different cyclins is crucial for progression through the cell cycle. Years of 

research led to formulation of the classical model of the cell cycle (Morgan, 1997). 

According to this model, Cdk4 and Cdk6 bind to D-type cyclins to promote the start 

of the cell cycle in early G1 by phosphorylation of proteins from the retinoblastoma 

protein family – Rb, p107 and p130 (Matsushime et al., 1994) (Sherr and Roberts, 

1999). This leads to activation of E2F transcribed genes, including cyclin E and 

cyclin A. Subsequently, in late G1, Cdk2-Cyclin E complex further phosphorylates 

Rb proteins and thus promotes more transcription of E2F genes, which results in 

the transition from G1 to S phase (Weinberg, 1995) (Dyson, 1998) (Lundberg and 

Weinberg, 1998).  

 

Cdk1 and Cdk2 in complex with cyclin A (A1 and A2 in vertebrates) drives the 

progression of the cell through S phase by phosphorylating targets involved in DNA 

replication (Girard et al., 1991) (Walker and Maller, 1991) (Tanaka and Araki, 2010). 
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S phase cyclins are synthesized in late G1 but stay inactive due to interaction with 

protein inhibitors p21 and p27 belonging to the Cip/Kip family (Sic1 inhibitor in 

yeast) (Schneider et al., 1996) (Nakayama and Nakayama, 1998). 

Cdk2-cyclin E-mediated phosphorylation targets these inhibitors for degradation by 

the SCF ubiquitin ligase complex, which promotes S phase progression (Pagano et 

al., 1995) (Verma et al., 1997). 

 

Cyclin B is the main mitotic cyclin, synthesized mainly in G2 phase. In mammals 

there are two B cyclins – B1 and B2, but only B1 is essential (Brandeis et al., 1998). 

Cdk1-cyclin B1 complex activity is supressed by Cdk inhibitors and inhibitory 

phosphorylation on Cdk1 (Morgan, 1997). An active Cdk1-cyclin B1 complex drives 

cells to division by phosphorylating a large number of substrates affecting all 

aspects of mitosis and cytokinesis, which will be discussed in greater detail in the 

following chapters (Nigg, 1993) (Errico et al., 2010) (Pagliuca et al., 2011). After 

chromosome segregation, APC degrades the mitotic cyclin B and Cdk1 substrates 

are dephosphorylated, which elicits mitotic exit and completes the cell cycle 

(Sullivan and Morgan, 2007).  

 

 
Figure 2 Cell cycle regulation by cyclins 
A schematic depiction showing the levels of different cyclins during the cell cycle 
and how they coincide with the distinct transitions. Adapted from (Morgan, 2006).  
 

The classical model presented above has been challenged by results emerging 

from mouse models. Interestingly, Cdk2 knockout mice are viable but sterile, 

suggesting that Cdk2 is crucial for meiosis but dispensable for mitotic cycles in 

somatic cells (Ortega et al., 2003) (Berthet et al., 2003). Furthermore, Cdk1 was 

shown to be able to substitute for Cdk2 during G1/S transition and in S phase 

(Aleem et al., 2005) (Hochegger et al., 2007). Following studies by Santamaria et al. 
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showed that Cdk1 is the only Cdk that is truly essential for cell division in somatic 

cells, as the cell cycle was functional in mouse lacking all interphase Cdks (Cdk2, 

Cdk3, Cdk4 and Cdk6) (Santamaria et al., 2007b). All these results have changed 

the classical model of the cell cycle and have shown the Cdks and cyclins are more 

redundant than previously anticipated (Satyanarayana and Kaldis, 2009). Results 

obtained in yeasts further strengthen this concept, as introduction of a single fusion 

protein consisting of cdc2 and B-type cyclin cdc13 inserted into the genome can 

rescue deletion of endogenous cdc2 and cdc13 and drive the cell cycle progression 

in S. pombe in the absence of any other cyclin (Coudreuse and Nurse, 2010). 

Currently, researchers use mathematical modelling together with data generated by 

high-throughput approaches (e.g. mass spectrometry [MS] or siRNA screens) to 

build a minimal model for the regulation of the eukaryotic cell cycle (Gerard et al., 

2015). 

1.2 Mitosis 

The father of cytology, Walter Flemming, coined the name mitosis in the late 

19th century (Flemming, 1882). The word itself originates from a Greek word for 

thread – mitos. Flemming studied the process of cell division using cells obtained 

from gills and fins of salamanders and drew incredibly accurate sketches of the 

process, showing the separation of the chromosomes. He also named chromatin, 

based on the fact that it strongly absorbed aniline dyes (chroma means colour in 

Greek) and also observed its nuclear localization (Zacharias, 2001) (Morgan, 2006). 

Different stages of mitosis are schematically depicted in Figure 3 and described 

below.  

1.2.1 Stages of mitosis 

Mitosis starts in prophase, when replicated DNA undergoes large-scale 

condensation induced partially by the multisubunit protein complex condensin 

(Hirano and Mitchison, 1994) (Hirano, 2012). At the same time, the two 

centrosomes move apart to opposite poles of the cell and the structure of the 

mitotic spindle starts to assemble, orchestrated by motor proteins (Rusan et al., 

2001) (Tanenbaum and Medema, 2010). The bipolar mitotic spindle is fully 

assembled by prometaphase and after nuclear envelope breakdown the 
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microtubules of the spindle start capturing the chromosomes via kinetochores on 

sister chromatids (Cheeseman, 2014). Microtubules pull on kinetochores and are 

thought to create a tension that is opposed by sister chromatid cohesion (Nasmyth 

and Haering, 2009, Peters and Nishiyama, 2012). 

 

The metaphase stage of the cell cycle is reached when all the chromosomes are 

aligned at the metaphase plate in the middle of the cell. Metaphase is also the 

stage when the mitotic rounding of the cell is complete and the typical cultured cell 

has a shape resembling a sphere. The rounding starts at the onset of mitosis and 

requires a massive remodelling of the actin cytoskeleton, which is closely linked to 

the mitotic spindle formation. The round shape of the cell helps establish a 

symmetrical division of the cell material (Cramer and Mitchison, 1997) (Lancaster 

and Baum, 2014). After all the chromosomes are correctly aligned and attached to 

the opposite poles, the spindle assembly checkpoint is satisfied and anaphase 

promoting complex is activated. APC activation marks the onset of anaphase by 

ubiquitination and rapid proteasome-mediated degradation of the regulatory 

proteins securin and mitotic cyclin B (Pines, 2011). Securin degradation releases 

the cysteine-protease separase, which cleaves the Scc1 subunit of the cohesin 

complex, thus allowing the sisters chromatids to segregate to the opposite poles 

(Funabiki et al., 1996) (Uhlmann et al., 1999).  

 

During the first part of anaphase (anaphase A), sister chromatids are pulled to the 

poles by shortening of kinetochore microtubules. In the subsequent anaphase B, 

the mitotic spindle elongates and the distance between the poles is increased, 

which further separates the two sets of chromosomes (Morgan, 2006). During 

anaphase, sets of non-kinetochore microtubules overlap with their plus ends in the 

middle of the cell by action of multiple microtubule bundling factors and motor 

proteins. This creates a signalling platform called the spindle midzone, or central 

spindle, which together with astral microtubules directs the cytokinetic division 

(Glotzer, 2009) (D'Avino et al., 2015). During the final stage of mitosis called 

telophase, the nuclear envelope reassembles, the chromosomes decondense and 

the mitotic spindle is dissolved. Cytokinesis starts at anaphase with the ingression 

of a cleavage furrow between the two sets of segregated chromosomes, until the 

two daughter cells remain connected only by a narrow intercellular bridge.  
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Figure 3 Mitotic stages 
Schematic illustration of the cell division cycle with open mitosis. Late interphase 
cells have duplicated DNA, centrosomes and other cellular components. As cell 
enters mitosis, the DNA starts to condense and the chromosomes become visible. 
Centrosomes move apart to the opposite poles and build the mitotic spindle. In 
prometaphase, the nuclear envelope breaks down and chromosomes are captured 
by kinetochore microtubules. After all chromosomes are correctly attached and 
bioriented on the metaphase plate, the anaphase starts and the chromosomes 
segregate to opposite poles. Afterwards, the two daughter cells are physically 
separated by cytokinesis and the cells exit mitosis and enter G1 phase again. 
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This connection is severed by the process of abscission at the end of telophase 

(Mierzwa and Gerlich, 2014). 

1.2.2 Mechanisms of mitotic regulation 

To successfully finish the cell cycle, a cell needs to divide into two identical 

daughter cells. Equal segregation of duplicated chromosomes is especially 

important to ensure genome stability in daughter cells. Therefore the process of 

mitosis is under close supervision by various control mechanisms. As mitosis is a 

series of highly dynamic and ordered steps, the regulatory mechanisms need to act 

at equally high speed. Thus, most of the transitions are controlled by 

post-translational modifications, mainly protein phosphorylation by mitotic kinases 

(Morgan, 2006). Recently, research of mitotic regulation has turned to protein 

phosphatases and showed that phosphatases and dephosphorylation events are 

likely as important for mitotic regulation as mitotic kinases (Barr et al., 2011). 

Another layer of control is provided by ubiquitin-mediated proteolysis of various 

targets, as precisely timed proteolysis drives the mitotic progression and ensures 

irreversibility of the transitions (Pines, 2011). 

1.2.2.1 Mitotic kinases and phosphatases 

For many years, cell cycle research has focused on mitotic kinases and their 

regulation, and it showed that Cdk1, Plk1 and Aurora kinases are the main mitotic 

kinases. Due to their key role in cell division regulation, these kinases are also 

promising targets for anti-cancer therapies (Salmela and Kallio, 2013) (Domenech 

and Malumbres, 2013). Cdk1, Plk1 and Aurora kinases will be discussed further 

below, together with their phosphatase counterparts. 

 

Cdk1 

Cdk1 is a proline-directed kinase with a preference for the consensus sequence 

S/TP-X-K/R, however, it can also phosphorylate targets carrying the minimal 

consensus sequence S/T-P or even non-S/T-P sites (Ubersax et al., 2003) (Errico 

et al., 2010) (Satterwhite et al., 1992) (Egelhofer et al., 2008). To be catalytically 

active, Cdk1 must bind a regulatory cyclin subunit. In mammals, cyclin B1 is the 

main mitotic cyclin, but early mitotic events are also regulated by Cdk1-cyclin A 



Chapter 1 Introduction 

28 

 

complex. Additionally, the Cdk1-cyclin A complex seems to work upstream of 

Cdk1-cyclin B and mediate its activation (Mitra and Enders, 2004) (Fung et al., 

2007) (Gong et al., 2007). Cyclin binding is necessary but not sufficient for Cdk1 

activation, as a threonine residue close to the active site also needs to be 

phosphorylated by Cdk-activating kinase (CAK) comprised of Cdk7, cyclin H and 

Mat1 (Malumbres, 2014). Interestingly, CAK activity remains constant throughout 

the cell cycle, so it does not exert any temporal control over the Cdk1-cyclin B 

complex activation.  

 

Cdk1-cyclin B complex accumulates throughout G2 phase, but it is kept inactive 

until mitosis by two important inhibitory phosphorylation events on T14 and Y15 

residues by Wee1 and Myt1 kinases (Russell and Nurse, 1987) (Parker et al., 

1992) (Mueller et al., 1995). Phosphorylation of these residues probably prevents 

substrate binding and also changes the orientation of the ATP molecule (Atherton-

Fessler et al., 1993) (Welburn et al., 2007). To fully activate Cdk1-cyclin B complex, 

these phosphorylations need to be removed by Cdc25 phosphatases to trigger 

mitotic entry (Dunphy and Kumagai, 1991, Kumagai and Dunphy, 1991) (Rhind and 

Russell, 2012). In some cells, e.g. Xenopus laevis (X. laevis) embryos, this 

regulatory circuit of Wee1 and Cdcd25 is enough to trigger a switch-like response 

and drive the cell to mitosis. The activity of both Wee1 and Cdc25 is regulated by 

Cdk1-cyclin B itself, as Cdk1 phosphorylation inhibits Wee1 and activates Cdc25 

thus creating a positive feedback loop. This feedback loop system ensures rapid 

activation of Cdk1-cyclin B complex (Kim and Ferrell, 2007) (Trunnell et al., 2011).  

 

In mammals, there are three isoforms of Cdc25, namely Cdc25A, B and C and all 

of them have been shown to activate Cdk1-cyclin B complex. Cdcd25B activity 

peaks in prophase but the protein is already active in G2 phase, so it does not 

trigger mitotic entry, but likely has a role in the initial activation of Cdk1-cyclin B 

(Lammer et al., 1998) (De Souza et al., 2000). Cdc25A/C are both activated in 

prophase and their action is important for the activation of Cdk1-cyclin B complex 

at the onset of mitosis (Hoffmann et al., 1993) (Strausfeld et al., 1994). Cdk1 

phosphorylation stabilizes Cdc25A and activates Cdc25C (Mailand et al., 2002) 

(Hoffmann et al., 1993). Additionally, Wee1 is targeted for proteasome destruction 

after Cdk1 phosphorylation, and Myt1 is inhibited by Plk1 phosphorylation 
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(Watanabe et al., 1995) (Booher et al., 1997) (Nakajima et al., 2003). This 

mechanism forms a part of the regulatory system of feedback loops regulating the 

mitotic entry. Gradual increase of Cdk1-cyclin B activity seems to be important for 

temporal regulation as different levels of Cdk1 activity trigger different mitotic 

events (Gavet and Pines, 2010) (Wieser and Pines, 2015).  

 

Another way to control Cdk1-cyclin B activity is the localization of the complex. 

Cdk1-cyclin B can shuttle between the nucleus and the cytoplasm. Throughout G2, 

the complex is cytoplasmic, in early prophase it starts to localize to the duplicated 

centrosomes, and at the end of prophase the complex suddenly translocates to the 

nucleus (Morgan, 2006). Plk1 phosphorylates cyclin B on S147 to promote the 

import to the nucleus (Toyoshima-Morimoto et al., 2001). Inhibitory kinase Wee1 is 

located in the nucleus and it inactivates Cdk1-cyclin B complex, causing export of 

the complex back to the cytoplasm. When the nuclear concentration of 

Cdk1-cyclin B reaches certain threshold to counteract the Wee1 inhibition, the 

nuclear concentration rapidly increases. Consequently, Cdk1 can phosphorylate its 

nuclear targets including lamins, which leads to nuclear envelope breakdown and 

onset of early mitotic events (Li et al., 1997) (Lindqvist et al., 2007) (Guttinger et al., 

2009). In the cytoplasm, Cdk1-cyclin B complex phosphorylates numerous 

substrates to promote cell rounding, assembly of the mitotic spindle, the 

segregation of multiple organelles and others (Matthews et al., 2012) (Nigg et al., 

1996) (Jongsma et al., 2015). 

 

Cdk1-cyclin B activation and modification of its substrates is necessary for mitotic 

progression, but for Cdk1 substrate phosphorylation events to be stable during 

mitosis, the counteracting phosphatases need to be inactivated at the same time. 

Budding yeast rely on Cdc14 to dephosphorylate Cdk1 targets (D'Amours and 

Amon, 2004). This role of Cdc14 is not conserved in other eukaryotes where PP2A 

and PP1 phosphatase families were identified as important for mitotic progression, 

in particular for the mitotic exit (Kinoshita et al., 1990) (Chen et al., 2007) (Mochida 

et al., 2009) (Schmitz et al., 2010). During early mitosis, Cdk1 substrates are 

dephosphorylated by PP2A-B55δ (Vandre and Wills, 1992) (Burgess et al., 2010). 

Research in X. laevis embryos showed PP2A activity is controlled by a protein 

kinase called Greatwall (Gwl) (Castilho et al., 2009). Microtubule-associated 
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serine/threonine kinase-like enzyme (MASTL) is a human homologue of Gwl, and 

seems to have the same role (Burgess et al., 2010). Interestingly, Gwl does not 

inhibit PP2A directly, but acts via activation of two small protein inhibitors ENSA 

and ARPP-19, which bind specifically to PP2A when in complex with the regulatory 

subunit B55δ (Mochida et al., 2010) (Gharbi-Ayachi et al., 2010) (Rangone et al., 

2011). 

 

By anaphase onset, after cell starts to segregate its chromosomes, the 

Cdk1-cyclin B complex has fulfilled its purpose and it is inactivated via proteolytic 

degradation of cyclin B. Cyclin B contains a D-box recognized by APC complex, 

which polyubiqitinates cyclin B and targets it for degradation (Pines, 2011). Cdk1 

inactivation, concurrent with the activation of PP1 and PP2A phosphatases 

reverses Cdk1 phosphorylations and thereby triggers mitotic exit (Schmitz et al., 

2010) (Wurzenberger and Gerlich, 2011). PP1 is targeted to many cell structures, 

for example the Repo-Man regulatory subunit brings PP1 to segregated 

chromosomes and starts their decondensation (Vagnarelli et al., 2011). Inactivation 

of Cdk1-cyclin B is also a necessary signal for subsequent cytokinesis (Niiya et al., 

2005) (Potapova et al., 2006). 

 

Plk1 

Polo kinase was identified in 1988 in Drosophila melanogaster (D. melanogaster) 

and its role in cell division was proposed when Polo mutant cells showed aberrant 

mitosis and meiosis (Sunkel and Glover, 1988). Polo is well conserved amongst 

eukaryotes, and the human genome encodes five Polo-like kinases (Plks). Plk1 is a 

human homologue of Polo in D. melanogaster, Plo1 in S. pombe and Cdc5 in 

S. cerevisiae. Plk1 is a serine/threonine protein kinase carrying its kinase domain 

at the N-terminus. At the C-terminus there are two Polo box regions that together 

form a Polo box domain (PBD), which binds phosphorylated proteins (Archambault 

and Glover, 2009). The substrates are usually phosphorylated by Cdk1 to create a 

docking site, but Plk1 can also self-prime its targets (Elia et al., 2003) (Neef et al., 

2007). 

  

PBD binding provides selective targeting of Plk1 to specific places within a cell, 

which is important for its functions. During interphase, Plk1 localizes to the nucleus, 
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and in late G2 phase it translocates to the cytoplasm. Plk1 has a regulatory role for 

the timing of mitotic onset, and inhibition of Plk1 leads to a delay in mitotic entry as 

well as to a prominent cell arrest in prophase afterwards (Lenart et al., 2007). Plk1 

together with Cdk1 targets Wee1 phosphatase for degradation and it promotes the 

nuclear localization of Cdc25C and cyclin B (Watanabe et al., 1995) (Kumagai and 

Dunphy, 1996) (Toyoshima-Morimoto et al., 2001). After export from the nucleus, 

Plk1 is localized to centrosomes. Plk1 activity is crucial for centrosome maturation, 

as it promotes recruitment of pericentriolar material (PCM) (Lane and Nigg, 1996). 

Moreover, Plk1 is also required for the assembly of the mitotic spindle (Sumara et 

al., 2004). Recently, a surveillance mechanism that controls the position of the 

mitotic spindle was discovered. LGN/NuMA/dynein pathway controls the position 

and orientation of the spindle and is necessary for the symmetric division into two 

equally sized daughter cells. Plk1 negatively regulates the cortical localization of 

dynein that pulls on the astral microtubules (Kiyomitsu and Cheeseman, 2012).  

 

In metaphase, Plk1 is also targeted to kinetochores, where it regulates 

kinetochore-microtubule attachments. Notably, Plk1 phosphorylates BUBR1 

(a kinase important for the SAC) and while not crucially involved in the checkpoint 

function, the phosphorylation promotes stable attachments of kinetochores to the 

microtubules (Elowe et al., 2007). Plk1 together with Aurora B kinase are also 

responsible for removing the cohesin complex from the chromosome arms in 

prophase and prometaphase by phosphorylating the complex and thus lowering its 

affinity for chromatin (Sumara et al., 2002). Loss of centromeric cohesion is 

prevented by shugoshin, which recruits phosphatase PP2A-B56 to oppose Plk1 

and Aurora B phosphorylations (Salic et al., 2004) (Kitajima et al., 2004) (Kitajima 

et al., 2006) (Tang et al., 2006b).  

 

After the separation of sister chromatids, Plk1 is recruited to the spindle midzone 

by interaction with Prc1, a microtubule bundling protein for spindle midzone 

(Schuyler et al., 2003) (Neef et al., 2007). Studies of the role of Plk1 in the final 

stages of mitosis were not possible because of the essential roles that Plk1 plays in 

early mitosis. Development of small molecule inhibitors, however, uncovered the 

role of Plk1 in cytokinesis. Plk1 activity is necessary for cleavage furrow formation 

and timely abscission, and this function will be discussed later (Santamaria et al., 
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2007a) (Burkard et al., 2007) (Petronczki et al., 2007) (Brennan et al., 2007) 

(Bastos and Barr, 2010). Eventually, during mitotic exit, Plk1 is degraded by the 

APC pathway (Lindon and Pines, 2004). A counteracting phosphatase for Plk1 is 

supposed to be PP1C, which is targeted to Plk1 via direct binding of its regulatory 

subunit MYPT1 (Yamashiro et al., 2008). The crucial role of Plk1 for cell division 

makes it an interesting target for anti-cancer treatments (Strebhardt, 2010) 

(Murugan et al., 2011) (Gjertsen and Schoffski, 2015). 

 

Aurora kinases 

The Aurora kinase family is another group of important mitotic kinases. Like Plk1, 

they have been discovered in D. melanogaster when Aurora mutants failed to form 

a bipolar spindle (Glover et al., 1995). Metazoans have at least two Aurora kinases 

– Aurora A and Aurora B, while yeasts rely only on one isoform, functionally closer 

to the mammalian Aurora B enzyme, namely Ipl1 in S. cerevisiae and Ark1 in 

S. pombe (Carmena et al., 2009) (Chan and Botstein, 1993) (Petersen et al., 2001). 

Mammals additionally have Aurora C, which is expressed primarily in gonads and 

plays a role in meiosis (Yanai et al., 1997) (Tang et al., 2006a).  

 

Aurora kinases belong to the serine/threonine kinase family, they have a catalytic 

domain and non-catalytic regulatory regions. Aurora A and B are very similar both 

at the level of amino acid sequence and protein structure. Despite these similarities, 

they have distinct cellular functions and their localization pattern is also different. 

Differences in the non-catalytic regions and interactions with various regulatory 

proteins can explain these diverse roles of the two kinases (Carmena et al., 2009) 

(Morgan, 2006). 

 

Since G2 phase, Aurora A is mainly found on centrosomes and, at low level also at 

the mitotic spindle during later stages of mitosis (Roghi et al., 1998) (Sugimoto et 

al., 2002). Phosphorylation of the T-loop, essential for the kinase activity can be 

mediated by protein kinase A (PKA), or Aurora A also has the ability to 

auto-phosphorylate itself (Walter et al., 2000) (Cheeseman et al., 2002). Aurora A 

has a role in mitotic entry, where it indirectly activates Cdk1-cyclin B by means of 

Cdc25B phosphatase activation, and it also triggers Plk1 activation together with its 

cofactor Bora (Dutertre et al., 2004) (Macurek et al., 2008) (Seki et al., 2008). The 
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main functions of Aurora A are in centrosome maturation and bipolar spindle 

formation. 

  

Aurora A regulates centrosome maturation by recruiting pericentriolar material 

(Hannak et al., 2001) (Abe et al., 2006). A role in spindle assembly relies on 

cofactor TPX2 that activates Aurora A and targets it to the spindle microtubules 

(Tsai and Zheng, 2005). It has been proposed that TPX2 binding also prevents 

Aurora A dephosphorylation by PP1 phosphatase (Eyers et al., 2003) (Bayliss et al., 

2003). Recently, PP6 has been shown as the major phosphatase antagonizing 

Aurora A activity (Zeng et al., 2010). Assembly of the bipolar spindle requires 

sliding forces in-between the antiparallel microtubules as well as the cortical forces 

pulling on the astral microtubules. Aurora A modulates astral microtubule behaviour 

by phosphorylating Eg5 kinesin, which can slide the microtubules and also MCAK 

protein, important for the bipolarity of the spindle (Giet et al., 2002) (Kapitein et al., 

2005) (Zhang et al., 2008). Aurora A carries a D-box in its sequence and is 

degraded during mitotic exit by the APC (Honda et al., 2000). 

 

Aurora B is the catalytic subunit of the chromosomal passenger complex (CPC), a 

protein assembly containing also INCENP, survivin and borealin proteins. 

Interaction with the CPC is required for Aurora B activation and localization (Adams 

et al., 2000) (Uren et al., 2000) (Gassmann et al., 2004) (Carmena et al., 2009). 

INCENP is the scaffold protein of the CPC and it is crucial for Aurora B full 

activation (Bishop and Schumacher, 2002). In early mitosis, the CPC is found on 

chromosome arms, later it translocates to the centromeres and kinetochores, and 

after sister chromatid segregation Aurora B accumulates at the spindle midzone 

(Carmena et al., 2012).  

 

Aurora B phosphorylates histone H3 on S10, which is a classic epigenetic mark for 

mitotic chromosomes (Hsu et al., 2000) (Murnion et al., 2001). Consequently, the 

role of Aurora B in chromosome compaction has been extensively studied, but the 

level of H3S10 phosphorylation does not correlate with the level of chromosome 

compaction, and the role for Aurora B in condensation seems to be more relevant 

for yeast cells (Adams et al., 2001) (Neurohr et al., 2011). One of the main 

functions of the CPC is to promote chromosome biorientation by destabilization of 
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incorrect kinetochore-microtubule attachments. A current working model postulates 

that correctly attached kinetochores are under tension and stretched from the zone 

of Aurora B phosphorylation (Tanaka et al., 2002) (Andrews et al., 2004) (Liu et al., 

2009). Aurora B phosphorylates the outer kinetochore component Ndc80, which 

leads to destabilization of the attachment and microtubule release (DeLuca et al., 

2006) (Cheeseman et al., 2006). Aurora B destabilization of the kinetochore 

complex is opposed by PP1γ phosphatase (Liu et al., 2010).  

 

Aurora B activity is crucial for the spindle assembly checkpoint (SAC) and 

recruitment of its key factors. Moreover, Aurora B also promotes activation of SAC 

response by other means than error-correction (Carmena et al., 2012) (Santaguida 

et al., 2011) (Maldonado and Kapoor, 2011). After the SAC is satisfied and the 

sisters start to segregate, Aurora B translocates to the spindle midzone. This 

change of localization is important for preventing mitotic checkpoint re-engagement 

after chromosome segregation (Vazquez-Novelle and Petronczki, 2010). By using 

a FRET sensor, Fuller et al. have shown there is a gradient of Aurora B 

phosphorylation with a centre in the middle of the cell during anaphase. They also 

proposed that this has a role in the cleavage furrow positioning (Fuller et al., 2008). 

Furthermore, Aurora B also affects abscission, where it can impose an abscission 

delay when lagging chromatin is found in the way of the cleavage furrow or 

intercellular bridge (Steigemann et al., 2009). This function will be discussed in 

more detail in subsequent chapters. Aurora B is targeted for degradation by APC 

during mitotic exit (Nguyen et al., 2005) (Stewart and Fang, 2005). 

 

Anaphase promoting complex 

Another important control of mitotic progression is provided by ubiquitin-mediated 

proteolysis. Various targets are degraded at specific times, which drives the 

progression through mitosis and ensures the irreversibility of the transitions. The 

key ubiquitin ligase (E3 enzyme) for mitosis is APC, also known as the cyclosome 

(Pines, 2011). APC is a large multisubunit complex that marks its targets by 

polyubiquitin chains for subsequent proteolysis by the 26S proteasome (Pickart, 

2001). APC complex recognizes the substrates through several different 

degradation sequences or degrons. The most common motif is the destruction box 

(D-Box) (Glotzer et al., 1991). For the successful interaction with the D-box, APC 
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needs to be activated by interaction with one of the two important cofactors – 

Cdc20 and Cdh1 (Passmore and Barford, 2005) (Matyskiela and Morgan, 2009) 

(Buschhorn et al., 2011) (da Fonseca et al., 2011). During interphase, APC is kept 

inactive by the inhibitory factor Emi1. At mitotic entry Emi1 is phosphorylated by 

Plk1 and targeted for degradation by another E3 ligase complex – SCF (Hansen et 

al., 2004). Interaction with Cdc20 and Cdh1 confers temporal and substrate 

specificity regulation to the APC, which is crucial for correct mitotic progression.  

 

APCCdc20 complex is activated in mitosis at the same time as the nuclear envelope 

breaks down (den Elzen and Pines, 2001) (Geley et al., 2001). Activation of 

APCCdc20 depends on Cdk1-cyclin B phosphorylation, but the exact nature of the 

regulation is unclear (Rudner and Murray, 2000) (Wieser and Pines, 2015). 

APCCdc20 is activated at the end of prophase, but its main substrates, securin and 

cyclin B, are not degraded until the end of metaphase. This delay is caused by the 

activation of spindle assembly checkpoint. As a response to unattached 

kinetochores, checkpoint proteins form a mitotic checkpoint complex (MCC) 

composed of MAD2, BUBR1 and BUB3 that inhibits APCCdc20 complex formation by 

binding the Cdc20 cofactor (De Antoni et al., 2005) (Sudakin et al., 2001) (Kulukian 

et al., 2009). Interestingly, two APCCdc20 substrates – cyclin A and Nek2A kinase 

are degraded while the complex is inactivated in prometaphase (den Elzen and 

Pines, 2001) (Geley et al., 2001) (Hames et al., 2001). Nek2A is a Ser/Thr kinase 

important for centrosome separation (Faragher and Fry, 2003). Early degradation 

of cyclin A and Nek2A probably depends on direct interaction with the APCCdc20 

complex (Wolthuis et al., 2008) (Di Fiore and Pines, 2010).  

 

In metaphase, after all sister chromatids are correctly attached to kinetochore 

microtubules and bioriented, the SAC is turned off and the APCCdc20 targets securin 

and cyclin B for degradation (Clute and Pines, 1999) (Hagting et al., 2002). This 

results in separase activation, triggering the cleavage of cohesin holding the sister 

chromatids together and their segregation to opposite poles (Nasmyth and Haering, 

2009) (Funabiki et al., 1996) (Uhlmann et al., 1999). In vertebrates, separase 

activity is additionally regulated by Cdk1 phosphorylation (Stemmann et al., 2001). 

Cyclin B degradation also leads to dephosphorylation of the Cdh1 cofactor, which 

allows APCCdh1 complex formation (Kramer et al., 2000) (Hagting et al., 2002) 
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(Matyskiela and Morgan, 2009) (Listovsky and Sale, 2013). Afterwards, APCCdh1 

targets Cdc20, Plk1 and Aurora kinases amongst other substrates for degradation 

(Sivakumar and Gorbsky, 2015). Cyclin B degradation inactivates Cdk1 kinase, and 

the activity of PP1 and PP2A phosphatases results in dephosphorylation of mitotic 

substrates in turn leading to cytokinesis and mitotic exit (Schmitz et al., 2010) 

(Wurzenberger and Gerlich, 2011). 

1.3 Cytokinesis 

Cytokinesis is the process of the final separation of two nascent daughter cells 

during which cellular material including sister genomes are partitioned. It starts 

during anaphase, just after the segregation of sister chromatids, which implies that 

cytokinesis is coordinated with Cdk1 inactivation. Molecular signals coming from 

the anaphase spindle to the cell cortex induce the formation of an actomyosin ring. 

Contraction of the ring then leads to the ingression of the cleavage furrow and 

membrane deposition, which separates the cytoplasm into two parts. After that, the 

two cells remain connected by a thin intercellular bridge, until it is ultimately 

severed by the process of abscission (Fededa and Gerlich, 2012) (D'Avino et al., 

2015) (Morgan, 2006).  

 

The key players in cytokinesis are evolutionarily conserved, and most organisms 

require actin, myosin and microtubules to successfully finish the cell division. 

Interestingly though, the mechanism and the timing of the steps vary in different 

organisms. In animal cells, the position of the cleavage furrow is established during 

anaphase based on positional signals emerging from the anaphase spindle. 

Conversely, the site of cleavage in yeast is determined before mitosis. In budding 

yeast, the bud, which specifies the division plane appears in G1. Fission yeast 

mark the cleavage site in early mitosis by using the position of the nucleus 

(Balasubramanian et al., 2004) (Barr and Gruneberg, 2007). Plants do not form an 

actomyosin ring, but instead assemble a membrane and cell wall to separate the 

two cells by using a specialized structure called the phragmoplast (Jurgens, 2005).    

 

For a successful cell division, cytokinesis needs to occur after chromosome 

segregation and at the equatorial part of the cell in symmetrically dividing cells. 
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Tight temporal and spatial regulation of cytokinesis prevents cytokinesis failure, 

and thus the formation of tetraploid cells. Tetraploid cells carry extra centrosomes 

and they are genetically unstable due to various complications in subsequent 

divisions (Ganem et al., 2009) (Ganem et al., 2007). Injection of tetraploid cells has 

been shown to promote tumour growth in a mouse model (Fujiwara et al., 2005), 

and deregulation of cytokinesis has been linked to multiple diseases including 

cancer (Lacroix and Maddox, 2012). 

 

Polyploidy, however, is not always a sign of disease, as many tissues require 

presence of polyploid cells to be functional (Lacroix and Maddox, 2012). Classic 

examples include liver cells hepatocytes. In adult human liver 30% of hepatocytes 

are polyploid (mostly tetraploid) (Kudryavtsev et al., 1993). Hepatocytes become 

polyploid because of controlled cytokinesis failure caused by a disorganized 

cytoskeleton and defective RhoA activation. The cells are able to further divide as 

they can cluster their supernumerary centrosomes and form a bipolar spindle 

(Guidotti et al., 2003) (Celton-Morizur et al., 2009). Interestingly, tumorigenic 

hepatocytes proliferate as diploid (Saeter et al., 1988). Other examples of adjusted 

cell cycle can be seen during development, for example in the D. melanogaster 

embryo. Fertilized D. melanogaster embryos undergo thirteen fast rounds of 

division without any cytokinesis, which creates a large syncytium (Lee and Orr-

Weaver, 2003). This event is followed by a process of cellularization, whereby the 

thousands of nuclei are packaged to form individual cells (Mazumdar and 

Mazumdar, 2002). Cellularization is a specialized form of cytokinesis and it uses 

some of the same molecular components. In the rest of the chapter, the main focus 

will be on the typical cytokinesis in animal cells. 

1.3.1 Central spindle assembly 

At anaphase onset, Cdk1 inactivation allows formation of the central spindle, a 

signalling platform crucial for cell division. The structure of mitotic spindle 

completely changes as cells progress from metaphase to later stages, kinetochore 

microtubules shorten to segregate the chromosomes to the opposite poles, and 

astral microtubules elongate (Tournebize et al., 2000) (Rusan et al., 2001). The 

central spindle is an array of interdigitated antiparallel microtubules that overlap 
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with their plus ends at the equatorial part of the cell (Glotzer, 2009) (Mastronarde et 

al., 1993). It is partially formed from interpolar non-kinetochore microtubules of the 

mitotic spindle but it also requires de novo polymerisation of microtubules. Newly 

formed microtubules assemble through non-centrosomal pathway on pre-existing 

interpolar microtubules and this assembly requires the augmin complex (Uehara et 

al., 2009) (Uehara and Goshima, 2010) (Kamasaki et al., 2013). 

  

The structure of the central spindle is stabilized by many proteins binding to the 

overlap zone. The key factor is a bundling protein Prc1 (protein required for 

cytokinesis 1). Prc1 homodimers specifically bind and crosslink the antiparallel 

microtubules (Bieling et al., 2010) (Subramanian et al., 2010). Cdk1 

phosphorylation keeps Prc1 in an inactive monomeric form before anaphase onset 

(Jiang et al., 1998) (Zhu et al., 2006). After Cdk1 inactivation, Prc1 also provides an 

important docking space for Plk1 recruitment to the spindle midzone (Neef et al., 

2007). 

 

Another essential component of central spindle is a protein complex called 

Centralspindlin, a heterotetramer that consists of a dimer of Mklp1 and two 

molecules of MgcRacGAP (Mishima et al., 2002) (Pavicic-Kaltenbrunner et al., 

2007). Mklp1, also known as KIF23, is a kinesin-6 motor protein. Research on the 

orthologs of Mklp1, Pavarotti in D. melanogaster and ZEN-4 in C. elegans, 

uncovered a role for Mklp1 in the bundling of antiparallel microtubules and 

cytokinesis progression (Adams et al., 1998) (Powers et al., 1998). MgcRacGAP 

(RACGAP1) was discovered in human cells as a new Rho family GAP factor 

(Toure et al., 1998). Study involving the C. elegans ortholog CYK4 revealed a role 

in the central spindle assembly and cytokinesis (Jantsch-Plunger et al., 2000). 

  

Subsequent research showed that only the full Centralspindlin complex is able to 

bind and bundle microtubules (Mishima et al., 2002) (Pavicic-Kaltenbrunner et al., 

2007). Recent data demonstrated that MgcRacGAP binding to Mklp1 changes the 

conformation of the two motor domains within the Mklp1 dimer, which creates a 

structure suitable for antiparallel microtubule bundling (Davies et al., 2015). 

Additionally, Centralspindlin activity is regulated on several levels. Cdk1 

phosphorylates the motor domains of Mklp1, which reduces their affinity to 
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microtubules before anaphase onset (Mishima et al., 2004). Conversely, Aurora B 

phosphorylation of Mklp1 stabilizes the structure of the central spindle (Kaitna et al., 

2000) (Guse et al., 2005). Aurora B phosphorylation enables formation of 

higher-order clusters of the Centralspindlin complex, which promotes microtubule 

bundling and transport of the complex to the overlap zone (Hutterer et al., 2009). 

The clustering of Centralspindlin is negatively regulated by 14-3-3 protein inhibitory 

interaction with Mklp1, which is released after Aurora B phosphorylation (Douglas 

et al., 2010). 

 

Aurora B activity supports central spindle assembly as already mentioned. At 

anaphase onset, the CPC complex translocates from centromeres to the central 

spindle, and this translocation depends on Mklp2 (Gruneberg et al., 2004). Mklp2 is 

kinesin-6 motor protein like Mklp1 and it also helps Plk1 targeting to the central 

spindle, where it regulates cytokinesis (Hill et al., 2000) (Neef et al., 2003) 

(Petronczki et al., 2007) (Burkard et al., 2009) (Wolfe et al., 2009). CPC interaction 

with Mklp2 is enabled after Cdk1 inhibitory phosphorylation is removed from 

INCENP protein (Hummer and Mayer, 2009). It has been proposed that the CPC 

complex also helps to build the central spindle by bundling the microtubules, but its 

main role is likely focused on delivering the catalytic subunit Aurora B to the spindle 

midzone in order to regulate different components of the spindle midzone by 

phosphorylation, such as Centralspindlin complex (Glotzer, 2009) (Guse et al., 

2005). 

 

Since the central spindle serves as a signalling platform for the later stages of 

cytokinesis it needs to be a stable structure. All the components mentioned above 

help to stabilize this platform throughout division. The length of the overlap zone is 

controlled by the kinesin KIF4A, which brings Prc1 to the antiparallel overlap in 

order to stabilize it (Zhu and Jiang, 2005) (Subramanian et al., 2010). Aurora 

B-mediated phosphorylation activates KIF4A ATPase activity that supresses 

polymerization and dynamic instability of the microtubules to restrict the midzone 

(Bieling et al., 2010) (Hu et al., 2011) (Nunes Bastos et al., 2013). Another kinesin 

regulated by Aurora B is KIF2A, which depolymerises microtubules from their 

minus ends. Aurora B gradient keeps it inactive at the spindle midzone to prevent 

over-shortening of the microtubules (Uehara et al., 2013). 
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In order to successfully complete cytokinesis, it is, however, not sufficient to only 

assemble and stabilize the spindle, as it also needs to be positioned correctly in the 

dividing cell. This phenomenon has been studied mainly during asymmetric 

divisions in D. melanogaster and C. elegans (Gonczy, 2008) (Sansregret and 

Petronczki, 2013). However, it is also important for symmetric divisions, where the 

spindle needs to be placed in the centre of the cell to produce two daughter cells of 

equal size. Astral microtubules serve as a connection between the spindle and the 

polar cell cortex, and they play an important role in the spindle positioning. They 

work in parallel with dynein-dynactin complexes at the cell cortex that can exert 

pulling forces on the spindle (Busson et al., 1998) (O'Connell and Wang, 2000) 

(Kotak et al., 2012). Dynein is recruited to the polar cortex by interaction with NuMA, 

while NuMA is positioned by binding to LGN and Gαi proteins (Blumer et al., 2006) 

(Du and Macara, 2004) (Woodard et al., 2010). Recent work has demonstrated that 

centrosomal Plk1 activity antagonizes the interaction of dynein with NuMA, which 

spatially modulates dynein pulling activity and helps positioning the spindle in the 

middle of the cell. Chromosome-derived RanGTP gradient further restricts the 

lateral localization of LGN/Gαi-NuMA complex and thus also regulates the spindle 

position (Kiyomitsu and Cheeseman, 2012). Furthermore, the RanGTP gradient 

supports proper spindle positioning also via asymmetric membrane elongation 

(Kiyomitsu and Cheeseman, 2013). 

 

The central spindle assembly marks the beginning of cytokinesis in anaphase. 

Cdk1 inactivation and re-localization of Aurora B and Plk1 kinases are crucial for 

proper spindle assembly and positioning. 

1.3.2 Cleavage plane determination 

The cleavage plane is specified by the anaphase spindle signalling to the cell 

cortex, which provides an important spatial and temporal coupling with the 

segregation of sister chromatids (Rappaport, 1996) (Burgess and Chang, 2005). 

Early seminal studies were performed in echinoderm eggs, large cells suitable for 

micromanipulation. Raymond Rappaport performed his classic micromanipulation 

experiments using sand dollar eggs. One of these experiments clearly showed that 

the spindle induces formation of the cleavage furrow and regulates its position. Just 



Chapter 1 Introduction 

41 

 

after the egg started to cleave, he physically shifted the spindle to a new position. 

Regression of the original furrow and formation of a new furrow above the spindle 

midplane was observed and remarkably, this could be repeated several times in 

the same cell (Rappaport and Ebstein, 1965) (Rappaport, 1985).  

 
Figure 4 Microtubule organization in a human anaphase cell 
Schematic representation showing the different types of microtubules (MTs) in an 
anaphase cell. Chromosomes are pulled to the cell poles by kinetochore 
microtubules. Spindle midzone microtubules are antiparallel microtubules that 
overlap with their plus ends in the middle of the cell. Astral microtubules also 
emanate from the centrosomes but they reach to the cell cortex. Polar astral 
microtubules grow towards the cell poles, while equatorial asters grow towards the 
furrow. Adapted from (Burgess and Chang, 2005). 
 

How exactly does the spindle control the position of the cleavage furrow, however, 

still remains a key question field of cell division research and cell biology in general. 

Different models have emerged throughout the years, but none of them could 

reconcile all the results obtained in the different model organisms. Nonetheless, a 

consensus has emerged regarding the convergence of these signals, suggesting 

that the signals from the spindle lead to the activation of a key player in cytokinesis, 

the small GTPase RhoA that can promote the formation and contraction of the 

cleavage furrow (Piekny et al., 2005) (Bement et al., 2005) (Jordan and Canman, 

2012). 

   

Do microtubules promote the contractility of the cell cortex or do they inhibit the 

contractile forces? Are all microtubules affecting contractility equally or do 

subpopulations of fibers differ (Figure 4)? A series of seminal experiments 

performed by Raymond Rappaport, including the classic “torus experiment”, 



Chapter 1 Introduction 

42 

 

supported the stimulation model (Rappaport, 1996) (Burgess and Chang, 2005). 

Briefly, by pushing a glass sphere through the sand dollar egg, Rappaport created 

a toroidal shaped cell (Figure 5). During next division, two spindles formed two 

normal cleavage furrows just above the spindle midplanes, but importantly, also a 

third furrow (later named as the Rappaport furrow) emerged a few minutes later in-

between the astral microtubules of the two spindles (Rappaport, 1961). Other 

researchers expanded these experiments and their results further support the 

notion that only the presence of astral microtubules, but not the chromosomes or 

the midzone microtubules is crucial for furrowing (Hiramoto, 1971) (Zhang and 

Nicklas, 1996). Conversely, results from D. melanogaster showed the importance 

of central spindle signalling. D. melanogaster cells with a mutated asterless gene 

that lack the astral microtubules are able to form a furrow (Bonaccorsi et al., 1998) 

(Giansanti et al., 2001). Only if the central spindle assembly was disrupted 

simultaneously, furrow formation was blocked (Adams et al., 1998). 

 

 
Figure 5 Rappaport “torus experiment” 
Schematic representation of classic Rappaport “torus experiment” in sand dollar 
eggs described in the text. Results supported astral stimulation model of cleavage 
plane specification.  
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The polar relaxation model postulates that astral microtubules inhibit cortical 

tension at the poles and thus “relax” the cortex (Figure 6) (Wolpert, 1960) (White 

and Borisy, 1983). This inhibition of contractility at the polar regions could then lead 

to cleavage in the middle of the cell. It has been shown (Asnes and Schroeder, 

1979) and theoretically modelled (Yoshigaki, 2003) that there are less astral 

microtubules contacting the furrow than at the poles, which supports this notion. 

 

In 2003, Dechant and Glotzer attempted to reconcile the different models and 

explain the conflicting results obtained in different model organisms. It had been 

demonstrated before that in C. elegans embryos, Centralspindlin is necessary for 

the central spindle assembly, but that it is not crucial for cleavage furrow formation 

(Powers et al., 1998) (Jantsch-Plunger et al., 2000). Dechant and Glotzer showed 

that the central spindle becomes essential for furrow formation in C. elegans 

embryos if the spindle is not elongated to the normal extent and the two 

centrosomes are in close proximity (Dechant and Glotzer, 2003). Consequently, 

they proposed that both the central spindle and the asters redundantly contribute to 

positioning and formation of the cleavage furrow by creating a local minimum of the 

microtubule density. This model was later expanded with the notion that astral 

microtubules negatively regulate the recruitment of cortical myosin, which could 

explain why they inhibit furrowing (Werner et al., 2007). However, other studies 

could not identify the local minimum of the microtubule density in C. elegans 

embryos (Motegi et al., 2006) (Verbrugghe and White, 2007). 

 

A subsequent study from Bringmann and Hyman used laser microdissection to 

severe astral microtubules in order to separate the roles of the central spindle and 

the asters for furrow positioning in C. elegans. After shifting the position of the 

spindle midzone, they observed two separate furrows – one in-between the asters, 

and the second one close to the midzone. These experiments suggested the 

existence of two redundant signals that influence the furrow positioning, a notion 

consistent with the results obtained in Glotzer lab: the first signal emerging from the 

astral microtubules, and the second correction signal arising from the central 

spindle (Bringmann and Hyman, 2005). 
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Figure 6 Different models for cleavage furrow positioning 
A Astral stimulation model – equatorial asters deliver the stimulatory signal.  
B Central spindle model – the spindle midzone provides the cleavage signal.  
C Polar relaxation model – polar astral microtubules inhibit contractility at the cell 
poles.  
 

Another model does not base the different role of microtubules on their geometry 

but rather on their stability. Canman et al. induced cytokinesis in cells with 

monopolar spindles. Interestingly, they observed formation of the furrow at the 

cortex distal to the chromosomes. Additionally, they also determined that 

microtubules contacting the furrow were more stable than the polar asters. This 

observation has led the authors to propose that stable microtubules promote 

furrowing, as opposed to dynamic microtubules that inhibit the contractility 

(Canman et al., 2003). Further supporting this notion, it was later shown that even 

a single microtubule stabilized by taxol could induce furrowing (Shannon et al., 

2005). In 2008, Foe and Dassow working with sea urchin eggs discovered that a 

subset of microtubules, mainly equatorial asters, became more stable during 

anaphase. Moreover, plus-end tips of these stabilized microtubules matched the 

localization of activated myosin (Foe and von Dassow, 2008). These observations 

bring about the conceptual question of why should the stable microtubules be 

better than dynamic ones in furrowing stimulation? Their increased ability to bring 

and concentrate factors necessary for furrowing to the cortex was suggested as an 

explanation (Carvalho et al., 2003) (Odell and Foe, 2008), however, this model also 

has caveats. Further research with sea urchin eggs suggested that the dynamic 

state of asters is not crucial for furrow formation, at least in this system, as various 

drugs affecting the microtubule dynamics did not affect their competency to 

stimulate furrowing (Strickland et al., 2005). 
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The last model argues that the stimulatory signal may be coming from the spindle 

midzone rather than the asters. It was originally postulated after micromanipulation 

studies in grasshopper neuroblasts, which showed that the cleavage furrow always 

formed at the middle of the spindle (Kawamura, 1960) (Kawamura and Carlson, 

1962). In support of this model, presence of a barrier in-between the spindle 

midzone and the cortex prevented the formation of the furrow in rat kidney cells 

(Cao and Wang, 1996). Likewise, the aforementioned results from D. melanogaster 

are in line with the notion that the midzone is providing the signal that stimulates 

furrowing (Bonaccorsi et al., 1998) (Giansanti et al., 2001) (Adams et al., 1998). 

The spindle midzone model can be viewed as a spinoff from the equatorial 

stimulation model, because both propose that an array of overlapping microtubules 

in the middle of the cell to provides the stimulatory signal. In small cells, the spindle 

midzone might be close enough to the cortex to provide such signal. In large cells, 

equatorial astral microtubules could cooperate with the midzone (Su et al., 2014). 

Spindle midzone microtubules are stable, so they also fit the dynamics model (Foe 

and von Dassow, 2008). 

 

Molecular details of how the spindle midzone contributes to the formation of the 

active RhoA zone are better understood than the elusive role of asters (Figure 7). 

The crucial activator of RhoA during cytokinesis is a RhoGEF factor called Ect2. 

Ect2 interacts with the spindle midzone through its N-terminal BRCT domains that 

bind to MgcRacGAP (Somers and Saint, 2003) (Yuce et al., 2005) (Nishimura and 

Yonemura, 2006). The interaction requires Plk1 to phosphorylate MgcRacGAP and 

this phosphorylation event is crucial for cytokinesis progression (Petronczki et al., 

2007) (Wolfe et al., 2009) (Burkard et al., 2009) (Zou et al., 2014) (Kim et al., 2014). 

During later anaphase, Ect2 also interacts with the plasma membrane and this 

interaction is coordinated with chromosome segregation through Cdk1 inhibitory 

phosphorylation (Su et al., 2011) (Chalamalasetty et al., 2006). Combined, these 

findings resulted in a model, which proposes that the spindle midzone regulates the 

furrow position by activating RhoA at the equatorial part of the membrane through 

localised accumulation of Ect2 (Su et al., 2011). 
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Figure 7 Molecular details of central spindle model of cleavage plane 
specification 
After anaphase onset, Centralspindlin complex binds to antiparallel overlap of 
midzone microtubules. Protein Ect2 localizes to spindle midzone by interaction with 
Centralspindlin. Ect2 also binds plasma membrane, which creates concentration 
gradient of Ect2 at the equatorial part of the membrane. Central spindle model 
propose that this specific localization of Ect2, main activator of RhoA leads to 
preferential activation of RhoA in the equatorial part of plasma membrane.  
 

As outlined above, despite many years of research, there is currently no simple 

model that could reconcile all the results from the different model organisms. Most 

likely, there is no simple answer and multiple redundant pathways could specify the 

position of the cleavage furrow to make the system robust. Alternative explanation 

is that the mechanism that plays major role varies in different organism and in cells 

of different size. Finally, the possibility that another player may be involved in the 

process cannot be formally excluded. 
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1.3.3 Activation of RhoA 

RhoA is a master regulator of cytokinesis. Together with Rac1 and Cdc42, RhoA 

belongs to the family of Rho GTPases, acting as molecular switches (Dvorsky and 

Ahmadian, 2004). The first experiments that showed RhoA has a crucial role in 

cytokinesis were performed in X. laevis embryos, where the specific inhibition of 

RhoA by C3 toxin impaired cleavage furrow formation and cytokinesis (Kishi et al., 

1993). Further experiments confirmed the importance of RhoA for cell division in 

other organisms, like D. melanogaster and C. elegans (Crawford et al., 1998) 

(Prokopenko et al., 1999) (Jantsch-Plunger et al., 2000). The use of fluorescent 

probes in sea urchin and HeLa cells, demonstrated that active RhoA localizes to 

the cleavage plane and its accumulation precedes the furrow formation (Yoshizaki 

et al., 2003) (Bement et al., 2005). However, experiments with other mammalian 

cell lines were less clear, as some of the cell types failed the division completely, 

while others showed a less penetrant phenotype (Moorman et al., 1996) (O'Connell 

et al., 1999). This could be caused by vertebrate paralogs of RhoA, namely RhoB 

and RhoC, which may be able to partially complement RhoA functions (Jordan and 

Canman, 2012).  

 

Experiments in sea urchins using fluorescent probes also suggested that 

microtubules of the anaphase spindle control the localization of cleavage plane 

during cytokinesis via controlling the zone of active RhoA. Displacement of the 

spindle resulted in a corresponding shift of the zone of active RhoA. Importantly, 

this provided the link between the spindle and RhoA activity, and demonstrated 

causal connection between the spindle and furrowing (Bement et al., 2005).      

 

Intrinsic GTPase activity of RhoA is very low and it needs to be activated by 

interaction with regulatory factors. Guanine nucleotide exchange factors (GEFs) 

stimulate the dissociation of inactive GDP-bound complex and thus activate the 

GTPase and its effectors. GEF interaction with the GTPase affects the 

nucleotide-binding site of the GTPase, which triggers nucleotide release. The 

concentration of GTP in the cytoplasm is around ten-times higher than GDP, 

favouring the GTP binding and subsequent RhoA activation (Bos et al., 2007). 

Conversely, GTPase activating proteins (GAPs) promote efficient GTP hydrolysis, 
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and consequently stimulate GTPase activity, resulting in the return of the GTPase 

to its inactive state (Vetter and Wittinghofer, 2001) (Bos et al., 2007). Originally, the 

consensus was that GEFs activate RhoA to initiate furrowing and GAPs inactivate 

RhoA at the end of cytokinesis. Afterwards, the so-called “flux” model was 

proposed, which suggests constant cycling of RhoA between GTP and GDP states 

(Bement et al., 2006) (Miller and Bement, 2009). 

 

The main GEF factor for RhoA during cytokinesis is Ect2 and its mutation or 

depletion causes a failure in contractile ring assembly and cleavage furrow 

formation (Tatsumoto et al., 1999) (Prokopenko et al., 1999) (Somers and Saint, 

2003) (Yuce et al., 2005). However, other GEFs were also proposed to participate 

in RhoA activation during cytokinesis. MyoGEF localizes to the central spindle and 

spindle poles. Depletion of MyoGEF by siRNA led to mild cytokinetic defects (Wu et 

al., 2006). MyoGEF activity was proposed to affect Ect2 and RhoA localization, but 

was not shown to directly activate RhoA, which might explain the mild cytokinetic 

defects (Asiedu et al., 2009). Another GEF factor with a possible role in RhoA 

activation during cytokinesis is GEF-H1, which is localized to spindle microtubules 

during mitosis. Similarly to MyoGEF, GEF-H1 depletion caused mild cytokinetic 

defects, while GEF-H1 activity was dispensable for the initiation of furrowing. 

Consequently, it was proposed to stimulate RhoA during ingression of the cleavage 

furrow (Birkenfeld et al., 2007).  

 

In the cytokinesis field, the most intensely studied GAP factor is MgcRacGAP 

(called CYK-4 in C. elegans and RacGAP50 in D. melanogaster). MgcRacGAP is a 

part of Centralspindlin complex and plays a crucial role in central spindle assembly 

(Mishima et al., 2002) (Pavicic-Kaltenbrunner et al., 2007). How and whether 

MgcRacGAP affects RhoA activity is, however, controversial. The first study 

suggesting its role in RhoA activation was in C. elegans embryos, when cyk-4 

mutant embryos initiated furrowing but afterwards failed to complete cytokinesis 

(Jantsch-Plunger et al., 2000). Therefore, CYK-4 was proposed to be the GAP 

factor for RhoA (Jantsch-Plunger et al., 2000) (Lee et al., 2004). In line with this 

notion, in X. laevis embryos GAP-defective mutants of MgcRacGAP led to a 

broader RhoA zone (Miller and Bement, 2009). Conversely, MgcRacGAP was 

shown as a poor GAP for RhoA, and was much more efficient towards Rac1 and 
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Cdc42 (Toure et al., 1998) (Jantsch-Plunger et al., 2000). To reconcile these 

contradictory results, it was suggested MgcRacGAP becomes efficient towards 

RhoA after Aurora B phosphorylation (Minoshima et al., 2003). However, other 

researchers disputed this notion, and showed that MgcRacGAP was still not an 

efficient RhoGAP even after treatment with Cdk1, Aurora B and Plk1 inhibitors 

(Bastos et al., 2012). MgcRacGAP inhibition of Rac GTPase was proposed to 

prevent branched actin formation via Rac effector Arp2/3 complex, which could 

otherwise disrupt the action of the contractile ring (Canman et al., 2008) (D'Avino et 

al., 2004). Another possibility was suggested by Bastos el al., arguing that the Rac 

activity may be crucial for cell adhesion and the spreading. Thus, Rac activity 

needs to be inhibited at the site of the cleavage furrow and MgcRacGAP could 

serve this purpose (Bastos et al., 2012). Recently, it was also proposed that Rac1 

inhibition is necessary to reduce cortical tension to allow furrow formation (Loria et 

al., 2012). 

 

Moreover, MgcRacGAP might promote RhoA activation indirectly through activation 

of other cytokinetic factors. For example, MgcRacGAP binding to N-terminal part of 

Ect2 was proposed to relieve autoinhibition of Ect2 protein (Kim et al., 2005) (Yuce 

et al., 2005). Recent work from Zhang et al. suggested that MgcRacGAP activates 

RhoA function through Ect2 activation, and proposed a complex formation between 

Ect2, MgcRacGAP and RhoA allows the highest stimulation of RhoA (Zhang and 

Glotzer, 2015).  

 

Other GAPs were shown to have a role in cytokinesis too, namely p190RhoGAP 

and MP-GAP. p190RhoGAP can regulate RhoA activation as a classic GAP factor, 

as its overexpression led to cytokinesis failure and formation of multi-nucleated 

cells (Su et al., 2003). It was proposed that p190RhoGAP could oppose Ect2 GEF 

activity and thus regulate RhoA activation, however, the phenotype of 

p190RhoGAP depletion was not very penetrant, suggesting p190RhoGAP is 

probably not the main GAP factor for RhoA (Mikawa et al., 2008) (Su et al., 2009). 

Notably, inhibition of MP-GAP (ARHGAP11A), a homolog of C. elegans Rga-3 and 

Rga-4, led to excessive contractility of the cell cortex and formation of large 

protrusions. Additionally, MP-GAP was shown to stimulate GTPase activity of RhoA 
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in vitro. Interestingly, MP-GAP restricted RhoA zone but only in the sensitized 

background of cells lacking astral microtubules (Zanin et al., 2013).  

1.3.4 Contractile ring assembly and contraction 

The active GTP-bound form of RhoA promotes contractile ring formation and 

contraction by simultaneous activation of actin assembly and non-muscle myosin II 

activity (Figure 8) (Piekny et al., 2005) (Jordan and Canman, 2012). RhoA binding 

to diaphanous-related formins causes release of their autoinhibition (Otomo et al., 

2005). Subsequently, formins together with profilin can nucleate and elongate 

linear actin filaments, which are thought to be crucial for contractile ring assembly 

and ingression (Castrillon and Wasserman, 1994) (Watanabe et al., 1997) 

(Severson et al., 2002) (Watanabe et al., 2008). Furthermore, RhoA indirectly 

activates myosin II via ROCK activation and inhibition of MYPT phosphatase 

(Matsumura, 2005). Rho-associated protein kinase (ROCK) is a serine/threonine 

kinase that phosphorylates Ser19 of myosin II regulatory light chain (rMLC), which 

results in myosin II thick filament formation and activates the ATPase activity of its 

motor domain (Amano et al., 1996) (Kosako et al., 2000). 

  

 
Figure 8 How RhoA activation leads to contractile ring formation and furrow 
ingression 
Activation of small GTPase RhoA is a key step during cytokinesis. This scheme 
represents the two main downstream pathways that forms actomyosin contractile 
ring and activates cleavage furrow ingression. 
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MYPT is a myosin phosphatase that dephosphorylates Ser19, therefore it needs to 

be inhibited by ROCK phosphorylation to allow the formation of the contractile ring 

(Kimura et al., 1996) (Piekny and Mains, 2002). Furthermore, ROCK indirectly 

stabilizes actin filaments by inactivation of the actin binding protein cofilin, which 

otherwise disassembles the filaments (Amano et al., 2002) (Geneste et al., 2002). 

Another proposed RhoA target and effector is Citron kinase, which can 

di-phosphorylate myosin II at Ser19 and Thr18 (Yamashiro et al., 2003). However, 

recent data obtained with the Citron kinase ortholog in D. melanogaster called 

Sticky, suggest that Citron kinase is not a true effector of RhoA as its activity is 

independent of RhoA status (Bassi et al., 2011). Citron kinase functions later during 

abscission and was also proposed to work as a scaffolding factor of the contractile 

ring (Gai et al., 2011) (Bassi et al., 2013) (D'Avino et al., 2015). 

  

An important scaffolding factor for the contractile ring is Anillin, a highly conserved 

multi-domain protein interacting with many proteins important for cytokinesis 

(Piekny and Maddox, 2010). Anillin is able to interact with actin (Miller et al., 1989), 

myosin (Straight et al., 2005), RhoA (Piekny and Glotzer, 2008), septins (Field et 

al., 2005a), MgcRacGAP (D'Avino et al., 2008) (Gregory et al., 2008) and Ect2 

(Frenette et al., 2012). Anillin is thought to provide a signalling platform and link the 

contractile ring with the plasma membrane (Liu et al., 2012). Depletion of Anillin 

does not prevent cleavage furrow ingression, but the furrow is not stable and it 

regresses later, resulting in formation of multi-nucleated cells. In some cell types, 

contractile ring oscillations and excessive blebbing are observed, which further 

supports the scaffolding role of Anillin (Straight et al., 2005) (Piekny and Glotzer, 

2008) (Hickson and O'Farrell, 2008).  

 

Septins (Sept1-10 in mammals) are GTPases that assemble into bundles and 

filaments required for the contractile ring formation (Neufeld and Rubin, 1994) 

(Kinoshita et al., 1997). Apart from the aforementioned interaction with Anillin, 

septins also bind actin and myosin II (Joo et al., 2007) (Mavrakis et al., 2014). 

Septins were shown to bundle actin filaments to form rings in vitro, and therefore 

they might help to bend the filaments in vivo as well (Mavrakis et al., 2014).  
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Actin and myosin II form an actomyosin ring that surrounds cell equator just 

beneath the cell cortex (Maupin and Pollard, 1986) (Kamasaki et al., 2007). At first 

it appears as a broad equatorial zone, which later narrows down (Mabuchi, 1994) 

(Hu et al., 2011) (Lewellyn et al., 2011). Actin and myosin can assemble on site or 

travel to the equator by cortical flow (Murthy and Wadsworth, 2005) (Yumura et al., 

2008) (Zhou and Wang, 2008) (Uehara et al., 2010). How exactly the actomyosin 

ring generates the force to ingress the furrow is not very well understood. The 

classic model also known as “purse string” theory postulates that myosin II slides 

the antiparallel actin filaments similarly to the way muscle contraction works, which 

shrinks the diameter of the ring and causes the ingression of the surrounding 

membrane (Schroeder, 1972) (Satterwhite and Pollard, 1992) (Biron et al., 2005). 

This model requires the alignment of the filaments with the cleavage plane, which 

was observed experimentally in some organisms (Schroeder, 1972) (Tucker, 1971) 

(Maupin and Pollard, 1986) (Kamasaki et al., 2007). However, other studies did not 

confirm this filaments organization (Fishkind and Wang, 1993) (Reichl et al., 2008). 

Moreover, recent study showed that mutant version of myosin II, which cannot slide 

actin filaments is able to rescue cytokinesis in COS-7 cells (Ma et al., 2012).  

 

Other models have been proposed to explain this conundrum, and they suggest 

that depolymerisation of actin together with cross-linking proteins’ activity could be 

sufficient to generate the contractile force (Zumdieck et al., 2007) (Vogel et al., 

2013) (Reichl et al., 2008). Experiments demonstrated that actin filaments shorten 

and the contractile ring disassembles during contraction (Murthy and Wadsworth, 

2005) (Kamasaki et al., 2007) (Carvalho et al., 2009). Most of the models to date 

have focused on the contractile forces in the equatorial part of the cell. But 

experimental work also showed that cell shape and contractility of the polar cortex 

also affects the furrow ingression (Zhang and Robinson, 2005) (Sedzinski et al., 

2011). Further research is necessary to explain how the contractile ring is 

organized and how the actomyosin contractility generates the force necessary for 

furrow ingression. 
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1.3.5 Membrane trafficking and cytokinesis  

Cytokinetic research mostly focused on the role of microtubules and actomyosin 

systems in cytokinesis. However, in the last decade, the role of the plasma 

membrane has come into focus as well. As the cleavage furrow ingresses, new 

membrane needs to be added to the cleavage site to allow the growth of cell 

surface. Thus, secretory and endocytic pathways have a crucial role in furrow 

ingression and abscission. Moreover, it was also proposed that vesicles could bring 

various factors to the cleavage site and therefore directly regulate cytokinesis 

progression (Neto et al., 2011) (Skop et al., 2004) (Tang, 2012) (Shuster and 

Burgess, 2002). 

 

Golgi-derived secretory vesicles move and accumulate at the cleavage furrow and 

midbody region and fuse with the growing membrane (Goss and Toomre, 2008). 

The role of secretory vesicles trafficking was further confirmed by various 

experiments. Brefeldin A (BFA) is a fungal antibiotic, which disrupts the secretory 

pathway by inhibiting protein transport from endoplasmic reticulum to Golgi. BFA 

treatment led to late cytokinesis failure in C. elegans (Skop et al., 2001) and 

D. melanogaster cells (Kitazawa et al., 2012). Further studies in D. melanogaster 

showed that depletion of various regulatory proteins involved in membrane 

trafficking, e.g. SNARE complexes, caused problems during cell division (Xu et al., 

2002) (Farkas et al., 2003) (Robinett et al., 2009). 

 

A functional endocytic pathway is also necessary for correct cytokinesis 

progression. For instance, the large GTPase dynamin that is involved in vesicle 

budding and scission was shown to accumulate at the spindle midzone and at the 

furrow, and its depletion led to cytokinesis failure (Praefcke and McMahon, 2004) 

(Wienke et al., 1999) (Thompson et al., 2002). The small GTPases Rab11, Arf6 

and Rab35 that are crucial for endocytic recycling were recognized for their role in 

cytokinesis as well (Schiel and Prekeris, 2013). In D. melanogaster spermatocytes, 

Rab11 depletion caused accumulation of Golgi-derived vesicles in the furrow. 

These vesicles did not fuse with the furrow and this resulted in defective ingression 

of the contractile ring (Giansanti et al., 2007). FIP3 protein binds to Rab11-positive 

endosomes and FIP3-Rab11 seems to regulate the endocytic targeting important 
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for abscission (Wilson et al., 2005). Interestingly, FIP3 was shown to bind 

MgcRacGAP in late telophase, and this binding was competing with Ect2’s 

interaction with MgcRacGAP. These results suggest a regulation of abscission 

timing by MgcRacGAP’s sequential and mutually exclusive interaction with Ect2 

and FIP3 (Simon et al., 2008). All these results support a close relationship 

between secretory pathways and cytokinesis, and it will be interesting to see the 

further development of this field.      

1.3.6 Lipids and cytokinesis 

Given the importance of the plasma membrane for cytokinesis, it is logical that the 

composition of the membrane will affect the process through influencing physical 

properties of the cell envelope and mediating the interaction of cytokinetic factors 

with the plasma membrane. In most membranes, different lipids are asymmetrically 

distributed, and they can also form specialized domains that affect localization of 

membrane-binding and transmembrane proteins. Thus, an increasing amount of 

studies have focused on how lipid composition affects cell division (Neto et al., 

2011) (Brill et al., 2011) (Echard, 2012) (Atilla-Gokcumen et al., 2014).  

 

It was reported that multiple lipids accumulate in the cleavage furrow, for example 

phosphatidylinositol 4,5-bisphosphate (PIP2) or phosphatidylethanolamine (PE) 

(Emoto et al., 2005) (Field et al., 2005b) (Emoto et al., 1996). PE specifically 

accumulates at the outer leaflet of the equatorial plasma membrane at the later 

stages of cytokinesis. Inhibition of the PE transport to the outer layer of the plasma 

membrane prevented the contractile ring disassembly during abscission and 

caused cytokinetic failure (Emoto et al., 1996) (Emoto and Umeda, 2000). 

Sterol-rich lipid rafts were also observed to localize to the furrow in late cytokinesis, 

both in yeast and mammalian cells (Wachtler et al., 2003) (Ng et al., 2005). These 

rafts were enriched for ganglioside GM1, cholesterol and signalling molecules like 

phospholipase C. Notably, they required actin, myosin II and microtubules in order 

to form. Disruption of these rafts caused major cytokinetic defects (Ng et al., 2005). 

 

Phosphatidylinositol phosphates (PIPs) form another group of lipids with a reported 

function in cytokinesis (Brill et al., 2011) (Echard, 2012). Phosphatidylinositol 
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4,5-bisphosphate (PIP2) was repeatedly shown to specifically accumulate at the 

equatorial membrane (Emoto et al., 2005) (Field et al., 2005b) (Wong et al., 2005). 

Disrupting the PIP2 localization as well as preventing its hydrolysis caused 

cytokinetic failure in D. melanogaster and mammalian cells (Wong et al., 2005) 

(Emoto et al., 2005). Importantly, PIP2 binding targets septins (Zhang et al., 1999) 

(Bertin et al., 2010) and Anillin (Liu et al., 2012) to the plasma membrane therefore 

helping to organize the furrow. PIP2 is also an interaction partner for MgcRacGAP 

and this binding links the microtubules to the plasma membrane during cytokinesis 

(Lekomtsev et al., 2012).  

 

Mutation in the fwd gene in D. melanogaster spermatocytes caused contractile ring 

instability and subsequent cytokinesis failure. fwd gene encodes 

phosphatidylinositol 4-kinase β (PI4Kβ), which is required for synthesis of 

phosphatidylinositol 4-phosphate (PI4P) and formation of PI4P positive vesicles 

(Brill et al., 2000). These vesicles also contain Rab11, a small GTPase important 

for endocytic recycling. PI4P targets Rab11-containing vesicles to the spindle 

midzone, which is believed to bring regulatory factors to control cytokinesis 

progression (Polevoy et al., 2009). Phosphatidylinositol 3-phosphate (PI3P) 

positive vesicles were observed in the intercellular bridge between two nascent 

cells. PI3P accumulation seems to be important for abscission, as depletion of the 

main phosphatidylinositol 3-kinase VPS34 caused abscission delays and failure 

(Thoresen et al., 2010) (Sagona et al., 2010). 

1.3.7 Abscission 

Constriction of the contractile ring continues until the midzone is around 1.5 µm in 

diameter. The narrow intercellular bridge connects the two daughter cells for some 

time, before they are finally split during abscission. At the centre of the bridge lies 

an electron-dense structure called the midbody that forms in telophase and 

originates from compressed spindle midzone microtubules. The midbody serves as 

a signalling platform that controls abscission, and more than one hundred proteins 

were found to associate with the midbody (Mierzwa and Gerlich, 2014) (Skop et al., 

2004). Different proteins localize to various places within the midbody structure. 

KIF4 and Prc1 remain associated with the microtubules in the midbody core (Hu et 
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al., 2012), while other proteins including Centralspindlin, Ect2, Anillin, RhoA, 

septins and Citron kinase localize to the midbody ring that surrounds the core (Gai 

et al., 2011) (Hu et al., 2012) (Kechad et al., 2012). But this ring-like organization of 

various proteins is likely an artifact due to the inaccessibility of the antibodies to the 

dense core of the midbody (Elad et al., 2011). Last group includes e.g. Mklp2, 

Aurora B and CENP-E, which localize to tightly packed microtubules flanking the 

midbody (Gruneberg et al., 2004) (Hu et al., 2012) (Yen et al., 1991). 

 

After cleavage furrow ingression is complete, the actomyosin ring disassembles. 

Notably, actin was shown to be dispensable for abscission (Guizetti et al., 2011). 

RhoA needs to be inactivated to allow the ring disassociation (Emoto et al., 2005). 

The mechanism for RhoA inactivation is currently unknown, but p50RhoGAP was 

shown to be important for the clearing of actin filaments from the bridge, making it a 

suitable candidate (Schiel et al., 2012). At the same time, Ect2, the main RhoA 

activator, is sequestered in the reforming nucleus and degraded via the APC 

pathway (Prokopenko et al., 1999) (Tatsumoto et al., 1999) (Liot et al., 2011). 

During late cytokinesis, protein kinase Cε (PKCε) accumulates at the furrow and 

participates in RhoA inactivation via an unknown mechanism (Saurin et al., 2008). 

After the contractile ring disassembly, the furrow area is stabilized by multiple 

mechanisms to ensure the two daughter cells stay connected by the intercellular 

bridge for the required amount of time until abscission occurs (Mierzwa and Gerlich, 

2014). One such mechanism is MgcRacGAP interaction with PIs, which anchors 

the central spindle to the midbody membrane (Lekomtsev et al., 2012). Additionally, 

Mklp1, the second part of the Centralspindlin complex, also stabilizes the structure 

by direct binding to Arf6, a small GTPase involved in endocytic trafficking to the 

midbody (Schweitzer and D'Souza-Schorey, 2002). Interestingly, Arf6 also takes 

over the role of Aurora B in telophase and counteracts the 14-3-3 protein binding of 

Mklp1, which would otherwise disrupt the Centralspindlin clustering and would 

consequently lead to its dissipation and midbody destabilization (Joseph et al., 

2012). Scaffolding factors Anillin and Citron kinase also help to connect various 

midbody proteins, and link them to the plasma membrane (Gai et al., 2011) (El 

Amine et al., 2013) (Piekny and Maddox, 2010) (Bassi et al., 2013).     
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Secretory and endocytic vesicles are thought to play a crucial role in abscission. 

Vesicles accumulate in the ingressing furrow and they surround the midbody, and 

fuse with the membrane before the final cut occurs (Gromley et al., 2005) (Goss 

and Toomre, 2008) (Schiel et al., 2011). The intercellular bridge further narrows 

down during maturation until it reaches about half of its initial width (Guizetti et al., 

2011) (Schiel et al., 2012). Before the actual separation, the cortex adjacent to the 

midbody constricts even further on both sides of the bridge, and afterwards the full 

constriction produces two separate daughter cells and a midbody remnant (Elia et 

al., 2011) (Guizetti et al., 2011) (Mullins and Biesele, 1977). The midbody remnant 

has different fates in different cell types (Ettinger et al., 2011). Some cells cut on 

both sides of the midbody, which is then released to the extracellular space (Elia et 

al., 2011) (Guizetti et al., 2011). Other cells cut only on one side, which results in 

retention of the midbody by one daughter cell. In the latter case, the midbody 

remnant is usually degraded by autophagy (Pohl and Jentsch, 2009).  

 

Electron microscopy allowed researchers to observe 17 nm filaments forming a 

large membrane-associated helix at the place of the secondary constriction 

(Guizetti et al., 2011). The identity of the 17 nm filaments is still not confirmed, but 

the main candidate is the endosomal sorting complex required for transport 

(ESCRT), especially ESCRT-III that is essential for the process of abscission. 

ESCRT-III colocalizes with the secondary constriction zones, and is required for the 

formation of 17 nm filaments (Carlton and Martin-Serrano, 2007) (Morita et al., 

2007) (Elia et al., 2011) (Guizetti et al., 2011).  

 

ESCRT-III functions in mediating the constriction and fission of cell membranes, 

and it has a role in various cell processes such as virus budding or autophagy 

(Hurley and Hanson, 2010). ESCRT-III localization depends on multiple regulators. 

Centrosomal protein Cep55 binds to Mklp1, and this interaction is negatively 

regulated by Plk1, until the kinase is degraded during mitotic exit (Bastos and Barr, 

2010). Cep55 then recruits ESCRT-III targeting factors ALIX and Tsg10, which 

belong to ESCRT-I complex (Carlton and Martin-Serrano, 2007) (Morita et al., 

2007). How exactly the ESCRT-III complex mediates the secondary constriction is 

not known (Mierzwa and Gerlich, 2014). Once the intercellular bridge is formed, 

microtubules are dispensable for abscission, and their disassembly is a rate-limiting 
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step for the final cut (Guizetti et al., 2011) (Green et al., 2013). The disassembly is 

executed by microtubule-severing protein spastin (Yang et al., 2008) (Connell et al., 

2009). Spastin is targeted to the midbody by interaction with CHMP1B, a part of the 

ESCRT-I complex (Reid et al., 2005) (Yang et al., 2008).  

 

Abscission is tightly regulated by Plk1 and Aurora B kinases. Plk1 prevents 

premature ESCRT-III accumulation at the midbody (Bastos and Barr, 2010). In the 

cells with persisting chromosome bridges, Aurora B remains active in the cleavage 

furrow and inhibits the furrow regression and abscission in order to prevent the 

formation of tetraploid cells (Steigemann et al., 2009) (Norden et al., 2006). 

Aurora B phosphorylates CHMP4C, which has been proposed to prevent the 

ESCRT-III assembly via unknown mechanism, however, the exact role of CHMP4C 

in abscission control is still controversial (Capalbo et al., 2012) (Carlton et al., 

2012). A recent paper proposed another level of regulation by an unknown sensor 

that can sense the tension exerted on the intercellular bridge. Cutting the bridge by 

laser caused tension release, which promoted ESCRT-III assembly and membrane 

fission (Lafaurie-Janvore et al., 2013).  

1.4 Ect2  

Ect2 or epithelial cell transforming sequence 2 is an essential protein and highly 

conserved throughout animal kingdom with orthologs in D. melanogaster 

(Pebble/Pbl), C. elegans LET-21 and X. laevis (XEct2). Ect2 and its orthologs are 

required for the formation of the cleavage furrow (Prokopenko et al., 1999) 

(Tatsumoto et al., 1999) (Dechant and Glotzer, 2003) (Yuce et al., 2005). 

 

Ect2 was first identified in D. melanogaster by genetic screening, and the pbl gene 

was shown to be essential, as mutations in pbl resulted in embryonic lethality 

(Jürgens et al., 1984). Subsequent studies proposed the role of Ect2 in cytokinesis 

as the pbl mutant embryos failed to assemble the contractile ring, and failed to 

undergo cell division after cellularization (Lehner, 1992) (Hime and Saint, 1992). 

Mammalian Ect2 was identified as a protooncogene in a screen for transforming 

genes in NIH3T3 cells, and it was shown to bind RhoA and Rac (Miki et al., 1993). 

Ensuing in vitro studies defined Ect2 as a putative GEF factor for small GTPases 
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RhoA, Rac and Cdc42 (Tatsumoto et al., 1999). Studies in D. melanogaster 

showed Pbl localized to the cleavage furrow. Overexpression of Pbl caused 

modified eye morphology in D. melanogaster, which was supressed by a Rho1 

mutation (RhoA ortholog in D. melanogaster), providing genetic in vivo evidence for 

the interaction. As a single missense mutation in the Pbl catalytic GEF domain led 

to cytokinesis failure, reminiscent of Rho1 phenotype, Prokopenko et al. proposed 

Pbl acts as GEF factor for RhoA, and Ect2-dependent activation of RhoA was 

proposed to be a key step in cytokinesis (Prokopenko et al., 1999) (Tatsumoto et 

al., 1999) (Kimura et al., 2000). 

 

A recent study evaluated the role of Ect2 in development and cell proliferation in a 

mouse model. Cook et al. generated an Ect2 knockout mouse. As expected, 

homozygous deletion of Ect2 was embryonically lethal. Mouse embryo fibroblasts 

(MEFs) obtained from conditional Ect2 knockout mice showed impaired 

proliferation and cell migration. Ect2-depleted MEFs also accumulated in G2/M 

transition and formed large multi-nucleated cells, which is consistent with its 

essential role in cytokinesis (Cook et al., 2011).  

1.4.1 Ect2 protein domains and their function 

Human Ect2 protein consists of 883 amino acids and has multiple structural 

domains (Figure 9). The domain responsible for the guanine nucleotide exchange 

activity is a Dbl-homology (DH) type GEF domain (Rossman et al., 2005). The 

crucial role of Ect2 GEF activity was first shown in D. melanogaster, where a single 

mutation (V513D) in the conserved CR3 helix, important for RhoA binding, led to 

cytokinesis failure (Prokopenko et al., 1999) (Rossman et al., 2005). In human cells, 

replacement of the endogenous Ect2 with a version carrying mutations of four 

highly conserved residues within the C3 helix (565PVQR568) caused cytokinetic 

defects, and the mutations were shown to abolish the GEF exchange activity in 

vitro (Su et al., 2011). Furthermore, GEF domain mutations also blocked the 

transforming activity of Ect2 (Saito et al., 2004).  

 

DH domains are usually coupled with pleckstrin homology (PH) domains and, in 

line with that arrangement, Ect2 also contains a PH domain. PH domains normally 
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target the protein to the plasma membrane via interaction with phosphoinositides in 

the inner leaflet of the cell membrane (Lemmon, 2008). 

 
Figure 9 Ect2 domain structure 
Schematic domain organization of human Ect2 protein. N-terminal tandem BRCA1 
C terminal domains (BCRT), the guanine nucleotide exchange factor (GEF) domain, 
the C-terminal pleckstrin homology (PH) and cluster of basic amino acids (PBC) 
are highlighted. Nuclear localization signals (NLS) are depicted in brown. Cdk1 
phosphorylation sites with proposed regulatory role are shown in red. The amino 
acid numbering refers to the human protein. Adapted from (Su et al., 2011) and 
(Zou et al., 2014). 
 

Full-length Ect2 as well as its C-terminal fragment were observed at the cell cortex 

by fixed cell analysis, and the PH domain was shown to act as a membrane-

targeting domain (Chalamalasetty et al., 2006) (Nishimura and Yonemura, 2006).  

 

A recent study used a genetic complementation system in HeLa cells, which 

allowed Su et al. to follow Ect2 localization in live cells. They confirmed the 

interaction of Ect2 with the plasma membrane and showed that Ect2 localized to 

the plasma membrane shortly after anaphase onset. Deletion analysis revealed 

that the PH domain was responsible for the membrane targeting of the protein 

together with a cluster of basic amino acids (polybasic tail, PBC) localized at the 

very end of the protein. Notably, deletion of the C-terminal part of Ect2 (PH domain 

and PBC) abrogated RhoA activation, cleavage furrow ingression and cytokinesis, 

which suggested that the membrane association of Ect2 could be an important step 

for cell division (Su et al., 2011). 

 

Two BRCT domains are present at the N-terminus of Ect2 – BRCT1 and BRCT2. 

Recently, a crystal structure of the N-terminal part of Ect2 was resolved and a third 

BRCT domain called BRCT0 was found, located before the BRCT1 domain (Zou et 

al., 2014). BRCT (BRCA1 C terminal) domains are specialized interaction domains 

that bind phosphorylated peptides, DNA and poly(ADP-ribose) (Leung and Glover, 

2011). The binding partner of Ect2 BRCT domains was found to be MgcRacGAP, a 

subunit of the Centralspindlin complex (Somers and Saint, 2003) (Yuce et al., 
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2005) (Zhao and Fang, 2005). Importantly, this interaction takes place only during 

anaphase, targets Ect2 to the central spindle, and is dependent on phosphorylation 

(Yuce et al., 2005). The phosphorylation is mediated by the Plk1 kinase that 

phosphorylates residues in the N-terminal part of MgcRacGAP (Burkard et al., 

2009) (Wolfe et al., 2009). The exact identity of the phosphorylated residue is 

currently controversial as first studies favoured pS157 (Burkard et al., 2009) (Wolfe 

et al., 2009). Later, Zou et al. proposed pS164 as the only crucial residue (Zou et 

al., 2014), and Kim et al. suggested that both the pS157 and pS164 might be 

important for the Ect2-MgcRacGAP interaction (Kim et al., 2014). Mutation of these 

serine residues prevents the interaction of Ect2 with MgcRacGAP in vitro and 

in vivo (Burkard et al., 2009) (Wolfe et al., 2009). Moreover, replacing the 

endogenous MgcRacGAP with non-phosphorylatable version prevented RhoA 

accumulation and cytokinetic progression (Burkard et al., 2009) (Wolfe et al., 2009). 

These results offer an explanation for why Plk1 activity is important for cytokinesis 

(Petronczki et al., 2007) (Burkard et al., 2009) (Wolfe et al., 2009). 

 

Binding of Ect2 to MgcRacGAP brings Ect2 to central spindle and this interaction 

plays a crucial role in central spindle model of cytokinesis (Figure 7) (Yuce et al., 

2005) (Petronczki et al., 2007) (Wolfe et al., 2009) (Su et al., 2011) (Green et al., 

2012) (Mierzwa and Gerlich, 2014). Interestingly, orthologs of Ect2 in 

D. melanogaster (Pebble) and C. elegans (LET-21) do not localize to the spindle 

midzone (Prokopenko et al., 1999) (Green et al., 2012), even though Pebble was 

shown to interact with RacGAP50C (MgcRacGAP) (Somers and Saint, 2003). Both 

Pebble and LET-21 localize to the cleavage furrow and the plasma membrane and 

are crucial for cytokinetic progression (Prokopenko et al., 1999) (Dechant and 

Glotzer, 2003). Binding of Ect2 to spindle midzone and its role in cytokinesis is thus 

likely restricted to vertebrates (Green et al., 2012). 

1.4.2 Regulation of Ect2 activity 

Ect2 activity is regulated on several levels. Expression of Ect2 is induced in 

S-phase and peaks at G2-M transition (Seguin et al., 2009). Localization of Ect2 

regulates the accessibility of the protein for its binding partners – in interphase, 

Ect2 is sequestered in the nucleus by tandem nuclear localization sequences 
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(NLS) between the BRCT2 and the GEF domain, and a third NLS inside the PBC 

(Prokopenko et al., 1999) (Tatsumoto et al., 1999). Overexpression of Ect2’s 

N-terminal fragment containing the BRCT repeats caused late cytokinetic defects 

(Tatsumoto et al., 1999) (Chalamalasetty et al., 2006). Longer fragments including 

the NLS signals did not replicate the multi-nucleation phenotype, suggesting that 

nuclear sequestration might regulate RhoA activation (Chalamalasetty et al., 2006). 

Moreover, expression of full-length Ect2 with mutated NLS sequences also 

triggered ectopic rounding (Matthews et al., 2012). 

 

Ect2 activity is regulated by post-translational modifications, mainly 

phosphorylations. Ect2 is phosphorylated in G2, and the extent of phosphorylation 

increases during mitosis. The phosphorylation events are necessary for the Ect2’s 

catalytic GEF activity in vitro (Tatsumoto et al., 1999). Cdk1 phosphorylates Ect2 

on multiple sites, but results regarding the functional outcome of phosphorylation at 

individual sites are conflicting.  

 

Threonine 342 (T342) is phosphorylated before anaphase onset, and this 

phosphorylation inhibits the binding to MgcRacGAP. Yuce et al. proposed that 

Cdk1 is responsible for this modification and that it is important for correct temporal 

regulation of RhoA activation (Yuce et al., 2005). Conversely, Hara et al. suggested 

an activatory role for pT342, as they observed a slight enhancement of RhoA 

activity with the phospho-mimetic mutant. Hara et al. proposed that the 

phosphorylation causes conformational change of Ect2, which allows the 

interaction with other proteins that might then fully activate it (Hara et al., 2006). 

The existence of the T342 phosphorylation in vivo was confirmed by a large 

phosphoproteomic screen (Dephoure et al., 2008). Recent research confirmed that 

Cdk1 indeed phosphorylates T342 together with the adjacent site S345 

(non-S/T-P site). Both sites are close to NLS signals and the phospho-mimetic 

mutants abolished Ect2 interaction with importin β, which shuttles proteins to 

nucleus, suggesting that the phosphorylation might be able to counteract the 

effects of the nuclear localization signals (Suzuki et al., 2015). This might not be 

relevant for cytokinesis, as the nuclear membrane breaks down at the mitotic entry, 

but it can affect the role of Ect2 for mitotic rounding, which will be discussed later 

(Suzuki et al., 2015) (Matthews et al., 2012). 
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Cdk1 also phosphorylates T412, which might be important for the catalytic activity 

of Ect2, as the non-phosphorylatable T421A mutant exhibits lower GEF activity.  

Phosphorylated T412 also creates a docking site for Plk1, which might further 

regulate Ect2 or other important cytokinetic factors (Niiya et al., 2006) (Petronczki 

et al., 2007). Another Cdk1-phosphorylated residue is T815 as demonstrated 

in vitro (Niiya et al., 2006) and by phosphoproteomic analysis in vivo (Dephoure et 

al., 2008). T815 is located within the polybasic cluster, which facilitates Ect2 

interaction with the plasma membrane (Su et al., 2011). Su et al. speculated that 

this Cdk1 phosphorylation might regulate the interaction of Ect2 with the plasma 

membrane that coincides with the anaphase onset. Remarkably, the C-terminal 

fragment of Ect2 containing the T815A mutation was enriched at the plasma 

membrane as soon as the cells entered mitosis lending further support to this 

notion. Moreover, acute inhibition of Cdk1 by flavopiridol caused the rapid 

translocation of the protein to the plasma membrane. Cdk1 activity thus inhibits 

Ect2-cell membrane interaction until the anaphase onset possibly via targeting 

T815 (Su et al., 2011). 

 

The ability of the N-terminus to bind and inhibit the catalytically active C-terminal 

domain is a common mode of regulation amongst different GEFs (Rossman et al., 

2005). Autoinhibitory regulation of Ect2 activity was first proposed by Saito et al. In 

their study, they demonstrated the interaction between Ect2 N-terminus and 

C-terminus in vitro. Moreover, co-expression of different N-terminal fragments 

inhibited the transforming activity of the C-terminal Ect2 fragment (Saito et al., 

2004). A subsequent study showed that the BRCT domains are responsible for the 

autoinhibitory interaction with the C-terminal part of Ect2 (Kim et al., 2005). 

Mutation of highly conserved tryptophan in BRCT2 (W340R) abolished this 

interaction and enhanced the catalytic GEF activity towards RhoA in vitro. A 

complementation assay, however, showed that BRCT domains have more than this 

inhibitory function, as the W340R mutant failed to rescue cytokinesis after 

endogenous Ect2 depletion (Kim et al., 2005).  

 

Discovery of Ect2’s association with the phosphorylated MgcRacGAP via the BRCT 

domains led to a model of MgcRacGAP activating Ect2 by relieving its 

autoinhibition (Yuce et al., 2005) (Wolfe et al., 2009) (Zou et al., 2014). Recent 
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work from Zhang et al. provided a further evidence for this model, when they 

showed the C-termini of Ect2 and MgcRacGAP could also interact in vitro. The 

authors proposed a complex formation between Ect2, MgcRacGAP and RhoA at 

the equatorial plasma membrane, which leads to induction of Ect2’s full activity 

followed by RhoA activation and the cleavage furrow formation (Zhang and Glotzer, 

2015). 

 

Another level of Ect2 regulation is provided by protein-protein interactions. The 

main binding partner of Ect2 is MgcRacGAP, and the role of this interaction was 

discussed in the previous paragraphs. Additionally, a study demonstrated that 

PH domain of Ect2 could interact with the scaffolding factor Anillin at the cell cortex. 

Frenette et al. proposed this interaction might stabilize the connection between the 

spindle midzone and the equatorial cell cortex, and promote furrowing (Frenette et 

al., 2012). 

 

Finally, during mitotic exit Ect2 activity is also controlled by degradation. A 

sequence within the PBC is ubiqitinated by APCCdh1 and this targets Ect2 for 

degradation, while a smaller pool of Ect2 translocates back into the nucleus (Liot et 

al., 2011). 

1.4.3 Other functions of Ect2 

Apart from its crucial role in cytokinesis, Ect2 also plays a role in other cellular 

processes. Firstly, Ect2 activity was implicated in the process of cell rounding. After 

a cell enters mitosis, it starts to detach from the substrate surface, and in 

metaphase the cell is almost perfectly round. This process is important, as cell 

rounding affects mitotic spindle assembly and positioning (Kunda and Baum, 2009). 

Proper cell rounding requires a small pool of Ect2 exported from the nucleus in 

prophase. Cytosolic Ect2 then activates RhoA and its effectors to induce the 

cytoskeleton remodelling and stiffening of the cell cortex (Matthews et al., 2012).  

 

Myosin II activation through centraspindlin-Ect2-RhoA pathway is not restricted to 

cytokinesis. In interphase cells, this pathway is important for the integrity of 

adherens junctions (Smutny et al., 2010) (Ratheesh et al., 2012). α-catenin is an 
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adhesion protein linking the actin filaments with cadherins at the junction 

(Padmanabhan et al., 2015). α-catenin also targets Centralspindlin to the junctions 

to support the junction stability by myosin II recruitment via the 

Centralspindlin-Ect2-RhoA pathway (Ratheesh et al., 2012). 

 

Another role for Ect2 lies in cell polarity regulation. Ect2 was shown to interact with 

the cell polarity complex Par6/Par/aPKC, crucial for establishing the 

anterior-posterior polarity in C. elegans and apical-basal polarity in 

D. melanogaster (Liu et al., 2004) (Cox et al., 2001) (Drubin and Nelson, 1996). 

Expression of dominant negative N-terminal fragment or constitutively active 

C-terminus of Ect2 abolished cell polarity establishment in 3D cultures (Liu et al., 

2006). In C. elegans embryos, Ect2 is localized to the cell cortex with the exception 

of area around the centrosomes, where it is excluded. This asymmetric localization 

influences the cortical flow and polarizes the Par proteins and Cdc42 in order to 

establish the anterior-posterior polarity (Motegi and Sugimoto, 2006). The same 

pathway was also shown to allow the correct assembly of the actomyosin cortex in 

D. melanogaster cells (Rosa et al., 2015).  

 

The X. laevis ortholog of Ect2, XEct2, was proposed to regulate spindle assembly. 

Interestingly, in a cell free X. laevis egg extract system, expression of the 

N-terminal XEct2 caused formation of monopolar and multipolar spindles. As the 

only GTPase that showed the same phenotype was Cdc42, Tatsumoto et al. 

suggested that Ect2 might regulate the spindle assembly via Cdc42 activation 

(Tatsumoto et al., 2003). The notion that Ect2 can act as a GEF factor for Cdc42 

found support in mammalian cells too, where Ect2 activated Cdc42 in metaphase 

and depletion of Ect2 or Cdc42 in HeLa cells, resulted in a delay in prometaphase 

and impaired kinetochore attachments (Oceguera-Yanez et al., 2005). 

 

Finally, Ect2 was also proposed to have a role in Wnt signalling. In both 

D. melanogaster and mammalian cells, Ect2 can negatively regulate Wnt pathway 

(Greer et al., 2013). Ect2 was originally described as a protooncogene, and its 

involvement in Wnt signalling can be relevant for its role in tumour growth (Fields 

and Justilien, 2010). 
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1.5 Goal of this research 

The structure of the mitotic spindle determines the location of the cleavage plane. 

Despite many years of research, the exact mechanism is still not fully understood. 

A crucial step during cytokinesis is the activation of the small GTPase RhoA, which 

triggers contractile ring formation and cleavage furrow ingression. As Ect2 is the 

main activatory factor for RhoA, it lies at the heart of cytokinesis regulation. Recent 

results led to formation of a model that could explain, why most mammalian cells 

place the cleavage furrow in the middle of the cell. In anaphase cells, the ability of 

Ect2 to interact with the spindle midzone and the plasma membrane creates a 

concentration gradient at the equatorial plasma membrane, which can result in 

preferential activation of RhoA at the equator and the formation of the furrow at the 

right place (Figure 10). The aim of this research is to find out (1) whether the 

plasma membrane engagement and (2) the spindle midzone interaction of Ect2 are 

essential prerequisites for cytokinesis and (3) whether Ect2’s equatorial enrichment 

at the cell membrane is the primary signal for furrow placement and formation in 

somatic mammalian cells. By addressing these key questions we hope to 

decisively test prevailing models of cytokinesis and expand our understanding of 

the principles that underlie the process in mammalian cells. 

 
Figure 10 Ect2 localization during mitosis 
In metaphase Ect2 is cytoplasmic. After anaphase onset Ect2 is targeted to the 
spindle midzone and later in anaphase Ect2 also localize to the plasma membrane 
with enrichment in the equatorial area.  
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Chapter 2. Materials & Methods 

2.1 Plasmids and cell lines 

To prepare tagged variants of various transgenes to express in human cells, the 

transgenes were amplified by PCR (Phusion High-Fidelity DNA Polymerase, 

Finnzymes) either from plasmids available in the laboratory (Su et al., 2011) 

(Lekomtsev et al., 2012) or bought from Addgene (Steigemann et al., 2009) 

(Kennedy et al., 2010). PCR products were inserted into pCR2.1-TOPO vector 

(Invitrogen). If necessary, point mutations were produced in pCR2.1-TOPO 

plasmids by site directed mutagenesis with QuikChange II Site-Directed 

Mutagenesis Kit (Stratagene) or Phusion Site-Directed Mutagenesis Kit 

(Finnzymes). Subsequently, the insert was cloned into pIRESpuro3 vector 

(Clontech), with N-terminal AcGFP-FLAG tag (GFP from Aequorea coerulescens 

coupled to FLAG tag) using AgeI and EcoRI restriction enzymes (NEB). These final 

plasmids were suitable for mammalian expression controlled by puromycin. Some 

plasmids (see Table 1) were kindly provided by Kuan-Chung Su (Su et al., 2011) or 

Sergey Lekomtsev (Lekomtsev et al., 2012).  

 

Table 1 List of plasmids used in this study 
 Name Description Source 

1 pIRESpuro3 

Original vector used for 

mammalian expression of the 

transgenes, puromycin 

resistance 

Clontech 

2 pIRES-AcFL-Ect2CT 

C-terminal fragment of Ect2 

(414-883 aa) tagged with 

AcGFP-FLAG 

(Su et al., 

2011) 

3 pIRES-eGFP-PLCδ-PH 

PH domain from 

phospholipase Cδ tagged with 

eGFP 

Lab 

database 

4 pIRES-eGFP-AKT-PH 

PH domain from 

protein kinase B tagged with 

eGFP 

Lab 

database 
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5 pC1-mRFP-FKBP-PJ 

Used for hybrid phosphatases 

system, FKBP-PJ tagged with 

mRFP 

Addgene ID 

37999 

6 pN1-Lyn11-FRB-mCh 

Used for hybrid phosphatases 

system, Lyn-FRB tagged with 

mCherry 

Addgene ID 

38004 

7 pIRES-AcFL-C1B 
C1B domain from PKCα tagged 

with AcGFP-FLAG 
This study 

8 pIRES-AcFL-C1BQ27G 

C1B domain from PKCα 

carrying Q27G mutation and 

tagged with AcGFP-FLAG 

This study 

9 pIRES-AcFL-C1BP11G 

C1B domain from PKCα 

carrying P11G mutation and 

tagged with AcGFP-FLAG 

This study 

10 
pIRES-AcFL-Ect2r-

ΔPHΔTail-C1B 

siRNA-resistant Ect2-C1B 

tagged with AcGFP-FLAG 

Kuan-Chung 

Su 

11 
pIRES-AcFL-Ect2r-

ΔPHΔTail-C1BQ27G 

siRNA-resistant Ect2-C1BQ27G 

tagged with AcGFP-FLAG 
This study 

12 pIRES-AcFL-GEF-C1B 

GEF domain from Ect2 fused to 

C1B domain and tagged with 

AcGFP-FLAG 

This study 

13 pH2B-mCherry-IRESneo3 

Used to visualize chromosomes, 

histone H2B tagged with 

mCherry 

Addgene ID 

21044 

14 pCry2PHR-mCh-N1 
PHR domain of Cry2 protein 

tagged with mCherry 

Addgene ID 

26866 

15 pCIBN(deltaNLS)-pmGFP 

N-terminal fragment of CIB 

domain (CIBN), tagged with 

eGFP and membrane-targeting 

CAAX signal 

Addgene ID 

26867 

16 pIRES-Cry2-mCh-CAAX 

Cry2PHR inserted into pIRES 

plasmid and tagged with 

mCherry and CAAX signal 

This study 
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17 
pIRES-Cry2-mCh-15aa-

CAAX 

Cry2PHR tagged with mCherry 

and CAAX signal with 15 aa 

linker in-between 

This study 

18 pIRES-CIBN-GEF-FLAc 

CIBN fragment fused to GEF 

domain from Ect2 and tagged 

with FLAG-AcGFP 

This study 

19 
pIRES-CIBN-Ect2r-

ΔPHΔTail-FLAc 

CIBN fragment fused to 

siRNA-resistant Ect2-ΔPHΔTail 

fragment and tagged with 

FLAG-AcGFP 

This study 

20 
pIRES-Cry2-mCh-Ect2r-

ΔPHΔTail 

Cry2PHR fused to 

siRNA-resistant Ect2-ΔPHΔTail 

fragment and tagged with 

mCherry 

This study 

21 pIRES-AcFL-Ect2r-BRCTTK 

siRNA-resistant full-length Ect2 

transgene with T153A and 

K195M mutations and tagged 

with AcGFP-FLAG 

This study 

22 pIRES-PM-FLAc 
MyrPalm membrane marker 

tagged with FLAG-AcGFP 

Lab 

database 

23 
pIRESneo3-MRGr-ΔC1-

FLmCh 

siRNA-resistant MgcRacGAP 

transgene with C1 domain 

deletion and tagged with 

FLAG- mCherry 

(Lekomtsev 

et al., 2012) 

24 
pIRESneo3-MRGr-K292L-

FLmCh 

siRNA-resistant MgcRacGAP 

transgene with K292L mutation 

and tagged with FLAG- mCherry 

(Lekomtsev 

et al., 2012) 

 

HeLa ‘Kyoto’ (HeLaK) and HEK-293T cells were used in this study. HEK-293T cells 

were used only for a few lipid-related experiments, so unless otherwise specified, 

HeLaK cells were used. Cells were grown in 25 cm2 flasks (Nunc) in the incubator 

maintained at 37ºC and 5% CO2 in Dulbecco's modified eagle medium (DMEM, 

Gibco) supplemented with 10% foetal calf serum (FCS, Sigma) and 1% Pen Strep 
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(Gibco). In order to establish stable cell lines, HeLaK cells were seeded at suitable 

density in 10 cm dishes (Nunc). Next day, cells were transfected with a transfection 

mixture prepared from the appropriate plasmid mixed with FuGENE 6 DNA 

Transfection Reagent (Promega) in 1:3 ratio and diluted in Opti-MEM (reduced 

serum medium, Gibco). The transfection mixture was incubated for 15 minutes at 

room temperature before it was added to cells. 48 hours post-transfection, the 

media was supplemented with 0.3 µg/ml puromycin (Sigma) to select for the cells 

expressing the transgenes from pIRESpuro3 plasmids. To select for the expression 

of pIRESneo3 plasmids (mCherry tagged transgenes) or pCIBN(deltaNLS)-pmGFP, 

400 µg/ml Geneticin (G418, Gibco) was added to the medium. Monoclonal cell 

lines were isolated after two weeks of antibiotic selection. Cell lines were 

characterized by IF and western blotting. Some cell lines (see Table 2) were kindly 

provided by Kuan-Chung Su (Su et al., 2011). For experiments requiring transient 

expression of transgenes, the same transfection protocol was followed, but with 

X-tremeGENE 9 DNA Transfection Reagent (Roche). 

 

Table 2 List of stable cell lines used in this study 
 Name Description Source 

1 AcFL-tag 
Control cell line expressing only the 

AcGFP-FLAG tag 

(Su et al., 

2011) 

2 AcFL-Ect2r 

Cell line expressing siRNA-resistant 

full-length WT Ect2, tagged with 

AcGFP-FLAG  

(Su et al., 

2011) 

3 
AcFL-Ect2r-

ΔPHΔTail 

Cell line expressing siRNA-resistant Ect2 

with deleted PH domain and C-terminal 

tail, tagged with AcGFP-FLAG 

(Su et al., 

2011) 

4 
AcFL-Ect2r-

ΔPHΔTail-C1B 

Cell line expressing siRNA-resistant Ect2 

with deleted PH domain and C-terminal 

tail fused to C1B domain, tagged with 

AcGFP-FLAG 

This 

study 

5 
AcFL-Ect2r-

ΔPHΔTail-C1BQ27G 

Cell line expressing siRNA-resistant Ect2 

with deleted PH domain and C-terminal 

tail fused to C1B domain with Q27G 

mutation, tagged with AcGFP-FLAG 

This 

study 
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6 AcFL-GEF-C1B 

Cell line expressing GEF domain from 

Ect2 fused to C1B domain, tagged with 

AcGFP-FLAG 

This 

study 

7 CIBN-eGFP-CAAX 

Cell line expressing CIBN domain, tagged 

with eGFP and membrane-targeting 

CAAX signal 

This 

study 

8 
AcFL-Ect2r, 

H2B-mCherry 

Cell line expressing siRNA-resistant 

full-length WT Ect2, tagged with 

AcGFP-FLAG and histone H2B tagged 

with mCherry 

(Su et al., 

2011) 

9 
AcFL-Ect2r-BRCTTK,  

H2B-mCherry 

Cell line expressing siRNA-resistant 

full-length Ect2 with T153A and K195M 

mutations, tagged with AcGFP-FLAG and 

histone H2B tagged with mCherry 

This 

study 

10 AcFL-Ect2r-BRCTTK 

Cell line expressing siRNA-resistant 

full-length Ect2 with T153A and K195M 

mutations, tagged with AcGFP-FLAG 

This 

study 

11 AcFL-Ect2r-GEF4A 

Cell line expressing siRNA-resistant 

full-length Ect2 with 565PVQR568AAAA 

mutations, tagged with AcGFP-FLAG 

(Su et al., 

2011) 

12 

AcFL-Ect2r-BRCTTK,  

MgcRacGAPr-

ΔC1-FLmCh 

Cell line expressing siRNA-resistant 

full-length Ect2 with T153A and K195M 

mutations, tagged with AcGFP-FLAG and 

siRNA-resistant full-length MgcRacGAP 

with C1 domain deletion, tagged with 

mCherry 

This 

study 

13 

AcFL-Ect2r-BRCTTK,  

MgcRacGAPr-

K292L-FLmCh 

Cell line expressing siRNA-resistant 

full-length Ect2 with T153A and K195M 

mutations, tagged with AcGFP-FLAG and 

siRNA-resistant full-length MgcRacGAP 

with K292L mutation in C1 domain, 

tagged with mCherry 

This 

study 
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2.2 siRNA transfection 

Transfections with siRNA were performed with Lipofectamine RNAiMax reagent 

(Invitrogen) using reverse transfection as by the manual. siRNAs were diluted to 

20 µM concentration in RNase-free 1x siRNA buffer (prepared from 5x siRNA 

buffer and RNase-free water, Thermo). To transfect cells in 1 well of a 12-well plate 

(Corning), 1.5 µl of siRNA was mixed with 2.5 µl of Lipofectamine RNAiMax and 

diluted in Opti-MEM. The mixture was scaled up or down appropriately, for different 

volumes. The mixture was incubated for 5 minutes at room temperature, and 

subsequently it was mixed with the cells and plated. The final concentration of 

siRNA in the medium was 20 nM. The medium was changed 6 hours after 

transfection. The following siRNA duplexes were used in this study: control siRNA 

(NTC) (Thermo Scientific siGenome Non-Targeting siRNA #1 D-001210-01 and #4 

D-001210-04), Ect2 siRNA (Thermo Scientific siGenome D-006450-02) and 

MgcRacGAP siRNA (Invitrogen Stealth HSS120934). 

2.3 Cell synchronization and drug treatments 

To synchronize the majority of the cells in anaphase (Figure 26), 2.5 mM thymidine 

(Sigma) was added to the medium 6 hours after siRNA transfection. After 20 hours 

of incubation with thymidine, the medium was changed to normal cell medium for 

6 hours to allow cells to progress through S phase. After that, cells were treated 

with nocodazole at 50 ng/ml (Sigma) for 4.5 hours. Cells were in prometaphase 

after the nocodazole washout. Proteasome inhibitor MG132 at 10 µM was added 

for 2 hours, which allowed the cells to reach metaphase. Afterwards, cells were 

released from MG132 and 45 minutes later either DMSO as a control or 1 µM 

12-O-Tetradecanoylphorbol-13-acetate (TPA, Sigma) was added and live-cell 

imaging was started right after. Same synchronization protocol was used for low 

nocodazole treatment to deplete astral microtubules from anaphase cells (Figure 

51). Similarly, 45 minutes after MG132 washout, DMSO as a control or 50 nM 

nocodazole was added to cells. 10 minutes later, cells were fixed and analysed by 

immunofluorescence analysis (IF) or followed by live-cell imaging.  
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To enrich the culture for metaphase cells (Figure 31), cells were treated with 

50 ng/ml concentration of nocodazole for 4.5 hours. One hour after the release 

from nocodazole, DMSO or 1 µM TPA was added and the cells were fixed 

5 minutes later. 

 

Single thymidine block was used to obtain anaphase cells for IF analysis (Figure 

41). Cells were transfected with Ect2 siRNA and 6 hours later, thymidine at 2.5 mM 

was added to the medium. After 20 hours of thymidine block, cells were washed 

and let to recover and grow. Cells were fixed after 9.5 hours, when the culture was 

enriched for anaphase cells. 

 

Ionomycin treatment (Figure 12): Cells were transiently transfected with 

eGFP-PLCδ-PH and AcFL-Ect2CT plasmids. 48 hours post-transfection, cells were 

imaged with the fluorescent confocal microscope. Firstly, Opti-MEM was added for 

10 minutes as a control. To activate phospholipase C and deplete PIP2 and PI4P 

from the cell membrane, cells were treated with 10 µM ionomycin (Sigma) together 

with 1 mM CaCl2 for 6.5 minutes during the imaging (phenotype was analysed after 

3 minutes). Subsequently, 10 mM EGTA was added for 15 minutes (phenotype 

was analysed after 12 minutes). The experiment with neomycin followed similar 

protocol: after 10 minutes with Opti-MEM, cells were treated with 50 mM neomycin 

(Sigma) for 20 minutes and afterwards 10 µM ionomycin and 1 mM CaCl2 were 

added for 6 minutes. 

 

PI3Ks inhibitors (Figure 14): HEK-293T cells were transiently transfected with 

eGFP-AKT-PH and AcFL-Ect2CT plasmids. 24 hours post-transfection, cells were 

imaged with the fluorescent confocal microscope. Firstly, Opti-MEM was added for 

10 minutes as a control. To deplete phosphatidylinositol 3-phosphate, 

phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate 

from the plasma membrane, cells were treated with 25 µM LY294002 (Sigma) or 

100 nM wortmannin (Sigma) for 30 minutes. 

 

Rapamycin treatment (Figure 17): HeLaK and HEK-293T cells were transiently 

transfected with Lyn-FRB-mCh, mRFP-FKBP-PJ and eGFP-PLCδ-PH or 

AcFL-Ect2CT plasmids. Cells were imaged with the fluorescent confocal 
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microscope 48 hours after transfection. PJ hybrid phosphatase was targeted to the 

plasma membrane by treatment with 10 µM rapamycin (Sigma) during live-cell 

imaging. 

 

Phorbolester treatment: TPA was used for artificial membrane targeting of hybrid 

C1B proteins. 10 nM concentration was used for long-term rescue experiments and 

1 µM concentration was used during initial testing and for imaging purposes. 

DMSO was always used as a control. 

2.4 Cell lysates preparation and western blotting (WB)           

Cells were transfected with siRNA or plasmid DNA and treated as appropriate. 

After 48 hours, cells were harvested by trypsinization, i.e. washed with PBS buffer 

and detached from the surface by Trypsin-EDTA solution (Sigma) treatment for 

3 minutes at 37ºC. Subsequently, cells were pelleted down by centrifugation and 

washed with cold PBS buffer (4ºC). To prepare the whole cell lysate, the cell pellet 

was directly resuspended in Laemmli buffer (12.5 ml 4x SDS-PAGE stacking buffer 

[0.5 M Tris-HCl, pH 6.8, 0.4% SDS w/v], 10 ml glycerol, 20 ml SDS [10% w/v], 

2.5 ml β-mercaptoethanol and 2.5 ml bromophenol blue [1% w/v]). Afterwards, 

lysates were boiled for 5 minutes and sonicated 3 times for 10 seconds. 

 

After the preparation of cell lysates, the protein concentration was measured by 

Bradford assay using the Bradford’s reagent (BioRad) and serial dilution of BSA 

standard (Sigma). Subsequently, 30 µg of each sample was loaded in a precasted 

gel (Criterion XT, 3-8% Tris-Acetate, BioRad) or (NuPAGE Novex 3-8% 

Tris-Acetate, Invitrogen) and the SDS-PAGE was performed. Separated proteins 

were transferred onto Immobilon PVDF membrane (Millipore) by semi-dry blotting 

for 1 hour at room temperature. Subsequently, the membrane was blocked with 5% 

milk in TBST buffer (Tris-buffered saline [50 nM Tris-HCl, pH 7.5, 150 mM NaCl] 

with 0.1% Tween-20) for 1 hour and then incubated with the selected primary 

antibody diluted in 5% milk in TBST o/n at 4ºC. The membrane was washed 

3 times for 5 minutes with TBST buffer and subsequently incubated with the 

appropriate secondary antibody conjugated with HRP (horseradish peroxidase) 

diluted in 5% milk in TBST buffer. After another round of TBST washes, the protein 
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signals were detected using ECL chemiluminescence reaction (GE Healthcare) on 

ECL-sensitive film (GE Healthcare). 

2.5 Immunofluorescence microscopy (IF) 

Cells were seeded and treated appropriately onto coverslips of 18 mm diameter 

and thickness 1 (Assistant). Afterwards, they were fixed in ice cold methanol 

(-20ºC) for 2 hours or o/n (Figure 23, Figure 29, Figure 31, Figure 41 and Figure 

47) or in 4% PFA (paraformaldehyde, Thermo) diluted in PBS for 10 minutes at 

37ºC (Figure 47 AcFL-tag sample) or with 10% TCA (trichloroacetic acid) on ice for 

15 minutes (Figure 50). After the fixation process was finished, the samples were 

washed 3 times for 5 minutes with PBST buffer (PBS with 0.01% Triton X-100), 

then permeabilized with 0.2% Triton X-100 in PBS for 10 minutes on rocking 

platform. Then, the samples were washed again 3 times with PBST and 

subsequently incubated with the blocking solution (3% BSA diluted in PBS with 

0.01% Triton X-100) for 1 hour. Afterwards, the coverslips were incubated with 

selected primary antibodies diluted in the blocking solution in the wet chamber o/n 

at 4ºC. Samples were washed 3 times with PBST and incubated for 45 minutes in 

the dark at room temperature with appropriate secondary antibodies conjugated 

with fluorescent dyes and diluted in the blocking solution. Following this incubation, 

the samples were washed again 3 times with PBST and mounted on microscopic 

slides (Thermo) using the antifade mountant ProLong Gold or ProLong Diamond 

(Molecular Probes). The samples were dried at room temperature, o/n and in the 

dark. 

 

IF images were acquired on a Zeiss Axio Imager M1 or M2 microscope using a 

Plan Neofluor 40x/1.3 oil objective lens (Figure 23, Figure 29, Figure 40 and Figure 

47) or Plan Apochromat 63x/1.4 oil objective lens (Figure 31, Figure 41 and Figure 

50) (both from Zeiss) equipped with an ORCA-ER camera (Hamamatsu) and 

controlled by Volocity 6.1 software (Improvision).   

2.6 Antibodies and dyes 

The following primary antibodies were used in this study: mouse monoclonal 

anti-AcGFP (Clontech JL8, WB 1:1000), rabbit polyclonal anti-Ect2 (raised against 
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Ect2 1-421 aa, WB raw serum 1:2000), rabbit monoclonal anti-β-tubulin (Cell 

Signaling 9F3, WB 1:2000), mouse monoclonal anti-MgcRacGAP (Abnova M01 

1G6, WB 1:500), rabbit polyclonal anti-AcGFP (Clontech 632592, IF 1:2000), rat 

monoclonal α-tubulin (AbD Serotec MCA78G, IF 1:1000), mouse monoclonal 

anti-Mklp1 (Santa Cruz Biotechnology 24, IF 1:500), rabbit polyclonal anti-Anillin 

(kindly provided by Michael Glotzer, 1:2000) and mouse monoclonal anti-RhoA 

(Santa Cruz Biotechnology 26C4, IF 1:75). Secondary antibodies conjugated to 

Alexa Fluor 488 or Alexa Fluor 594 (Molecular Probes, IF 1:500) were used for 

immunofluorescence detection. DNA was stained with DAPI at 1 µg/ml (Molecular 

Probes). HRP-conjugated secondary antibodies (polyclonal goat anti-mouse P0447 

and polyclonal anti-rabbit P0488, Dako) were used at 1:5000 dilution to detect 

protein signals on PVDF membrane. 

2.7 Live-cell imaging 

For live-cell imaging of fluorescently-tagged proteins, cells were grown in Lab-Tek 

chambers (Lab-Tek chambered coverglass, Nunc). Before the imaging, the cell 

medium was changed to sterile-filtered imaging medium (CO2 independent medium 

[Gibco], 20% FCS, 1% Pen Strep and 0.2 mM L-glutamine [Gibco]). For all 

experiments in Chapter 3, the imaging medium was supplemented only with 10% 

FCS and cells were seeded on poly-L-lysine (Sigma) coated Lab-Tek chambers. 

Appropriate volume of poly-L-lysine solution was added to cover the surface of the 

chambers. After 5 minutes incubation, the chambers were washed 3 times with 

sterile-filtered water, and left to dry for 1 hour at room temperature.  

 

Images for Figure 12, Figure 14, Figure 17, Figure 18 and Figure 34 were acquired 

at 37ºC on an Olympus FV1000D (Inverted Microscope IX81) laser confocal 

scanning microscope using an UPlanFlU 40x/1.30 Oil Sc objective lens (Olympus) 

controlled by FV10-ASW software. The same microscope was used for Figure 19, 

but with a PlanApoN 60x/1.40 oil Sc objective lens (Olympus). Images for Figure 21, 

Figure 28 and Figure 42 were obtained at 37ºC on a PerkinElmer ERS Spinning 

disc system equipped with a Nikon TE2000 microscope, an Apo TIRF 60x/1.49 oil 

objective lens (Nikon), a CSU22 spinning disc scanner (Yokogawa) and a 
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IEEE1394 Digital CCD C4742-80-12AG camera (Hamamatsu), controlled by 

Volocity 5.5.1 software (Perkin Elmer).  

 

Images for Figure 35, Figure 36, Figure 37 and Figure 38 were acquired at 37ºC on 

Invert780 Zeiss LSM multi-photon confocal system equipped with Zeiss Axio 

Observer.Z1 microscope, a Plan-Apochromat 63x/1.46 oil objective lens and a 

GaAsP spectral detector all controlled by Zen2012 software. The plasma 

membrane interaction of Cry2-mCh-Ect2 was triggered by scanning with a 488 nm 

laser in the case of Figure 35. More spatially selective targeting of Cry2-mCh-Ect2 

was triggered by illumination with a 488 nm laser inside two small circular regions 

of 20 pixels in diameter placed at both sides of the equatorial cortex every 5 

minutes (Figure 36). Unilateral targeting of Cry2-mCh-Ect2 was achieved by 

illumination inside one small circle every 2 minutes on one side of the equatorial 

cortex for Figure 37 and at one cell pole for Figure 38.  

 

Phase contrast images in Figure 24, Figure 26 and Figure 48 were obtained by 

using an IncuCyte FLR integrated live-cell imaging system (Essen Bioscience). 

Cells were imaged every 10 minutes in a regular cell medium. 

2.8 Image quantification 

Images were quantified using ImageJ software version 1.46r 

(http://rsbweb.nih.gov/ij/). For Figure 13, Figure 15 and Figure 32, mean GFP 

intensities were measured (function Measure in ImageJ) for each time point. The 

membrane signal value was obtained by averaging six manually placed circular 

regions of 9 pixels in diameter at the cell periphery. The cytoplasmic signal was 

measured by averaging three manually selected circular regions of 50 pixels in 

diameter in the cytoplasm. The mean background signal was obtained by 

averaging three manually selected circular regions of 50 pixels in diameter outside 

of the cell. The mean value of the background signal was subtracted from the 

membrane and cytoplasmic values and after that, the ratio of cell periphery to 

cytoplasmic average signals was calculated for each cell analyzed (Figure 11). For 

Figure 45, the ratio of mean AcGFP signal at equatorial periphery to polar 

periphery was determined. The equatorial periphery signal was obtained by 
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averaging 2 manually placed circular regions 12 pixels in diameter at the cell 

periphery at both sides of the furrow. The polar periphery signal was obtained by 

averaging 2 manually placed circular regions of 12 pixels in diameter at the cell 

periphery at both cell poles. Mean background signal was obtained by averaging 

three manually selected circular regions of 50 pixels in diameter outside of the cell. 

The mean value of the background signal was subtracted from the equatorial and 

polar periphery values and after that, the ratio of equatorial periphery to polar 

periphery average signals was calculated for each cell analyzed.  

 
Figure 11 Image quantification - mean intensity ratio cell periphery/cytoplasm  
Schematic representation of image quantification to calculate mean ratio of 
intensity at the cell periphery to cytoplasmic intensity. Yellow circle - peripheral 
value; red circle - cytoplasmic value; blue circle - background value.  
 
The cell periphery signal for Figure 43 was obtained by measuring the intensity 

profile of the AcGFP signal along the line manually placed along the cell periphery 

in ImageJ (function Plot profile). The cytoplasmic signal was measured by 

averaging three manually selected circular regions of 50 pixels in diameter in the 

cytoplasm. The mean background signal was obtained as described above and the 

value was subtracted from the cell periphery and cytoplasmic values, and after that 

the ratio of cell periphery to cytoplasmic average signals was calculated for each 

cell analyzed. The same quantification was used for Figure 50, the measured 

signal being RhoA and Anillin peripheral intensity. Images were processed with 

ImageJ 1.46r and Adobe Photoshop CS5.1. All graphs presented in this study were 

made using the GraphPad Prism version 6.0a. Structural alignment from Figure 

39B was done using UCSF Chimera software version 1.8.1. 
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Chapter 3. Results 1 - Investigating the lipid 
requirements for the association of Ect2 with the 

plasma membrane  

An increasing body of evidence indicates that lipids, especially phosphoinositides 

play an important role in cell division and cytokinesis (Neto et al., 2011) (Brill et al., 

2011) (Echard, 2012) (Atilla-Gokcumen et al., 2014). Previous studies in our 

laboratory have shown that Ect2 protein localizes to the plasma membrane shortly 

after anaphase onset (Su et al., 2011). Translocation of Ect2 to the plasma 

membrane is dependent on the protein’s pleckstrin homology (PH) domain and a 

cluster of basic amino acid residues (polybasic cluster, PBC) located at the 

C-terminus of the protein. In vitro experiments have also demonstrated the ability of 

Ect2’s C-terminal region to interact with phosphoinositides (Su et al., 2011). 

However, the requirement of specific lipid species for the recruitment of Ect2 to the 

plasma membrane in a cellular context, and the role and distribution of these lipids 

during cytokinesis are currently unknown. Therefore, we set out to determine which 

lipid species are required for the membrane localization of Ect2.  

3.1 Ionomycin•Ca2+ treatment abrogates the localization of 
Ect2CT to the plasma membrane 

In order to gain insight into which lipids mediate the interaction of Ect2 with the 

plasma membrane, we decided to first use pharmacological agents to manipulate 

the composition of the plasma membrane in vivo. We focused our studies on 

phosphoinositides for two reasons. Generally, PH domains and polybasic clusters 

are known to interact with phosphoinositides (Heo et al., 2006) (Lemmon, 2008). 

Furthermore, previous results from our laboratory indicated that phosphoinositides 

could interact with Ect2’s C-terminal region in biochemical assays (Su et al., 2011). 

Firstly, we used a treatment regime to deplete phosphatidylinositol 4,5-

bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PI4P) from the inner 

surface of the cell membrane. The method is based on the calcium-induced 

activation of phospholipase C (PLC), which results in the hydrolytic cleavage of 

PIP2 and PI4P into diacylglycerol and inositol 1,4,5-triphosphate and inositol 
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1,4-diphosphate (Varnai and Balla, 1998) (Hammond et al., 2012). Ionomycin 

serves as an ionophore, transferring calcium ions across the cell membrane and 

consequently raising their intracellular concentration. Calcium chloride was added 

together with ionomycin to enrich the medium for calcium ions. The effect of 

ionomycin and calcium treatment can be reversed by addition of a chelating agent 

for divalent cations, such as EGTA. 

 

To test the ionomycin effect on Ect2 localization in cells, we transiently expressed a 

GFP-tagged truncated version of Ect2 protein (AcFL-Ect2CT) in HeLa Kyoto cells 

(HeLaK) (Figure 12A). Ect2CT contains the GEF domain, the C-terminal PH 

domain and the PBC region but it lacks the N-terminal part including the BRCT 

repeats. Ect2CT has been shown to localize to the plasma membrane in a PH and 

PBC-dependent manner when transiently expressed in cells (Su et al., 2011). The 

rationale for our experiment was that the ionomycin•Ca2+ treatment should release 

Ect2CT from the plasma membrane if Ect2 membrane binding involves interaction 

with PIP2 or PI4P. We observed the consequences of ionomycin•Ca2+ addition in 

live cells by fluorescence confocal microscopy. The GFP-tagged PH domain of 

phospholipase C δ (eGFP-PLCδ-PH) that is known to bind to PIP2 and requires 

this lipid for its membrane localization was used as a positive control (Rebecchi et 

al., 1992). Treatment of cells with ionomycin•Ca2+ triggered rapid release of both 

PLCδ-PH and Ect2CT proteins from the plasma membrane (Figure 12B and Figure 

13A). We confirmed that this effect was dependent on calcium ions, because it 

could be at least partially reversed by the addition of EGTA. Further results were 

obtained by experiments with neomycin, which has been shown to bind and protect 

PIP2 from degradation by phospholipase C (Wang et al., 2005). Pre-treatment with 

neomycin before the addition of ionomycin•Ca2+ abolished the release of PLCδ-PH 

protein from the plasma membrane, which confirmed the specific interaction of 

PLCδ-PH with PIP2 (Figure 13B). In case of Ect2CT, neomycin partially prevented 

the release of the protein from the cell membrane. Taken together, our data 

strongly suggest that Ect2’s association with the plasma membrane requires and 

involves the polyanionic phosphoinositides PIP2 and PI4P. 
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3.2 PI3Ks inhibitor treatment does not prevent Ect2CT 
recruitment to the plasma membrane 

To analyze if Ect2 binding to the plasma membrane is dependent on the 

phosphoinositides with a phosphorylated hydroxyl in position 3 of the inositol ring, 

we tested the phenotype of phosphoinositide 3-kinases (PI3Ks) inhibitors 

wortmannin and LY294002. Wortmannin is a strong irreversible inhibitor of PI3Ks, 

LY294002 is less potent but reversible inhibitor (Powis et al., 1994) (Vlahos et al., 

1994). PI3Ks inhibition results in depletion of phosphatidylinositol 3-phosphate, 

phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate 

(PI3P) from the cell membrane. As a positive control sensor for the PI3Ks inhibition, 

we used a GFP-tagged PH domain from protein kinase B (eGFP-Akt-PH), which is 

known to bind phosphatidylinositol 3,4,5-trisphospate and phosphatidylinositol 

3,4-bisphospate (Franke et al., 1997) (James et al., 1996). Akt-PH expressed in 

HeLaK cells does not localize to the plasma membrane, possibly due to the low 

abundance of phosphatidylinositol 3,4,5-trisphospate and phosphatidylinositol 

3,4-bisphospate within the inner leaflet of the plasma membrane. Therefore we 

used HEK-293T cells for these experiments (Santi and Lee, 2010). After incubation 

with the PI3Ks inhibitors wortmannin and LY294002, the PH domain of Akt was 

efficiently displaced from the plasma membrane (Figure 14 and Figure 15). 

Conversely, Ect2CT membrane localization did not change after the treatment with 

LY294002 or wortmannin (Figure 14 and Figure 15). These results suggest that the 

membrane localization of Ect2 does not require the interaction with 

phosphatidylinositol 3-phosphate, phosphatidylinositol 3,4,5-trisphospate or 

phosphatidylinositol 3,4-bisphospate. Notably, Ect2CT protein localization to the 

plasma membrane was less pronounced in HEK-293T cells as compared to HeLaK 

cells (Figure 13 and Figure 15) and HEK-293T cells did not tolerate the expression 

of Ect2CT fragment as well as the HeLaK cells. 

3.3 Attempt to study Ect2 membrane localization using a 
chemically controlled lipid phosphatases 

In order to deplete specific phosphoinositide species from the plasma membrane 

and to individually assess their role in Ect2 binding (e.g. PIP2 versus PI4P), we 
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employed a system of chemically controlled hybrid phosphatases, which can 

selectively hydrolyze different phosphoinositides at the plasma membrane 

(Hammond et al., 2012). The hybrid phosphatase, pseudojanin (PJ), consists of 

polyphosphate-5-phosphatase E (INPP5E), which hydrolyses PIP2 to PI4P, and 

S. cerevisiae Sac1 phosphatase (Sac), which dephosphorylates PI4P to generate 

phosphatidylinositol (PI) (Figure 16). Thus, sequential action of INPP5E and Sac 

converts PIP2 to PI. Acute membrane targeting of the hybrid phosphatase PJ is 

achieved by the FKBP-FRB chemical dimerizering system (Rivera et al., 1996). 

FRB fragment is fused to N-terminal peptide from Lyn kinase, which serves as a 

myristoylation and palmitoylation signal so FRB is constitutively associated with the 

cell membrane (Raucher et al., 2000). Rapamycin binds to FKBP and triggers 

dimerization of FKBP protein with FRB fragment. As it is possible to target PJ with 

catalytically inactive Sac and/or INPP5E phosphatase domains, the system can 

help discriminate between the effects of PIP2 and PI4P loss (Hammond et al., 

2012) and can confirm which one is important for Ect2 targeting to the plasma 

membrane.  

 

First, we tested the hybrid phosphatases system in HeLaK cells, where Ect2CT 

association with the plasma membrane can be easily assessed and quantified 

(Figure 12 and Figure 13). After co-transfection with eGFP-PLCδ-PH, Lyn-FRB-

mCh and mRFP-FKBP-PJ plasmids, we added rapamycin and followed its effect by 

fluorescence confocal microscopy. Surprisingly, rapamycin treatment did not 

release the PLCδ-PH control protein from the plasma membrane (Figure 17A). 

Conversely, repetition of the same experiment in HEK-293T cells showed 

translocation of PLCδ-PH to the cytoplasm after rapamycin addition, consistently 

with the published data on PJ system (Hammond et al., 2012) (Lekomtsev et al., 

2012). This result can be explained by previously reported limitations of the 

rapamycin-induced dimerization system in HeLaK and other cell types (Coutinho-

Budd et al., 2013) (Ballister et al., 2014). Some cell types including HeLaK cells 

express high levels of endogenous FKBP protein, which can compete with the 

exogenous hybrid protein mRFP-FKBP-PJ and thus prevents efficient translocation 

to the plasma membrane. Therefore, we used HEK-293T cells, in which the 

successful use of rapamycin system has been reported (Hammond et al., 2012) 

(Lekomtsev et al., 2012) (Figure 17A). Unfortunately, and in line with what we 
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observed before during experiments with PI3Ks inhibitors, we were unable to 

identify enough cells successfully co-transfected with all three plasmids (AcFL-

Ect2CT, Lyn-FRB-mCh and mRFP-FKBP-PJ) and the Ect2CT fragment exhibited 

poor enrichment at the plasma membrane in comparison to HeLaK cells. 

Nevertheless, in the few HEK-293T cells that we could test, Ect2CT membrane 

localization was reduced after treatment with rapamycin (Figure 17B). The number 

of cells analysed and the poor enrichment of Ect2CT at the plasma membrane, 

however, did not allow us to draw any firm conclusions from the experiments with 

hybrid PJ phosphatase nor did they allow us to differentiate between the effect of 

PIP2 and PI4P depletion.   

3.4 Conclusions - The lipid requirements for Ect2 plasma 
membrane association 

Membrane lipids interact with various membrane-associated proteins that drive 

cleavage furrow formation (Neto et al., 2011) (Brill et al., 2011) (Echard, 2012) 

(Atilla-Gokcumen et al., 2014). Consequently, the presence and distribution of 

lipids within the cell membrane can affect cell division. To increase our 

understanding about the role of lipids during cytokinesis, we set out to determine 

which lipid species target Ect2 to the plasma membrane. 

 

As previous in vitro biochemical experiments in our lab have shown that Ect2 can 

associate with phosphoinositides, they were in the centre of our focus during this 

study. We have successfully employed several pharmacological treatments to 

deplete different phosphoinositides from the plasma membrane and assessed the 

phenotype after the depletion. Firstly, we used ionomycin and calcium treatment to 

activate phospholipase C in order to deplete PIP2 and PI4P. Experiments with 

ionomycin•Ca2+ treatment combined with neomycin pre-treatment, which 

specifically inhibits PIP2 depletion, strongly suggested that Ect2 engagement with 

PIP2 promotes membrane localization of the protein with a possible contribution of 

an interaction with PI4P.  

 

Two different PI3Ks inhibitors, LY294002 and wortmannin released the positive 

control Akt-PH from the plasma membrane of HEK-293T cells, but had no effect on 
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membrane localization of Ect2CT protein. Due to the technical limitations with 

Ect2CT expression assays in HEK-293T cells it is difficult to rule out the possibility 

of a minor contribution of phosphoinositides with a phosphorylated hydroxyl in 

position 3 to plasma membrane binding of Ect2. However, our data do not support 

any major contribution mediated by these lipid species.  

 

We experienced other technical difficulties with the rapamycin system of hybrid 

phosphatases, which we planned to use to distinguish between Ect2 binding to 

PIP2 and PI4P. The system is not functional in HeLaK cells, possibly because of 

high cytosolic concentration of endogenous FKBP protein (Coutinho-Budd et al., 

2013) (Ballister et al., 2014). We observed plasma membrane displacement of the 

PLCδ-PH control protein in HEK-293T cells, but we could not reliably replicate the 

experiment using Ect2CT, because of very poor transfection efficiency with all three 

plasmids at once (Ect2CT, Lyn-FRB-mCh and mRFP-FKBP-PJ) and a reduced 

association of Ect2CT with the cell membrane in HEK-293T cells. We attempted to 

overcome these problems by using different cell types like U2OS and RPE cells, 

but we encountered similar difficulties. 

  

In summary, our results suggest that phosphatidylinositol 4,5-bisphosphate (PIP2) 

and phosphatidylinositol 4-phosphate (PI4P) as the main lipid species interacting 

with Ect2 and mediating the protein’s membrane association during cytokinesis. 

Importantly, PIP2 is the most abundant phosphoinositide in the inner cell 

membrane (Balla, 2013). The polyanionic lipids PIP2 and PI4P contribute to 

plasma membrane identity and PIP2 has been shown to accumulate in the 

cleavage furrow and its depletion impairs cytokinesis (Emoto et al., 2005) (Field et 

al., 2005b). Our experiments using Ect2CT are consistent with the biochemical lipid 

interaction assays (Su et al., 2011). Structural and mutational studies will be 

required to dissect whether the protein’s PH domain and PBC region engage with 

the same lipids to promote the plasma membrane association. Although, Ect2CT 

contains all known membrane engagement regions of Ect2, using transient and 

ectopic Ect2CT expression in interphase cells, as a surrogate assay for Ect2 

membrane localization, is artificial. Under normal conditions, Ect2 interacts with the 

plasma membrane only after anaphase onset, so cells expressing full-length Ect2 

and synchronized in cytokinesis would be a better model for future lipid studies. 
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There is also a possibility that Ect2 interacts with another lipid species that is 

specifically present in the plasma membrane during cytokinesis. Using anaphase-

synchronized cells would also allow us to identify this possible interacting lipid. And 

by using the full-length Ect2 should overcome the problem with ectopic expression 

of the Ect2CT, a highly active GEF and activator of RhoA (Su et al., 2011) (Su et al., 

2014). To test the requirement of PIP2 and PI4P for Ect2 membrane localization 

during cell division, pharmacological inventions and enzymatic lipid depletions 

should be set up in cells that undergo cytokinesis and that express GFP-tagged 

full-length Ect2 at endogenous level. 

 

Another way to study the lipids important for Ect2 membrane binding during 

cytokinesis would be to employ biochemical techniques and in vitro approach, 

using recombinantly expressed Ect2 protein (Su et al., 2011). Possible techniques 

include liposome-binding experiments, which study interaction with artificially 

prepared liposomes containing different lipid species. Various methods are used to 

study interaction of isolated proteins with liposomes, including isothermal titration 

calorimetry (ITC), vesicle sedimentation approaches, and surface plasmon 

resonance (SPR) (Narayan and Lemmon, 2006).  
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Figure 12 Ionomycin•Ca2+ treatment releases PLCδ-PH and Ect2CT from the 
plasma membrane  
A Schematic representation of the domain organization of the Ect2CT fragment 
used for the lipid manipulation experiments. Numbering of amino acid residues 
corresponds to positions in human full-length Ect2 protein. 
 
B Timeline representation of ionomycin•Ca2+ experiment shown in Figure 12C and 
Figure 13. 
 
C Stills from confocal imaging of HeLaK cells transiently transfected with plasmids 
encoding GFP-tagged PLCδ-PH and Ect2CT. 48 hours post-transfection, the cells 
were treated with 10 µM ionomycin and 1 mM CaCl2 and subsequently with 10 mM 
EGTA. t = 0 min was set to the frame prior to ionomycin•Ca2+ addition. Scale bar 
represents 10 µm.   
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Figure 13 Analysis of Ect2CT membrane localization after 
ionomycin•Ca2+treatment  
A Quantification of Ect2CT localization to the plasma membrane after 
ionomycin•Ca2+ treatment (Figure 12B and C). Graph shows the ratio of the GFP 
fluorescence signal at the cell periphery and in the cytoplasm for PLCδ-PH and 
Ect2CT, which were measured as shown in Figure 11. (n > 10, bars represent 
mean ± SD, Student’s t-test) 
 
B Quantification of Ect2CT localization to the plasma membrane after 
ionomycin•Ca2+ addition including the neomycin pre-treatment. Graph shows the 
ratio of the GFP fluorescence signal at the cell periphery and in the cytoplasm for 
PLCδ-PH and Ect2CT. (n > 10, bars represent mean ± SD, Student’s t-test)  
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Figure 14 PI3Ks inhibitors do not affect membrane localization of Ect2  
Confocal images of HEK-293T cells treated with PI3Ks inhibitors Ly294002 and 
wortmannin. Cells were transfected with plasmids encoding GFP-tagged Akt-PH 
and Ect2CT and treated with 25 µM Ly294002 and 100 nM wortmannin 24 hours 
post transfection. t = 0 min was set to the frame prior to addition of inhibitors. Scale 
bar represents 10 µm.       
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Figure 15 Analysis of Ect2CT membrane localization after treatment with 
PI3Ks inhibitors  
A Quantification of Ect2CT localization to the plasma membrane after Ly294002 
treatment. Graph shows the ratio of the GFP fluorescence signal at the cell 
periphery and in the cytoplasm for Akt-PH and Ect2CT. (n = 10, bars represent 
mean ± SD, Student’s t-test) 
 
B Quantification of Ect2CT localization to the plasma membrane after wortmannin 
treatment. Graph shows the ratio of the GFP fluorescence signal at the cell 
periphery and in the cytoplasm for Akt-PH and Ect2CT. (n = 10, bars represent 
mean ± SD, Student’s t-test)  
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Figure 16 System of rapamycin-controlled hybrid phosphatases for specific 
depletion of phosphoinositides from the plasma membrane 
Schematic representation of the hybrid phosphatase system based on 
rapamycin-induced dimerization of FRB and FKBP fragments (Hammond et al., 
2012). Rapamycin binds to FKBP and triggers dimerization of FKBP protein with 
FRB fragment, which brings PJ to the plasma membrane. Sequential action of 
INPP5E and Sac converts PIP2 to PI. 
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Figure 17 Action of rapamycin-controlled hybrid PJ phosphatase displaces 
PLCδ-PH from the plasma membrane in HEK-293T but not HeLaK cells 
A Confocal images of HeLaK cells (left panels) and HEK-293T cells (right panels) 
treated with rapamycin. Both cell lines were co-transfected with eGFP-PLCδ-PH, 
Lyn-FRB-mCh and mRFP-FKBP-PJ. Cells were imaged after treatment with 10 µM 
rapamycin 48 hours post transfection. t = 0 min was set to the frame prior to 
rapamycin treatment. Scale bar represents 10 µm. 
 
B Confocal images of HEK-293T cells transfected with AcFL-Ect2CT, 
Lyn-FRB-mCh and mRFP-FKBP-PJ. Cells were treated with 10 µM rapamycin 48 
hours post transfection.  



Chapter 4 Results 

 

92 

 

Chapter 4. Results 2 - Using hybrid proteins and 
chemical genetic system to artificially target Ect2 to 

the plasma membrane 

Previous work in our laboratory has demonstrated that Ect2 protein localizes to the 

plasma membrane shortly after anaphase onset. Ect2 membrane translocation is 

dependent on its pleckstrin homology (PH) domain and a cluster of basic amino 

acid residues (polybasic tail, PBC) located in the C-terminus of the protein (Su et 

al., 2011). An Ect2 version lacking both the PH domain and PBC in the C-terminal 

part of Ect2 (Ect2-ΔPHΔTail) is unable to support RhoA activation and cleavage 

furrow formation and ingression, which suggests that Ect2 membrane translocation 

could be an important step for cytokinesis in mammalian cells (Su et al., 2011). 

C-terminal deletion abrogates both the membrane localization and the furrow 

formation providing a correlative link between the two phenomena but not a 

causative relationship. Ect2-ΔPHΔTail construct lacks two hundred and fifty-two 

C-terminal amino acids, which raises the possibility that this drastic change can 

affect other functions of Ect2 than the membrane targeting. To decisively test 

whether the association of Ect2 with the plasma membrane is a prerequisite for 

cleavage furrow formation in human cells, we decided to set up a chemical genetic 

system that will allow us to artificially control the association of Ect2 with the 

plasma membrane. Such system will also allow us to probe the temporal 

requirement of Ect2-plasma membrane interaction during cell division and to test 

whether this interaction represents a rate-limiting step for the cleavage furrow 

formation. 

4.1 Construction of the system for Ect2 plasma membrane 
artificial targeting 

We started by generating a chemical genetic system based on hybrid proteins 

fused to the C1B domain from human protein kinase Cα (PKCα) (Colon-Gonzalez 

and Kazanietz, 2006). This system was previously employed in our laboratory to 

investigate the importance of the plasma membrane binding of the Centralspindlin 

subunit MgcRacGAP (Lekomtsev et al., 2012). Typical C1 domains bind the 
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plasma membrane via interaction with diacyglycerol (DAG) or with phorbolesters, 

pharmacological mimetics of DAG. Thus proteins containing a C1B domain can be 

artificially targeted to the plasma membrane by addition of phorbolesters (Colon-

Gonzalez and Kazanietz, 2006). To utilise this system, a chimeric Ect2 construct 

was generated in our laboratory by Kuan-Chung Su, in which the entire C-terminal 

part containing PH domain and PBC was removed and replaced with the C1B 

domain from human PKCα. The construct allows stable transgenic expression of 

the fluorescently tagged and siRNA-resistant Ect2-C1B hybrid protein in human 

cells (AcGFP-FLAG-Ect2r-ΔPHΔTail-C1B).  

 

To obtain a negative control for our experiments, we sought to generate an 

Ect2-C1B hybrid construct carrying a point mutation in the C1B domain that 

abolishes the interaction with phorbolesters and consequently the plasma 

membrane localization of C1B. After a literature search, we decided to mutate two 

residues, proline in position 11 (P11G) and glutamine 27 (Q27G). Both residues 

are highly conserved in typical C1 domains from different proteins (Figure 18A), 

and both have been reported to significantly reduce phorbolester binding when 

mutated (Colon-Gonzalez and Kazanietz, 2006) (Bogi et al., 1999). In order to test 

the effect of P11G and Q27G on membrane targeting of C1B independent of Ect2, 

we introduced the mutations separately into C1B domain tagged with AcGFP-FLAG 

(AcFL-C1B) and the mutated C1B constructs were transiently expressed in HeLaK 

cells. Subsequently, the phorbolester 12-O-Tetradecanoylphorbol-13-acetate (TPA) 

was added to cells while protein localization was tracked by fluorescence confocal 

microscopy (Figure 18B). WT version of C1B domain translocated to the plasma 

membrane in less than 10 min. In striking contrast, both mutations abolished or 

greatly reduced recruitment of the reporter protein to the cell periphery. In cells 

expressing the P11G mutant of C1B domain we could still observe weak plasma 

membrane localization, while the Q27G mutation appeared to completely inhibit the 

membrane localization so we focused on Q27G mutation (Figure 18B). Image 

analysis over time revealed that the WT C1B domain quantitatively translocated to 

the plasma membrane within 5 minutes after 1 µM TPA addition (Figure 19). The 

enrichment of C1B domain at the plasma membrane was completely abolished by 

the Q27G mutation confirming that this alteration indeed prevents the phorbolester-

induced targeting of C1B domain to the membrane (Figure 19). Our work has 
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identified the C1BQ27G as a suitable negative control for artificial membrane 

recruitment experiments using Ect2-C1B hybrid proteins. Therefore we cloned the 

construct for expression of AcGFP-FLAG-Ect2r-ΔPHΔTail-C1BQ27G in human cells 

(Figure 20). For simplicity, we will refer to the constructs and proteins 

AcGFP-FLAG-Ect2r-ΔPHΔTail-C1B and AcGFP-FLAG-Ect2r-ΔPHΔTail-C1BQ27G as 

Ect2-C1B and Ect2-C1BQ27G respectively.  

 

In order to assess the importance of Ect2 membrane targeting, we generated cell 

lines stably expressing either WT or Q27G mutant hybrid Ect2-C1B protein. The 

Q27G hybrid Ect2 protein was expressed at similar level as the WT hybrid (Figure 

20B). For both C1B hybrid transgenic proteins, the expression level was higher 

than that of endogenous Ect2 and the transgenic full-length Ect2 protein. The 

phenomenon that Ect2 alleles lacking the C-terminal part are expressed at a higher 

level was observed previously in our laboratory (Su et al., 2011). The effect of the 

siRNA-induced endogenous Ect2 depletion is not easily visible on the WB of hybrid 

proteins-expressing cells, as both the endogenous Ect2 and the hybrids have the 

same electrophoretic mobility. However, the strong efficacy of the siRNA depletion 

is easily seen in control cell lines (AcFL and AcFL-Ect2r) (Figure 20B). We 

completed our set with cell lines generated previously (Su et al., 2011), expressing 

the AcFL-tag only (AcFL), the full-length version of Ect2 (AcFL-Ect2r) and the 

truncated Ect2 protein without PH domain and polybasic tail (AcFL-

Ect2r-ΔPHΔTail). All transgenes contain an N-terminal AcGFP-FLAG tag to track 

the transgenic proteins in cellular and biochemical assays and they are resistant to 

Ect2 siRNA due to introduction of synonymous mutations in the siRNA binding site 

(Su et al., 2011). The domain structure of all proteins used in subsequent 

experiments is depicted in Figure 20A. 

 

Next, we tested whether the hybrid Ect2-C1B protein expressed in the stable 

transgenic cell lines were capable of plasma membrane localization after TPA 

treatment. Upon addition of TPA, we observed a rapid (within 1 min) translocation 

of the Ect2-C1B hybrid protein to the plasma membrane in anaphase cells (Figure 

21). Conversely, the Ect2-C1BQ27G hybrid protein failed to accumulate at the cell 

periphery. In both hybrid proteins the localization to the spindle midzone, which is 

mediated by Ect2’s N-terminal BRCT repeats (Somers and Saint, 2003) (Yuce et 
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al., 2005) was maintained upon TPA addition. Thus, we have succeeded in setting 

up an experimental system based on C1B-hybrid proteins and TPA phorbolester 

treatment that will allow us to artificially induce and temporally modulate the plasma 

membrane recruitment of Ect2 during cell division.  

4.2 Artificial plasma membrane targeting of Ect2 can bypass 
the requirement for the protein’s PH domain and PBC 

In order to first asses whether TPA addition can restore cytokinesis in hybrid cell 

lines and to determine the optimal phorbolester concentration for the rescue 

experiments, we depleted endogenous Ect2 in the Ect2-C1B cell line and six hours 

later added increasing concentrations of TPA ranging from 1 nM to 1 µM. Two days 

after siRNA transfection the cells were fixed and analysed by immunofluorescence 

(IF) microscopy. As a readout for successful or failed cytokinesis, we quantified the 

percentage of multi-nucleated cells (Figure 22A). Interestingly, we observed a 

significant decrease in the level of multi-nucleation in TPA-treated cells. 77% of 

DMSO-treated cells were multinucleated. TPA addition lowered the multi-nucleation 

level to 32% (10 nM TPA) and 38% (100 nM TPA). This first observation raised the 

possibility that artificial recruitment of Ect2-C1B hybrid protein can restore 

cytokinesis in the absence of Ect2’s native membrane engagement domains. For 

subsequent in-depth experiments we decided to use the concentration of 10 nM 

TPA. 

 

In order to exclude that the TPA treatment is affecting cytokinesis by lowering the 

effectivity of the Ect2 siRNA depletion, we examined the protein levels of the Ect2 

hybrids with or without TPA treatment. WB analysis showed that TPA addition did 

not change the expression levels of Ect2 hybrid proteins (Figure 22B). 

Unfortunately, the same electrophoretic mobility of the Ect2 hybrid proteins and 

endogenous Ect2 complicated the analysis for the endogenous protein, but there 

was no obvious difference in expression levels between DMSO and TPA treatment 

in Ect2 siRNA treated cells (Figure 22B). Furthermore, we observed only a minor 

reduction in cytokinesis failure upon depletion of endogenous Ect2 in a cell line 

expressing only the AcFL tag after addition of TPA (Figure 23).  
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Using the setup described above, we conducted rescue experiments with artificial 

membrane targeting of Ect2. We assessed the results using IF staining and 

measuring the level of multi-nucleation (Figure 23). All cell lines showed a 

background level of multi-nucleation, characteristic for HeLaK cells transfected with 

non-targeting control siRNA (NTC) (Figure 23B). Depletion of endogenous Ect2 in 

cell expressing only the AcFL tag caused a dramatic cytokinetic defect resulting in 

high multi-nucleation levels. As published previously, expression of the full-length 

wild type Ect2 transgene was able to fully complement the loss of the endogenous 

protein (Su et al., 2011). Removal of the PH domain and PBC (AcFL-

Ect2r-ΔPHΔTail) abrogated this rescue activity. Addition of TPA did not strongly 

affect the observed phenotypes for the above transgenic cell lines when compared 

to addition of the solvent control (DMSO). We calculated the difference in multi-

nucleation levels between DMSO and TPA treated cells and we subtracted the 

background level of multinucleation obtained from cells transfected with control 

siRNA. We observed that TPA treatment caused a small reduction in the level of 

multi-nucleation in control cell lines, 18% for tag-only cells, 17% for AcFL-

Ect2r-ΔPHΔTail and 19% for cells expressing Ect2-C1BQ27G. This minor reduction 

was very similar between the different control cell lines and we propose this is 

caused by extension of the cell cycle time by TPA treatment and this issue is 

addressed in subsequent experiments (Figure 24 and Figure 25). Strikingly, TPA 

addition considerably supressed cytokinetic failure in cells expressing the hybrid 

Ect2-C1B protein with 53% drop in multi-nucleation levels (Figure 23B). Importantly, 

TPA addition had no effect on the multi-nucleation score in the cell line expressing 

Ect2-C1BQ27G when compared to the cells expressing the same transgene without 

the C1B domain (AcFL-Ect2r-ΔPHΔTail).  

 

To further establish that artificial membrane targeting of Ect2-C1B can complement 

the role that PH domain and PBC play during cytokinesis, we examined the rescue 

effect using live-cell imaging (Figure 24 and Figure 25). The results confirmed that 

TPA-induced membrane targeting of Ect2 could partially rescue cytokinetic defects 

after endogenous Ect2 depletion. Notably, more than 60% of cell expressing 

Ect2-C1B successfully divided, while close to 100% of Ect2-C1BQ27G expressing 

cells failed cell division The live-cell imaging experimental setup proved to be more 

suitable than the end-point IF analysis, as we could focus only on the cells that 
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undergo cell division. Live-cell imaging analysis thus eliminated the small difference 

in multi-nucleation levels between DMSO and TPA-treated control cell lines, 

detected by IF analysis (Figure 23B). Examples of TPA-treated cells undergoing 

cytokinesis are shown in Figure 24. Collectively, these results suggest that 

TPA-induced targeting of Ect2 hybrids can partially restore cytokinesis in the 

absence of Ect2’s native membrane engagement domains when TPA is added in a 

long-term fashion to asynchronously growing cells. 

 

Normally, Ect2 localizes to the plasma membrane only shortly after anaphase 

onset (Su et al., 2011). In order to replicate this temporal regulation, we targeted 

Ect2 to the plasma membrane specifically at the metaphase-to-anaphase transition 

using a previously described synchronisation protocol (Petronczki et al., 2007). 

Cells depleted for endogenous Ect2 were arrested in metaphase by addition of 

proteasome inhibitor MG132, released from the block and forty-five minutes later 

DMSO as a control or 10 nM TPA was added to the cell medium and cells going 

through division were imaged. Notably, 50% of the cells expressing Ect2-C1B 

successfully divided after TPA addition, while 99% of cells expressing 

Ect2-C1BQ27G failed to divide (Figure 26). These data formally demonstrate that 

Ect2’s localization to the plasma membrane is essential and sufficient for 

cytokinesis from metaphase onwards, even though it possibly only plays a role 

after anaphase onset. 

4.3 Artificial targeting of Ect2’s GEF domain alone to the 
plasma membrane cannot support cytokinesis 

The GEF domain is the catalytic domain of Ect2, which exerts the nucleotide 

exchange activity on RhoA and thus promotes cleavage furrow formation 

(Tatsumoto et al., 1999) (Prokopenko et al., 1999) (Su et al., 2011). Therefore, we 

decided to determine if targeting of only the GEF domain to the plasma membrane 

is sufficient to rescue cytokinesis. This experiment addresses whether the only key 

functions of Ect2 during cytokinesis are the GEF activity and the plasma membrane 

engagement.  To this end we prepared a monoclonal stable cell line expressing the 

construct only covering the GEF domain of Ect2 fused to C1B domain (GEF-C1B) 

(Figure 27) and tested its TPA-induced membrane targeting, which we followed by 
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fluorescence microscopy (Figure 28). Notably, GEF-C1B translocation to the 

plasma membrane was more effective than that of the Ect2-C1B hybrid, likely as a 

result of the increased mobility of the smaller protein and due to higher expression 

level of GEF-C1B protein (Figure 27B). Afterwards, we repeated the rescue 

experiments with the GEF-C1B cell line. Importantly, artificial membrane targeting 

of the GEF domain alone did not complement for the loss of endogenous Ect2 like 

the Ect2-C1B hybrid (Figure 29). We tested several TPA concentrations to prevent 

cytokinesis failure due to an overactivation of RhoA and hypercontractility of the 

cortex but obtained no rescue activity using the GEF-C1B fusion protein (Figure 30). 

This result indicates that the N-terminal part of Ect2 plays an important role in the 

cleavage furrow formation, and while the GEF activity of Ect2 is essential 

(Prokopenko et al., 1999) (Tatsumoto et al., 1999) (Somers and Saint, 2003) (Yuce 

et al., 2005) (Su et al., 2011), it is not sufficient to target only the GEF domain to 

the plasma membrane for successful cytokinesis progression. One caveat of the 

above experiments is that rescue activity of the GEF-C1B hybrid may be masked 

by hyperactivation of RhoA due to higher expression of the construct. 

4.3 Precocious artificial membrane targeting of Ect2 

We have shown that the interaction of Ect2 with the plasma membrane is 

indispensable function for cytokinesis in human cells. During cytokinesis Ect2’s 

translocation to the plasma membrane occurs at the time of anaphase onset when 

Cdk1 activity declines (Su et al., 2011). Having established a system for Ect2 

artificial membrane targeting, we sought next to determine whether the interaction 

of Ect2 with the plasma membrane is a rate-limiting step for the timing of cleavage 

furrow formation. This experiments aimed at determining whether the only or main 

reason why cytokinesis is inhibited in metaphase cells is due to the inability of Ect2 

to engage with the cell periphery. To this end we targeted Ect2 to the plasma 

membrane prematurely in metaphase and scored the cells for signs of contractility. 

During cytokinesis the active pool of RhoA, which drives the cleavage furrow 

formation, localizes to the equatorial part of the cell cortex (Piekny et al., 2005) 

(Bement et al., 2005). Anillin, a key scaffolding protein of the contractile ring, 

directly interacts with RhoA and stabilizes its cortical localization (Piekny and 

Glotzer, 2008) (Liu et al., 2012). In order to follow possible upregulation of 
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cytokinetic contractility after premature membrane targeting of Ect2, we analysed 

the cells for membrane enrichment of RhoA and Anillin. 

  

We synchronized Ect2 hybrid cell lines in metaphase, treated them with DMSO or 

TPA and analysed them by immunofluorescence microscopy (Figure 31). 

Consistent with our previous results, we observed the Ect2-membrane interaction 

after TPA treatment in the case of Ect2-C1B and GEF-C1B hybrids, while no 

change in localization of Ect2-C1BQ27G protein could be detected. To assess the 

plasma membrane enrichment of RhoA and Anillin after Ect2 membrane targeting, 

we quantified the ratio of fluorescence intensity on the cell periphery and in the 

cytoplasm for both proteins (Figure 32). Interestingly, we observed a small, but 

significant increase of RhoA and Anillin plasma membrane signal after Ect2-C1B 

membrane targeting. GEF-C1B TPA-induced translocation led to even more 

significant enrichment of RhoA and Anillin at the plasma membrane. GEF-C1B 

expressing cells also exhibited signs of hypercontractility with irregular shape of 

plasma membrane and membrane blebbing (Figure 31), a phenotype not observed 

after Ect2-C1B membrane targeting. This difference could be explained by the 

more efficient membrane translocation of the smaller GEF-C1B protein, but it may 

also suggest a negative regulatory role of the Ect2’s N-terminus, missing in the 

GEF-C1B fusion protein, possibly resulting in uncontrolled RhoA activation. These 

results suggest that forcing Ect2 to localize at the plasma membrane in metaphase 

can increase the levels of downstream cortical cytokinetic regulators but does not 

result in precocious ectopic furrow formation.  

4.4 Conclusions - Chemical genetic system to artificially target 
Ect2 to the plasma membrane 

We developed a system for the artificial membrane targeting of Ect2 using fusion 

proteins with C1B domain from PKCα substituting the role of PH domain and 

polybasic tail present in endogenous Ect2. This system allows rapid, chemically 

induced membrane translocation of Ect2 by addition of phorbolesters (TPA) directly 

to the cell medium. We have generated a set of stable cell lines expressing various 

versions of the hybrid Ect2 proteins and used them to test the role and regulation of 

Ect2 association with the plasma membrane for cytokinesis.  
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In summary, the cells expressing Ect2 protein lacking PH domain and polybasic tail 

are unable to properly form the cleavage furrow and fail cytokinesis after depletion 

of the endogenous Ect2 protein. Importantly, these cytokinetic defects can be 

partially (50-60% efficiency) rescued by artificial membrane targeting of Ect2-C1B 

hybrid protein, which we have shown by end-point analysis of fixed cells as well as 

by live-cell imaging experiments. The rescue effect is dependent on the C1B 

interaction with TPA at the plasma membrane, as the Q27G mutation in C1B 

domain, which prevents phorbolester recognition, also abolishes the rescue effect. 

Additionally, acute membrane targeting of Ect2 in synchronized cells entering 

anaphase can also rescue cytokinetic division, demonstrating that Ect2 membrane 

interaction is important only from metaphase onwards. These results 

unambiguously demonstrate that membrane localization of Ect2 is an essential, 

non-redundant step for the execution of cytokinesis in human cells. Thus, our 

observations combined with previous results using GEF domain point mutants 

(Prokopenko et al., 1999) (Su et al., 2011), firmly establish GEF activity and plasma 

membrane engagement as two key and indispensable properties of Ect2 for 

cytokinesis. 

 

Artificial membrane targeting of Ect2 during the metaphase-to-anaphase transition 

was able to rescue cleavage furrow formation to the same extent as chronic 

treatment with the phorbolester. This result strongly suggests that the interaction of 

Ect2 with the plasma membrane is only required from metaphase onwards, and 

possibly only after anaphase onset, when the interaction normally occurs (Su et al., 

2011). It has been previously shown that Ect2 activity is required for the 

establishment of a stiff mitotic cell cortex and timely mitotic cell rounding (Matthews 

et al., 2012) (Kunda and Baum, 2009). Our acute TPA-induced Ect2-C1B targeting 

experiments showed that mitotic cell rounding and the establishment of a stiff 

mitotic cortex do not require Ect2 interaction with the plasma membrane.  

 

Interestingly, we found that the GEF-C1B fusion protein was unable to complement 

the role of endogenous Ect2 causing GEF-C1B expressing cells to fail cytokinesis 

after depletion of endogenous Ect2, despite efficient TPA-induced membrane 

targeting. On the other hand, premature targeting of GEF-C1B in metaphase cells 

shows signs of RhoA overactivation. Taken together, these results suggest a 
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crucial regulatory role of the N-terminal part of the Ect2 protein. Previous 

observations in human cells and echinoderm embryos suggest that massive 

delocalized RhoA hyperactivation by expression of Ect2CT can block cleavage 

furrow ingression (Su et al., 2011) (Su et al., 2014). Thus, the cytokinetic rescue 

activity of the GEF-C1B fusion protein upon TPA addition may be masked by RhoA 

hyperactivation. However, arguing against this possibility is the fact that we were 

unable to detect cytokinetic rescue activity even at much reduced concentrations of 

TPA. 

 

Finally, precocious targeting of Ect2-C1B in metaphase leads to a slight enrichment 

of RhoA and Anillin localization at the plasma membrane, but does not cause cells 

to become hypercontractile. We conclude that Ect2 translocation to the plasma 

membrane might help regulate the timing of cytokinesis, but other temporal control 

mechanisms that restrain contractility in metaphase are likely to exist. 
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Figure 18 C1B domain mutations 
A Sequence alignment of human C1 domains from indicated proteins. The first 
sequence belongs to the C1B domain from PKCα, which was used for construction 
of hybrid proteins. Highlighted are the residues, which were mutated to glycine. 
 
B Stills from confocal imaging of HeLaK cells transiently transfected with 
GFP-tagged wild type or mutant C1B domains (AcFL-C1B). The cells were treated 
with 1 µM TPA 48 hours after transfection. t = 0 sec is set to the frame prior to TPA 
addition. Scale bar represents 10 µm.   
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Figure 19 The mutation of Q27 abrogates TPA-induced membrane 
recruitment of the C1B domain  
A Confocal images of the HeLaK cells transiently transfected with AcFL-C1B or 
AcFL-C1BQ27G together with H2B-mCherry. Cells were treated with 1 µM TPA 
48 hours after transfection. t = 0 sec is set to the frame prior to TPA addition. Scale 
bar represents 10 µm.   
 
B Quantification of C1B domains translocation to the plasma membrane after the 
TPA treatment as shown in Figure 19A. Graph shows ratio of the GFP signal at the 
cell periphery and in the cytoplasm from -2.5 minutes to 10 minutes with t = 0 min 
set as the TPA addition time. (n = 6, bars represent mean ± SD)    
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Figure 20 System for artificial membrane targeting of Ect2 
A Schematic representation of the domain organization of different Ect2 constructs 
used to generate monoclonal HeLaK cell lines for testing the role of Ect2’s 
interaction with the plasma membrane. Numbering of amino acid residues 
corresponds to their positions in human full-length Ect2 protein. 
 
B Immunoblot analysis of protein lysates from the HeLaK cell lines stably 
expressing the proteins schematically depicted in panel A. Protein lysates were 
prepared 48 hours after transfection with NTC (-) or Ect2 siRNA (+). The 
immunoblot membrane was probed with antibodies directed against AcGFP, Ect2 
and β-tubulin. All stable cell lines express the GFP-tagged transgenes in more than 
> 95% of the cell population.  
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Figure 21 Membrane translocation of Ect2 hybrid proteins after TPA addition 
in anaphase 
Confocal images from spinning disk confocal microscopy depicting the hybrid 
Ect2-C1B protein interacting with plasma membrane after the TPA treatment. 
Stable cell lines expressing AcGFP-FLAG-Ect2r-ΔPHΔTail-C1B (Ect2-C1B) or the 
Q27G-mutated version (Ect2-C1BQ27G) were transiently transfected with 
H2B-mCherry. Cells were treated with 1 µM TPA and imaged 48 hours after 
transfection. t = 0 min is set to the time of TPA addition. Scale bar represents 
10 µm.   
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Figure 22 TPA concentration optimization 
A Quantification of the percentage of multi-nucleated interphase cells. The stable 
cell line expressing Ect2-C1B was transfected with Ect2 siRNA. After 6 hours, the 
medium was changed and indicated concentrations of TPA or DMSO as a negative 
control were added. Cells were analysed by IF 48 hours after the siRNA 
transfection. (n > 300, bars represent mean ± SD of three independent experiments, 
Student’s t-test) 
  
B Immunoblot analysis of cell lines stably expressing Ect2-C1B and Ect2-C1BQ27G 
hybrid proteins. Protein lysates were prepared 48 hours after transfection with NTC 
(-) or Ect2 siRNA (+). 10 nM TPA (+) or DMSO (-) was added 6 hours post siRNA 
transfection. The immunoblot membrane was probed with antibodies directed 
against AcGFP, Ect2 and β-tubulin. 
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Figure 23 Analysis of cellular phenotype after artificial membrane targeting of 
Ect2  
A IF analysis of Ect2-C1B and Ect2-C1BQ27G hybrid proteins expressing cell lines. 
Cells were transfected with Ect2 siRNA. After 6 hours, the medium was changed 
and 10 nM TPA or DMSO was added. Cells were fixed and stained with antibodies 
directed against AcGFP, α-tubulin and with DAPI 48 hours after siRNA transfection. 
Scale bar represents 10 µm.   
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B Quantification of multi-nucleation levels for rescue experiments with hybrid cell 
lines. Indicated cell lines were treated as described above (panel A). (n > 300, bars 
represent mean ± SD of three independent experiments, Student’s t-test). 
 
 
 

 
Figure 24 Live-cell imaging analysis of cytokinesis after artificial membrane 
targeting of Ect2 
Representative images showing cytokinetic phenotypes for the whole set of cell 
lines (Figure 20A) after Ect2 siRNA transfection and TPA treatment. Cells were 
transfected with Ect2 siRNA and after 6 hours the medium was changed and 10 nM 
TPA was added. Cells were imaged with bright field microscopy starting 24 hours 
after siRNA transfection. Time point t = 0 min was set to metaphase to anaphase 
transition.   
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Figure 25 Live-cell imaging analysis of cytokinetic phenotype after artificial 
membrane targeting of Ect2 - quantification 
Quantification of cytokinetic failure for Ect2 hybrid cell lines using live-cell imaging 
analysis. Indicated cell lines were treated as described above (Figure 24). 
Mono-nucleate cells undergoing cell division were scored from 24 to 72 hours 
post-transfection. (n > 100, bars represent mean ± SD of three independent 
experiments). 
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Figure 26 Live-cell imaging analysis of cytokinetic phenotype after artificial 
membrane targeting of Ect2 in anaphase 
A Representative images showing cytokinetic phenotypes for Ect2-C1B and 
Ect2-C1BQ27G hybrid stable cell lines. After Ect2 siRNA depletion, cells were 
synchronized in metaphase using previously described synchronization protocol 
(Petronczki et al., 2007). 45 minutes after release from the metaphase block, the 
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cells were treated with DMSO or 10 nM TPA and imaged with bright field 
microscopy right after. Time point t = 0 min was set to metaphase to anaphase 
transition. 
 
B Quantification of cytokinetic phenotype after artificial membrane targeting of 
hybrid Ect2 proteins in anaphase. Time-lapse movies were obtained as described 
above (panel A). Mono-nucleated cells that were in metaphase at the beginning of 
the time-lapse imaging were scored. (n > 200, bars represent mean ± SD of three 
independent experiments, Student’s t-test). 
 

 

 
Figure 27 System for artificial membrane targeting of Ect2’s GEF domain 
A Schematic representation of the domain organization of the GEF domain only 
hybrid construct (GEF-C1B) and the Ect2-C1B construct. Numbering of amino acid 
residues corresponds to their positions in human full-length Ect2 protein. 
 
B Immunoblot analysis of Ect2-C1B and GEF-C1B hybrid stable cell lines. Protein 
lysates were prepared 48 hours after transfection with NTC (-) or Ect2 siRNA (+). 
The immunoblot membrane was probed with antibodies directed against AcGFP, 
Ect2 and β-tubulin. For the GEF-C1B sample 1/10 of lysate was loaded for the blot 
probed against AcGFP. 
  



Chapter 4 Results 

 

112 

 

 
Figure 28 Membrane translocation of Ect2’s GEF domain after TPA treatment 
Images from spinning disk confocal microscope depicting the hybrid GEF-C1B and 
Ect2-C1B proteins interacting with the plasma membrane after TPA treatment. 
Stable cell lines were transiently transfected with H2B-mCherry to visualise 
chromosomes. Cells were treated with 1 µM TPA and imaged 48 hours after 
transfection. t = 0 min is set to the time of TPA addition. Scale bar represents 
10 µm. 
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Figure 29 Analysis of cellular phenotype after artificial membrane targeting of 
GEF-C1B 
A IF analysis of cells stably expressing GEF-C1B. Cells were transfected with Ect2 
siRNA. After 6 hours, the medium was changed and 10 nM TPA or DMSO was 
added. Cells were fixed and stained with antibodies directed against AcGFP, 
α-tubulin and with DAPI 48 hours after siRNA transfection. Scale bar represents 
10 µm.   
 
B Quantification of multi-nucleation levels for the GEF-C1B rescue experiment. 
Indicated cell lines were treated as described above (panel A). (n > 300, bars 
represent mean ± SD of three independent experiments).  
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Figure 30 Analysis of cellular phenotype after artificial membrane targeting of 
GEF-C1B – various TPA concentrations 
Quantification of multi-nucleation levels for the GEF-C1B rescue experiment. Cells 
were expressing AcFL tag, Ect2-C1B and GEF-C1B were transfected with control 
or Ect2 siRNA. After 6 hours, the medium was changed and DMSO or various TPA 
concentrations was added. (n > 300, bars represent values of one experiment). 
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Figure 31 Precocious targeting of Ect2 in metaphase cells – Anillin  
A IF analysis of Anillin in cell lines expressing Ect2 hybrid proteins treated with TPA 
in metaphase. Cells were treated with nocodazole for 4.5 hours to enrich the 
population of prometaphase cells. 1 hour after nocodazole washout the cells were 
treated with DMSO or 1 µM TPA for 5 minutes. After the treatment, the cells were 
fixed and stained with antibodies directed against Anillin, together with AcGFP and 
DAPI for DNA. Scale bar represents 10 µm.    
 
B Quantification of Anillin enrichment at the plasma membrane after TPA treatment. 
Graph shows the ratio of the fluorescence signal at the cell periphery and in the 
cytoplasm for Anillin (n = 10, bars represent mean ± SD, Student’s t-test).
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Figure 32 Precocious targeting of Ect2 in metaphase cells – RhoA 
A IF analysis of RhoA in cell lines expressing Ect2 hybrid proteins treated with TPA 
in metaphase. Cells were treated with nocodazole for 4.5 hours to enrich the 
population of prometaphase cells. 1 hour after nocodazole washout the cells were 
treated with DMSO or 1 µM TPA for 5 minutes. After the treatment, the cells were 
fixed and stained with antibodies directed against RhoA, together with AcGFP and 
DAPI for DNA. Scale bar represents 10 µm.    
 
B Quantification of RhoA enrichment at the plasma membrane after TPA treatment. 
Graph shows the ratio of the fluorescence signal at the cell periphery and in the 
cytoplasm for RhoA (n = 10, bars represent mean ± SD, Student’s t-test).
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Chapter 5. Results 3 - Optogenetic system to study 
the spatial requirements of Ect2 interaction with the 

plasma membrane during cytokinesis 

Using chemical genetics we have shown that Ect2 membrane translocation is an 

important step for cytokinesis in mammalian cells. To expand our understanding of 

Ect2 function and the execution of cytokinesis, we decided to determine the 

importance of spatial distribution of Ect2 at the cell membrane for the cleavage 

furrow formation and cytokinesis. The previously employed chemical genetic 

system that is based on Ect2-C1B hybrid proteins can provide temporal control 

over Ect2’s interaction with the membrane but does not provide spatial resolution. 

Addition of the compound to the cell medium results in an even distribution of the 

hybrid protein along the cell membrane. To overcome this limitation, we used a 

recently developed optogenetic method, which allows control of cellular processes 

by light stimulus. Importantly, optogenetic techniques offer higher temporal and 

spatial precision in delivering the activation signal when compared to the chemical 

genetic methods (Pathak et al., 2013). Our plan was to target Ect2 protein to 

different parts of the cell membrane and study the consequences for the formation 

of the cleavage furrow formation in human cells.  

5.1 Developing an optogenetic system for spatially confined 
targeting of Ect2 to the plasma membrane 

We took advantage of an optogenetic system based on the photosensitive 

cryptochrome protein (Cry2) from Arabidopsis thaliana. After activation with blue 

light, Cry2 changes its conformation and interacts with the CIB1 protein, 

establishing a useful optically controlled dimerizering system (Kennedy et al., 2010). 

A schematic representation of the original cryptochrome system is shown in Figure 

33A and B. The system uses the photolyase homology region (PHR) from Cry2 as 

a photosensitive moiety, which is tagged with mCherry at the C-terminus to 

facilitate tracking of the protein in the living cells (Cry2-mCh). The interaction 

partner for Cry2 is the N-terminal part of CIB1 protein (CIBN). CIBN is tagged with 

GFP and stably targeted to the inner leaflet of the plasma membrane by addition of 
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the C-terminal prenylation sequence CAAX (CIBN-eGFP-CAAX). Cry2 binding to 

CIBN is activated by blue-light illumination with 488 nm laser, the same wavelength 

normally used to visualize GFP-tagged proteins. The interaction is very rapid, first 

Cry2 molecules can be detected 300 ms after the laser illumination and within 

10 seconds the translocation is almost compete. The binding of Cry2 to CIBN is 

reversible with slow dissociation over 10 minutes (Kennedy et al., 2010).   

 

In the original reported system, Cry2-mCh protein is present in the cytoplasm. 

Consequently, when it is activated by blue light, it diffuses very quickly and the 

interaction with plasma membrane is not exclusively restricted to the activated 

section. Nevertheless, activation of the Cry2 fusion protein in a subcellular region 

will result in the enhanced recruitment to the plasma membrane in close proximity 

to the activated region. Since we wanted to target Ect2 in a site-specific manner we 

attempted to swap the two interacting partners and to stably localize Cry2-mCh to 

the plasma membrane in order to restrict the cytoplasmic diffusion of the protein. 

To this end we generated a construct expressing Cry2-mCh with a C-terminal 

prenylation signal (Cry2-mCh-CAAX). For the second component, we fused the 

CIBN to siRNA-resistant AcGFP-tagged version of Ect2 that lacks the native 

membrane binding domains (Ect2r-ΔPHΔTail) or the Ect2’s GEF domain only 

through N-terminus or C-terminus (Figure 33C).  

 

To test the Cry2 system, we transiently transfected HeLaK cells with different 

combinations of constructs and tracked the mCherry and AcGFP-tagged fusion 

proteins following the whole-cell illumination with blue light and subsequent Cry2 

activation with confocal live-cell imaging. Using the original system, we observed a 

rapid translocation of Cry2-mCh to the plasma membrane in CIBN-eGFP-CAAX 

expressing cells following a blue-light stimulus (Figure 34A). Unfortunately, we 

were not able to replicate this translocation with the adapted Cry2 system. Both 

proteins were expressed, however, for reasons currently not understood Cry2 

protein stably attached to the plasma membrane was unable to attract the CIBN 

domain after illumination. We tried to overcome this problem by inserting different 

linkers in-between Cry2-mCh and the CAAX signal (Figure 33C). Unfortunately, the 

addition of linkers did not trigger the blue-light-induced membrane targeting of 

CIBN-GEF-FLAc either (Figure 34B).   
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5.2 Optogenetic targeting of Ect2 to the plasma membrane 
causes cleavage furrow formation 

In light of the results described above, we decided to employ the original and 

validated setup with cytosolic Cry2-mCh and membrane-bound CIBN, hoping to still 

achieve a sufficient level of spatial selectivity. To facilitate our experiments for the 

optogenetic targeting of Ect2 to the plasma membrane, we generated a monoclonal 

cell line stably expressing CIBN-eGFP-CAXX stably bound to the plasma 

membrane. Then we fused truncated Ect2 without PH domain and PBC to 

Cry2-mCh creating a photo-responsive Cry2-mCh-Ect2r-ΔPHΔTail fusion protein 

(Cry2-mCh-Ect2) (Figure 35A). We subsequently transfected the CIBN-expressing 

cell line with Cry2-mCh-Ect2 and imaged the cells using confocal microscopy. 

Upon whole-cell illumination with a 488 nm laser, the Cry2-mCh-Ect2 protein 

rapidly translocated to the plasma membrane and colocalized with the CIBN 

domain in anaphase cells (Figure 35B). Importantly, blue-light activation and 

subsequent membrane binding also appeared to stimulate the interaction of 

Cry2-mCh-Ect2 with the midzone. The effect of Ect2’s membrane interaction on 

midzone binding of the protein has not been explored previously. However, 

experiments focusing on the localization of the GFP-tagged WT allele of Ect2 

during mitosis showed that the Ect2 midzone localization gradually increases 

during anaphase as does the localization of Ect2 to the equatorial part of the 

membrane also growths (Su, 2013). This raises the possibility that plasma 

membrane binding of Ect2 may stimulate the midzone association of the protein, 

but further research will be necessary to test this. In our optogenetic system this 

localization pattern could be enhanced due to the weaker midzone localization of 

Cry2-mCh-Ect2. Reasons for weaker localisation of Cry2-mCh-Ect2 protein to the 

midzone are currently unknown. One possibility is that the fusion of Ect2 with the 

large cryptochrome protein blocks the BRCT domains mediated interaction and that 

this is alleviated after a light-induced conformational switch in Cry2.  

 

As we were able to target Ect2 to the plasma membrane in live cells and directly 

observe the cleavage furrow formation, we decided to repeat our rescue 

experiments with the light-controlled system. CIBN-expressing cells were 

transfected with Cry2-mCh-Ect2 and endogenous Ect2 protein was depleted by 
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Ect2 siRNA. We focused on metaphase and early anaphase cells and activated the 

interaction of Cry2-mCh-Ect2 with CIBN in the plasma membrane by repeated 

illumination with a 488 nm laser in two small circular regions at both sides of the 

equatorial cortex where the cleavage furrow was expected to form. Upon such 

illumination the Cry2-mCh-Ect2 protein was partially depleted from the cytoplasm 

and rapidly translocated to the plasma membrane, enriched at the equatorial 

periphery. Conversely, we could not detect any plasma membrane recruitment of 

the fusion protein without the blue-light activation (Figure 36A). Surprisingly, we 

observed unexpected arrangement of segregating chromosomes (Figure 36A) in 

approximately half of the cells not activated by blue light. This phenotype of tilted 

chromosomes suggests defective anaphase spindle, unexpected consequence of 

Ect2’s PH and PBC deletion. Importantly, optogenetic targeting of Cry2-mCh-Ect2 

to the plasma membrane could potently restore cleavage furrow ingression and 

cytokinesis in more than 70% of cells, despite the absence of Ect2’s normally 

essential membrane engagement domains (Figure 36B). To confirm that the rescue 

effect is dependent on Ect2, we performed the same experiments with cells 

expressing only Cry2-mCh. Targeting of Cry2-mCh protein was unable to rescue 

cytokinesis after depletion of endogenous Ect2 with or without the blue-light 

activation. In this case, the level of cytokinesis failure was very similar to Cry2-

mCh-Ect2 expressing cells not activated by the blue-light illumination (Figure 36B). 

5.3 One-sided Ect2 targeting causes formation of unilateral 
cleavage furrows 

After we demonstrated that optogenetic targeting of Cry2-mCh-Ect2 to the plasma 

membrane could complement the role of PH domain and PBC, we tested the role 

of the spatial distribution of the Ect2 protein at the cell membrane. In anaphase, 

Ect2 is mainly accumulated in the equatorial part of the plasma membrane (Su et 

al., 2011).  

 

Firstly, we tested if Cry2-mCh-Ect2 targeting to only one side of the potential 

cleavage plane can cause unilateral furrowing. As before, CIBN-expressing cells 

were transfected with Cry2-mCh-Ect2 and Ect2 siRNA. Anaphase cells were 

illuminated only on one side of the equatorial periphery (Figure 37A). In 60% of 
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cases, diffusion of Cry2-mCh-Ect2 along the cell membrane abolished selective 

accumulation of Ect2 protein. Notably, this Ect2 localization while reminiscent of the 

bilateral accumulation did not rescue completion of cytokinesis, despite observed 

bilateral furrowing in a fraction of the cells (Figure 37B). This could be caused by 

delayed activation of the plasma membrane interaction, an insufficient level of Ect2 

at the membrane or could suggest the necessity of the bilateral activation. In the 

rest of the cells we examined, we observed the one-sided accumulation of Cry2-

mCh-Ect2. Strikingly, selective membrane targeting in almost all of these cells led 

to formation of a unilateral furrow coinciding with the side of Cry2-mCh-Ect2 

enrichment (Figure 37). Again we observed the abnormal geometry of the 

anaphase spindle in approximately half of the cells studied. Moreover this adjusted 

spindle geometry positively correlated with the unilateral accumulation of Cry2-

mCh-Ect2 and might have caused the selective localization. Importantly, this 

experiment suggests that local activity of Ect2 at the plasma membrane is 

necessary and sufficient to drive cleavage furrow formation. While one-sided 

targeting of Ect2 could form unilateral furrow, it was not sufficient to rescue 

cytokinesis, and the level of cytokinetic failure was very similar to cells not activated 

by light (Figure 36). These results suggest Ect2 activity is necessary at both sides 

of the cleavage furrow for successful completion of cytokinesis and that its action at 

both sides of the furrow has to occur at a similar time.   

5.4 Polar activation of Cry2-mCh-Ect2 does not lead to local 
accumulation of the fusion protein at the plasma 
membrane 

To complete our optogenetic studies, we also tested the effect of targeting Ect2 to 

the cell poles in anaphase cells. We used the same protocol as above, and 

activated the membrane targeting of Ect2 always at one pole of anaphase cell 

(Figure 38). In contrast to the equatorial targeting we never observed strong 

accumulation of Cry2-mCh-Ect2 at the pole. After activation, the protein diffused 

quickly and accumulated either on one side of potential furrow or both. These 

results could imply the existence of an active regulatory mechanism preventing 

Ect2 accumulation at the cell poles or positive feedback control for enrichment at 

the equator.     
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5.5 Conclusions - Optogenetic targeting of Ect2 to the plasma 
membrane 

We have employed a recently developed optogenetic technique to investigate the 

importance and spatial requirements for Ect2’s interaction with the plasma 

membrane. We have adapted a light-induced dimerization system based on the 

interaction of the light-sensitive Cry2 protein with CIBN domain only upon 

illumination with blue light. To render the system more spatially constraint we tried 

to stably attach the Cry2 protein to the plasma membrane. Unfortunately, despite 

several attempts and modifications, such as the inclusion of linkers, the Cry2 

protein did not interact with the CIBN fragment upon illumination when the former 

was attached to the plasma membrane. Thus we decided to use the original 

system and test if we can achieve spatial selectivity by activating cytoplasmic Cry2 

in close proximity to plasma membrane regions of interest. Firstly, we genetically 

fused Ect2 lacking the C-terminal membrane targeting domains to Cry2-mCh and 

generated a stable HeLaK cell line expressing the GFP-tagged interaction partner 

CIBN stably targeted to the plasma membrane by addition of C-terminal prenylation 

sequence. After activation with the blue-light (488 laser), we observed targeting of 

the Cry2-mCh-Ect2 to the plasma membrane. Blue-light activation also enhanced 

weak midzone localization of Cry2-mCh-Ect2 protein. The reasons for weak 

midzone interaction of Cry2-mCh-Ect2 are currently unknown, as the protein has 

the BRCT domains crucial for this localization of Ect2. The fusion with large 

cryptochrome might cause some steric clashes and prevent stable interaction of 

Cry2-mCh-Ect2 with the midzone. Conformational change allowing interaction of 

Cry2 with CIBN might also allow stable interaction of BRCT domains of Ect2 with 

the midzone.  

 

With the system set up, we tested if optical targeting of Ect2 can rescue cytokinetic 

failure after endogenous Ect2 depletion. In metaphase or early anaphase cells, we 

activated the dimerization by illuminating two small circular regions at the cell 

equator, the place of presumptive furrow formation. Subsequently, we observed the 

accumulation of Cry2-mCh-Ect2 at the plasma membrane. Shortly after the 

activation, the protein diffused along the membrane, however its concentration 

remained increased in the original place of activation. Remarkably, light-induced 
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targeting of Ect2 to the membrane could rescue cell division in 70% of the cells 

tested, while the majority of the non-illuminated cells failed to divide. Thus, we were 

able to create a condition in which we were able to control cytokinesis by using light. 

This result is consistent with our chemical genetic experiments and further confirms 

that the interaction of Ect2 with the plasma membrane is a crucial step for 

cytokinesis in human cells and perhaps all animal cells. Since the illumination took 

place in metaphase or early anaphase cells, the optogenetic experiments also 

provide further support for the notion that Ect2’s function at the PM for cytokinesis 

is critical at or after this point during cell division. 

  

By using two artificial membrane targeting approaches, one controlled by a 

chemical and one controlled by light, we were able to replace the function of the 

two known and normally indispensable membrane engagement domains of the 

protein, the PH domain and the polybasic tail. This indicates that while it is 

essential for Ect2 to engage with the plasma membrane, the precise manner, 

interaction mode and lipids involved are possibly less critical. 

 

Interesting observation was that deletion of Ect2’s PH domain and PBC caused 

abnormal arrangement of chromosomes in anaphase and changed the geometry of 

the anaphase spindle. This phenotype was never described before in human cells, 

but the role for Ect2 in spindle assembly was proposed in cell free X. laevis extract 

system (Tatsumoto et al., 2003).  

 

To test the spatial requirements of Ect2 interaction with the plasma membrane, we 

targeted Cry2-mCh-Ect2 only to one side of the potential furrow by unilateral 

illumination. Lateral diffusion in the plasma membrane prevented unilateral 

accumulation of the Ect2 fusion protein in 60% of the cells. However, cells that 

exhibited specific accumulation on one side of the cell formed a unilateral furrow at 

the activated side. This result proves the specific involvement of Ect2 in RhoA 

activation and cleavage furrow formation at the plasma membrane. Notably, 

unilateral accumulation was not sufficient to fully support cytokinesis and majority 

of the cells failed cytokinesis, suggesting the importance of Ect2 activity and 

cleavage furrow ingression at both sides of the equatorial cortex in human cells. 

Our unilateral illumination experiments suggest that Ect2 is required and sufficient 
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at the equatorial cortex to locally stimulate formation of the cleavage furrow. 

However, these experiments do not answer the question whether Ect2’s equatorial 

enrichment is the main and essential mechanism for the equatorial placement and 

formation of the furrow, an aspect that will be investigated in the next result chapter. 

Importantly, adjusted spindle geometry positively correlated with one-sided 

accumulation of Cry2-mCh-Ect2 and unilateral furrow formation. This suggests that 

the changed spindle geometry might have caused the unilateral furrow formation, 

but we have not observed unilateral furrowing in cells not activated by blue light 

that showed the same spindle geometry. Thus the unilateral localization of Ect2 

seems to be key, but further experiments would be necessary to confirm this.    

No specific accumulation or formation of the cleavage furrow was observed when 

we targeted Ect2 to the cell poles. This observation could indicate the existence of 

an inhibitory pathway preventing the RhoA activation and furrow formation at the 

polar regions of the cell. It has been previously shown that astral microtubules 

provide this inhibitory signal and this might explain the inability of Ect2 to drive the 

furrow formation at the poles (Dechant and Glotzer, 2003) (Werner et al., 2007) 

(Foe and von Dassow, 2008). As polar targeting of Ect2 by optogenetic approaches 

was not possible, it is not clear whether polar accumulation of Ect2 could induce 

furrowing at the cell poles or whether furrowing would still be suppressed. Testing 

these questions and hypotheses requires and merits further study.  
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Figure 33 Cry2 optogenetic system 
A Schematic depiction of the original Cry2 system, showing the targeting of 
Cry2-mCh to the plasma membrane after blue-light activation.    
 
B Schematic representation of the constructs used in the original Cry2 system. 
 
C Schematic representation of the adapted optogenetic constructs, designed for 
spatially-confined optogenetic targeting of Ect2 to the plasma membrane. 
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Figure 34 Optogenetic membrane targeting of the adapted Cry2 system with 
swapped Cry2 and CIBN proteins 
A Confocal images showing the translocation of Cry2-mCh to the plasma 
membrane after blue-light illumination. HeLaK cells were transiently transfected 
with Cry2-mCh and CIBN-eGFP-CAAX, schematic illustration of the constructs 
used is shown on the right side. Cells were imaged 48 hours post transfection and 
activated by whole-field GFP imaging with a 488 nm laser. Scale bar represents 
10 µm.  
 
B Confocal images showing the localization of CIBN-GEF-FLAc and 
Cry2-mCh-15aa-CAAX proteins after blue-light illumination. The same protocol was 
used as described in panel A above.  
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Figure 35 Optogenetic targeting of Cry2-mCh-Ect2 to the plasma membrane 
A Schematic representation of the constructs used for the optogenetic targeting of 
Ect2 to the plasma membrane.  
 
B Confocal microscopy images showing the translocation of Cry2-mCh-Ect2 to the 
plasma membrane after blue-light illumination. HeLaK cells were transiently 
transfected with Cry2-mCh-Ect2r-ΔPHΔTail and CIBN-eGFP-CAAX. Cells were 
imaged 48 hours post transfection and the whole fields were activated by GFP 
imaging with a 488 nm laser. Scale bar represents 10 µm. 
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Figure 36 Analysis of the cytokinetic phenotype upon optogenetic targeting 
of Ect2 to the plasma membrane 
A Confocal microscopy images showing the localization of the Cry2-mCh-Ect2 
protein with or without blue-light illumination. HeLaK cell line stably expressing 
CIBN-eGFP-CAAX (inset) was transfected with Cry2-mCh-Ect2r-ΔPHΔTail and 
Ect2 siRNA. Cells were imaged 24 hours after siRNA transfection. Plasma 
membrane translocation of Cry2-mCh-Ect2 was induced by illumination with a 
488 nm laser within two small circular regions at the equatorial periphery as 
marked in the image above. Scale bar represents 10 µm. 
 
B Quantification of cytokinetic phenotype after optogenetic membrane targeting of 
Ect2. Experiments were performed as described above (panel A). Metaphase or 
early anaphase cells were scored. (n = 11, Fisher’s exact test)   
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Figure 37 One-sided Ect2 targeting to the plasma membrane causes 
formation of unilateral cleavage furrow 
A Confocal microscopy images showing the localization of Cry2-mCh-Ect2 after 
unilateral blue-light illumination. HeLaK cells stably expressing CIBN-eGFP-CAAX 
were transfected with Cry2-mCh-Ect2r-ΔPHΔTail and Ect2 siRNA. Cells were 
imaged 24 hours after siRNA transfection. Plasma membrane translocation of 
Cry2-mCh-Ect2 was induced by illumination with a 488 nm laser within the circular 
region at the equatorial periphery as marked in the image above. Scale bar 
represents 10 µm. 
 
B Quantification of the protein localization pattern and the furrowing phenotype 
(left) and cytokinetic phenotype (right) after unilateral membrane targeting of Ect2. 
Experiments were performed as described above (panel A). Anaphase cells were 
scored. (n = 15)    
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Figure 38 Ect2 protein does not accumulate at the polar cell periphery after 
optogenetic targeting  
Confocal microscopy images showing the localization of Cry2-mCh-Ect2 after 
unilateral blue-light illumination at the cell pole. HeLaK cell line stably expressing 
CIBN-eGFP-CAAX was transfected with Cry2-mCh-Ect2r-ΔPHΔTail and Ect2 
siRNA. Cells were imaged 24 hours after siRNA transfection. Plasma membrane 
translocation of Cry2-mCh-Ect2 was induced by illumination with a 488 nm laser 
within the small circular region as marked in the image above. Scale bar represents 
10 µm. 
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Chapter 6. Results 4 - Investigating the role of 
Ect2’s recruitment to the spindle midzone for 

cleavage furrow formation 

Previous work from our laboratory showing that Ect2 associates with the equatorial 

part of the plasma membrane during anaphase in a manner that likely requires 

Ect2’s midzone anchor Centralspindlin suggests a model for the placement of the 

cleavage furrow. The binding to Centralspindlin and subsequent concentration of 

Ect2 in the equatorial plane could be converted into a protein activity gradient at the 

plasma membrane, which could specify active RhoA zone and therefore be the 

main signal to place the cleavage furrow in small somatic cells. The interaction of 

Ect2 with Centralspindlin in general lies at the heart of many models of cleavage 

furrow formation and positioning that have been put forward by our laboratory and 

others (Somers and Saint, 2003) (Yuce et al., 2005) (Petronczki et al., 2007) 

(Burkard et al., 2009) (Wolfe et al., 2009) (Su et al., 2011). Currently, the Ect2-

Centralspindlin interaction is the only molecularly well-characterized event that 

provides strong hypothesis for how the mitotic spindle might position the cleavage 

furrow by using the central spindle to stimulate RhoA activity. Other mechanisms 

by which the mitotic spindle can regulate cleavage plane formation and positioning 

have been observed and proposed (e.g. polar relaxation by astral microtubules) 

(Bringmann and Hyman, 2005) (Dechant and Glotzer, 2003) (Yoshigaki, 2003) 

(Werner et al., 2007). However, their description remains largely phenomenological 

and therefore difficult to interrogate and test decisively using specific molecular 

alterations. 

 

This work and previous results demonstrate that GEF activity of Ect2 and binding to 

the plasma membrane are two properties of the molecule that are essential for 

cytokinesis (Prokopenko et al., 1999) (Su et al., 2011). Although located at the 

central position in our models, the importance of the third known property of Ect2, 

the BRCT domains-mediated interaction with the spindle midzone has not been 

rigorously interrogated. To test the hypothesis that the Ect2-Centralspindlin 

interaction plays a key role in the formation of the cleavage furrow, we decided to 

prevent this interaction by defined molecular changes. At the anaphase onset, Ect2 
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localize to spindle midzone through the interaction with MgcRacGAP, a subunit of 

the Centralspindlin complex (Somers and Saint, 2003) (Yuce et al., 2005). The 

interaction is promoted by Plk1-dependent phosphorylation of the N-terminus of 

MgcRacGAP (Petronczki et al., 2007) (Burkard et al., 2009) (Wolfe et al., 2009). 

Ect2 binds phosphorylated MgcRacGAP via tandem BRCT domains located in the 

N-terminal part of the protein. T153 and K195 residues are conserved throughout 

different BRCT-containing proteins (Figure 39). T153 and K195 are located in the 

BRCT1 domain and they have been shown to be crucial residues for MgcRacGAP 

binding (Wolfe et al., 2009) (Zou et al., 2014). Their mutation prevented 

MgcRacGAP interaction with a recombinant bacterially expressed N-terminal 

fragment of Ect2 in cell extracts (Wolfe et al., 2009) or binding of N-terminal Ect2 

fragment to synthesized phosphopeptide from MgcRacGAP (Zou et al., 2014) and 

abolished localization of similar N-terminal fragment of Ect2 when transiently 

overexpressed in cells (Wolfe et al., 2009).  

 

Therefore, we decided to introduce point mutations in T153A and K195M into the 

BRCT1 domain of Ect2 and use our transgenic complementation system for Ect2 to 

investigate the consequences of this alteration. This should allow us to decisively 

test the importance of Ect2 interaction with the spindle midzone for cytokinesis in 

human cells. 

6.1 Localization of Ect2-BRCTTK protein during cytokinesis 

We generated a full-length siRNA-resistant and AcGFP-FLAG-tagged Ect2 

construct with the mutations T153A and K195M in the first BRCT domain of the 

protein (Ect2-BRCTTK) (Figure 40A). To study the localization of the Ect2-BRCTTK 

protein in live cells, we generated monoclonal stable cell lines expressing 

GFP-tagged Ect2-BRCTTK together with H2B-mCherry to visualize chromosomes. 

As a control for our experiments, we used a previously generated cell line 

expressing the wild-type siRNA-resistant and AcGFP-FLAG-tagged full-length 

version of Ect2 together with H2B-mCherry (Su et al., 2011). Notably, in both stable 

cell lines obtained (clone 9 and 21) the transgenic Ect2-BRCTTK protein was 

expressed at a similar level as the endogenous counterpart and as the Ect2-WT 

transgene in the control cell line (Figure 40B). The stable cell lines expressing 
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BRCTTK mutant Ect2 at levels close to the endogenous counterpart provided a 

suitable system for us to investigate the effect of these mutations on protein 

localization and cytokinesis. 

  

To test whether the BRCT mutations T153A and K195M abolish Ect2 localization to 

the spindle midzone, we co-stained the cells for transgenic Ect2 and Mklp1, a part 

of the Centralspindlin complex. Consistent with a key role of the 

Ect2-Centralspindlin interaction in the recruitment of Ect2 to the spindle midzone, 

Ect2-WT colocalized with Mklp1 in anaphase cells, while Ect2-BRCTTK was not 

enriched at the midzone (Figure 41).  

 

Our transgenic cell lines also allowed us to track Ect2 protein localization in live 

cells during cell division. Using live-cell imaging for tracking Ect2 is particularly 

important, as fixation and staining often precludes the detection of the 

membrane-associated pool of the protein (Su et al., 2011). Both WT and 

BRCT-mutated Ect2 were cytoplasmic in metaphase cells (Figure 42). After 

anaphase onset, Ect2-WT accumulated at the spindle midzone, whereas the 

Ect2-BRCTTK protein did not appear to localize at the midzone, although minor 

residual interaction is difficult to disprove. Both proteins translocated to the plasma 

membrane soon after anaphase onset with similar kinetics. As described previously 

(Su et al., 2011), shortly before and during cleavage furrow formation, we observed 

the enrichment of Ect2-WT protein at the equatorial part of the plasma membrane. 

This enrichment of Ect2 protein was disrupted in Ect2-BRCTTK expressing cells. 

After completion of furrow ingression, protein Ect2 localized to the midbody in both 

cell lines.  

 

To assess the differences in Ect2 enrichment at the equator between Ect2-WT and 

Ect2-BRCTTK, we quantified the intensity profile of Ect2-WT and Ect2-BRCTTK 

proteins along the cell periphery during furrow ingression (Figure 43A). We 

observed more than twofold enrichment of Ect2-WT protein within approximately 

10 µm wide equatorial interval (Figure 43B, first graph). This enrichment became 

even more pronounced as furrow ingression progressed (Figure 43B, second and 

third graph). This was compared to only a minor increase in the case of 

Ect2-BRCTTK protein (Figure 43B, first and second graph). But Ect2-BRCTTK 
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protein also localized to the midbody, so at the later stage there was also equatorial 

enrichment of Ect2-BRCTTK protein, even though still 1.5-fold smaller than the wild-

type protein (Figure 43B, third graph). 

 

We decided to determine if this apparent small enrichment was simply caused by 

cleavage furrow ingression rather than by a specific property of Ect2-BRCTTK 

protein. To this end, we compared the plasma membrane localization of 

Ect2-BRCTTK to MyrPalm-GFP, a membrane-bound fluorescent marker. MyrPalm-

GFP is targeted to the plasma membrane by myristoylation signal sequence, which 

results in even localization of the marker along the cell membrane (Figure 44). We 

followed the cells expressing Ect2-WT, Ect2-BRCTTK or MyrPalm-GFP proteins 

from the metaphase-to-anaphase transition until cleavage furrow ingression, and 

determined the protein intensity ratio at the equatorial membrane to the polar 

membrane (Figure 45A). Ect2-WT protein showed a gradual enrichment at the 

equatorial region starting 10 min after anaphase onset and reaching a peak value 

of fourfold enrichment, consistent with the single frame analysis (Figure 43B). 

Ect2-BRCTTK protein showed significantly lower equatorial enrichment around 

twofold equatorial enrichment. Importantly, its profile was very similar to that of the 

control MyrPalm-GFP marker. Although equatorial accumulation was detected 

earlier for the MyrPalm-GFP protein than for Ect2-BRCTTK, the magnitude of 

accumulation was comparable between the two proteins. This indicates that the 

minor equatorial enrichment observed for the Ect2-BRCTTK could be a non-specific 

phenomenon, likely caused by membrane indentation. We speculated that the 

temporal shift between the cell lines could be caused by differences in the speed at 

which cells progress through cytokinesis (the time from anaphase onset until full 

cleavage furrow ingression). Indeed, the progression of MyrPalm-GFP expressing 

cells through cytokinesis was about five minutes faster, compared to Ect2-WT and 

Ect2-BRCTTK cells (Figure 44, Figure 45B).  Notably, there was no difference 

between the WT and the BRCT-mutated transgene. The reason for the slightly 

delayed progression through cytokinesis in cells expressing Ect2 transgenes is 

currently not known, but could be linked to Ect2 siRNA transfection in these cell 

lines.  
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Collectively, these data demonstrate that the mutations in the BRCT1 domain of 

Ect2 protein that are reported to disrupt binding to MgcRacGAP, do abrogate the 

recruitment of Ect2 to the spindle midzone, and additionally prevent the 

accumulation of the protein at the equatorial region of the plasma membrane. 

These results provide the strongest experimental support yet for the two previously 

proposed aspects of cytokinetic regulation: (1) that Ect2’s recruitment to the spindle 

midzone depends on the interaction with the Centralspindlin subunit MgcRacGAP 

(Yuce et al., 2005) (Zhao and Fang, 2005) and (2) that Ect2’s recruitment to the 

midzone could be the mechanistic basis for the proteins enrichment at the 

equatorial membrane (Su et al., 2011). 

6.2 The effect of Ect2 BRCT1 domain mutations T153A and 
K195M on cytokinesis 

In order to examine the role of Ect2’s targeting to the spindle midzone and 

equatorial membrane during cell division, we tested the ability of the Ect2-BRCTTK 

transgene to support cytokinesis. To this end, we generated monoclonal cell lines 

stably expressing Ect2-BRCTTK, which we used together with previously generated 

monoclonal cell lines stably expressing various versions of the Ect2 protein, 

transgene missing the membrane targeting domains PH domain and polybasic tail 

(AcFL-Ect2r-ΔPHΔTail) and catalytically dead transgene carrying mutations in GEF 

domain (565-568 PVQR to AAAA) (Figure 46A) (Su et al., 2011). WB analysis 

revealed the two BRCT-mutated cell lines (clone 2 and 5) expressed the 

Ect2-BRCTTK protein at a level close to the level of the endogenous protein (Figure 

46B). 

 

To test if the Ect2-BRCTTK protein was able to replace the endogenous counterpart, 

we transfected cells with NTC or Ect2 siRNA and analysed the levels of 

multi-nucleation forty-eight hours after the transfection. Endogenous Ect2 was 

potently depleted in all cell lines by Ect2 siRNA transfection (Figure 46B).  The vast 

majority of GFP-tag only expressing cells, cells expressing a GEF-defective mutant 

and cells expressing a truncated Ect2 version lacking PH domain and PBC was 

converted into multi-nucleated cells after depletion of endogenous Ect2, indicating 

a failure to support cytokinesis of these transgenes (Figure 47). As shown before, 
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this phenotype could be fully rescued by expression of the wild-type Ect2 transgene 

(Su et al., 2011). Unexpectedly, expression of the Ect2-BRCTTK protein was also 

able to fully rescue cytokinesis after Ect2 depletion in both monoclonal cell lines. 

There was a small elevation of the multi-nucleation level for the Ect2-BRCTTK 5 cell 

line. However, this elevation was observed in both NTC and Ect2 siRNA 

transfected cells indicating that it was not caused by a lack of Ect2, but is either 

inherent to the particular cell line or represents a semi-dominant effect of the 

slightly higher expressed transgene. 

 

To further confirm our surprising result, we examined the phenotype of BRCT 

mutant-expressing cells using live-cell imaging after depletion of endogenous Ect2 

(Figure 48). The quantification confirmed Ect2-BRCTTK protein could support 

cytokinesis in the absence of the endogenous protein, as majority of the cells 

divided successfully (Figure 49). A small percentage of Ect2-BRCTTK cells that 

failed to divide was still able to form a cleavage furrow that later regressed, while 

control cell lines expressing defective versions of Ect2 were unable to form the 

cleavage furrow in most cases. The less penetrant phenotype with regards to 

cleavage furrow formation for the GEF4A-mutant allele was reported before (Su et 

al., 2011). Thus, endpoint IF analysis as well as time-lapse studies indicate the 

point mutations within Ect2’s BRCT1 domain that block midzone recruitment and 

enrichment at the equatorial membrane of the protein, do not prevent cleavage 

furrow formation or cytokinesis completion in the vast majority of cells. 

 

Next, we decided to test if BRCT domain mutations and the consecutive changes in 

Ect2 protein localization affect the distribution of contractile ring proteins. To do that, 

we transfected GFP-tag, Ect2-WT and Ect2-BRCTTK expressing cell lines with Ect2 

siRNA. Cells were synchronized to enrich the cultures for mitotic cells, fixed and 

stained for RhoA and Anillin. In control anaphase cells, both RhoA and Anillin 

localized to the plasma membrane and accumulated mostly at the cleavage furrow 

(Figure 50A). We quantified the equatorial enrichment of RhoA and Anillin by 

measuring the intensity profile along the cell periphery. Depletion of endogenous 

Ect2 in the GFP-tag only expressing cells completely disrupted the accumulation of 

RhoA and Anillin at the equator (Figure 50). As expected, this phenotype was fully 
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rescued in the Ect2-WT expressing cells. The RhoA and Anillin profiles in 

Ect2-BRCTTK cells were undistinguishable from the Ect2-WT cells.  

 

Taken together, our data indicate that Ect2’s interaction with Centralspindlin, Ect2’s 

recruitment to the spindle midzone, and the enrichment of the protein at the 

equatorial membrane are likely not essential for cytokinesis in human cells. 

Furthermore, our observations suggest that the Ect2 gradient at the plasma 

membrane is not the only or the main signal that places the cleavage furrow in 

human cells. 

6.3 Testing the role of astral microtubules and MgcRacGAP 
during cytokinesis in Ect2-BRCTTK expressing cells 

Our results have suggested that Ect2’s recruitment to the spindle midzone, and the 

enrichment of the protein at the equatorial membrane are not essential for 

cytokinesis in otherwise unperturbed human cells. This result could indicate that 

Ect2’s binding to the spindle midzone and its consequences acts in a redundant 

manner with another mechanism to place the cleavage furrow. Therefore, our next 

experiments represent the first attempts to dissect this additional elusive signal, 

which may be sufficient to position the furrow during cytokinesis by itself or it may 

be redundant with the equatorial accumulation of Ect2. Possible signals could act 

by either stimulating furrowing at the equatorial part of the cell membrane or by 

inhibiting contractility at the cell poles. We also cannot rule out the possibility of 

multiple redundant signals working together, which would complicate their 

identification. The prediction for our experiments was that if a signal was redundant 

with the equatorial accumulation of Ect2, its inhibition should compromise 

cytokinesis in cells expressing Ect2-BRCTTK protein but not in cells expressing the 

wild-type version of Ect2.   

 

Firstly, we focused on the role of astral microtubules for cytokinesis in Ect2-BRCTTK 

expressing cells. Astral microtubules have been shown to inhibit contractility and 

were proposed to prevent RhoA activation at the cell poles (Bringmann and Hyman, 

2005) (Dechant and Glotzer, 2003) (Werner et al., 2007) (Foe and von Dassow, 

2008). To deplete the cells for astral microtubules without destabilizing the spindle 
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midzone, we employed a treatment with low concentration of nocodazole (Bement 

et al., 2005) (Foe and von Dassow, 2008) (Zanin et al., 2013). This technique takes 

advantage of the different stability of astral and midzone microtubules. Short 

treatment with low concentration of nocodazole results in the preferential depletion 

of astral microtubules. We needed to optimize the concentration of nocodazole for 

our system. It has been shown that depletion of astral microtubules leads to 

formation of broader RhoA and Anillin zone (Bement et al., 2005) (Foe and von 

Dassow, 2008) (Zanin et al., 2013). As a readout for efficacy of nocodazole 

treatment we measured the profile of Anillin around the cell periphery in anaphase 

cells. Anillin distribution acted as a surrogate essay for the analysis of astral 

microtubules that are difficult to quantify and observe in HeLaK anaphase cells. We 

treated Ect2-WT-expressing cells that were synchronized at the 

metaphase-to-anaphase transition with increasing concentrations of nocodazole 

(from 10 nM to 100 nM) or DMSO as a control. Subsequently, the width of the 

Anillin zone was analysed using IF and quantified (Figure 51). Concentrations of 

nocodazole higher than 25 nM led to a slight broadening of the zone of cortical 

Anillin. For further experiments, we decided to use a dose of 50 nM nocodazole, in 

order to minimize possible side effects of nocodazole treatment. 

 

Cell lines expressing GFP-tag only, Ect2-WT and Ect2-BRCTTK were synchronized 

at the metaphase-to-anaphase transition after depletion of endogenous Ect2. Cells 

were treated with DMSO or 50 nM nocodazole and subsequently, the cytokinetic 

phenotype was analysed by live-cell imaging. The vast majority of 

GFP-tag-expressing cells failed cytokinesis after depletion of endogenous Ect2. 

Notably, nocodazole treatment enhanced the cytokinetic phenotype in GFP-tag 

only cells, as the majority of the cells (95%) were unable to form a furrow 

completely, while 40% of the cells treated with DMSO formed a cleavage furrow, 

which later regressed (Figure 52). However, the addition of a low dose of 

nocodazole did not result in an increase in cytokinetic defects in cells expressing 

either Ect2-WT or Ect2-BRCTTK (Figure 52). Thus, our data suggest that 

compromising astral microtubules with low doses of nocodazole does not cause a 

significant defect in cytokinesis execution in cells complemented with wild-type or 

BRCT-mutated Ect2. This suggests that Ect2 recruitment to the spindle midzone 
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and the action of astral microtubules do not act as the main or only redundant 

pathways to promote cleavage furrow formation.  

 

Our next analysis focused on MgcRacGAP and its role in furrowing. It was 

speculated that MgcRacGAP could stimulate Ect2’s activity by releasing the 

inhibitory interaction of N-terminus and C-terminus of the protein (Kim et al., 2005) 

(Yuce et al., 2005) (Wolfe et al., 2009) (Zou et al., 2014). These studies proposed 

that the autoinhibitory binding could be relieved by interaction between the BRCT 

domains of Ect2 and the Plk1-phosphorylated N-terminus of MgcRacGAP. In our 

study we have shown this interaction is probably not essential for cytokinesis, 

which renders this possibility unlikely. Nevertheless, MgcRacGAP, like Ect2, is 

essential for RhoA activation. Recently, it has been shown that MgcRacGAP also 

interacts with the plasma membrane via its C1 domain and that the C1 domain of 

MgcRacGAP is also crucial for early and late aspects of cytokinesis (Lekomtsev et 

al., 2012) (Basant et al., 2015). We speculated that MgcRacGAP could stimulate 

Ect2 activity in the equatorial region of the plasma membrane via a different mode 

of interaction. This notion is supported by recent in vitro data suggesting that the 

C-termini of Ect2 and MgcRacGAP interact with each other in order to activate 

RhoA (Zhang and Glotzer, 2015).  

 

To test if membrane association of MgcRacGAP could control Ect2’s GEF activity 

at the equatorial membrane and act redundantly with the enrichment of Ect2 at the 

equator, we generated monoclonal cell lines stably co-expressing two 

siRNA-resistant transgenic proteins: (1) AcGFP-tagged full-length Ect2 with T153A 

and K195M mutations (Ect2-BRCTTK) and (2) mCherry-tagged MgcRacGAP 

lacking the membrane-targeting C1 domain (MgcRacGAP-ΔC1) or carrying the 

K292L mutation that abolishes membrane targeting of MgcRacGAP 

(MgcRacGAP-K292L) (Figure 53). We attempted to generate a control cell line 

expressing the wild-type version of MgcRacGAP together with Ect2-BRCTTK protein 

but failed to obtain double positive clones. We examined the cytokinetic phenotype 

of described double transgenic cell lines after co-depletion of Ect2 and 

MgcRacGAP by live-cell imaging. MgcRacGAP depletion in cells expressing only 

Ect2-BRCTTK resulted in major cytokinetic failure when 50% of the cells failed to 

form a furrow and 80% of them failed cytokinesis (Figure 54). Expression of 
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MgcRacGAP-ΔC1/K292L drastically enhanced the furrowing ability of cells, as 

almost all the cells were able to form a cleavage furrow but most of them failed 

cytokinesis, consistently with published data (Lekomtsev et al., 2012). Additionally, 

expression of MgcRacGAP-ΔC1/K292L increased the level of cells that were able 

to progress though cytokinesis, especially in the case of MgcRacGAP-K292L cell 

line. Co-depletion of Ect2 and MgcRacGAP resulted only in a slight enhancement 

of the cytokinetic phenotype, despite the efficient depletion of endogenous Ect2 

and MgcRacGAP proteins (Figure 53B). These data suggest that preventing 

MgcRacGAP’s binding to the plasma membrane only weakly enhances the 

phenotypic severity of cells in which Ect2 no longer associates with the spindle 

midzone. These data are consistent with Centralspindlin promoting contractility at 

the plasma membrane but also indicate that the complexes’ association with the 

plasma membrane is not the elusive redundant mechanism driving cytokinesis in 

Ect2-BRCTTK cells. 

6.4 Conclusions - Role of Ect2 midzone recruitment in 
cleavage furrow formation 

We decided to study the role of Ect2 interaction with the spindle midzone in 

cleavage furrow formation and cytokinesis. Ect2 targeting to spindle midzone 

requires Plk1 phosphorylation of MgcRacGAP, a subunit of the Centralspindlin 

complex (Somers and Saint, 2003) (Yuce et al., 2005) (Petronczki et al., 2007) 

(Burkard et al., 2009) (Wolfe et al., 2009). Ect2 interacts with MgcRacGAP via 

phosphate binding by its BRCT1 domain. The crucial residues for this are T153 and 

K195, and their mutation has been shown to prevent the interaction both in vitro 

and in vivo (Wolfe et al., 2009) (Zou et al., 2014). Therefore, we generated stable 

cell lines expressing full-length BRCT-mutated Ect2 protein (Ect2-BRCTTK) to study 

the importance of the interaction of Ect2 with the spindle midzone. 

 

Firstly, we have shown that Ect2-BRCTTK protein does not localize to spindle 

midzone using both fixed-cell IF analysis and live-cell imaging. We have followed 

the localization of Ect2-BRCTTK protein in dividing cells and compared the 

localization pattern to the wild-type Ect2 protein. Ect2’s interaction with the cell 

membrane was not affected by the BRCT mutations and Ect2-BRCTTK protein 
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localized to the plasma membrane shortly after anaphase onset like the wild-type 

Ect2. However, Ect2-BRCTTK mutant showed even distribution along the plasma 

membrane with only small enrichment at the cell equator, likely a non-specific 

phenomenon. These results provide the strongest evidence yet that the interaction 

of Ect2 with Centralspindlin at the spindle midzone is required for and may direct 

the equatorial enrichment of Ect2 at the plasma membrane. 

 

Subsequently, we interrogated the ability of Ect2-BRCTTK to support cytokinesis. 

We depleted endogenous Ect2 in Ect2-BRCTTK expressing cells and quantified the 

level of multi-nucleation levels by IF analysis. Control cells expressing only the 

GFP-tag became multi-nucleated after depletion of endogenous Ect2. As shown 

previously, expression of the Ect2-WT could fully rescue cytokinesis defects (Su et 

al., 2011). Surprisingly, Ect2-BRCTTK transgene could rescue cytokinesis to a 

similar extent. We confirmed this unexpected result by following the division in live 

cells after depletion of endogenous Ect2. Additionally, we also demonstrated that 

distribution of contractile ring proteins, RhoA and Anillin was not affected in 

Ect2-BRCTTK expressing cells. 

 

Analysis of cytokinetic competency of Ect2-BRCTTK protein demonstrated 

Ect2-BRCTTK could support cleavage furrow formation at the equator and 

cytokinesis, despite the apparent inability of the mutant protein to bind 

Centralspindlin, accumulate at the spindle midzone or at the equatorial plasma 

membrane. Our results show that Ect2 midzone binding and the enrichment of Ect2 

at the equatorial plasma membrane are not crucial for cytokinesis in otherwise 

unperturbed human cells. Ect2 equatorial accumulation has been proposed to 

specify the zone of active RhoA and thus position the cleavage furrow (Yuce et al., 

2005) (Petronczki et al., 2007) (Su et al., 2011). Our data, however, are not 

consistent with this hypothesis. Our previous results obtained by chemical genetic 

and optogenetic systems demonstrate that Ect2 binding to the plasma membrane 

is essential for cytokinesis and that the local presence at the presumptive cleavage 

site is likely to be essential. However, the results obtained in BRCT mutant cells 

suggest that this equatorial enrichment is not essential for cleavage furrow 

placement and formation. The interaction of Ect2 with Centralspindlin was the best 

molecular candidate for explaining how the spindle midzone directs equatorial 
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contractility. Thus, our new results require a reinterpretation of models for cleavage 

furrow placement and formation as well as reconsidering the role of Plk1 activity in 

cleavage furrow formation. It is conceivable that the small enrichment of 

Ect2-BRCTTK protein at the later stages of cytokinesis is enough to drive the 

cleavage furrow formation on its own, but we do not favour this option, as it would 

not be a very robust mechanism. One disadvantage of our study is that we were 

able to follow localization of Ect2 protein but not its activity. It is therefore possible 

that the small pool of Ect2-BRCTTK that accumulates at the equatorial part of the 

membrane is the active pool of the protein and it might be sufficient to drive 

cytokinesis. Nevertheless, there must be a mechanism that specifies the active 

pool of Ect2, which is currently not known. Further research will be necessary to 

explore this possibility.  

 

Based on our data, it seems clear that enrichment of the RhoGEF Ect2 at the 

equatorial plasma membrane at anaphase is insufficient to account for furrow 

formation. Ect2 binding to Centralspindlin and its accumulation at the equatorial 

membrane could provide one of the signals that help place the furrow in the middle 

of the cell, but this signal could be redundant with other mechanisms and signals, 

at least under conditions used in this study. At this point, it is possible that Ect2’s 

interaction with Centralspindlin plays no important or even redundant role in 

cytokinesis at all. Given the apparent inconsistency with models put forward by 

others and us, our results emphasize the importance of renewed efforts to dissect 

and identify the molecular mechanisms that position the cleavage furrow in animal 

cells. 

 

Our next experiments attempted to determine the potential redundant mechanisms 

that specify the position of the cleavage furrow in the Ect2-BRCTTK expressing cells. 

Firstly, we examined the role of astral microtubules that have been shown to inhibit 

contractility at the polar regions (Bringmann and Hyman, 2005) (Dechant and 

Glotzer, 2003) (Werner et al., 2007) (Foe and von Dassow, 2008). We employed 

the treatment with low concentration of nocodazole that should compromise astral 

microtubules but not the microtubules of the spindle midzone. Cells expressing 

Ect2-WT or Ect2-BRCTTK proteins were not affected by low nocodazole treatment 

at the metaphase-to-anaphase transition and vast majority of the cells successfully 
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completed cytokinesis without the endogenous Ect2 protein. Therefore, our data 

suggest that astral microtubules do not cooperate with equatorial accumulation of 

Ect2. Interestingly, in the control GFP-tagged only cell line, the treatment with low 

nocodazole strongly enhanced the cytokinetic phenotype and prevented the 

formation of the cleavage furrow in majority of cells. Our data suggest that astral 

microtubules do not affect the furrow formation in cells with functional Ect2, but 

they become important in cells that lack Ect2 protein completely. 

 

Our study suggests that the interaction of Ect2 with MgcRacGAP through the 

N-terminal BRCT1 domain is not essential in human cells. But this does not rule out 

the possibility of MgcRacGAP affecting Ect2 or RhoA activity by other mechanisms. 

Therefore, we tested the hypothesis that MgcRacGAP can specifically activate Ect2 

at the equatorial plasma membrane. To this end, we generated double cell lines 

expressing Ect2-BRCTTK protein together with MgcRacGAP-ΔC1 or with 

MgcRacGAP-K292L. These cells were unable to target Ect2 to the spindle midzone 

and MgcRacGAP to the plasma membrane after co-depletion of endogenous Ect2 

and MgcRacGAP. Quantification of cytokinetic phenotype after co-depletion of 

endogenous Ect2 and MgcRacGAP in these cells lines did not result in major 

enhancement of the cytokinetic failure when combined. Thus, our results do not 

provide support for a main role of MgcRacGAP’s membrane engagement in 

cleavage plane specification when Ect2 is distributed evenly across the cell 

membrane.  

 

In summary, we have shown that T153 and K195 mutations in BRCT1 domain of 

Ect2 majorly disrupt the interaction of Ect2 with Centralspindlin and its recruitment 

to spindle midzone. Additionally, we confirmed Ect2’s equatorial accumulation at 

the plasma membrane is dependent on the Centralspindlin interaction, and that 

T153 and K195 mutations abolish this accumulation of the protein. Altogether our 

data challenge the model that proposes the equatorial Ect2 accumulation is the 

main signal that specifies the equatorial localization of the cleavage plane in 

mammalian cells. This is very important result as this was the main model for 

cleavage plane specification is small somatic cells (Yuce et al., 2005) (Petronczki 

et al., 2007) (Wolfe et al., 2009) (Su et al., 2011). We propose equatorial 

accumulation of Ect2 is not the essential signal, but may work as a redundant 
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signal to helps the cleavage furrow formation at the right place. We attempted to 

identify other possible signals that regulate the positioning of the furrow and studied 

the role of astral microtubules, MgcRacGAP protein and other cytokinetic factors in 

our Ect2-BRCTTK expressing cells. Unfortunately, our experiments did not provide 

any straightforward explanation and further study will be necessary to understand 

the mechanism that specifies the cleavage plane equatorial localization. 
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Figure 39 Residues T153 and K195 are conserved in different BRCT 
domain-containing proteins and they directly coordinate the phosphate from 
the interacting protein  
A Sequence alignment of human BRCT domains from indicated proteins. 
Highlighted are the conserved residues T153 and K195, which were mutated to 
prepare the Ect2-BRCTTK construct. 
 
B Crystal structure of N-terminal BRCT domains of Ect2 (PDB ID 4N40; (Zou et al., 
2014)) was aligned with a structure of BRCT domains of BRCA1 co-crystalized with 
bound BACH1 phosphopeptide (PDB ID 1T15; (Clapperton et al., 2004)) using 
MatchMaker tool in the UCSF Chimera software. Structure of Ect2’s BRCT 
domains is shown in light blue, BRCT domains from BRCA1 in gold. The BACH1 
phosphopeptide structure is shown in grey. BRCA1 residues interacting with 
phosphoserine from BACH1 are highlighted together with their Ect2 counterparts 
and the hydrogen bonds are shown as dashed lines.  
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Figure 40 System to study Ect2-BRCTTK localization  
A Schematic representation of the domain organization of Ect2-WT and 
Ect2-BRCTTK constructs used to generate monoclonal HeLaK cell lines for studying 
the localization of Ect2-BRCTTK protein. Numbering of amino acid residues 
corresponds to their positions in human full-length Ect2 protein. 
 
B Immunoblot analysis of protein lysates from the indicated cell lines. Protein 
lysates were prepared 48 hours after transfection with NTC (-) or Ect2 siRNA (+). 
The immunoblot membrane was probed with antibodies directed against AcGFP, 
Ect2 and β-tubulin. Endogenous and transgenic Ect2 proteins are indicated by 
open and filled arrowheads, respectively. > 95% of cells in the transgenic cell lines 
are GFP positive.   
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Figure 41 BRCT mutations prevent spindle midzone localization of Ect2 
IF analysis of stable cell lines expressing Ect2-WT or Ect2-BRCTTK proteins to 
show co-localization with the spindle midzone marker Mklp1. Cells were 
transfected with Ect2 siRNA and synchronized using a thymidine. Cells were 
released from the thymidine block, fixed and stained with antibodies directed 
against AcGFP, Mklp1 and with DAPI. Scale bar represents 10 µm. 
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Figure 42 Localization of Ect2-BRCTTK protein during mitosis 
Stills from movies obtained on a spinning disk confocal microscope showing the 
localization of Ect2-BRCTTK protein compared to the wild-type transgene. Stable 
cell lines were transfected with Ect2 siRNA and imaged 48 hours after transfection. 
Time point t = 0 min was set to the metaphase-to-anaphase transition. Scale bar 
represents 10 µm.   
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Figure 43 Analysis of peripheral Ect2 localization in anaphase cells 
A Representative confocal images used for the analysis in the panel B. The images 
were obtained as in Figure 42 and they correspond to the graphs in panel B. 
 
B Quantification of the fluorescent intensity profile along the cell membrane for 
Ect2-WT and Ect2-BRCTTK proteins in cells going through cytokinesis 16,18 and 20 
minutes after anaphase onset. The results are plotted as the mean intensity ratio 
between the cell periphery and the cytoplasm (schematically depicted in the 
cartoon) against the measured length. (n = 6 for Ect2-WT and n = 10 for 
Ect2-BRCTTK, lines represent mean values)  
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Figure 44 Localization of MyrPalm-GFP protein during mitosis 
Stills from movies obtained on a spinning disk confocal microscope showing the 
localization of MyrPalm-GFP protein. HeLaK cells were transfected with MyrPalm-
GFP and H2B-mCherry and imaged 48 hours after transfection. Time point t = 0 
min was set to the metaphase-to-anaphase transition. Scale bar represents 10 µm. 
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Figure 45 Analysis of the equatorial enrichment of Ect2 at the plasma 
membrane during mitosis 
A Quantification of the equatorial enrichment of Ect2 proteins and MyrPalm-GFP 
marker over time based on confocal microscope frames (Figure 42, Figure 44). The 
graph shows the fluorescent intensity ratio between the equatorial and polar 
membrane, measured from the metaphase-to-anaphase transition (t=0 min) until 
complete furrow ingression. Data were obtained by measuring fluorescence 
intensity in small circular regions placed as shown on the cartoon on the right side.  
 
B Analysis of the time that indicated cell lines spent in cytokinesis, measured from 
anaphase onset until full furrow ingression. (Both graphs: n = 5 for Ect2-WT and 
MyrPalm-GFP and n = 10 for Ect2-BRCTTK, lines and bars represent mean ± SD, 
Student’s t-test (B))      
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Figure 46 System to study the cytokinetic competency of the Ect2-BRCTTK 
protein 
A Schematic representation of the domain organization of different Ect2 constructs 
used to generate monoclonal HeLaK cell lines for studying the cytokinetic 
competency of Ect2-BRCTTK protein. Numbering of amino acid residues 
corresponds to their positions in human full-length Ect2 protein. 
 
B Immunoblot analysis of protein lysates from the indicated cell lines. Protein 
lysates were prepared 48 hours after transfection with NTC (-) or Ect2 siRNA (+). 
The immunoblot membrane was probed with antibodies directed against AcGFP, 
Ect2 and β-tubulin. > 95% of cells in the cell line populations are GFP-positive.   
 
 



Chapter 6. Results 

 

153 

 

 
Figure 47 Analysis of the cytokinetic phenotype of Ect2-BRCTTK expressing 
cells  
A IF analysis of indicated stable cell lines. Cells were transfected with Ect2 siRNA 
and fixed and stained with antibodies directed against AcGFP, α-tubulin and with 
DAPI 48 hours after siRNA transfection. Scale bar represents 10 µm.   
 
B Quantification of multi-nucleation levels. Indicated cell lines were treated as 
described above (panel A). (n > 300, bars represent mean ± SD of three 
independent experiments). 
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Figure 48 Live-cell imaging analysis of the cytokinetic phenotype of 
Ect2-BRCTTK expressing cells 
Representative images showing cytokinetic phenotypes for the set of cell lines 
(Figure 46A) after depletion of endogenous Ect2. Cells were transfected with Ect2 
siRNA and imaged with BF microscopy starting 24 hours after transfection. Time 
point t = 0 min was set to metaphase-to-anaphase transition. 
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Figure 49 Quantification of the cytokinetic phenotype of Ect2-BRCTTK 
expressing cells obtained by live-cell imaging  
Indicated cell lines were treated as described above (Figure 48). Mono-nucleate 
cells undergoing cell division were scored from 24 to 48 hours post transfection. 
(n > 300, bars represent mean values of three independent experiments)  
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Figure 50 RhoA and Anillin localization in Ect2-BRCTTK expressing cells 
A IF analysis of RhoA and Anillin in indicated cell lines. Cells were transfected with 
Ect2 siRNA and thymidine was added to synchronize the cells in mitosis. Cells 
were released from the thymidine block, fixed and stained with antibodies directed 
against RhoA or Anillin, together with AcGFP and DAPI for DNA. Scale bar 
represents 10 µm. 
 
B Quantification of the fluorescent intensity profile along the cell membrane for 
RhoA and Anillin in anaphase cells (as shown in panel A). The results are plotted 
as the mean intensity ratio between the cell periphery and the cytoplasm (as in 
Figure 43B) against the measured length. (n = 15, lines represent mean values) 
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Figure 51 Treatment with low concentration of nocodazole broadens the 
cortical zone of Anillin in anaphase cells 
Quantification of the Anillin fluorescent intensity profile along the cell membrane in 
anaphase cells treated with different concentration of nocodazole (Noc). After Ect2 
siRNA depletion, Ect2-WT expressing cells were synchronized in metaphase using 
a previously described synchronization protocol (Petronczki et al., 2007). 
45 minutes after release from the metaphase block, cells were treated with DMSO 
or different concentrations of nocodazole and analysed by IF 10 minutes after 
addition of Noc or DMSO. The results are plotted as the mean intensity ratio 
between the cell periphery and the cytoplasm against the measured length. (n = 8, 
lines represent mean values) 
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Figure 52 Treatment with low doses of nocodazole does not cause 
synergistic cytokinetic defects in Ect2-BRCTTK expressing cells 
Quantification of cytokinetic phenotype using live-cell imaging analysis after 
treatment with 50 nM nocodazole during the metaphase-to-anaphase transition. 
After transfection with Ect2 siRNA, cells were synchronized in metaphase using a 
previously described synchronization protocol (Petronczki et al., 2007). 45 minutes 
after release from the metaphase block, the cells were treated with DMSO or 
50 nM nocodazole and imaged by BF microscopy. Mono-nucleated cells that were 
in metaphase at the beginning of the time-lapse imaging were scored (n > 80, bars 
represent mean values of three independent experiments). 
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Figure 53 System of double cell lines expressing Ect2-BRCTTK and 
Mgc-ΔC1/K292L to test the role of MgcRacGAP’s membrane interaction for 
furrowing 
A Schematic representation of the domain organization of different constructs used 
to generate monoclonal HeLaK cell lines expressing Ect2-BRCTTK and Mgc-ΔC1 or 
Mgc-K292L. Numbering of amino acid residues corresponds to their positions in 
human full-length Ect2 and MgcRacGAP proteins. 
 
B Immunoblot analysis of protein lysates from the indicated cell lines. Protein 
lysates were prepared 48 hours after transfection with NTC (-) and MgcRacGAP or 
Ect2 siRNA (+). The immunoblot membrane was probed with antibodies directed 
against MgcRacGAP, Ect2 and β-tubulin. Endogenous and transgenic 
MgcRacGAP or Ect2 proteins are indicated by open and filled arrowheads, 
respectively. > 95% of cells in the cell line populations are GFP-positive. 
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Figure 54 Co-depletion of Ect2 and MgcRacGAP causes minor enhancement 
of cytokinetic defects in Ect2-BRCTTK and Mgc-ΔC1/K292L expressing cells 
Quantification of cytokinetic phenotype using live-cell imaging analysis after 
depletion of endogenous Ect2 and MgcRacGAP. Cells were transfected with Ect2 
and MgcRacGAP siRNA and 6 hours after transfection, the medium was changed. 
Cells were imaged with BF microscopy starting 24 hours after siRNA transfection. 
Mono-nucleate cells undergoing cell division were scored from 24 to 60 hours post 
transfection. (n > 100, bars represent mean values of three independent 
experiments). 
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Chapter 7. Discussion 

It has previously been demonstrated that the GEF activity of Ect2 is necessary to 

activate RhoA during cytokinesis (Prokopenko et al., 1999) (Somers and Saint, 

2003) (Yuce et al., 2005) (Su et al., 2011). Recent studies from our laboratory have 

shown that Ect2 interacts with the plasma membrane during anaphase via its 

PH domain and polybasic cluster located in the C-terminus of the protein (Su et al., 

2011). Deletion of both membrane interaction moieties completely blocked the 

activation of RhoA, cleavage furrow formation and cytokinesis. This indicated that 

the ability of Ect2 to associate with the plasma membrane is an indispensable and 

key requirement for cytokinesis. Furthermore, Centralspindlin depletion 

experiments demonstrated that removal of Ect2’s midzone anchor prevents its 

accumulation at the equatorial plasma membrane during anaphase (Su et al., 

2011). This suggested that the interaction with the spindle midzone directs the 

concentration of Ect2 at the equatorial part of the plasma membrane, and this 

specific accumulation of Ect2 at the midzone and the cell periphery was proposed 

to be the main signal for placing the cleavage furrow in the middle of the cell by 

stimulating RhoA activity around the equator (Somers and Saint, 2003) (Yuce et al., 

2005) (Su et al., 2011). Thus, the association of Ect2 with Centralspindlin and the 

concentration of the RhoGEF protein at the equatorial membrane were predicted to 

be essential molecular interactions for cleavage plane specification, a key 

unresolved problem in cell biology. In this study, we have focused on testing this 

hypothesis experimentally in human cells, in order to expand our knowledge about 

furrow formation during cytokinesis in animal cells and the role of Ect2 in this 

process. 

7.1 Polyanionic phosphoinositide lipids are implicated in 
recruiting Ect2 to the plasma membrane 

To gain further insight into Ect2’s interaction with the plasma membrane, we 

decided to study which lipids are important for the membrane binding of Ect2. 

Previous experiments in our laboratory using recombinant proteins and 

surface-immobilized lipids pinpointed phosphoinositides as the most likely 

candidates for the interacting lipids (Su et al., 2011). Consequently, in the current 
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study, we employed several pharmacological treatments to change the lipid 

composition of the cell membrane and to study the impact of these treatments on 

Ect2 binding to the plasma membrane by fluorescence confocal microscopy. Our 

experiments harnessing calcium-dependent activation of phospholipase C strongly 

suggested PIP2 as the main interacting lipid with a possible contribution of PI4P 

binding. Conversely, experiments with phosphoinositide 3-kinases inhibitors did not 

support a strong contribution of phosphoinositides with a phosphorylated hydroxyl 

group in position 3 to Ect2’s membrane interaction, although due to technical 

difficulties we cannot rule out the possibility that these lipid species may play a 

minor role. Furthermore, we were unable to distinguish between PIP2 and PI4P 

contributions to Ect2’s membrane binding as we experienced technical difficulties 

when testing the rapamycin-controlled system of hybrid phosphatases (Hammond 

et al., 2012). Due to the high transfection efficiency of HEK-293T cells this system 

is normally more suitable for the genetic lipids manipulation studies than HeLaK 

cells, however, HEK-293T cells did not tolerate well the ectopic expression of the 

C-terminal fragment of Ect2 (Ect2CT), a highly active GEF and activator of RhoA 

(Su et al., 2011) (Su et al., 2014). We speculate that this led to a poor efficiency of 

obtaining cells co-expressing both components of the rapamycin-controlled hybrid 

phosphatase system together with Ect2CT. To overcome these hurdles, stable 

expression of full-length Ect2 GFP-tagged with in HEK-293T cell will be required. 

This could enable more detailed analysis of the lipid requirements for Ect2’s 

interaction with the plasma membrane using genetic methods specifically in 

anaphase cells.  

 

Nevertheless, our results supporting the role of PIP2 and PI4P are in line with the 

biochemical in vitro lipid interaction assays performed previously in our laboratory 

(Su et al., 2011). Recent work has suggested that PIP2 and PI4P together 

contribute to the identity of the plasma membrane (Hammond et al., 2012). The 

implication of PIP2 and PI4P in Ect2 binding to the cell membrane suggests that 

these two polyanionic phosphoinositide species could provide a “postcode” for Ect2 

and target it to the equatorial plasma membrane rather than other cellular 

membrane compartments. This interaction may be prevented in interphase cells 

and prior to anaphase onset during mitosis by nuclear sequestration of Ect2, 

intramolecular autoinhibition and Cdk1-mediated phosphorylation (Tatsumoto et al., 
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1999) (Chalamalasetty et al., 2006) (Saito et al., 2004) (Kim et al., 2005) (Yuce et 

al., 2005) (Su et al., 2011). Moreover, PIP2 has been shown to accumulate at the 

cleavage furrow and its presence is important for cytokinesis progression (Emoto et 

al., 2005) (Field et al., 2005b). It is tempting to speculate that PIP2 depletion from 

the equatorial plasma membrane could partially prevent cytokinesis due to 

compromised Ect2 binding to the membrane and that PIP2 binding can support the 

equatorial accumulation of Ect2. On the other hand, our experiments with the 

Ect2-BRCTTK mutant showed that preventing the interaction of Ect2 with the 

spindle midzone is sufficient to disrupt this preferential accumulation. Thus the 

membrane lipids provide an interacting partner to allow the membrane interaction 

of the protein, but probably do not control the spatial distribution of Ect2 at the 

periphery. Further research will be necessary to show if specific phosphoinositides 

contribute to cytokinesis by affecting Ect2’s recruitment and distribution at the 

plasma membrane in any way. Additionally, further experiments will have to 

address which of Ect2’s membrane engagement domains binds to which lipid 

species. PH domains often interact with phosphoinositides (Lemmon, 2008). 

Although an interesting subject for future studies, the results obtained in our 

artificial membrane targeting experiments, which are discussed below, indicate that 

the exact molecular mode of Ect2’s interaction with the plasma membrane may not 

be essential for the action of the molecule during cytokinesis. 

7.2 Chemical genetics demonstrate that interaction of Ect2 
with the plasma membrane is essential for cytokinesis 

In the second part of our study, we focused on the interaction of Ect2 with the 

plasma membrane and its role for cytokinesis in human cells. We set up a system 

for the artificial membrane targeting of hybrid Ect2 proteins containing a C1B 

domain from PKCα that rapidly translocates to the cell membrane upon treatment 

with phorbolesters such as TPA. We generated a set of stable cell lines expressing 

Ect2-C1B hybrid proteins, in which the membrane-interacting domains of Ect2 had 

been replaced with the C1B domain. Both by IF analysis and by live-cell imaging 

experiments we could demonstrate that artificial membrane targeting of Ect2-C1B 

can replace the otherwise essential role of PH domain and PBC from Ect2, and at 

least partially restore cytokinesis upon depletion of the endogenous protein. 



Chapter 7. Discussion 

 

164 

 

Experiments with a C1B mutant version (Ect2-C1BQ27G), which is unable to interact 

with TPA and to be targeted to the plasma membrane upon phorbolester treatment, 

strongly suggested that the observed rescue effect is dependent on the ability of 

C1B to bind to the plasma membrane. Taken together, these results unequivocally 

show that the main role for Ect2’s PH domain and polybasic tail is to mediate the 

translocation of the protein to the plasma membrane. Moreover, they demonstrate 

that membrane translocation of the RhoGEF Ect2 is a crucial step for cytokinesis in 

human cells. This indicates that both GEF activity and membrane binding of Ect2 

are crucial for RhoA activation and cleavage furrow formation (Prokopenko et al., 

1999) (Su et al., 2011). 

 

The hybrid versions of Ect2 also enabled us to acutely trigger the recruitment of the 

protein to the plasma membrane at specific stages of cell division. TPA-induced 

targeting of Ect2-C1B during the metaphase-to-anaphase transition was sufficient 

to rescue cleavage furrow formation to the same extent as chronic treatment with 

the phorbolester. This result strongly suggests that for the execution of cytokinesis 

the interaction of Ect2 with the plasma membrane is only required from metaphase 

onwards, and possibly only after anaphase onset, when the interaction is observed 

normally. It has been previously shown that Ect2 is required for the establishment 

of a stiff mitotic cell cortex and timely mitotic cell rounding (Matthews et al., 2012) 

(Kunda and Baum, 2009). In prophase, Ect2 activates RhoA, which triggers 

actomyosin remodelling to support the shape transformation from a flat interphase 

cell into a rounded mitotic cell (Matthews et al., 2012). Importantly though, the 

experiments dissecting Ect2’s role in cell rounding were carried out in HeLa cells 

grown on a fibronectin-coated substrate. Fibronectin is a large glycoprotein present 

in the extracellular matrix that is important for cell adhesion (Muro et al., 1999). 

Therefore, cells seeded on fibronectin-coated plates adhere more strongly to the 

surface, which might enhance the effect of Ect2 depletion on cell rounding. During 

our experiments, we did not use the fibronectin coating, and it is thus conceivable 

that the effect of Ect2 depletion on cell rounding is only clearly observable under 

conditions where cells adhere more strongly. Therefore, further experiments will be 

necessary to address if the membrane binding of Ect2 is crucial for mitotic cell 

rounding. Notwithstanding these considerations, preliminary observations made in 

collaboration between our laboratory and the laboratory of Buzz Baum, suggested 
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that deletion of Ect2’s plasma membrane engagement domains also impairs mitotic 

cell rounding (Kuan-Chung Su and Helen Matthews, unpublished data). These 

observations raised the theoretical possibility that Ect2’s action at the plasma 

membrane was only required to establish a stiff mitotic cell cortex during mitotic 

rounding and that Ect2 interaction with the plasma membrane was not required 

during cytokinesis. However, our acute TPA addition experiments addressed this 

point by temporally separating Ect2-membrane engagement during mitotic entry 

and later stages such as cytokinesis. The fact that TPA-induced membrane 

targeting of Ect2-C1B from the metaphase-to-anaphase transition onwards was 

sufficient to support cytokinesis in most cells, allows us to draw two key 

conclusions: (1) Ect2 action at the cell envelope is key during cytokinesis and (2) 

timely mitotic cell rounding and the establishment of a stiff mitotic cortex is not an 

essential prerequisite for cytokinesis. 

7.3 There is more to Ect2 than GEF activity and membrane 
engagement – a key function of the N-terminal region of 
Ect2? 

Published data (Prokopenko et al., 1999) (Su et al., 2011) together with our 

experiments described here defined the GEF activity and the plasma membrane 

binding as two indispensable functions of Ect2 for the correct execution of 

cytokinesis. However, if these two are the only essential functions of Ect2, it should 

be sufficient to induce the translocation of the GEF domain of Ect2 to the plasma 

membrane for successful cytokinesis. To test this hypothesis, we generated a 

hybrid protein containing only the GEF domain of Ect2 fused to a C1B domain 

(GEF-C1B) and studied its effects on cleavage furrow formation upon TPA-induced 

plasma membrane targeting. Artificial membrane targeting of GEF-C1B was not 

able to restore cytokinesis in cells depleted of endogenous Ect2, despite the fact 

that the GEF-C1B protein was efficiently expressed and translocated to the cell 

membrane after TPA treatment. This result suggests an important role for Ect2’s 

N-terminal part, missing from the GEF-C1B protein. Notably, cells expressing 

GEF-C1B showed signs of RhoA hyperactivation with excessive membrane 

blebbing and irregular shape of the cell membrane after TPA-induced membrane 

translocation of GEF-C1B. This result is in line with previous observations in human 
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cells and echinoderm embryos, which suggested that overexpression of Ect2CT 

results in RhoA hyperactivation and subsequent cytokinesis failure (Su et al., 2011) 

(Su et al., 2014). To prevent spatially deregulated RhoA hyperactivation, which 

might mask the rescue activity of GEF-C1B protein, we titrated the amount of 

GEF-C1B at the plasma membrane by using lower concentrations of TPA. 

However, we were unable to identify a concentration of the phorbolester that would 

promote cytokinetic rescue in the absence of the endogenous Ect2 protein. This 

further supports the notion that the N-terminal part of Ect2 plays an important role 

during cytokinesis, possibly through binding to Centralspindlin via its BRCT 

domains and/or regulating the catalytic activity of Ect2. A regulatory function of the 

BRCT domains located in the N-terminal part of Ect2 was suggested previously. In 

vitro experiments supported the hypothesis that the N-terminal and C-terminal parts 

of Ect2 may interact, which was proposed to regulate its activity during cytokinesis 

(Saito et al., 2004) (Kim et al., 2005). Further research will be necessary to show if 

this is indeed the case in vivo. Experiments addressing the requirement for 

BRCT-domain mediated binding of Ect2 to Centralspindlin will be discussed in a 

later section.  

7.4 What prevents a metaphase cell from forming a cleavage 
furrow?  

Previous research in our laboratory showed that Cdk1-mediated phosphorylation 

on T815 within the polybasic tail of Ect2 can inhibit the membrane interaction of the 

RhoGEF protein before anaphase onset (Su et al., 2014). This result suggested 

that the membrane translocation of Ect2 could have a role in the temporal 

regulation of cytokinesis and might serve as a rate-limiting step for the process. In 

order to test this hypothesis, we decided to study the consequences of premature 

targeting of Ect2-C1B to the plasma membrane in metaphase cells using high 

doses of TPA. We studied the phenotype of precautious Ect2 membrane targeting 

by IF analysis and subsequent quantification of the cortical enrichment of RhoA 

and Anillin. We observed a minor enhancement of RhoA and Anillin membrane 

localization when Ect2 was targeted to the membrane in metaphase, but no signs 

of hypercontractility or ectopic furrowing were detected. This suggests that Ect2 

membrane translocation is not the rate-limiting step essential for the temporal 
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regulation of cytokinesis or at least not the sole one. This indicates that multiple 

inhibitory mechanisms prevent cleavage furrow formation before anaphase onset. 

Like Ect2, these mechanisms are likely to be under negative regulation by Cdk1 

activity, which is known to inhibit the onset of cytokinesis in mitosis and sharply 

declines at anaphase onset (Niiya et al., 2005) (Potapova et al., 2006) (Sullivan 

and Morgan, 2007) (Pines, 2011). Notably, premature translocation of GEF-C1B 

resulted in higher membrane association of RhoA and Anillin compared to the 

translocation of Ect2-C1B and also exhibited signs of RhoA hyperactivation. This 

observation further supports the notion that the N-terminal part of Ect2 may have a 

regulatory function important for cytokinesis. 

7.5 Controlling cleavage furrow formation and cytokinesis 
using optogenetics  

Using chemical genetics we have shown that Ect2 membrane translocation plays a 

crucial role during cytokinesis. To study the cytokinetic regulatory mechanisms 

further, we decided to determine the spatial requirements of Ect2’s plasma 

membrane interaction. Our artificial membrane targeting system relies on 

phorbolester addition to the cell medium, which can provide temporal but not 

spatial control over membrane association of the protein of interest. To overcome 

this limitation, we decided to employ optogenetic techniques that respond to a light 

stimulus. Light activation can be induced by laser illumination, which provides both 

high temporal and high spatial resolution.  

 

We took advantage of a recently developed dimerization system based on the light-

sensitive cryptochrome protein Cry2, which selectively interacts with the CIB1 

protein or its N-terminal fragment (CIBN) after illumination with blue light. The 

original system was built with the light-sensitive Cry2 protein localized to cytoplasm, 

which translocates to the plasma membrane after blue-light activation through 

interaction with the CIBN protein that is stably attached to the cell membrane. In 

order to avoid rapid diffusion of the activated Cry2 protein in the cytoplasm and to 

thus render the system more spatially restricted, we attempted to swap the two 

interacting partners. To achieve this, we stably attached the Cry2 protein to the 

plasma membrane by adding the prenylation CAAX signal at the C-terminus. 
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Unfortunately, due to currently unknown reasons, membrane-bound Cry2 lost the 

ability to attract CIBN protein, despite good expression of both proteins and an 

illumination stimulus. Consequently, we reverted to the original settings and set up 

a system for the optogenetic targeting of the Ect2 protein lacking its native 

membrane-targeting domains (Ect2-ΔPHΔTail) and we fused this version of Ect2 to 

mCherry-tagged Cry2 protein (Cry2-mCh-Ect2). For the interacting partner, we 

generated a cell line expressing GFP-tagged CIBN fragment that is stably localized 

to the plasma membrane (CIBN-eGFP-CAAX).  

 

Cry2-mCh-Ect2 rapidly translocated to the cell membrane after blue-light 

illumination, allowing us to repeat the rescue experiments with a light-inducible 

system. Membrane targeting of Cry2-mCh-Ect2 in metaphase or anaphase cells by 

blue-light illumination in two small circular regions at the equatorial cortex triggered 

accumulation of the protein at the equatorial membrane and was able to partially 

rescue cytokinetic failure after endogenous Ect2 depletion. The rescue effect was 

dependent on Ect2’s interaction with the plasma membrane, as targeting of the 

control protein Cry2-mCh to the plasma membrane was unable to restore 

cytokinesis. These results are in line with our experiments with chemical genetic 

system and further confirm that membrane association during 

metaphase-to-anaphase transition is a crucial step for cytokinesis in human cells 

and possibly all animal cells. Blue-light stimulation also enhanced the midzone 

localization of Cry2-mCh-Ect2 protein. The wild-type version of Ect2 exhibit similar 

behaviour, which suggest positive feedback system to promote the equatorial 

localization of Ect2 (Su et al., 2014) and this study. But with Cry2-mCh-Ect2 the 

enhancement is more pronounced as the midzone localization of Cry2-mCh-Ect2 is 

visibly weaker. The reasons for weaker midzone localization are currently unknown, 

but the fusion with large cryptochrome might cause some steric clashes alleviated 

by blue-light activation.  

 

Another surprising observation was the “tilted” geometry of the chromosomes in 

cells that express Cry2-mCh-Ect2 that cannot interact with the plasma membrane. 

This suggests endogenous Ect2 depletion leads to changed spindle geometry, a 

phenotype not described previously in human cells. Interestingly,	 role of Ect2 in 

spindle assembly was proposed in X. laevis egg extract (Tatsumoto et al., 2003). 
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Further research is necessary to show if Ect2 has a role in spindle assembly in 

human somatic cells.       

 

In order to test the spatial requirements of Ect2 interaction with the cell membrane 

we targeted Ect2 only to one side of the equatorial membrane in anaphase cells. 

Spatially restricted accumulation of Cry2-mCh-Ect2 was complicated by its fast 

diffusion along the cell periphery, but nevertheless, almost all the cells, in which the 

one-sided accumulation was observed, developed a unilateral furrow at the side of 

the illumination. This experiment shows that local Ect2 plasma membrane binding 

at the equatorial furrow is necessary and at least at the equator sufficient to 

activate RhoA and trigger cleavage furrow formation. Importantly, one-sided 

accumulation could support furrowing, but could not rescue successful cytokinesis 

progression. This suggests that Ect2 and presumably RhoA need to be active on 

both sides of the cleavage furrow for successful execution of cytokinesis in human 

cells. This result is consistent with the notion that the equatorial accumulation of 

Ect2 could act as a main signal for cleavage plane specification and furrow 

formation, although, it does not prove it. It merely demonstrates that the local 

presence of Ect2 at the plasma membrane at the presumptive furrowing site is 

required for furrow initiation. Importantly, adjusted spindle geometry was also 

observed during experiments with one-sided targeting of Cry2-mCh-Ect2 and this 

spindle change could be responsible for the unilateral localization of Ect2. 

Nevertheless, the presence of Ect2 is crucial, as no unilateral furrows were 

observed in cells without blue-light illumination.   

 

Conversely, after unilateral activation at the polar region of anaphase cells, we 

neither observed a specific accumulation of Ect2 at the site of the illumination nor 

furrowing activity at the position. As we were unable to target Cry2-mCh-Ect2 to the 

poles, the question of whether inducing Ect2 accumulation at the plasma 

membrane in regions outside the cell equator would result in furrow formation 

remains unanswered. Our inability to induce accumulation of Ect2 at polar regions 

in the first place could indicate the existence of an inhibitory mechanism preventing 

excessive accumulation of Ect2 at the poles, thus potentially contributing to the 

prevention of RhoA activation at the wrong place. Polar astral microtubules were 

shown to inhibit furrowing at the polar regions (Bringmann and Hyman, 2005) 
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(Dechant and Glotzer, 2003) (Werner et al., 2007) (Foe and von Dassow, 2008). 

Therefore, it is possible that astral microtubules may also inhibit the accumulation 

of Ect2 at the cell poles, which could partially explain their inhibitory effect on 

furrowing. However, further research will be necessary to address and test this 

hypothesis. 

7.6 Enrichment of Ect2 at the equatorial membrane is not the 
main signal that places cleavage furrow in somatic cells 

Our experiments showing that interaction of Ect2 with the plasma membrane is 

sufficient and required for cleavage furrow formation supported the model, which 

proposes that equatorial accumulation of Ect2 specifies the zone of active RhoA 

and therefore regulates the placement of the cleavage plane. The spindle midzone 

interaction of Ect2 was proposed to direct the accumulation of Ect2 preferentially at 

the equatorial membrane (Su et al., 2011). However, despite the fact that Ect2’s 

interaction with Centralspindlin at the spindle midzone occupies a central position 

in models for cleavage furrow formation (Yuce et al., 2005) (Petronczki et al., 2007) 

(Wolfe et al., 2009) (Su et al., 2011), the importance of this interaction and thus the 

role of the equatorial accumulation of Ect2 have never been decisively tested. A 

previous study suggested that Ect2 localization to spindle midzone might not be 

essential for early stages of for cytokinesis (Chalamalasetty et al., 2006). 

Importantly though, this study relied on overexpression of different N-terminal 

fragments of Ect2, which could have introduced artefacts into the system. We 

decided for the first time to decisively test the role of the recruitment of the RhoGEF 

Ect2 to the spindle midzone by introducing previously identified mutations into the 

first BRCT domain of the protein. The mutations T153A and K195M have been 

shown not only to prevent the interaction of Ect2 with a phosphorylated form of 

Centralspindlin but also to abrogate the spindle midzone recruitment of a 

transiently expressed N-terminal Ect2 fragment containing the BRCT repeats 

(Wolfe et al., 2009) (Zou et al., 2014). 

 

We have used the genetic complementation system developed in our laboratory to 

generate monoclonal stable cell lines expressing GFP-tagged siRNA-resistant full-

length Ect2 with the mutations T153A and K195M (Ect2-BRCTTK). This allowed us 
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to study the localization and functionality of Ect2-BRCTTK protein in live cells. Our 

analysis demonstrated that the Ect2-BRCTTK protein does not localize to the 

spindle midzone indicating the introduction of these two point mutations in the 

full-length context of Ect2 indeed blocks the interaction with Centralspindlin in vivo. 

Importantly, our data also show that abolishing the interaction of Ect2 with 

Centralspindlin disrupts the concentration gradient of the protein and thus 

compromise the accumulation of Ect2 at the equatorial membrane. Although the 

spatial pattern of Ect2 at the plasma membrane was lost, the BRCT mutations did 

not affect the temporal control of Ect2 membrane translocation. These results 

provide strong support for the previously proposed model that Ect2’s interaction 

with Centralspindlin on equatorial microtubules directs the concentration of the 

protein at the equatorial plasma membrane (Su et al., 2011).  

 

Strikingly though, the inability of Ect2 to interact with the spindle midzone and get 

concentrated at the equatorial membrane in anaphase cells did not cause 

cytokinetic failure. The Ect2-BRCTTK mutant protein was able to fully support 

cleavage plane specification, cleavage furrow ingression and ultimately cytokinesis, 

as shown both by end-point IF analysis and by live-cell imaging. Furthermore, 

Ect2’s displacement from the spindle midzone did not change the distribution of 

contractile ring proteins RhoA and Anillin. Combined, our data suggest that Ect2’s 

interaction with the spindle midzone and the equatorial accumulation of the protein 

are not essential for cytokinesis in otherwise unperturbed human somatic cells. 

 

Importantly, it is possible that the mutations T153A and K195M do not completely 

prevent the binding of Ect2 to Centralspindlin. Previous studies have used co- 

immunoprecipitation and ITC and have showed that the mutations prevent the 

interaction of Ect2 and MgcRacGAP (Wolfe et al., 2009) (Zou et al., 2014). Both of 

these studies have used truncated versions of Ect2, which might have influenced 

the results. Our results from live cell imaging of full-length Ect2-BRCTTK strongly 

supported that T153A and K195M do abrogate the interaction of Ect2 with 

Centralspindlin, but more experimental evidence is key to verify our results. It is 

therefore conceivable that small enrichment of Ect2-BRCTTK is sufficient to drive 

cleavage furrow formation as the main mechanism. Nevertheless, we do not favour 

this possibility, as this would make the system less robust. Cytokinesis needs to be 
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efficiently controlled so more likely explanation is that there are more mechanisms 

that lead to furrow formation in the equatorial part of cell membrane.   

 

One important limitation of our study is that we could only observe Ect2 protein 

distribution and not its activity as a GEF factor. This could mean even the 

apparently small enrichment of Ect2-BRCTTK could be enough to specify furrow 

formation in the middle of the cell. Additional control mechanisms that would 

regulate activity of Ect2 might exist and that could explain our observations with 

Ect2-BRCTTK protein. Previous research in our laboratory has shown only 10% of 

Ect2 is sufficient for efficient furrowing and cytokinesis, which further supports this 

notion (Su et al., 2011). Future experiments should be focused on the GEF activity 

of full-length Ect2 in cells going through cytokinesis and they might explain our 

surprising results.  

 

Results with Ect2-BRCTTK protein show that Ect2’s equatorial accumulation is likely 

not the only or main signal that places the cleavage furrow in the middle of the cell 

in small somatic cells. Our new data are in disagreement with the model put 

forward by our laboratory and others (Yuce et al., 2005) (Petronczki et al., 2007) 

(Wolfe et al., 2009) (Su et al., 2011) (Fededa and Gerlich, 2012) (Green et al., 

2012) (Mierzwa and Gerlich, 2014). These findings have important implications for 

many aspects of current models of cytokinesis. In the light of our findings several 

previous observations should be re-interpreted and further studies are required to 

explain the mechanism of cleavage furrow placement in human somatic cells. Our 

results suggest that the mechanism of furrow establishment is more similar to 

D. melanogaster and C. elegans than we previously thought. Orthologs of Ect2 in 

D. melanogaster (Pebble) and C. elegans (LET-21) do not localize to the spindle 

midzone (Prokopenko et al., 1999) (Green et al., 2012), even though Pebble was 

shown to interact with RacGAP50C (MgcRacGAP) (Somers and Saint, 2003). So in 

D. melanogaster and C. elegans cells, the midzone localization of Ect2 is not 

crucial and our research suggests that the situation in human cells is similar.  

 

Still, the Ect2-Centralspindlin interaction was the best characterized molecular 

interaction that could provide a rationale for how spatial control of RhoA activation 

and cleavage plane specification can be achieved at the cell equator. If our 
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predictions are correct, our data question the importance of this interaction and 

leave us with no good alternative molecular hypothesis that could explain, how the 

cleavage plane is placed at the equator, a key question in cell biology. Renewed 

efforts have to focus on identifying and characterizing these mechanisms involved. 

Moreover, our data emphasize the need to constantly question and decisively test 

models.  

 

Our data with the BRCT-mutated Ect2 allele confirm the conclusion of previous 

work suggesting that Plk1 phosphorylation of MgcRacGAP is required for the 

assembly of the Ect2-Centralspindlin complex. Depletion of MgcRacGAP or Ect2 

as well as inhibition of Plk1 during anaphase all abrogate cleavage furrow 

formation (Jantsch-Plunger et al., 2000) (Prokopenko et al., 1999) (Tatsumoto et al., 

1999) (Yuce et al., 2005) (Petronczki et al., 2007). These findings together with the 

fact that Plk1 is required for Ect2-Centralspindlin complex formation suggested that 

Plk1 regulates cleavage furrow formation in this manner (Petronczki et al., 2007) 

(Burkard et al., 2009) (Wolfe et al., 2009). This view and model can no longer be 

fully supported. Thus, Plk1 must phosphorylate additional important targets and 

regulate additional mechanism to control cytokinesis. In summary, our data 

demonstrate that the hypothesis that the equatorial concentration of Ect2 at the 

plasma membrane can account for cleavage furrow placement was simplistic and 

is probably insufficient to explain the process. 

 

If Ect2’s equatorial accumulation contributes to the regulation of cleavage furrow 

formation, it could work in a redundant manner with another signals or mechanisms. 

Interestingly, combination of two signals, one from spindle midzone and one from 

astral microtubules, was previously proposed to regulate the localization of the 

cleavage furrow and its ingression (Bringmann and Hyman, 2005) (Dechant and 

Glotzer, 2003) (Werner et al., 2007). 

 

In the light of our results, we decided to perform experiments that would combine 

the effect of Ect2’s BRCT-mutations with depletion or inhibition of other cytokinetic 

factors to identify a potentially redundant second signalling pathway or mechanism. 

Firstly, we focused on the role of astral microtubules that could inhibit RhoA and/or 

myosin at the polar regions of anaphase cells. This would be in line with the notion 
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that both GEF activity and membrane binding of Ect2 are crucial but the equatorial 

accumulation of the protein is not, because RhoA or the contractile ring could be 

activated only in the middle of the cell. However, the experiments have shown that 

in cells with a wild-type Ect2 allele or the Ect2-BRCTTK allele, the depletion of astral 

microtubules does not cause enhanced cytokinetic failure. On the other hand, in 

cells lacking Ect2 entirely, the depletion of asters strongly enhanced the cytokinetic 

phenotype. This suggests that astral microtubules can contribute to the regulation 

of furrowing in human cells under severely compromised conditions, however, they 

do not provide a main signal or signal that is redundant with equatorial 

concentration of Ect2. 

 

We next tested the possible contribution of MgcRacGAP to cleavage furrow 

formation. MgcRacGAP interaction with Ect2 was proposed to release Ect2’s 

autoinhibition and thus stimulate its activity (Kim et al., 2005) (Yuce et al., 2005) 

(Wolfe et al., 2009) (Zou et al., 2014). Previous studies suggested that binding of 

BRCT domains of Ect2 to Plk1-phosphorylated N-terminus of MgcRacGAP is the 

interaction that activates Ect2. Our results, however, argue against this hypothesis. 

Nevertheless, MgcRacGAP could still activate Ect2 and RhoA by another 

mechanism. Notably, MgcRacGAP also binds to the plasma membrane during 

anaphase via its C1 domain, and this interaction is important for cytokinesis 

(Lekomtsev et al., 2012). Moreover, recent work from Zhang et al. showed the 

C-termini of Ect2 and MgcRacGAP could interact in vitro (Zhang and Glotzer, 2015). 

Thus, we decided to test if MgcRacGAP could activate Ec2 at the equatorial 

plasma membrane. To this end we generated stable cell lines expressing 

Ect2-BRCTTK together with MgcRacGAP-ΔC1 or MgcRacGAP-K292L. Deletion of 

C1 domain or its mutation (K292L) prevents the plasma membrane targeting of the 

MgcRacGAP transgene. Consequently, after co-depletion of endogenous Ect2 and 

MgcRacGAP by siRNA, these cells were unable to target Ect2 to the spindle 

midzone and MgcRacGAP to the plasma membrane. However, the BRCT 

mutations in Ect2 only slightly enhanced the cytokinetic phenotype observed after 

interfering with MgcRacGAP’s C1 domain. Therefore we do not favour the 

hypothesis that an Ect2-MgcRacGAP interaction independent of the canonical 

BRCT domain binding mode is an important signal for cleavage furrow formation. 

Zhang et al. showed that the two proteins could interact in vitro via their GEF and 
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GAP domains, so further experiments will be necessary to rule out the cooperation 

completely, as we did not disrupt these domains during our experiments. However, 

it is conceivable that for the activatory binding of MgcRacGAP-Ect2 to be effective, 

it should occur either at the midzone or at the equatorial plasma membrane to 

influence RhoA activity at the right place. 

 

In summary, we were as yet unable to identify a simple redundant mechanism that 

would explain how is the cleavage furrow positioned at the equator in the 

Ect2-BRCTTK expressing cells after depletion of the endogenous Ect2. The 

possibility that there are more than two redundant pathways cannot be ruled out at 

present, and if that is the case, it will be difficult to dissect these pathways 

experimentally and test their contributions. Further research will be necessary to 

understand the molecular mechanisms behind the robust furrow formation in 

human cells. Contributing phenomena and mechanism might involve polar 

relaxation by protein phosphatase 1 (Rodrigues et al., 2015), the interaction of 

astral microtubules with the polar cortex (Dechant and Glotzer, 2003) (Werner et al., 

2007), a second stimulatory signal from the spindle midzone (e.g.: Aurora B 

phosphorylation) or a chromosome-derived inhibitory signal (e.g.: a Ran-GTP 

gradient). These possibilities have to be explored further in isolation and in 

combination with the Ect2-BRCTTK allele. 

 

Another interesting question arising from our study is, what is the function of the 

N-terminal BRCT domains that were proposed to have an important regulatory 

function. Overexpression of Ect2 version lacking the N-terminal BRCT repeats 

(Ect2CT) have been to shown to enhance the oncogenic activity of Ect2 (Saito et 

al., 2004) and to change the morphology of flat interphase cells to rounded cells 

(Saito et al., 2004) (Su et al., 2011) (Matthews et al., 2012). These phenotypes are 

probably caused by ectopic activation of RhoA via a constitutively active Ect2. 

Notably, deletion of the two NLS signals of Ect2 is able to replicate these 

phenotypes (Saito et al., 2004) (Matthews et al., 2012). It is thus conceivable that 

the phenotype of Ect2CT is due to its cytoplasmic localization caused by the 

removal of NLS signals and is not linked to the absence of the BRCT domains. In 

our study, a potential regulatory function of the N-terminal part of Ect2 was 

suggested by results with artificial membrane targeting of GEF-C1B. Targeting of 
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GEF-C1B to the plasma membrane also resulted in the cells showing signs of 

ectopic RhoA activation. Moreover, artificial membrane targeting of GEF-C1B failed 

to rescue the cytokinetic failure, in stark contrast to targeting of the hybrid 

Ect2-C1B protein to the plasma membrane. For future experiments, it would be 

interesting to examine the rescue effect with a construct similar to GEF-C1B with 

added part containing the two NLS sequences, but still lacking the BRCT domains. 

Similarly, it would be intriguing to test the cytokinetic phenotype of full-length Ect2 

protein that lacks the two NLS sequences, also in combination with the BRCT 

mutations.  Lastly, it remains possible that the N-terminal region of Ect2 harbours 

an essential yet elusive additional function or ability. A careful mutational analysis 

of the first two hundred amino acids of the protein is warranted. 

 

Our study provided important insights into the role of Ect2 for cleavage furrow 

formation in human cells. We have shown that plasma membrane interaction of 

Ect2 is crucial for cleavage furrow formation and cytokinesis. However, the 

equatorial accumulation of Ect2 at the plasma membrane is likely not essential and 

does not alone specify the zone of active RhoA. Therefore the currently favoured 

model of cleavage plane localization in somatic human cells is not sufficient to 

explain the mechanism of cytokinesis and should be re-examined. Given the 

importance of cytokinesis, it may not come as a surprise that multiple signals are 

likely to cooperate to restrict the furrowing zone, making the system robust and 

preventing deleterious mistakes. Further research will be necessary to identify and 

fully understand these signals and conditions under which some of them might 

become essential. 
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