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Overview
In this chapter we discuss recent advances in our 
understanding of the biology of mental illness. Alongside 
important social and psychological factors, the biology 
of psychiatric disorders plays an important role in their 
development and prognosis. The inclusion of this chapter 
in this report reflects the need to widen public awareness 
of the quality and breadth of scientific work currently 
under way to help those suffering from mental illness. 
There is a stark mismatch between the funding for such 
research and the considerable cost of these disorders to 
our society, exacerbated by the recent disengagement of 
many pharmaceutical companies from research related to 
brain disorders. Translating the promising findings presented 
here into improved clinical care requires this mismatch to 
be addressed urgently. One way of doing this is by building 
bridges between the diverse fields involved in the common 
pursuit of the promotion of public mental health, which is 
one of the aims of this chapter. 

It would be impossible to summarise the entire field of 
biological psychiatry for such a chapter. Instead, we have 
adopted a ‘horizon-scanning’ approach to demonstrate the 
variety of techniques used in this area, and to highlight a 
few examples that are more likely to have a rapid impact 
on patients’ care. The chapter is divided, by technique, into 
sections covering neuroimaging, neuropsychology, genetics, 
blood-based biomarkers and animal and cellular models of 
disease. Some of the work presented here is already available 
clinically, such as the genetic analysis in autism. Other work 
could have widespread clinical utility within the next 10 
years, especially in the area of ‘personalised’ treatment – 
identifying a priori the best treatment for the individual 
patient. However, translating this neuroscience research into 
better patient care requires sustained support of experimental 
medicine and clinical trials. 

It is our hope that this chapter demonstrates how biological 
research may aid diagnosis, risk stratification and the 
development of novel medications for the treatment of 
mental illnesses. Rather than distancing psychiatry from 
important psychological and social factors, much of modern 
biological research is aimed at understanding how these 
factors interact to produce disease states. Biological advances 
are likely to play a valuable part in the holistic management 
of patients. 

We write this chapter to advocate that the biomedical and 
psychosocial models of mental illness are not antithetical, but 
are in fact increasingly conceptualised within a single unifying 
framework. While most of the important factors determining 
the risk and course of mental illnesses can be measured in a 
clinical interview, rather than in a laboratory, neuroscience 
research offers the exciting opportunity to understand the 
mechanisms by which these factors affect their clinical 
action. Unfortunately, at a public health level it appears 
that, while a biological model of mental illness enhances the 

acceptance of treatment, it does not seem to be associated 
with a reduction in stigma among the general population. 

Our understanding of the biological correlates of mental 
health and illness is growing exponentially. As showcased in 
this chapter, we are beginning to see how this understanding 
could be developed to improve the medical care patients with 
mental illness receive, and to widen our understanding of 
mental illness as a truly bio-psycho-social construct. 
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This withdrawal is due, at least in part, to the challenge of 
translating research findings into clinical practice in psychiatry 
and psychopharmacology. For example, it takes on average 
13 years to develop a drug for psychiatric conditions, 
significantly longer than for other medical specialities, and 
these drugs are also more likely to fail in the development 
process.5 There is an urgent need to overcome these 
obstacles and to plug this ‘translational gap’. In this chapter 
we will highlight research that aims to do just that, while 
emphasising that the translation of neuroscience research into 
better patient care requires sustained support of experimental 
medicine and clinical studies.

Cutting-edge methodology in neuroscience is being used to 
study psychiatric disorders, and findings from these studies 
may have the potential to change clinical practice and 
improve patient care. This chapter showcases a selection 
of established techniques. It is organised by methodology 
and highlights some of the advances in neuroimaging, 
neuropsychology, blood-based biomarkers, genetics and 
cellular neuroscience, all as applied to mental illness. Some of 
the work presented here is already available clinically, such as 
the genetic analysis in autism, whereas other work could have 
widespread clinical utility within the next 10 years, especially 
in the area of ‘personalised’ treatment – identifying a priori 
the best treatment for the individual patient.

Before we discuss the individual research areas, it is important 
to highlight that this chapter does not aim to present 

Introduction
Many mental disorders are both chronic and disabling. It is 
estimated that they account for 14% of the global disease 
burden.1 In 2011 the Department of Health estimated that 
mental health represented 23% of the UK national disease 
burden and was the single largest cause of disability.2 The 
Centre for Mental Health found that in 2009/10 the total 
economic cost of mental illness in the UK was £105 billion, 
and it is estimated that treatment costs will double in the 
next 20 years.2,3

Despite the enormous health and economic burden that 
mental illness places on society, the funding for mental health 
research remains relatively limited. The Academy of Medical 
Sciences (2013)4 found that mental health research spending 
was only 5.5% of total UK health research spending in 
2009/10. This is significantly less than the proportion spent 
on cancer, infection, neurological disease or cardiovascular 
disease. The European College of Neuropsychopharmacology 
(ECNP)5 highlights that, across the EU, neuroscience research 
receives just €465 million out of a total health research spend 
of €6,050 million – that is, less than 8%. 

It is also interesting to note that both the report from the 
Academy of Medical Sciences (2013)4 and the report from 
the ECNP5 cite the recent withdrawal of pharmaceutical 
companies from brain research as a source of major concern. 

Figure 3.1 PET imaging of dopamine synthesis in psychosis (from Howes et al 2011)



Annual Report of the Chief Medical Officer 2013, Public Mental Health Priorities: Investing in the Evidence Chapter 3 page 62

Chapter 3

Recent work shows that neuroimaging may be able to 
inform the risk stratification of these patients in the near 
future. Subtle changes in brain structure uncovered through 
magnetic resonance imaging (MRI), such as changes to 
the brain’s grey matter volume, are detectable in patients 
before they develop psychotic illnesses and predictive of the 
change in clinical state.13,14 Positron emission tomography 
(PET) has also shown that the capacity to synthesise the 
neurotransmitter dopamine in certain regions of the brain 
is elevated before the onset of psychosis in these ‘at risk’ 
patients.15,16 Combining imaging modalities or adding other 
forms of data, such as genetic information, may improve 
the accuracy of these predictions and inform the clinical risk 
assessment.17,18 Moreover, computational techniques like 
machine learning can also be used to evaluate MRI data and 
quantify the risk of transition to psychosis, as well as the 
individual course of illness in patients who have developed 
psychosis.19,20

Neuroimaging has also been used to investigate why 
some patients do not respond to treatments such as 
medication. Detailed structural imaging of gyrification 
(brain folding) and of white matter tracts has demonstrated 
baseline differences between patients with first episode 
psychosis who later respond to antipsychotic medications 
and those who do not.21,22 PET imaging has found that a 
reduction in dopamine release predicts a lack of response 
to treatment and a worse clinical outcome in patients with 
cocaine and methamphetamine addiction.23,24 A number of 
investigators have used neuroimaging to predict response to 
antidepressant treatment in patients with depression. The 
most consistent finding is that increased baseline activity in 
an area of the brain known as the ‘anterior cingulate cortex’ 
is predictive of a higher likelihood of positive response.25 
This evidence has also prompted the recent development 
of deep brain stimulation of the anterior cingulate area as 
a therapeutic strategy for patients with treatment-resistant 
major depression.26

One of the most exciting developments in neuroimaging 
is the analysis of the networks within the brain known 
as the ‘connectome’. Using techniques such as diffusion 
tensor imaging (DTI) and functional MRI (f-MRI), it is now 
possible to map and measure connections within the 
brain.27 It is believed that the many complex functions 
of the brain emerge from the co-ordinated activity of a 
number of regions, connected as specialised networks. Brain 
dysfunction can therefore be considered in terms of altered 
neural connectivity. A number of studies of schizophrenia 
have found evidence of altered connectivity between 
multiple brain regions,28–30 including some highly specialised 
interconnected brain networks.31 Bleuler, who coined 
the term ‘schizophrenia’ in 1911, believed that a central 
pathological process in this disease was the interruption 
of the ‘thousands of associative threads which guide our 
thinking’.32 Using modern imaging of brain networks, we 
may be closer to understanding whether there are robust 
and relevant biological underpinnings to his original clinical 
observations.

neuroscience research as antithetic to the psychosocial model 
of mental illness. Indeed, some of the most exciting research 
in this area is specifically focused on the understanding of 
how psychosocial factors affect brain mechanisms. Therefore, 
this chapter advocates a unified bio-psycho-social model, 
where clinical factors assessed in an interview and biological 
factors assessed in the laboratory can both contribute to 
the understanding of the individual patient’s journey, and 
improve patient care by providing new treatment approaches 
or new personalised approaches to existing treatments. 

Finally, it is important to emphasise that the ‘biological 
model’ has brought both success and disappointment to the 
wider framework of social acceptance of mental illnesses. 
For example, while the wider understanding of the biology 
of mental illness seems to bring about better acceptability 
of professional help, it does not increase social acceptability, 
perhaps because it may increase a perception of ‘otherness’.6 
Our position, therefore, is that neuroscience research should 
contribute to a balanced, integrated, bio-psycho-social model 
of these conditions.

Neuroimaging
Brain scans have played a role in psychiatry since the 1970s.7 

Using advanced neuroimaging techniques, researchers 
are able not only to see the structure of the brain in 
unprecedented detail but also to measure dynamic properties 
such as blood flow, metabolism, electrical activity and 
neurochemistry. The ability to combine both structural and 
‘functional’ data is vital to understanding the nature of the 
complex relationship between brain abnormalities and mental 
illness. 

While many studies over the years have used neuroimaging 
techniques to compare patients and controls in a cross-
sectional manner, the most recent developments have 
focused on the use of neuroimaging as a tool to predict the 
future course of disorders. 

For example, particular interest has been shown in the 
application of neuroimaging to detect patients at high risk of 
developing psychotic disorders.8 Characterised by symptoms 
such as hallucinations, delusions and disordered thinking, 
psychotic disorders like schizophrenia are among the most 
disabling illnesses. Prior to the onset of illness it appears 
that patients display prodromal clinical features referred to 
as the ‘at risk mental state’.9,10 Subjects may not experience 
sufficient symptoms to warrant a diagnosis of a psychotic 
illness, but show warning signs. Approximately one-third 
of these patients go on to develop psychotic illnesses.11 
Reliably predicting this transition would allow patients 
to access treatment and support earlier, thus promoting 
recovery, reducing the need for emergency management 
and minimising the impact of illness on the patient’s life. It 
is important to emphasise that these phenomena are not 
rare: for example, within the general population (where most 
people do not seek help from mental health services), 8–13% 
experience psychotic symptoms such as hallucinations or 
delusional ideas, with some experiencing both.12 



Annual Report of the Chief Medical Officer 2013, Public Mental Health Priorities: Investing in the Evidence Chapter 3 page 63

Neuroscience and mental illness

framework, and to use these findings to develop biomarkers 
of disease and treatment response.

Genetics
In the past decade our knowledge of psychiatric genetics 
has expanded greatly. Alongside rapid advances in genetic 
technology, recent successes are largely attributed to 
large-scale international collaborations in the field.49,50 
The Psychiatric Genomics Consortium (PGC), for example, 
represents a collaboration of hundreds of scientists working 
in 19 different countries and over 60 different academic 
institutions.51 Such collaborations allow groups to share 
methodology and data from genome-wide association 
studies (GWAS) and studies of genomic structural variation, 
to improve the power and accuracy of their analyses. This 
approach is called ‘genome wide’ because it assesses all the 
genes of a single individual at the same time.

GWAS are designed in a similar way to classical case control 
studies. Their aim is to detect small changes to the genetic 
code, called single nucleotide polymorphisms (SNPs), and 
see whether they are associated with disease cases. To 
date the PGC has reported the findings of large GWAS 
analyses in four major disorders: major depression,52 bipolar 
affective disorder (BPAD),53 schizophrenia54 and attention 
deficit hyperactivity disorder (ADHD).51,55 In the analysis 
of BPAD, over 11,000 patients were compared with over 
51,000 controls.53 This analysis found a significant association 
between BPAD and SNPs in a number of genes, including 
CACNA1C, which is associated with calcium channel function, 
and ODZ4, a gene implicated in cell signalling and neuronal 
path finding. Similarly, seven SNPs, including in the miR-137 
gene, a regulator of neural development, were found to 
be significantly associated with schizophrenia.54 In a ‘cross-
disorder’ analysis, the PGC also demonstrated that certain 
genes, including CACNA1C, might actually be associated 
with more than one disorder.56 Surprisingly, in the study 
of major depression, despite the inclusion of over 18,000 
patients, PGC researchers were unable to find any statistically 
significant findings. Similarly, analyses of GWAS data by other 
large international collaborations found no reliable SNPs 
that predict treatment response to antidepressants.57,58 The 
authors of the PGC study cite a number of potential reasons 
for the lack of findings in depression.52 First, compared 
with the prevalence of depression in the community, the 
sample size may still be too small to detect results. Second, 
depression may be particularly heterogeneous, both clinically 
and aetiologically. Finally, the authors raise the possibility 
that an interaction between risk genes and environment 
stressors may be particularly important in the manifestation 
of depression, and as such the GWAS approach may not 
appropriately capture this form of ‘genetic architecture’. 

Alongside small genetic changes like SNPs, research has also 
demonstrated that much larger structural variation in the 
genome may be important in psychiatry.59,60 So-called copy 
number variations (CNVs) result in cells having an abnormal 
number of copies of large sections of DNA. These regions 
vary in size, from over 1,000 DNA base pairs to millions, and 

Finally, neuroimaging is contributing to our understanding 
of the impact of psychosocial factors on brain function. For 
example, recent research has shown that patients at their 
first episode of psychosis show a smaller volume of the brain 
structure known as the ‘hippocampus’ if they experienced 
traumatic experiences in their childhood, and that this effect 
is due to an increase in peripheral blood hormones related to 
stress (see also ‘Blood-based biomarkers’).12

Neuropsychology
The cognitive theory of depression highlights the importance 
of thinking errors in this condition.33 A person suffering from 
depression is more likely to interpret a neutral stimulus as 
being negative, and focus on (and remember) negative stimuli 
more than positive ones.34 For example, when recognising 
emotional facial expressions patients with depression 
are more likely to demonstrate a reduced perception of 
happy facial expressions and an increased perception of 
negative facial expressions.35–37 These ‘negative biases in 
information processing’ are believed to feed a cycle that 
results in worsening mood, and helping to correct them is a 
fundamental part of cognitive behavioural therapy (CBT) for 
depression, a form of talking therapy. 

It has now been demonstrated that antidepressants may 
also help to address these biases, and appear to do so 
much earlier than they affect mood.38 Using modern 
neuropsychological techniques,35 it is possible to measure 
these changes in biases in a standardised way and correlate 
them with changes in brain activity. For example, seven days 
of antidepressant treatment in healthy volunteers results 
in measurable increases in positive biases, such as reduced 
recognition of negative facial expressions.39,40 These findings 
have also been correlated with reduced brain activity in 
regions associated with threat, such as the amygdala.41 
Similar changes have even been reported after single doses 
of the antidepressant citalopram, given both intravenously 
and orally.42,43 A similar effect has been demonstrated in 
patients suffering from depression.44,45 For example, in 
one randomised double-blind placebo-controlled trial, 
patients with depression and controls were given either a 
single dose of the antidepressant reboxetine or an inactive 
placebo.44 In the patients who were given reboxetine, the 
negative biases in information processing recorded before 
treatment were reversed three hours after dosing. Despite 
the changes in bias, in none of these studies was there 
a resultant subjective change in mood, suggesting that 
altering emotional processing may be an early effect of 
antidepressant treatment. Building on this work, studies 
have shown that measurable early changes in emotional 
processing may be a predictor of later clinical response46 and 
can be used to determine whether novel drugs can act as 
antidepressants.47,48 

Neuropsychology is one area of research that has specifically 
focused on the bridging of biology and psychology. The 
work presented here demonstrates that it is possible to 
develop robust and standardised ways of measuring certain 
psychological aspects of mental illnesses within a biological 
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are thought to account for 13% of the human genome.61 
In autism, assessments of CNVs have found abnormalities 
in a number of genes, such as NRXN1,62 which is associated 
with cell adhesion in the nervous system. It is now estimated 
that there may be over 200 CNVs associated with autistic 
spectrum disorders.62 Notably this area is one example of 
work that has already begun to be translated into the clinical 
field, where chromosomal ‘microarrays’ (tools capable of 
detecting clinically relevant CNVs) are now recommended 
in the clinical assessment of some patients with autism.63 
Similarly a variety of CNVs, such as the deletions at 22q11.2 
and duplications at 16p11.2, have been discovered to be 
associated with schizophrenia.64,65 It has been argued that, 
given the prevalence of CNVs in patients with schizophrenia,66 
the use of clinical microarray testing should also find a role 
in the assessment of these patients in the near future.64,66 In 
keeping with the cross-disorder GWAS data, analyses show 
that some CNVs, such as deletions in NRXN1, are associated 
with more than one form of mental illness.64 

Alongside these changes to the DNA code, it is now 
recognised that the external environment can also have 
an impact on gene regulation, and that these changes can 
be inherited.67 These effects can happen without altering 
the underlying DNA sequence and so are referred to as 
‘epigenetic’.68 Molecular mechanisms of epigenetic changes 
include the methylation of DNA and histone modification 
– that is, the addition of small chemical groups to the 
DNA and the associated proteins. Again, this research area 
has been instrumental in encompassing the biological, 
psychological and social aspects of a patient’s difficulties 
by bridging genes and the environment.69 For example, 
one study found differences in DNA methylation in genes 
such as ALS2 in the hippocampal tissue of people with a 
history of severe childhood trauma when compared with 
controls. ALS2 controls a broad spectrum of cellular and 
molecular processes, including signalling cascades, neuronal 
morphogenesis, axonal growth and neuroprotective 
processes.70 Moreover, recent papers have implicated 
epigenetic changes in the ‘glucocorticoid receptor’ as a key 
mechanism in regulating the stress response, a fundamental 
means by which early exposure to life stressors permanently 
changes stress reactivity.71,72 There is also some evidence that 
epigenetic mechanisms may be important in determining 
treatment response to antidepressants.73

As mentioned earlier in this section, the lack of consistent 
genetic findings in the GWAS of depressed patients has 
been partly explained by the fact that ‘gene–environment 
interactions’ (GxEs) might be more important than genetic 
effects alone. Indeed, the concept of GxEs is one more 
methodological approach that allows the integration of 
biological and psychosocial factors in a single model. Within 
this framework, perhaps the most important finding is the 
notion that life stress induces psychopathology only in a sub-
group ofpatients, whose vulnerability is in part due to their 
genetic make-up. Moreover, while we have known for many 
years that specific genetic variables only increase the risk of 
psychopathology when challenged by specific environments 

(that is, life stressors),74 recent studies have examined the 
molecular mechanisms underlying these GxEs. For example, 
a recent paper has shown that a functional polymorphism 
in the FK506 binding protein 5 (FKBP5) gene, an important 
regulator of the stress hormone system, increases the risk of 
developing stress-related psychiatric disorders by regulating 
DNA demethylation in response to stress.75 These kinds 
of studies may help to explain why genetic findings, to 
date, do not fully explain the estimated heritability of most 
mental illnesses.76,77 Taken together with the ‘epigenetic’ 
studies described above, this area of research has potentially 
profound public health implications, as it clearly highlights the 
primacy of individual vulnerability or resilience (determined by 
a combination of genetic make-up and early life experience) 
in the trajectory to the development of mental illness(es). 

In summary, the emerging picture is that many psychiatric 
disorders have complex genetic underpinnings. It appears 
that genetic risk factors do not follow conventional diagnostic 
boundaries and there are few genes that are either necessary 
or sufficient to cause disease on their own. In many cases, 
multiple genetic risk factors, combined with important 
social and psychological stressors, place people at risk of 
developing mental illness. Identifying and understanding 
genetic contributions to mental illness is likely to have a role 
in developing our understanding of diagnoses in psychiatry, 
identifying those at risk of developing illness and potentially 
helping to guide treatment. 

Blood-based biomarkers
Developing reliable blood tests for mental illnesses would 
represent one of the most significant advances in psychiatric 
practice. Ideally such tests would aid in diagnosis and in the 
prediction and monitoring of treatment response. A major 
focus for the development of blood-based markers, especially 
in depression, has been the interplay between the stress 
response and the immune system.

Meta-analyses have shown that depression is associated with 
measurable increased activity in the hormonal stress response 
systems, also called the hypothalamic-pituitary-adrenal axis,78 
and with measures of inflammation, such as C-reactive 
protein (CRP),79 interleukin-6 (IL-6) and tumour necrosis 
factor.80 In recent studies, psychosocial risk factors for the 
future development of mental illnesses, such as an experience 
of early life trauma or of socio-economic disadvantages, have 
been found to be associated with increased inflammatory 
biomarkers in adulthood. Elevated blood levels of CRP in 
otherwise healthy and euthymic individuals have also been 
found to be associated with the subsequent development 
of depressive symptoms,81 supporting the notion that 
increased inflammation may be on the causal pathway to 
depression. Importantly, this notion is also supported by 
recent clinical trials showing that anti-inflammatories may 
have an antidepressant action.82 Furthermore, in a recent 
clinical trial of the anti-inflammatory drug infliximab in 
treatment-resistant depression, only the subset of patients 
with raised inflammatory markers showed some response to 
this treatment.83 
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The mechanism by which both the stress response and 
inflammation could contribute to the development of 
depression may be related to the inhibition of neural growth 
factors like brain derived neurotrophic factor (BDNF) affecting 
neuroplasticity in the brain.84 For example, a recent study 
examining the effects of early life trauma on structural 
changes in the brain showed that a smaller hippocampus was 
linked with higher levels of IL-6 and lower levels of BDNF.85 
This emphasises the importance of blood-based biomarkers 
in our search for the potential mechanisms by which 
psychosocial factors affect brain function and lead to 
mental illnesses.

One biomarker technique recently used in psychiatric 
research is the measurement of gene expression in the 
blood. By measuring the levels of messenger RNA (mRNA) in 
blood cells, it is possible to establish which genes are being 
expressed and to what extent. This appears to be particularly 
promising in the development of blood-based biomarkers 
for depression.86 For example, one group measured the 
gene expression of 15 different genes associated with stress, 
inflammation and neuroplasticity in patients with depression, 
before and after they had treatment with antidepressants.87 
They found that, of the 15 genes, high baseline levels of 
mRNA in three genes associated with inflammation (IL-1β, 
MIF and TNF-α) predicted a poor response to treatment. 
Symptom reduction, however, was associated with changes 
in the level of expression of other genes, such as a reduction 

in IL-6 (also associated with inflammation) and an increase in 
neural growth factors, including BDNF.87 These findings are 
too preliminary to implement into current clinical practice. 
However, it is possible to envisage a future where blood-
based biomarkers, such as peripheral gene expression, guide 
clinical decision-making regarding antidepressants and help 
us identify patients early on who may not respond to first-line 
treatments. 

Pre-clinical models
Using pre-clinical models (i.e. animal or cellular models) is 
an important approach in neuroscience research relevant 
to mental illness. The ultimate goal of such research is to 
uncover the fundamental biological processes that lead 
to states of illness, changes in behaviour or responses to 
medications. Examples include studies where rodents are 
exposed to stressors that are mild but unpredictable, thus 
resembling human life experience, or where in vitro brain cells 
are exposed to stress hormones or to antidepressants in their 
culture medium. These techniques are vital for developing 
our understanding of these conditions and for drawing up 
new targets for medications. Obviously the findings and 
predictions of these ‘pre-clinical’ models have to be tested 
and validated in humans before they can be presumed to 
apply to patients suffering from mental illnesses. As an 
example of this validation process, the epigenetic changes 
mentioned above to the FKBP5 gene in patients exposed to 

Figure 3.2  Multipotent, hippocampal progenitor cell line HPC03A/07, stained with synaptic markers and 
hippocampal granule cell markers.
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early life stressors resemble findings from models of rodents 
exposed to environmental stress and nerve cells exposed to 
stress hormones.75 Similarly, a recent study found an increase 
in the stress-related protein SGK1 in the blood of patients 
with depression. The same protein has been found to be 
increased in the brains of animals exposed to stress and in 
nerve cells exposed to stress hormones.88

Understanding how medications work at a cellular and 
molecular level would not be possible without the use of 
pre-clinical models. Equally, these approaches are vital for 
identifying new molecular targets in the disease process 
for the development of novel medications. For example, 
it has recently been demonstrated that ketamine, an 
anaesthetic, has rapid antidepressant effects in patients 
with treatment-resistant depression.89 Unfortunately, due 
to concerns over its safety, the potential for abuse and its 
ability to induce psychotic symptoms, ketamine is of limited 
use clinically. Researchers are therefore trying to understand 
how ketamine causes its antidepressant effects, in order to 
develop novel and safe antidepressants for clinical use that 
lack the dangerous side-effects of ketamine. Using animal 
models of depression, it has been shown that ketamine 
activates a signalling pathway within cells known as the 
mammalian target of rapamycin (mTOR) pathway.90 Blocking 
the mTOR pathway results in the loss of the antidepressant 
effect of ketamine, demonstrating that it is crucial for this 
effect.90 Moreover, it has been shown that the production 
of the neural growth factor BDNF is also crucial for this 
antidepressant action,91 as mice genetically unable to produce 
BDNF do not respond as well to ketamine. Finally, and as an 
example of the translational pathways mentioned above, a 
recent study has shown that patients with depression who 
have the same BDNF genetic mutation as the mice models 
were also poorer responders to ketamine.92 Aside from BDNF, 
other animal models have shown that the inhibition of an 
enzyme called GSK-3β is also important in the antidepressant 
response to ketamine.93,94 This enzyme is believed to be 
involved in a process that leads to a reduction in the number 
of connections between neurons, called ‘synaptic pruning’. 
These studies demonstrate that using pre-clinical models to 
elucidate some of the mechanisms of action of ketamine 
have yielded a number of molecular targets on which novel 
antidepressants could be based.

Developing models that take into account the complex 
genetic architecture of psychiatric conditions is also crucial 
in understanding pathophysiology and developing novel 
treatment targets. Human neurons obtained from embryonic 
tissue can be used to identify molecular mechanisms 
activated by ‘depressogenic’ stimuli and antidepressant 
drugs.95,96 The two studies mentioned above that exposed 
neurones to stress hormones used this approach.75,88 
However, this field will truly be revolutionised by the 
development of induced pluripotent stem cells (iPSCs), which 
represents a major advance in our ability to develop cellular 
models. Yamanaka and colleagues (2006) demonstrated 
that it was possible to reprogramme a specialised cell taken 
from an adult organism into a stem cell – that is, a cell that 

can then be reprogrammed into any type of cell in the body, 
including neurons.97 By making these cells express specific 
‘transcription factors’ that regulate protein synthesis, they 
were able to demonstrate that both mouse97 and human skin 
cells called fibroblasts98 could be converted into stem cells. 
Using this technique, it is possible to take cells from the skin 
of a patient and produce stem cells that retain the patient’s 
genetic make-up. These iPSCs derived from patients can 
then be stimulated to become functional nerve cells. Since 
this discovery, iPSCs have been used to model a number of 
different conditions, such as spinal muscular atrophy99 and 
Rett’s syndrome.100 In psychiatry, iPSCs have so far successfully 
been derived from patients with schizophrenia. In one study 
they were derived from two siblings with schizophrenia who 
shared a rare associated mutation in the DISC-1 gene.101 It has 
also been shown that it is possible to convert iPSCs derived 
from patients with sporadic schizophrenia into functional 
neurons,102 including dopaminergic neurons.103 These early 
studies have found evidence of abnormal neuronal function, 
as shown by decreased neurite numbers (that is, less cellular 
ramification) and decreased connectivity in neurons derived 
from patients. The use of this technology to model disease is 
in its infancy, but it remains one of the most exciting areas for 
medical research. 

It is undoubtedly difficult to truly replicate mental illnesses 
using pre-clinical models, and this may be one of the reasons 
why drug discovery in psychiatric disorders is slower than 
in other fields of medicine. However, it is impossible to 
understand the molecular and cellular mechanisms underlying 
psychiatric conditions such as autism and schizophrenia 
without these approaches. Equally, identifying new targets 
for treatment and testing their safety prior to their use in 
patients would not be possible without this type of scientific 
research.
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Conclusion
The classical psychiatric approach to helping a patient is 
one that encompasses the biological, psychological and 
social aspects of their distress. Neuroscience research does 
not refute this holistic approach to care, but rather seeks 
to understand how crucial psychological and social events 
lead to the development of illness. This approach has yielded 
important results in recent years and it has only been possible 
to describe a handful of these findings in this chapter. There is 
now an urgent need to translate this work into improved care 
for patients suffering from psychiatric conditions. This is likely, 
however, to be a challenging process and not all discoveries 
will impact on patient care. Further, successful translation 
requires more academic training in neuroscience-based 
psychiatric research and increased research funding to levels 
matching the disease burden. In particular, neuroscience 
research will not deliver improvements to patient care unless 
there is institutional support for the whole process by which 
promising early findings are tested in humans, first through 
proof-of-concept studies and then through larger clinical 
trials. Finally, we need to be aware that the ‘biological model’ 
on its own does not seem to have delivered an improved 
public perception of mental illnesses. Therefore, combating 
the stigma that dogs mental illness may require a balanced 
and integrated bio-psycho-social model – one that both 
explains how psychological and social factors affect brain 
function and defends the importance of the individual’s 
choices and freedom. 

Authors’ suggestions for policy
 � When compared with other health problems, there is a 
mismatch between the societal costs of mental illnesses 
and the funding going into research and development 
for new therapeutic approaches. This has recently been 
further exacerbated by disinvestment by pharmaceutical 
companies.

 � Neuroscience research is not antithetic to the psychosocial 
model of mental illness, and some of the most exciting 
research in this area is specifically focused on the 
understanding of how psychosocial factors affect brain 
mechanisms.

 � Some of the approaches described in this chapter will 
deliver clinical benefits, especially in refining ‘personalised 
treatment’ for individual patients. However, translating 
neuroscience research into patient benefits requires 
sustained support of clinical studies testing these new 
approaches. 

 � Integrating neuroscience research within a bio-psycho-
social model of mental illness could not only foster 
better acceptance of treatment but also reduce stigma, 
something neuroscience research alone seems unable 
to do.
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