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ABSTRACT: Nanofibrous systems are attracting increasing
interest as a means of drug delivery, although a significant
limitation to this approach has been manufacture on a scale
commensurate with dosage form production. However, recent
work has suggested that nanofibers may be successfully
manufactured on a suitable scale using the novel process of
pressurized gyration (PG). In this study, we explore the
potential of PG as a novel means of generating amorphous
solid dispersions of poorly water-soluble drugs with enhanced
dissolution performance. We examine the effect of increasing
drug loading on fiber properties including size, surface
characteristics, and the physical state of both components.
Dispersions of ibuprofen in poly(vinylpyrrolidone) (PVP) were prepared (up to 50% w/w loading) and characterized using a
range of imaging, thermal, diffraction, and spectroscopic techniques, while the release profiles were studied using sink and non-
sink (pH 1.0) conditions. The drug was found to be dispersed on a molecular basis within the fibers; attenuated total reflection
FTIR indicated evidence for a direct interaction between the drug and polymer at lower drug loading by the identification of a
strong single band in the carbonyl region and amide region of ibuprofen and PVP respectively. Dissolution studies under sink
conditions indicated a substantial increase in release rate, while non-sink studies showed evidence for supersaturation. It is
concluded that PG presents a viable method for the production of drug-loaded nanofibers for oral administration with enhanced
in vitro dissolution rate enhancement.
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■ INTRODUCTION

It is now well established that improving the dissolution
properties of Biopharmaceutics Classification System (BCS)
class II and IV drugs may significantly improve their oral
bioavailability, with low aqueous solubility being a critical factor
to be overcome via appropriate formulation. Several for-
mulation strategies have been employed to enhance the oral
bioavailability of such drugs including the use of prodrugs,1

cocrystals,2 nanodrugs,3 and solid dispersions (SD).4 A SD can
be described as a dosage form whereby the drug is dispersed in
a biologically inert (usually) polymeric matrix, usually via a
liquid intermediate.5 Several techniques are available to
generate amorphous SDs, the most common at present being
hot melt extrusion (HME),6,7 with other techniques such as
spray drying8 and spin-coated films9 having also been
successfully utilized. Such systems are typically amorphous in
nature, with the drug often being present as a molecular
dispersion with concomitant issues regarding stability and
phase separation.

More recently, fiber-based SDs have been generated using
solvent-based nanofabrication methods. Polymeric nanofibers
have an extremely high surface-to-volume ratio10 which may be
expected to exert a strong influence on the bioavailability of
poorly water-soluble drugs as increasing surface area may
increase the dissolution rate.11 These properties make nano-
fibers attractive for oral drug delivery applications, although
little work has been performed to date in this regard.12,13 A new
solvent-based nanofabrication system, pressurized gyration
(PG), has recently been developed by Mahalingam and
Edirisinghe.14 The PG process exploits both simultaneous
centrifugal spinning and solution blowing to generate uniform
polymeric nanofibers (60−1000 nm).14 This approach has the
potential to produce 6 kg of fiber/h14 and therefore offers
promising mass production capabilities compared to other
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established polymer nanofiber generation methods such as
electrospinning (produces fibers at ca. 0.17 kg/h).15

The PG system essentially consists of a rotary aluminum
vessel containing a series of orifices with dimensions of 0.5 mm
on its circumference (Figure 1). The volume of the aluminum

vessel and the shape of the orifices can be varied to suit the
fiber dimensional requirements. The rotating speed of the
vessel is controlled by a bidirectional regulator, and motor
speeds can go up to 36,000 rpm. The top end of the vessel is
connected to a pressurized gas cylinder capable of producing
pressures up to 0.3 MPa.
Fiber formation using this technique is explained by

Rayleigh−Taylor (RT) instability of the polymer solution jet
emerging from the PG vessel orifice.14 Here, the instability of
an interface between two fluids of different densities (in this
case the polymer solution and air) occurs where the lighter fluid
is applying force to the heavier fluid. In the equilibrium state
prior to any perturbation to the system (in the case of PG, prior
to the combined influence of centrifugal spinning and solution
blowing), the external driving force as the polymer droplet
emerges from the vessel orifice is the gravitational force. A
surface tension gradient along the polymer liquid−air interface
occurs, separating the droplet from the surrounding air.
Marangoni stress (mass transfer along an interface between
two fluids due to a surface tension gradient) occurs as a result
of the surface tension gradient generated inducing a flow to the
tip of the polymer droplet.16 By equating the destabilizing
gravitational force per unit volume to the stabilizing surface
tension per unit volume, it is possible to determine the
instability between the polymer liquid−air interface using eq
1,17
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where g is the gravitational force, p the density of the polymer
solution, γ the liquid−air surface tension, h the height of the
liquid drop hanging under the horizontal surface, and x the
vertical distance. During the PG process (i.e., simultaneous
centrifugal spinning and solution-gas blowing), the length scale
L of the RT instability can be described using eq 2.17
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where (pω2R) is the destabilizing centrifugal force, Δp the
pressure difference at the orifice, ω the rotational speed, and R
the radius of the vessel.14

Fiber formation in the PG process occurs in three main steps.
A polymer jet initially emerges from the orifice on the face of
the vessel, which further stretches (due to pω2R and Δp), and
rapid solvent evaporation occurs, resulting in thinning of the
fibers formed.14 As with most nanofabrication methods, the PG
process is governed and influenced by solution parameters (i.e.,
viscosity, surface tension, polymer molecular weight, and
concentration), processing parameters (i.e., pressure and
rotational speed), and ambient parameters (i.e., environmental
temperature and relative humidity).10,14

In our previous work,18 the effects of increasing poly(N-
vinylpyrrolidone) (PVP) molecular weight (Mw) and polymer
concentration (% w/v) on fiber formation and fiber character-
istics were explored with the identification of minimum values
for both parameters resulting in successful nanofiber formation
(470−970 nm range).18 In the study presented here,
dispersions of ibuprofen (BCS II) in PVP were prepared (up
to 50% w/v loading) and the effect of increasing ibuprofen
concentration on fiber solid-state characteristics and the drug
release profiles (under sink and non-sink (pH 1) conditions)
were investigated. In this manner it is intended that the study
will, in the first instance, describe the first use of pressure
gyration to manufacture drug-loaded nanofibers and, second,
will explore the properties and performance of nanofibers
intended for oral delivery, particular using a manufacturing
approach that has the potential for much larger scale
production.

■ MATERIALS AND METHODS

Materials. Ibuprofen (Mw = 206.28 g mol −1, pKa = 4.9,19

Log P = 3.97,19 aqueous solubility (phosphate buffer at pH 7.2
= 5.2 mg/mL (at 37 °C)))20 and PVP (Mw = 100,000−150,000
g mol −1, soluble in water and organic solvents)21 were kindly
donated by BASF (Ludwigshafen, Germany). Ibuprofen 25
(IBU) and Kollidon 90F (K90F) were used in this study.
Absolute ethanol (99.8%) analytical grade was obtained from
Fischer Scientific, U.K. 0.1 M hydrochloric acid (HCl), pH 1
was prepared with hydrochloric acid 1.16 (32% v/v) analytical
grade (Fisher Scientific, U.K.) and distilled water (in-house
system).

Methods. Drug−Polymer Miscibility. The solubility
parameter, δ, was initially proposed by Hildebrand22 in 1936
as a systemic description of the miscibility behavior between
solvents. An extension of δ was further developed by Hansen,23

who took into account the relative miscibility of polar,
dispersion, and hydrogen bonding of systems. In this study,
the Hansen solubility parameters, δ, of IBU and K90F were
calculated using the functional group contributions for IBU and
K90F according to the van Krevelen and Hoftyzer method (eqs
3 and 4).24 The total solubility parameter (δt) was determined
from the interactions between dispersion forces (δd), polar
interactions (δp), and hydrogen bonding (δh) of the functional
groups in the molecule divided by the molar volume, V. The
units of the solubility parameters are MPa1/2.
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Figure 1. Schematic of the pressurized gyration system, showing the
perforated chamber and (inset) the ejection of the polymer jet and
associated nanofiber formation.
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where Fdi, Fpi, and Ehi are functional group contributions for the
dispersion forces, polar interactions, and hydrogen bonding of
structural groups reported in the literature at 25 °C.24

The drug−polymer interaction parameter, χ, can be
estimated using the difference between the drug (i.e., IBU)
and polymer (i.e., K90F) solubility parameters as shown in eq
5.24

χ δ δ= −
V
RT

( )0
drug polymer

2
(5)

where V0 is the volume of the lattice site, R is the gas constant,
and T is the absolute temperature. It is important to note that
the interaction parameter, χ, is not constant but temperature
and composition dependent.25,26

Sample Preparation. IBU and K90F particles were dry
sieved through a 250 μm aperture sieve with a steel mesh
(Endecotts LTD, U.K.). Physical mixtures (PMs) with an IBU
ratio of 10%, 30%, and 50% w/w were prepared in triplicate.
IBU and K90F were codissolved in ethanol. K90F concen-
tration was fixed at 10% w/v while IBU concentration was
adjusted to 10%, 30%, and 50% w/v of K90F concentration.
Fibers produced will be referred to as IBU-K90F 10%, 30%, and
50% where applicable. K90F and IBU-K90F solutions were
mechanically stirred for 2 to 24 h to obtain homogeneous
systems. IBU concentration ranges were chosen to establish the
effects of these parameters on fiber physicochemical and
dissolution characteristics.
Fibers were generated using the PG Mark I device developed

by Mahalingam and Edirisinghe, capable of producing fibers at
6 kg/h.14 All experiments were conducted at a fixed rotating
speed of 24,000 rpm and at a working pressure of 2.0 × 104 Pa
using nitrogen gas; these parameters were selected based on
previous optimization studies.18 The rotational speed influences
the fiber length while the working pressure reduces the mean
fiber diameter.14,18 Here, we maintained constant working
parameters so as to investigate the influence of drug loading in
isolation, although obviously further optimization is possible.
Characterization of Polymer Solutions. Solution viscosity

was measured using an AR1000-N Rheolyst Rheometer (TA
Instruments, U.K.). Solution surface tension measurements was
measured on a Krüss digital tensiometer K9 using the standard
Wilhelmy plate method. All equipment was calibrated before
use, and all experiments were conducted at ambient temper-
ature (∼25 °C).
Fiber Characterization. Morphological, structural (physical

and molecular), and thermal characterization of K90F and
K90F-IBU fibers produced was investigated using the following
techniques and compared to starting materials and PMs.
Scanning Electron Microscopy (SEM). Fiber morphology

and diameter were analyzed using a FEI Quanta 200F field
emission scanning electron microscope (SEM). Samples were
coated with 20 nm of gold under vacuum using a Quorum
Q150T Turbo-Pumped sputter coater with a film thickness
monitor unit. All micrographs were taken at an acceleration
voltage of 5 kV. The average diameter of the fibers as well as
the percentage frequency was determined from the mean value
of 100 measurements collected by analyzing the SEM
micrographs using ImageJ (USA, version 1.46r).

X-ray Powder Diffraction (XRPD). Structural character-
ization of fibers produced was conducted using a D/Max-BR
diffractometer (RigaKu, Tokyo, Japan) with Cu Kα radiation
operating at 40 mV and 30 mA over the 2θ range 10−50° with
a step size of 0.02° at 2°/min. Diffractograms produced were
analyzed using OriginPro 9.0.0.

Attenuated Total Reflection Fourier Transform Infrared
Spectroscopy (ATR-FTIR). Characterization of fiber and
physical mixture molecular structure were conducted using
ATR-FTIR. Measurements were performed using a Bruker
Vertex 90 spectrometer using the following parameters:
resolution 4 cm−1; scan count was 16 scans (also for
background) over 4000−700 cm−1 at ambient temperature
(25 °C). Spectra were analyzed using Opus software version 7.2
and OriginPro 9.0.0.

Differential Scanning Calorimetry (DSC). All differential
scanning calorimetry (DSC) studies were conducted on a TA
Instruments Q2000 (New Castle, DE, USA) with a refrigerated
cooling system attached at a dry nitrogen sample purge flow at
50 mL/min. Calibrations were performed using indium, n-
octadecane, and tin; heat capacity constant calibration was
performed using aluminum oxide TA sapphire disks at 2 °C/
min with ±0.212 °C modulation amplitude over a 60 s period.
All DSC experiments and calibrations were performed using a
PerkinElmer 40 μL, 0.15 mm aluminum pan with an
accompanying aluminum pinholed lid.
DSC experiments were performed on IBU starting material

at 2 °C/min over an appropriate temperature range, while
modulated temperature DSC (MTDSC) experiments were
conducted on all other samples (i.e., K90F starting material,
K90F fibers, and IBU-K90F PMs and fibers) at 2 °C/min with
±0.212 °C modulation amplitude over a 60 s period (over an
appropriate temperature range). All experiments were con-
ducted in triplicate. The data obtained was analyzed using the
TA Instruments Universal Analysis 2000 software for Windows
2000/XP/Vista Version 4.7A.

Thermogravimetric Analysis (TGA). TGA studies were
performed on a TA Instruments Hi-Res 2950 (New Castle,
DE, USA) at a rate of 2 °C/min from 40 to 250 °C. All TGA
experiments and calibrations were performed using a
PerkinElmer 40 μL, 0.15 mm aluminum pan with an
accompanying aluminum pinholed lid. All experiments were
conducted in triplicate. The data obtained was analyzed using
the TA Instruments Universal Analysis 2000 software for
Windows 2000/XP/Vista Version 4.7A.

Thermogravimetric Analysis with Mass Spectroscopy
(TGA−MS). Samples of K90F raw material, fibers, and IBU-
K90F 10% PM and fibers were loaded onto aluminum T-zero
pans and heated from 40 to 250 °C at a constant heating rate of
10 °C/min under a helium purge gas (50 mL/min) using a
Discovery TGA (TA Instruments, USA). Evolved gas analysis
was performed throughout the experiment using mass
spectrometry, with data acquired in scan mode (m/e 5 to 70)
using a Discovery MS mass spectrometer (New Castle, DE,
USA). Data was analyzed using the TA Instruments Universal
Analysis Software software for Windows 2000/XP/Vista
Version 4.7A and OriginPro 9.0.0.

Loading, Solubility, and Release Studies. Calculation of
IBU Content in Fibers. IBU content in the fibers generated was
determined by dissolving 2 mg of fibers in ethanol. Solutions
were then analyzed spectrophotometrically at 263 nm to assess
the amounts of IBU in each sample. K90F did not interfere
with the UV analysis.
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Solubility Studies: 0.1 M Hydrochloric Acid (pH 1).
Solubility studies were conducted on IBU dissolved in 0.1 M
HCl and K90F solutions. Different amounts of K90F powders
were dissolved in 0.1 M HCl to prepare K90F-HCl solutions
with concentrations of 0.5%, 1%, 1.5%, and 2% w/v. Excess
IBU was added to these solutions and vigorously stirred for 120
h at 37 °C ± 0.5 °C at 150 rpm. The saturated solutions were
filtered using a 0.45 μm membrane, and the IBU concentration
in the filtrate was determined spectrophotometrically at a
wavelength of 263 nm. Each sample was measured in triplicate.
In Vitro Dissolution Studies. In vitro dissolution studies were

conducted in a Copley dissolution bath (Copley Scientific,
U.K.) (USP Apparatus 2) and in a shake incubator maintained
at 37 ± 0.5 °C and a rotational speed of 50 rpm. Samples
(starting material of IBU and IBU-K90F fibers) equivalent to
10 mg and 20 mg of IBU for sink and non-sink conditions
respectively (based on the drug loading of each formulation)
were used. Experiments were conducted in 10 mL (non-sink)
and 900 mL (sink conditions) of 0.1 M HCl (pH 1). At
predetermined intervals, a sample of the solution was
withdrawn and filtered through a 0.45 μm filter, and the
same amount of medium at the same temperature was replaced.
Subsequently, the filtrate was analyzed spectrophotometrically
at 263 nm. Experimental points were the average of at least
three replicates.
The f 2 equation was used in this study to compare the

dissolution performances under sink conditions between the
IBU-K90F fibers generated and the starting IBU material.
While this approach is primarily a regulatory tool, we use it here
to evaluate the differences between profiles, given the potential
for supersaturation which may complicate more usual methods
such as initial rate assessment. The f 2 equation is a model that
measures the similarity in percentage release between two
dissolution profiles.27 It is a logarithmic reciprocal square root
transformation of the square error, which can be expressed by
the following:
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where n is the number of time points, Rt is the percentage of
drug release of a reference batch at the time t and Tt is the
percentage of drug released at the comparison batch at time t
(mean of at least 12 dosage units28). When f 2 is greater than 50
(i.e., 50−100), this indicates the equivalence of both compared
profiles; when f 2 is less than 50, this suggests that the profiles
are different.

■ RESULTS

Drug−Polymer Miscibility. Miscibility can be defined as
“the level of molecular mixing adequate to yield macroscopic
properties expected of a single phase material (confirmed by
the observation of a single glass transition temperature
(Tg))”.

29 An estimation of drug−polymer miscibility in SDs
is considered to be essential for the generation of physically
stable SDs.30 IBU-K90F miscibility was calculated using the
Hansen solubility parameter (δ), which was calculated based on
van Krevelen and Hoftyzer functional group contributions (eqs
3 and 4)24 as described earlier. Compounds with similar δ
values of Δδ < 7.0 MPa1/2 are more likely to be miscible,
whereas if Δδ > 10.0 MPa1/2 compounds are likely to be

immiscible.24 Our results showed that IBU (19.4 MPa1/2) had a
δ value lower than K90F (26.3 MPa1/2). The Δδ between IBU
and K90F is less than 7.0 MPa1/2 (i.e., 6.9 MPa1/2), which
indicates likely miscibility for the system. The calculated χ (eq
5) refers to the square of the difference in δ that were calculated
from the values of functional group contributions at 25 °C as
previously discussed. A value of χ close to zero suggests greater
interaction between the drug and the polymer.24 In this study, χ
was calculated at 3.8, suggesting likely miscibility for the system.
Table 1 provides a list of parameter values used to calculate the
values outlined in eqs 3, 4, and 5.

Characterization of Solution Parameters. Solution
viscosity and surface tension are key determinants of fiber
formation, with both parameters being dependent on
concentration, molecular weight, and solute−solvent inter-
actions.31

The measured values for solution viscosity and surface
tension of K90F and IBU-K90F solutions are provided in
Figure SI1. Viscosity and surface tension values for ethanol (at
25 °C) are 1.1 mPa s32 (obtained from ref 33) and 22.3 mN
m−1,34 respectively. Viscosity and surface tension measurements
of K90F 10% w/v (in ethanol) solutions were 553.5 ± 25.2
mPa s and 36.9 ± 1.6 mN m−1, respectively (represented as 0%
w/v ibuprofen concentration in Figure SI1a,b). A decrease in
viscosity was observed on increasing addition of IBU with the
largest decrease observed with 50% drug loading. A systematic
increase in solution surface tension was observed with
increasing IBU concentration. The solution viscosity is related
to several fiber morphological characteristics such as bead
formation and fiber diameter changes, while surface tension is
related to jet stability.10 High surface tension can also result in
the formation of beads and beaded fibers.35

Characterization of Fiber Diameter. SEM studies were
conducted to observe changes in fiber morphology (in terms of
surface appearance) and size as a function of increasing IBU
concentration. Figure 2 shows SEM images of PG fibers
generated using K90F and IBU-K90F 10%, 30%, and 50% w/v
solutions with corresponding fiber diameter frequency
diagrams. Although IBU-loaded fibers had the same morphol-
ogy as unloaded fibers, they possessed larger diameters than
K90F fibers (795.2 nm). IBU-K90F 10%, 30%, and 50% fibers
had average diameters of 1.2 μm, 4.18 μm, and 5.4 μm (Figure
2). This trend of increased fiber diameter (from nano to micro
range) upon addition of an additive such as a drug has been
highlighted in the literature previously.36,37 The rotational
speed influences the fiber length while the working pressure
reduces the mean fiber diameter.14,18 A relatively low working
pressure was used in this study; hence for future studies this
could be increased to decrease the fiber diameter. IBU-K90F
fibers did not show the presence of IBU crystals on the fiber

Table 1. List of Parameter Values Used To Calculate
Solubility Parameter Values As Outlined in Eqs 3, 4, and 5

IBU K90F

∑Fdi/V 17.9 20.4
[(∑Fpi

2)1/2/V]2 2.2 13.7
(∑Fhi)

1/2/V 7.2 9.3
V0 195.5
R (J K−1 mol −1) 8.3
T (K) 298.0
(δdrug − δpolymer)

2 48.0

Molecular Pharmaceutics Article

DOI: 10.1021/acs.molpharmaceut.5b00127
Mol. Pharmaceutics 2015, 12, 3851−3861

3854

http://pubs.acs.org/doi/suppl/10.1021/acs.molpharmaceut.5b00127/suppl_file/mp5b00127_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.molpharmaceut.5b00127/suppl_file/mp5b00127_si_001.pdf
http://dx.doi.org/10.1021/acs.molpharmaceut.5b00127


surface in the systems studied. It should be noted that the

changes in solution parameters (i.e., viscosity and surface

tension) observed with increasing IBU concentration did not

hinder fiber formation using this process. Furthermore, the

interaction between the surface tension and the viscoelastic

forces determines the formation of the smooth fibers.35

Assessment of Fiber Amorphicity and Molecular
Interactions. The diffraction pattern for IBU showed
characteristic peaks of 2θ diffraction angles of ∼12°, ∼16°,
and ∼22° (Figure 3), while the diffraction pattern for K90F
showed the expected amorphous halo (data not shown). Sharp
peaks were absent in the diffraction patterns for K90F-IBU
10%, 30% (data not shown), and 50% fibers, suggesting that

Figure 2. SEM images of (a) K90F × 50,000 magnification, (b) corresponding fiber diameter frequency (cumulative %) distribution graph for K90F
fibers, (c) IBU-K90F 10% fibers × 24,000 magnification, (d) corresponding fiber diameter frequency (cumulative %) distribution graph for IBU-
K90F 10% fibers, (e) IBU-K90F 30% fibers × 3000 magnification, (f) corresponding fiber diameter frequency (cumulative %) distribution graph for
IBU-K90F 30% fibers, (g) IBU-K90F 50% fibers × 24,000 magnification, (h) corresponding fiber diameter frequency (cumulative %) distribution
graph for IBU-K90F 50% fibers generated by PG.
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IBU was present within the fiber in its amorphous form. In
contrast, in the diffractograms of corresponding PMs all
samples showed clear peaks corresponding to IBU, indicating
the method to be sensitive to the detection of these levels of
crystalline material. Figure 3 shows a representative XRPD
diffraction pattern for IBU, IBU-K90F 50% PM, and PG fibers.
ATR-FTIR experiments were conducted on starting materials

(IBU and K90F), IBU-K90F PMs, K90F PG fibers, and PG
fibers to identify any differences in physical structure as well as
evidence of molecular interaction by way of hydrogen bonding
between IBU and K90F. Indications of strong hydrogen
bonding between IBU and PVP have been reported in the
carbonyl region (CO stretching) of IBU (∼1700 cm−1) and
at the amide region (cyclic amide CO stretching) of K90F
(∼1666 cm−1).38−40 Figure 4 shows ATR-FTIR spectra of IBU,
K90F, IBU-K90F PMs, and PG fibers at the carbonyl region
(CO stretching) of IBU and the amide region (cyclic amide
CO stretching) of K90F. ATR-FTIR spectra of IBU-K90F
10% PM identified an irregularly shaped band overlapping
between ∼1660 cm−1 and 1700 cm−1 (both the cyclic amide of
K90F and carbonyl region of IBU). With increasing IBU
loading (i.e., IBU-K90F 10% and 30% PMs), a strong band was
observed at 1708 cm−1 with a shoulder peak at ∼1650 cm−1

which increased in intensity from 30% to 50% IBU loading. A
strong single band occurring at 1648 cm−1 was observed in
IBU-K90F 10% PG fibers. For IBU-K90F 30% and 50% PG
fibers, two peaks were observed at ∼1655 cm−1 (cyclic amide of
K90F) and at 1708 cm−1 (carbonyl region of IBU). This peak
appeared to increase in intensity with increasing IBU content.
These results suggest an intermolecular interaction between
IBU and K90F in IBU-K90F 10% PG fibers. In addition, with
increasing IBU concentration (i.e., from 30% to 50% IBU
loading) within PG fibers, a shifted peak at ∼1700 cm−1 which
possibly correlates to the carbonyl region of IBU was observed.
Two peaks were observed in PM spectra confirming the
absence of a molecular interaction between the two materials.
Literature evidence (using IR and carbon 13 nuclear

magnetic resonance (13C NMR)38 and DSC40) supports the
occurrence of a solid-state interaction between IBU and PVP
resulting in the formation of a stable glass-like form after
storage. This interaction is thought to occur due to the
formation of an intermolecular hydrogen bond between the
free COOH group of IBU and the CO group of PVP.38

Thermal Characterization of Fibers. Thermogravimetric
Analysis (TGA) and TGA−Mass Spectroscopy (TGA−MS). It is
well-known that amorphous materials may sorb water and other
solvents, which may in turn profoundly influence their physical
properties.41,42 TGA studies were conducted to measure
solvent levels via weight change as a function of temperature
for IBU, K90F, IBU-K90F PMs, and PG fibers. A general
decrease in weight loss with increasing IBU loading was
observed, though the weight loss was higher for IBU-K90F PG
fibers (5.5−3.0% w/w) than PMs (3.2−2.4% w/v) (Table SI1).
This phenomenon has been observed previously43−48 and has
been referred to as “hydrophobization of PVP” due to
intermolecular interactions between IBU and K90F.
Further TGA studies were conducted on K90F (starting

material and PG fibers), IBU-K90F 10% PM, and PG fibers
using a TGA coupled to a mass spectrometer (MS) to identify
the lost volatiles, given the mixed nature of the solvent used
(ethanol and water). The mass-to-charge ratio (m/e) with the
highest intensity for water and ethanol is 18 and 31
respectively. The change in ion current of these two species
with increasing temperature was evaluated (Figure 5); the
results confirm water loss but significantly also confirm the
absence of any residual ethanol within K90F-IBU 10% PG
fibers. These findings confirm that the solvent (i.e., ethanol) has
been completely removed during fiber formation.

Modulated Temperature DSC. For amorphous SDs, it is
expected that the drug−polymer interactions result in complete
miscibility of the two components forming a single phase
system;30,43,48 confirmation of this occurrence is the identi-
fication of a single Tg as well as the absence of XRPD diffraction
peaks. While PG is a new polymeric fiber production method,
the rapid solvent evaporation can reasonably be expected to
result in amorphous system formation.49 DSC and MTDSC
data for IBU starting material saw a single endothermic
response corresponding to the melt of IBU at 75.6 °C (115.1 J
g−1) (data not shown) and Tg at −42.7 °C (data not shown).
MTDSC data for K90F starting material saw a Tg at 176.9 °C,
while K90F fibers had a Tg of 157.8 °C.
MTDSC responses for IBU-K90F 10%, 30%, and 50% PG

fibers did not shown a melting peak of the IBU, but a single Tg
was observed in all formulations at 147.7 °C, 139.6 °C, and
117.3 °C respectively (Figure SI2). These findings indicate that
the system is indeed amorphous, with ibuprofen acting as a
plasticizer.50 It is important to note that PVP (a well-known
hygroscopic polymer) based nanofibers could be expected to
sorb a larger than expected amount of water due to not only the
polymer’s hygroscopic nature but also the high surface-to-
volume ratio properties of nanofibers. We associate the broad
Tg responses observed here with simultaneous water loss,
therefore, resulting in lower than expected Tg values for PG
nanofibers (based on the Couchman−Karasz equation, a
modification of the Gordon−Taylor relationship, e.g., IBU-
K90F 10% PG fibers predicted Tg of 129.47 °C).

In Vitro Dissolution Studies. The equilibrium solubility of
crystalline IBU in 0.1 M HCl was measured as 95.6 μg/mL.
Solubility studies showed that with increasing K90F concen-
tration (up to 2% w/v) IBU solubility increased 3-fold from
95.6 μg/mL to 380.4 ± 3.7 μg/mL (Figure SI3). We note that
experimental determination of amorphous, as opposed to
crystalline, solubility is known to be challenging due to of the
tendency of amorphous materials to rapidly crystallize upon
contact with water.51,52 Nevertheless, the predicted amorphous
solubility of IBU has been calculated by Sousa et al.53 using

Figure 3. XRPD diffraction patterns for IBU and IBU-K90F 50% PMs
and PG fibers.
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both a Hoffman (108.16 μg/mL) and heat capacity (Cp)
(123.06 μg/mL) method; we include these figures here for
comparison.
The drug content of all PG fibers was at 98.4−100.2% of the

theoretical values. In vitro dissolution studies were conducted

under sink conditions in pH 1 to observe any dissolution rate
enhancement achieved with IBU-K90F PG fibers compared to
IBU starting material (Figure 6). An overall increase in the
dissolution rate was observed in all IBU-K90F PG fiber
formulations compared to IBU alone. T50 values for IBU, IBU-

Figure 4. ATR-FTIR spectra IBU, K90F, and (a) IBU-K90F 10%, (b) IBU-K90F 30%, and (c) IBU-K90F 50% PG fibers and PMs at the carbonyl
region (CO stretching) of IBU and the amide region (cyclic amide CO stretching) of K90F.
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K90F 10%, 30%, and 50% PG fibers were 40, 8, 14, and 16 min,
respectively. Similarity factor ( f 2) values (eq 6), which was
used to compare the dissolution performances of IBU-K90F
10%, 30%, and 50% systems compared to IBU, were calculated
at 23, 33, and 40 respectively. Values less than 50 suggest that
the profiles differ, hence these profiles can be considered to be
distinct from the drug alone.
Poorly soluble drugs in their stabilized amorphous form

within an amorphous SD can generate a transient concentration
significantly greater than the equilibrium saturation concen-
tration of their crystalline counterparts.54 Unfortunately,
subsequent crystallization of the drug decreases the amorphous
solubility advantage.55 Nevertheless, drug supersaturation
increases the driving force for oral absorption, and so
maintaining an elevated and sustained level of drug super-
saturation could be key to improve the bioavailability of poorly
soluble drugs.54 The inhibitory effect of polymers such as PVP
(i.e., K90F) against crystallization of an amorphous drug is well
documented in the literature.56,57 To observe the super-
saturation effect of amorphous SDs, in vitro dissolution studies
are usually conducted under non-sink conditions as is
commonly encountered on entering the gastrointestinal (GI)
tract.54

The in vitro dissolution profile of IBU and IBU-K90F PG
fibers obtained under non-sink conditions in pH 1 (Figure 7)
saw an increase in the dissolution rate for IBU-K90F 10% PG
fibers compared to IBU alone, while IBU-K90F 30% and 50%
PG fibers saw a slower dissolution rate in comparison to this

composition. It is noted that dissolved PVP (i.e., K90F) is
known to retard crystallization in supersaturation solutions.56,57

The supersaturation effect was only observed in IBU-K90F 10%
PG fibers (statistically significant as p < 0.05 (Student’s t test)),
possibly because this formulation contained the highest content
of K90F, and the inhibitory effect has been shown to increase
with increasing polymer content.56

■ DISCUSSION
The study has examined the feasibility of producing nanofibers
of IBU in PVP (i.e., K90F) using the new approach of pressure
gyration. The production process itself was extremely rapid,
and scale up is clearly possible. While the use of such fibers for
oral use is still at an early stage,12,13 it is clear that larger scale
manufacture than is usually possible using, for example,
electrospinning, is going to become a crucial consideration
for commercialization, hence the results presented here are
encouraging. Previous studies14 have explored the conditions
required to manufacture PVP fibers, while here we see the
effects of drug addition on the underpinning processing
parameters and subsequent structure of the fibers, particularly
in terms of diameter. More specifically, the fibers varied in
diameter from the nanoscale to the micrometer scale on
addition of IBU, this increase coinciding with changes to the
viscosity and surface tension of the feed solutions. While
nanofibers are usually generated with as low a diameter as
possible, in this application it is not yet clear what the structural

Figure 5. TGA−MS data for (a) K90F PG fibers and (b) IBU-K90F 10% PG fibers showing the ion current change on heating; the mass-to-charge
ratio (m/e) with the highest intensity for water and ethanol is 18 and 31 respectively.

Figure 6. In vitro dissolution profile of IBU, IBU-K90F 10%, 30%, and
50% PG fibers conducted under sink conditions at pH 1 (0.1 M HCl).

Figure 7. In vitro dissolution profile of IBU (raw material), IBU-K90F
10%, 30%, and 50% PG fibers conducted under non-sink conditions at
pH 1 (0.1 M HCl).
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requirements are likely to be in relation to performance (i.e.,
whether true nanoscale fibers are necessary for oral
administration), plus there are several process parameters
(such as working pressure and rotational speed) that may be
changed to reduce the diameter still further. Solubility
parameter studies predicted high miscibility between the IBU
and K90F, which was supported by spectroscopic, thermal, and
diffraction studies, which all indicated the generation of
amorphous SDs; evidence was also obtained for a direct
molecular interaction between the drug and polymer which
may be expected to contribute to this good miscibility. A
confounding issue that is inevitably associated with PVP,
especially at these high surface areas, is the retention and
sorption of solvents during processing and storage. Here we
used TGA coupled with mass spectroscopy to demonstrate that
the levels of residual ethanol were negligible, although further
work may be required to optimize the water contents of these
systems. Dissolution studies in sink conditions showed a
marked increase in release rate compared to the drug alone
which we suggest is due to a combination of the high surface
area, the absence of the drug crystal lattice, and possibly the
direct solubilization of the drug by the PVP, but interestingly
under non-sink conditions the low drug loaded systems showed
clear evidence of the “parachute” effect of supersaturation that
is being commonly associated with enhanced absorption.
Overall, therefore, the study has demonstrated that PG is a
highly promising approach to the development of oral dosage
forms from the viewpoint of both manufacturing feasibility and
performance.

■ CONCLUSION
In this study the pressure gyration process was successfully used
to prepare amorphous fibers of ibuprofen in PVP. The
inclusion of ibuprofen was found not to impede fiber formation
although a slightly higher diameter than the polymer alone was
noted using the processing conditions utilized here. Thermal,
spectroscopic, and diffraction studies indicated high miscibility
(also predicted via solubility parameter calculations) and the
generation of amorphous molecular dispersions. Spectroscopic
studies also indicated a direct interaction between the drug and
polymer, while TGA coupled with mass spectroscopy suggested
that the ethanol in the mixed solvent used was driven off during
processing but detectable water levels remained associated with
the fibers. Dissolution studies showed a marked increase in
release rate compared to the drug alone, with evidence found
for supersaturation under non-sink conditions. Overall, the
study has shown that both the production and performance of
the nanofiber systems generated via pressure gyration show
considerable promise as a novel approach to oral delivery of
poorly water-soluble drugs.
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