
solutions, the following procedure is used. Each of the coeffi-
cients in the objective function is randomly perturbed (adding or
subtracting small random quantities to the base values of 1s), and
the optimisation problem re-solved in a number of replications.
This is done to mimic some small amount of favouritism being
attached to different players and different days, whilst ensuring
that the same maximum number of groups is produced.

Table 2: One possible optimal solution

Names Mon Tues Wed Thurs Fri Times

Barry T 0 0 1 1 0 2
Tom B 1 1 0 1 0 3
Gordon B 0 0 0 0 0 0
Peter W 0 0 0 0 0 0
Colin C 0 0 0 1 0 1
Mike M 0 1 1 1 0 3
Keith I 0 1 0 0 0 1
Alan C 1 0 0 1 0 2
John S 0 1 0 0 0 1
Keith B 1 0 1 0 0 2
George StC 0 0 0 1 0 1
Michael L 0 0 1 0 0 1
Phil M 0 1 0 0 0 1
Brian F 1 1 0 0 0 2
Peter K 0 1 0 1 0 2
Willie McM 0 0 0 1 0 1
Ken L 0 1 0 0 0 1

Table 3: The final assignment of groups

Names Mon Tues Wed Thurs Fri Times

Barry T 0 0 1 1 0 2
Tom B 0 1 0 1 0 2
Gordon B 0 0 0 0 0 0
Peter W 1 1 0 0 0 2
Colin C 1 0 0 1 0 2
Mike M 0 1 0 1 0 2
Keith I 0 0 1 0 0 1
Alan C 0 0 0 1 0 1
John S 0 1 0 0 0 1
Keith B 1 0 1 0 0 2
George StC 0 0 0 1 0 1
Michael L 0 0 1 0 0 1
Phil M 0 1 0 0 0 1
Brian F 1 1 0 0 0 2
Peter K 0 1 0 1 0 2
Willie McM 0 0 0 1 0 1
Ken L 0 1 0 0 0 1

In each replication, the solution produced is compared with
all the previously-generated different solutions and is only re-
tained if it is different from all previous ones. In this example, a
total of 73 different and equally-optimal solutions were obtained.
But a comparison of solutions might reveal that in one solution
players A and B each play once in the week, whereas in another
solution (identical in all other respects) A plays twice whilst B
does not play at all. On grounds of equity this latter case is unde-
sirable, so for each of the equally-optimal solutions we calculate
G1 the number of players who get at least one game. In the so-
lution shown in Table 2, G1 = 15 whilst in some other possible

solutions G1 = 16. In an extension to this idea there might be a
solution in which A and B each get two games in the week whilst
in a different solution (again identical in all other respects) A gets
three games whilst B only gets one. So to compare the equally-
optimal solutions further we calculate, for each solution, G2, the
number to get at least two games. Then we sort the equally op-
timal solutions by descending value of G1 using the value of G2

to break ties. It is then found that the four best solutions have
G1 = 16 and G2 = 8. The final choice is made randomly from
these four, and is shown in Table 3.

To complete the process, the final set of groups is printed out,
ready to be copied and pasted into the email message to all mem-
bers of the group:
Mon: Peter W, Colin C, Keith B, Brian F
Tues: Tom B, Peter W, Mike M, John S, Phil M,

Brian F, Peter K, Ken L
Wed: Barry T, Keith I, Keith B, Michael L
Thurs: Barry T, Tom B, Colin C, Mike M, Alan C,

George StC, Peter K, Willie McM
The process, which has considerably simplified my task of

organising the groups each week, has worked well now for some
time and whilst many members of the group are intrigued or
amused to know that the assignment of players to groups is done
by an algorithm, they appear to have trust in the fairness and ef-
ficiency with which it produces the results.

References
1 R Core Team (2012) R: A language and environment for statistical

computing, R Foundation for Statistical Computing, Vienna, Austria,
ISBN 3-900051-07-0, www.R-project.org/.

2 Berkelaar, M. et al. (2013) lpSolve: Interface to Lp_solve v. 5.5
to solve linear/integer programs, R package version 5.6.7. CRAN.R-
project.org/package=lpSolve.

F or some years, I have played social tennis at a local
club and have recently organised midweek men’s doubles
matches for those who are retired, work part-time or have

flexible working arrangements. This used to consist of asking
each member of the group about their availability in the coming
week, and how much they would like to play, and from their re-
sponses, putting together a set of fours using just pen and paper.
However as the numbers increased, I started to think about how I
could make the process easier and more efficient by writing some
code and treating it as an optimisation problem. This article de-
scribes how I tackled the problem.

The initial purpose of the algorithm was to automate what I
had done manually, by finding a feasible assignment of players to
groups across the week and to maximise the number of groups
formed. As it is clear that generally there are many possible so-
lutions, the next step was to remove any bias or favouritism in
the choice of the groups, by generating all possible feasible and
equally-optimal assignments and choosing randomly from them.

Table 1: The player availability matrix Aij

Names Mon Tues Wed Thurs Fri Times

Barry T 0 0 1 1 0 2
Tom B 1 1 0 1 0 3
Gordon B 0 0 0 0 1 1
Peter W 1 1 0 0 0 2
Colin C 1 0 0 1 0 2
Mike M 0 1 1 1 1 3
Keith I 0 1 1 0 0 1
Alan C 1 0 0 1 0 2
John S 0 1 0 0 0 1
Keith B 1 0 1 0 0 2
George StC 1 1 1 1 0 1
Michael L 0 0 1 0 0 1
Phil M 0 1 0 0 0 1
Brian F 1 1 0 0 0 2
Peter K 0 1 0 1 0 2
Willie McM 0 0 0 1 0 1
Ken L 0 1 0 0 0 1

The player availability matrix Aij consists of 0s and 1s, with
a 1 indicating that player i (= 1, . . . ,M) is available to play on
day j (= 1, . . . , N). See the example in Table 1. The column
on the right shows Ti the maximum number of times in the week
that the player has indicated that he is willing/able to play.

The variables in the problem are denoted by xij which are 1
if player i is assigned to play on day j and zero otherwise, and
are only defined for those cells where Aij = 1; plus gj , the num-
ber of groups assigned to play on day j. There are then two sets
of constraints: firstly on the number of times in the week that a
player is assigned to play (which should not exceed the maximum
specified):

Σjxij ≤ Ti for i = 1, . . . ,M (1)
and secondly on the number of players assigned to play on each
day which of course must be a multiple of 4:

Σixij − 4gj = 0 for j = 1, . . . , N. (2)

The objective is to maximise the total number of player-games
in the week whilst satisfying these constraints. So we want to
maximise the objective function:

z = Σijxij . (3)

This is a linear programming problem with some of the vari-
ables, the xij , being binary (0-1) variables, and the rest, the gj ,
being integer variables. It can be solved in the software package
R [1] by using the lp function (part of the lpSolve package, which
is a mixed integer linear programming solver [2]) and taking as
input the availability matrix in the form of a .csv file. The con-
straints matrix and right-hand side constants are constructed from
the coefficients in (1) and (2), and the coefficients in the objective
function (3) consist of 1s in front of each of the variables. For the
availability matrix shown in Table 1, it turns out that zmax = 24:
that is, six groups can be formed over the week. One such optimal
solution is shown in Table 2.

But there will generally be other, equally-optimal solutions
(that is, different sets of xij that also provide an objective func-
tion value of 24, and satisfy the constraints). To generate all or
at least a sufficiently large number of the other equally-optimal

F or some years, I have played social tennis at a local
club and have recently organised midweek men’s doubles
matches for those who are retired, work part-time or have

flexible working arrangements. This used to consist of asking
each member of the group about their availability in the coming
week, and how much they would like to play, and from their re-
sponses, putting together a set of fours using just pen and paper.
However as the numbers increased, I started to think about how I
could make the process easier and more efficient by writing some
code and treating it as an optimisation problem. This article de-
scribes how I tackled the problem.

The initial purpose of the algorithm was to automate what I
had done manually, by finding a feasible assignment of players to
groups across the week and to maximise the number of groups
formed. As it is clear that generally there are many possible so-
lutions, the next step was to remove any bias or favouritism in
the choice of the groups, by generating all possible feasible and
equally-optimal assignments and choosing randomly from them.

Table 1: The player availability matrix Aij

Names Mon Tues Wed Thurs Fri Times

Barry T 0 0 1 1 0 2
Tom B 1 1 0 1 0 3
Gordon B 0 0 0 0 1 1
Peter W 1 1 0 0 0 2
Colin C 1 0 0 1 0 2
Mike M 0 1 1 1 1 3
Keith I 0 1 1 0 0 1
Alan C 1 0 0 1 0 2
John S 0 1 0 0 0 1
Keith B 1 0 1 0 0 2
George StC 1 1 1 1 0 1
Michael L 0 0 1 0 0 1
Phil M 0 1 0 0 0 1
Brian F 1 1 0 0 0 2
Peter K 0 1 0 1 0 2
Willie McM 0 0 0 1 0 1
Ken L 0 1 0 0 0 1

The player availability matrix Aij consists of 0s and 1s, with
a 1 indicating that player i (= 1, . . . ,M) is available to play on
day j (= 1, . . . , N). See the example in Table 1. The column
on the right shows Ti the maximum number of times in the week
that the player has indicated that he is willing/able to play.

The variables in the problem are denoted by xij which are 1
if player i is assigned to play on day j and zero otherwise, and
are only defined for those cells where Aij = 1; plus gj , the num-
ber of groups assigned to play on day j. There are then two sets
of constraints: firstly on the number of times in the week that a
player is assigned to play (which should not exceed the maximum
specified):

Σjxij ≤ Ti for i = 1, . . . ,M (1)
and secondly on the number of players assigned to play on each
day which of course must be a multiple of 4:

Σixij − 4gj = 0 for j = 1, . . . , N. (2)

The objective is to maximise the total number of player-games
in the week whilst satisfying these constraints. So we want to
maximise the objective function:

z = Σijxij . (3)

This is a linear programming problem with some of the vari-
ables, the xij , being binary (0-1) variables, and the rest, the gj ,
being integer variables. It can be solved in the software package
R [1] by using the lp function (part of the lpSolve package, which
is a mixed integer linear programming solver [2]) and taking as
input the availability matrix in the form of a .csv file. The con-
straints matrix and right-hand side constants are constructed from
the coefficients in (1) and (2), and the coefficients in the objective
function (3) consist of 1s in front of each of the variables. For the
availability matrix shown in Table 1, it turns out that zmax = 24:
that is, six groups can be formed over the week. One such optimal
solution is shown in Table 2.

But there will generally be other, equally-optimal solutions
(that is, different sets of xij that also provide an objective func-
tion value of 24, and satisfy the constraints). To generate all or
at least a sufficiently large number of the other equally-optimal

A Tennis Assignment Algorithm
Mike Maher FIMA, University College London

© Carloscastilla | Dreamstime.com

 Mathematics TODAY JUNE 2016 130

solutions, the following procedure is used. Each of the coeffi-
cients in the objective function is randomly perturbed (adding or
subtracting small random quantities to the base values of 1s), and
the optimisation problem re-solved in a number of replications.
This is done to mimic some small amount of favouritism being
attached to different players and different days, whilst ensuring
that the same maximum number of groups is produced.

Table 2: One possible optimal solution

Names Mon Tues Wed Thurs Fri Times

Barry T 0 0 1 1 0 2
Tom B 1 1 0 1 0 3
Gordon B 0 0 0 0 0 0
Peter W 0 0 0 0 0 0
Colin C 0 0 0 1 0 1
Mike M 0 1 1 1 0 3
Keith I 0 1 0 0 0 1
Alan C 1 0 0 1 0 2
John S 0 1 0 0 0 1
Keith B 1 0 1 0 0 2
George StC 0 0 0 1 0 1
Michael L 0 0 1 0 0 1
Phil M 0 1 0 0 0 1
Brian F 1 1 0 0 0 2
Peter K 0 1 0 1 0 2
Willie McM 0 0 0 1 0 1
Ken L 0 1 0 0 0 1

Table 3: The final assignment of groups

Names Mon Tues Wed Thurs Fri Times

Barry T 0 0 1 1 0 2
Tom B 0 1 0 1 0 2
Gordon B 0 0 0 0 0 0
Peter W 1 1 0 0 0 2
Colin C 1 0 0 1 0 2
Mike M 0 1 0 1 0 2
Keith I 0 0 1 0 0 1
Alan C 0 0 0 1 0 1
John S 0 1 0 0 0 1
Keith B 1 0 1 0 0 2
George StC 0 0 0 1 0 1
Michael L 0 0 1 0 0 1
Phil M 0 1 0 0 0 1
Brian F 1 1 0 0 0 2
Peter K 0 1 0 1 0 2
Willie McM 0 0 0 1 0 1
Ken L 0 1 0 0 0 1

In each replication, the solution produced is compared with
all the previously-generated different solutions and is only re-
tained if it is different from all previous ones. In this example, a
total of 73 different and equally-optimal solutions were obtained.
But a comparison of solutions might reveal that in one solution
players A and B each play once in the week, whereas in another
solution (identical in all other respects) A plays twice whilst B
does not play at all. On grounds of equity this latter case is unde-
sirable, so for each of the equally-optimal solutions we calculate
G1 the number of players who get at least one game. In the so-
lution shown in Table 2, G1 = 15 whilst in some other possible

solutions G1 = 16. In an extension to this idea there might be a
solution in which A and B each get two games in the week whilst
in a different solution (again identical in all other respects) A gets
three games whilst B only gets one. So to compare the equally-
optimal solutions further we calculate, for each solution, G2, the
number to get at least two games. Then we sort the equally op-
timal solutions by descending value of G1 using the value of G2

to break ties. It is then found that the four best solutions have
G1 = 16 and G2 = 8. The final choice is made randomly from
these four, and is shown in Table 3.

To complete the process, the final set of groups is printed out,
ready to be copied and pasted into the email message to all mem-
bers of the group:
Mon: Peter W, Colin C, Keith B, Brian F
Tues: Tom B, Peter W, Mike M, John S, Phil M,

Brian F, Peter K, Ken L
Wed: Barry T, Keith I, Keith B, Michael L
Thurs: Barry T, Tom B, Colin C, Mike M, Alan C,

George StC, Peter K, Willie McM
The process, which has considerably simplified my task of

organising the groups each week, has worked well now for some
time and whilst many members of the group are intrigued or
amused to know that the assignment of players to groups is done
by an algorithm, they appear to have trust in the fairness and ef-
ficiency with which it produces the results.

References
1 R Core Team (2012) R: A language and environment for statistical

computing, R Foundation for Statistical Computing, Vienna, Austria,
ISBN 3-900051-07-0, www.R-project.org/.

2 Berkelaar, M. et al. (2013) lpSolve: Interface to Lp_solve v. 5.5
to solve linear/integer programs, R package version 5.6.7. CRAN.R-
project.org/package=lpSolve.

Mike (back right) and others from the group.

F or some years, I have played social tennis at a local
club and have recently organised midweek men’s doubles
matches for those who are retired, work part-time or have

flexible working arrangements. This used to consist of asking
each member of the group about their availability in the coming
week, and how much they would like to play, and from their re-
sponses, putting together a set of fours using just pen and paper.
However as the numbers increased, I started to think about how I
could make the process easier and more efficient by writing some
code and treating it as an optimisation problem. This article de-
scribes how I tackled the problem.

The initial purpose of the algorithm was to automate what I
had done manually, by finding a feasible assignment of players to
groups across the week and to maximise the number of groups
formed. As it is clear that generally there are many possible so-
lutions, the next step was to remove any bias or favouritism in
the choice of the groups, by generating all possible feasible and
equally-optimal assignments and choosing randomly from them.

Table 1: The player availability matrix Aij

Names Mon Tues Wed Thurs Fri Times

Barry T 0 0 1 1 0 2
Tom B 1 1 0 1 0 3
Gordon B 0 0 0 0 1 1
Peter W 1 1 0 0 0 2
Colin C 1 0 0 1 0 2
Mike M 0 1 1 1 1 3
Keith I 0 1 1 0 0 1
Alan C 1 0 0 1 0 2
John S 0 1 0 0 0 1
Keith B 1 0 1 0 0 2
George StC 1 1 1 1 0 1
Michael L 0 0 1 0 0 1
Phil M 0 1 0 0 0 1
Brian F 1 1 0 0 0 2
Peter K 0 1 0 1 0 2
Willie McM 0 0 0 1 0 1
Ken L 0 1 0 0 0 1

The player availability matrix Aij consists of 0s and 1s, with
a 1 indicating that player i (= 1, . . . ,M) is available to play on
day j (= 1, . . . , N). See the example in Table 1. The column
on the right shows Ti the maximum number of times in the week
that the player has indicated that he is willing/able to play.

The variables in the problem are denoted by xij which are 1
if player i is assigned to play on day j and zero otherwise, and
are only defined for those cells where Aij = 1; plus gj , the num-
ber of groups assigned to play on day j. There are then two sets
of constraints: firstly on the number of times in the week that a
player is assigned to play (which should not exceed the maximum
specified):

Σjxij ≤ Ti for i = 1, . . . ,M (1)
and secondly on the number of players assigned to play on each
day which of course must be a multiple of 4:

Σixij − 4gj = 0 for j = 1, . . . , N. (2)

The objective is to maximise the total number of player-games
in the week whilst satisfying these constraints. So we want to
maximise the objective function:

z = Σijxij . (3)

This is a linear programming problem with some of the vari-
ables, the xij , being binary (0-1) variables, and the rest, the gj ,
being integer variables. It can be solved in the software package
R [1] by using the lp function (part of the lpSolve package, which
is a mixed integer linear programming solver [2]) and taking as
input the availability matrix in the form of a .csv file. The con-
straints matrix and right-hand side constants are constructed from
the coefficients in (1) and (2), and the coefficients in the objective
function (3) consist of 1s in front of each of the variables. For the
availability matrix shown in Table 1, it turns out that zmax = 24:
that is, six groups can be formed over the week. One such optimal
solution is shown in Table 2.

But there will generally be other, equally-optimal solutions
(that is, different sets of xij that also provide an objective func-
tion value of 24, and satisfy the constraints). To generate all or
at least a sufficiently large number of the other equally-optimal

Mathematics TODAY JUNE 2016 131

