arXiv:1601.06531v1 [physics.comp-ph] 25 Jan 2016

Duo: a general program for calculating spectra of
diatomic molecules

Sergei N. Yurchenl&, Lorenzo Lod?, Jonathan TennysdnAndrey V.
Stolyarow

aDepartment of Physic& Astronomy, University College London, Gower Street, Lando
WC1E 6BT, United Kingdom
bDepartment of Chemistry, Lomonosov Moscow State Uniyetsininskiye gory/8, 119992
Moscow, Russia

Abstract

Duo is a general, user-friendly program for computing rotagiprovibrational
and rovibronic spectra of diatomic moleculesud>solves the Schrodinger equa-
tion for the motion of the nuclei not only for the simple casamcoupled, isolated
electronic states (typical for the ground state of clodseltsliatomics) but also for
the general case of an arbitrary number and type of coupbirtygeen electronic
states (typical for open-shell diatomics and excited sjateossible couplings in-
clude spin-orbit, angular momenta, spin-rotational and-spin. Corrections due
to non-adiabaticféects can be accounted for by introducing the relevant coggli
using so-called Born-Oppenheimer breakdown curves.

Duo requires user-specified potential energy curves and, elvagit, dipole
moment, coupling and correction curves. From these it caegpenergy levels,
line positions and line intensities. Several analytic ferphus interpolation and
extrapolation options are available for representatidgh@turves. Do can refine
potential energy and coupling curves to best reproduceearete data such as
experimental energy levels or line positionsudds provided as a Fortran 2003
program and has been tested under a variety of operatingnsyst
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Program summary

Program title: Duo

Catalogue number:

Program summary URL:

Program obtainable fromCPC Program Library, Queen’s University, Belfast, N.
Ireland

Licensing provisionsStandard CPC licence.

No. of lines in distributed program, including test data;.el60 049

No. of bytes in distributed program, including test data,:et3 957 785
Distribution format:tar.gz

Programming languagefortran 2003.

Computer:Any personal computer.

Operating systemLinux, Windows, Mac OS.

Has the code been vectorized or parallelizeBarallelized.

Memory required to executease dependent, typicaky10 MB

Nature of physical problemSolving the Schrodinger equation for the nuclear
motion of a diatomic molecule with an arbitrary number angetyf couplings
between electronic states.

Solution method Solution of the uncoupled problem first, then basis setdatn
tion and solution of the coupled problem. A line list can benpaited if a dipole
moment function is provided. The potential energy and atheres can be empir-
ically refined by fitting to experimental energies or freqeies, when provided.
Restrictions on the complexity of the problente current version is restricted to
bound states of the system.

Unusual features of the prograntdser supplied curves for all objects (potential
energies, spin-orbit and other couplings, dipole momaen)tast analytic functions
or tabulated on a grid is a program requirement.

Typical running time:Case dependent. The test runs provided take seconds or a
few minutes on a normal PC.

1. Introduction

Within the Born-Oppenheimer or adiabatic approximationthie rotational-
vibrational (rovibrational) energy levels of a diatomic lexule with nucleia and
b and in alX* electronic state are given by the solution of the one-dirnoeas
Schrodinger equation:
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wherey™t = M, + Myt is the reduced mass of the molecule dmgandM, are
the (nuclear) masses of atomandb, respectivelyVgadr) is the potential energy
curve (PEC) for the electronic state under stublig the total angular momentum
of the molecule and = 0, 1,... is the vibrational quantum number. The solu-
tion of this one-dimensional Schrodinger equation is d-steidied mathematical
problem [2, 3] for which manyfécient numerical methods are available [4-19];
the most popular of them is probably the iterative “shodti@goley-Numerov
[20—22] method which is notably used in the programedL due to Le Roy [23].

As well as the ‘direct’ problem of solving the Schrodingguation for a given
PEC, also of great interest is the corresponding inversel@mo[24, 25], that is
the task of determining the potenthl,(r) which leads to a given set of energy
levelsE, ;, typically obtained from experiment. A traditional way adnforming
this task approximately is to use the semi-classical Rygibéein-Rees (RKR)
method [24]; a more precise strategy called inverse peatiob analysis (IPA)
has been suggested by Kosman and Hinze [25, 26] and a progrpl@nnenting
this approach was presented by Paskbwal [27]. A different, grid-based fit-
ting strategy has been recently suggested by SzidarovsekZsaszar [28]. The
program DBrFiT [29], @ companion to Le Roy’sdveL, also provides this func-
tionality for isolated states of closed shell diatomicsdded, for single potential
problems there is an extensive literature on the determmaf potential curves
from experimental data; in this context we particularlyentite work of Coxon
and Hajigeorgiou [30—32] and Le Roy and co-workers [33—36].

When the diatomic molecule has a more complex electronictsire (i.e.,
the electronic term is nofX) the situation is more complicated, as interactions
between the various terms are present and it is not possibiedt each electronic
state in isolation. Although there are a growing numberadigts treating coupled
electronic states, for example see Refs. [37—44], thereappo be no general
program available for solving the coupled problem, the esbdeing a general
coupled-state program due to Hutson [45]. We have therafeveloped a new
computer program, o, particularly to deal with such complex cases.

Duo is a flexible, user-friendly program written in Fortran 2083 capable
of solving both the direct and the inverse problem for a galrdtatomic molecule
with an arbitrary number and type of couplings between ebedt states, includ-
ing spin-orbit, electronic-rotational, spin-rotatioadd spin-spin couplings.
also has auxiliary capabilities such as interpolating attichpolating curves and
calculating lists of line positions and line intensities+(zalled line lists). Do is
currently being used as part of the ExoMol project [46], wehaBn is to generate
high-temperature spectra for all molecules likely to bespible in exoplanet at-
mospheres in the foreseeable future. Completed studiesl lmasthe use of T
include ones on AlO [47, 48], ScH [49], CaO [50] and VO [51].r@wethodology
is the subject of a very recent topical review [52].
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This paper is organised as follows. In Section 2 we reviewtlibery and the
basic equations used byubto solve the coupled nuclear motion problem for di-
atomics. In Section 3 we discuss the calculation of moledirle intensities and
line lists. Section 4 is devoted to the inverse problem,toahe refinement (‘fit-
ting’) of potential and coupling curves so that they repma set of reference
energy levels or line positions. Section 5 reviews the fiametl forms imple-
mented for the various curves. In Section 6 the program tireigs explained.
Finally, we draw our conclusions in Section 7. Technicabhdeton program us-
age such as detailed explanations of the program optionsamngle inputs are
reported in a separate user’s manual.

2. Method of solution

After separating out the centre-of-mass motion and havitrgduced a body-
fixed set of Cartesian axes with origin at the centre of nuclesss and with the
axis along the internuclear direction the non-relatigistamiltonian of a diatomic
molecule can be written as [53-57]:

I:ltot = I:le + HA;; + |:|vib + I:lrot (2)

where the meaning of the various terms is as folloWsis the electronic Hamil-
tonian and is given by

. H2 ok
He=—=— > Vi2+ V(& 3

°= ~om Zl 2+ V() (3)
whereV(r, &) is the Coulomb electrostatic interactions between aligas (elec-
trons and nuclei) and we indicated witfthe internuclear coordinate and collec-
tively with ¢; the full set of electron coordinateld,, is the mass-polarisation term
given by

. hz Ne Ne
i = g 2 2.V (4)
i=1 j=1

wheremy is the total nuclear masst,i, is the vibrational kinetic energy operator
and is given by

- h? d?

Hyip = —Zm (5)
wherey is the reduced mass of the moleculé. is the rotational Hamiltonian
and can be expressed in terms of the body-fixed rotationallanghomentum
(AM) operator as

- 2 .

= — _R?
rot 2/1[’2

(6)

4



In turn, the rotational AM can be expressedRis= J — L — S wherel is the
total AM, L is the electron orbital AM an is the electron spin AM. The total
AM operatorj acts on the Euler angleg, ¢, y) relating the laboratory-fixed and
the body-fixed Cartesian frame and its expression can balf@ug., in Ref. [53].
Introducing the ladder operatods = J; +iJ,, S, = S, +iS, andl, = Ly +iL,
we can express the rotational Hamiltonian as

~ K2 ~ ~ ~ ~
Fo = 5 |- 3+ (- )+ (& -8
+ (B8 +38)-GL+ily+@GL+S10)). (7)

The approach used bydo to solve the total rovibronic Schrodinger equa-
tion with the Hamiltonian (2) follows closely the standaalpled-surface Born-
Oppenheimer treatment [1, 58, 59]. It is assumed that oneredisninary solved
the electronic motion problem with clamped nuclei

Helstate A, S, T) = Vgadr)IState A, S, =) (8)

for all electronic states of interest. The electronic wawections depend on the
electron coordinate§ and parametrically on the internuclear distan@nd can
be labelled by total spi& = 0,1/2,1, ..., projection ofL along the body fixed
axisA = 0, +1, £2, projection ofS along the body fixed axis® = 0, +1/2, +1, ...
and by a further label ‘statel, 2, . . . which counts over the electronic curves. For
|A| > 1 the spacial part of the electronic wave functions is dodlelgenerate; we
choose the degenerate compongésitge A, S, X) so that they satisfy the following
conditions [55]:

(state A, S, Y|, |state A, S, %)
ov(x2|state A, S, %)

A, 9)
(155 Zstate—A, S, -X),  (10)

whereo,(x2) is the symmetry operator corresponding to a reflectionuiinathe
body-fixedxzplane (parity operator) ansl= 1 for |[X~) states and = O for all
other states.

Once the potential energy curvi¥s.dr) have been obtained, for example
using anab initio quantum chemistry program,ud solves the rotationless (=
0) one-dimensional Schrodinger given by Eq. (1) separdtel each electronic
curveVgadr), producing a set of vibrational eigenvalugsand vibrational wave
functions|statev), wherev = 0, 1, . . . is the vibrational quantum number assigned
on the basis of the energy ordering; technical details om step are given in
Section 2.1. A subset dfl,(state) vibrational functions are selected to form a
basis set of rovibronic basis functions defined by

|state J, Q, A, S, X, v) = |state A, S, X)|statev)|J, Q, M), (11)
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where|J, Q, M) is a symmetric-top eigenfunction [53] (a function of the &un-
gles) and describes the overall rotation of the moleculevelsade,Q = A + X and
M is the projection of the total angular momentum along thedatory axisZ.
Only combinations ok andA which satisfy|Q| < min(J, |A| + S) are selected in
the rovibronic basis set (11). The selection of vibratidradis functions to retain
can be made either by specifying an energy threshold (athtitmal states be-
low the threshold are retained) or by specifying a maximubmational quantum
numberymay.

The rovibrational basis set (11) is used to solve the coraptetibronic Hamil-
tonian given by Eq. (2); this amounts to using an expansiadund’s case (a)
functions to solve the coupled problem. In particular, theder operators ap-
pearing inH,o couple rovibrational states belonging tdfdient electronic states;
specifically, the non-vanishing matrix elements of the dgonomentum opera-
tors in the rotational Hamiltonian (7) are given by the senddigid-rotor expres-
sions [60]:

JQIJIQ) = Q (12)
(3O Q) = JJI+1), (13)
GOFULILQ) = JIT+1)-QQF1) (14)

while matrix elements of the spin operators between elpiiravave functions
(omitting the ‘state’ label for simplicity) are given by

(A,S,ZISJA,S,Z) = 3, (15)

(A, S, ZIS?A,S,Z) = S(S+1), (16)
(A,S,2+15,JA,S.%) = S(S+1)-Z(EZ+1) (17)
(18)

The coupling rules for the Hamiltonian (7) are as follows fhist line in EqQ. (7)
is the diagonal part of the rotational Hamiltonian, i.e. a¥zero only forAS =
AT = AA = 0. The term containing. S is called S-uncoupling and is non-zero
for AS = 0;AX = +1;AA = 0. The term containing..L; is called L- uncoupling
and is non-zero foAS = 0;AX = 0; AA = +1. Finally, the term containin§..L.

is called spin-electronic and is hon-zero fi8 = 0; AX = +1;AA = F1.

Matrix elements of the orbital AM operatots + [2 = (2 L2 andL, when
averaged over the electronic wave functions give rigedependent curves; these
can be computed bgb initio methods [61] or estimated semi-empirically, for
example using quantum defect theory [62, 63].

The expectation value of the sum of the vibrational and thesapmlarisation
Hamiltonian using the electronic wave functions gives j8; 64] to the so-called



Born-Oppenheimer diagonal correction (also called adialzarrection), which
can be added to the Born-Oppenheimer REg&dr) if desired.

At this stage Do builds the full Hamiltonian matrix in the basis of Eq. (11)
and using the Hamiltonian operator (2), possibly compleetthy supplementary
terms such as spin-orbit coupling (see section 2.6 for atipbssible additional
terms to the Hamiltonian). The vibrational matrix elements

(statg, v,|F (r)|state, v,) (19)

for all operators-(r) including couplings, dipole moments, corrections etc: be
tween diferent vibrational basis set functions are computed anédtorote that
in the equation above statand statgindicate diferent electronic statesAf # p.

At this point a basis set transformation is carried out, fribv@ basis given
by Eq. (11) to a symmetrized one in which the basis functiangetwell-defined
parity; parity (even or odd) is defined with respect to inia@sof all laboratory-
fixed coordinates [55, 56, 65, 66] and is equivalent to theecgfin operation
through the molecule-fixedz plane,o(x2). The parity properties of the basis
functions of Eq. (11) are given by Kato [55]

Fy(xd|state , Q, A, S, 2, v) = (-1)5 A5 T Ystate J, -Q, A, S, -2, v), (20)

wheres = 1 for |[X7) states and = O for all other states. The symmetrized basis
functions are symmetricH) or antisymmetric €) with respect tarj(x2). Use of
the symmetrized basis set leads to two separate Hamilthiaks with defined
parities.

The two parity blocks are then diagonalized (see Sectionf@.8echnical
details), to obtain the final rovibronic eigenvald:‘ejs’ and corresponding eigen-
functions¢j’, wherer = +1 is the parity quantum number= 1,2, ...is asimple
counting index. The corresponding rovibronic wave furm:tjﬁg}T can be written
as an expansion in the basis set (11)

o1 =) Crim, 21)
n

where theC}T are expansion cdicients anch here is a shorthand index for the

,n

basis set labels ‘state], Q, A, S, X, andv:
In) = |state J, Q, A, S, 2, v). (22)

As the notation above indicates, in the general case thegwdyg quantum
numbers (i.e. labels associated with the eigenvalues ofr@tny operators) are
the total angular momentum valueand the parityr. Nevertheless, b ana-
lyzes the eigenvectors and assigns energy levels with theginate quantum
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Table 1: Sample Do energy output for AlO [47]. The energy is given in cinand

the exact {, n, parity) and approximatestate, v (v), lambda (A), spin (S),
sigma (X), andomega (2)) quantum numbers. The final column contains labels
of the electronic states as given by the user and the sepdriaie to facilitate
selecting the energy entries in the program output.

J N Energy/cm State v lambda spin sigma omega parity

0.5 1 0.000000 1 0o o0 0.5 0.5 0.5 + | IX2SIGMA+
0.5 2 965.435497 1 1 0 0.5 0.5 0.5 + | 1X2SIGMA+
0.5 3 1916.845371 1 2 0 0.5 0.5 0.5 + | IX2SIGMA+
0.5 4 2854.206196 1 3 0 0.5 0.5 0.5 + | IX2SIGMA+
0.5 5 3777.503929 1 4 0 0.5 0.5 0.5 + | IX2SIGMA+
0.5 6 4686.660386 1 5 0 0.5 0.5 0.5 + | 1X2SIGMA+
0.5 7 5346.116382 2 0o 1 0.5 -0.5 0.5 + | 1A2PT

0.5 8 55681.906844 1 6 0 0.5 0.5 0.5 + | 1X2SIGMA+
0.5 9 6066.934830 2 1 1 0.5 -0.5 0.5 + | 1A2PT

0.5 10 6463.039443 1 7 0 0.5 0.5 0.5 + | IX2SIGMA+
0.5 11 6778.997803 2 2 1 0.5 -0.5 0.5 + | 1A2PT

0.5 12 7329.427637 1 8 0 0.5 0.5 0.5 + | IX2SIGMA+
0.5 13 7483.145675 2 3 1 0.5 -0.5 0.5 + | IA2PT

0.5 14 8159.170405 2 4 1 0.5 -0.5 0.5 + | 1A2PT

0.5 15 8201.467744 1 9 0 0.5 0.5 0.5 + | 1X2SIGMA+
0.5 16 8857.266385 2 5 1 0.5 -0.5 0.5 + | |A2PT

numbers ‘state’y, A, X, andQ on the basis of the largest d&ieient in the basis
set expansion (21). It should be noted that the absolute €ifjh andX are not
well defined, only their relative signs are. This is relatedite symmetry prop-
erties of the eigenfunctions of the Hamiltonian (2), whick 8050 symmetric
and antisymmetric mixtures of tha, %) and| — A, -X) contributions. There-
fore the absolute value of the quantum num@ies required additionally in order
to fully describe the spin-electronic-rotational contitibn. In situations where
some couplings are absent some approximate quantum nuodrelecome ex-
act; for example, in the absence of spin-orbit and spin-sparactions the basis
functions (11) with diferent values of spi® do not interact and, henc§, be-
comes a “good” quantum number. As another example, withwiptesence of
3% or I states there is no mechanism for the ro-vibrational funstiof a'z*
state to interact with other electronic states and theedfte corresponding eigen-
functions will have well defined values 8f= X = A = 0.

Table 1 gives an example of asb output with the energy term values com-
puted for the case of the first three electronic staXe&.*, A 2I1, andB 2Z*, of
AlO [47].

2.1. Solution of the uncoupled vibrational problem

The main method of solving the radial equation used by I3 the so-called
sinc DVR (discrete variable representation); this metloyatlosely related ones)



has been independently applied to the one-dimensionab8iciger equation by
various authors [9, 10, 67, 68].

In this method the coordinate is truncated to an interval, rmad and dis-
cretized in a grid ofN, uniformly spaced points; = ry, + IAr (wherei €
[0, Np — 1]) with grid stepAr = (rmax— 'min)/(Np — 1). The Schrodinger Eq. (1) is
then transformed to an ordinary matrix eigenvalue problem

(T + V), = Euif, (23)

whereT is the matrix representing the kinetic energy and is givetha sinc
method by [68, 69]

D 2u(arp | 2y i # ]

andV = diag[V(ro), V(r1), ..., V(rn,-1)] while the vectory, contains the values
of y(r) at the grid points. The resulting, x N, real symmetric matriXd is then
diagonalized (see section 2.8 for details). The sinc DVRhaeusually provides
very fast (faster than polynomial) convergence of the dated energies and wave
functions with respect to the number of the grid poiis, Figure 1a) shows the
convergence for threg¢ = 0 energy levels of a Morse potential, showing a rate of
convergence approximately exponential with respect totimeber of grid points.

Duo obtains all integrals over vibrational coordinates by swatiam over the grid

points:
r Np-1

V() dr = Ar Y ua(r)F ()Y (n). (25)
Fmin i=0
The rectangle rule is simple and exponentially accuratamfegration over infinite
range of functions which decay fast (exponentially or figsééd which do not
have singularities in the complex plane close to the rea gX]. We illustrate in
fig. 1 b) the quick convergence of matrix elements of the @i — ro)*|v) for a
Morse potential; analytical formulae for matrix elemeritthis kind are available
from the literature [71, 72] and were used to obtain exaeresfce values. In plot
1b)itis apparent that the accuracy of matrix elements doesmartave beyond a
certain value; for example, the matrix elemef@ér —r.)*|10) always has less than
about 10 significant digits no matter how many points are udéuls behaviour
is completely normal and expected when performing floagiogt calculations
with a fixed precision; Do uses double precision numbers with a machine epsilon
e = 2x 10718 [73] and the expected relative error due to the finite prenigi the
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Figure 1: lllustrative examples of the fast convergence dnergies (plota)
and matrix elements (pldb) using the sinc DVR method; in both cases the
rate of convergence is approximately exponential with @espo the number of
grid points. Results are for a Morse potential which apprately models the
ground electronic state of the CO moleculg= 1.1283 A, D, = 90674 cm?,

w = 2169814 cnt! with atomic masses for carbon and oxygen. A uniformly
spaced grid was used, keeping fixegh = 0.7 A, rma = 2.0 A. In plot a) we
show absolute errors for the= 1, v = 15 andv = 30 energy levels; in pldb) we
show relative errors of matrix elements of the typgr — r.)*|v); the flattening of
the error for large numbers of grid points is due to the nucag¢error present in
floating point calculations (see text).
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sum given by eq. (25) is given by, indicating withe value of the sum performed
with infinite accuracy and witls the value obtained with finite accuracy:

S-S . e 2 Wa(r) F(ri),(ril
S A AGEGOIAD)]

The expression above implies that whenever the matrix eleofea functionF
comes out very small with respect to the valu¢Fgfsignificant digits will be lost;
there are techniques such as Kahan compensated summagjomHich reduce
the error above by a factdt, but these have not been implemented at this time.

A prime example of this situation if given by the line intetiess of very high
vibrational overtones; in a recent study Medvedev et all pbserved that matrix
elements of the typgO|u(r)|v)| for the CO molecule when computed with double
precision floating-point arithmetic decrease approxityatgponentially (as ex-
pected on the basis of theoretical models and as confirmeddmjrgple precision
calculations) fowv < 25, when they reach the value of about®MD. This situa-
tion is fully expected on the basis of the considerations/alimt it should never
constitute a problem in practice.

Apart from the sinc DVR, Do implements finite-dterence (FD) methods for
solving the uncoupled vibrational problem, where the kinenergy operator in
Eq. (23) can be approximated using, for example, a 5-pomitakFD5 formulae:

(26)

Ti=——1-4/3 |i-jl=1, 27
. 2u(Ar)? 1/12 i - jl -2 @)

and furthermore witf; 3 = Ty n, = 29/12. Note that the expression above gives
incorrect results for the first two and last two grid pointst this does not matter
as long as the grid truncation parametegys andr . are chosen so that, ~ 0
near the borders of the grid.

The formulae (27) lead to a symmetric pentadiagonal bandsdxmwhich
can in principle be diagonalized mordieiently than a generic dense matrix.
However, the convergence of the eigenvaliigeds much slower, with error de-
creasing as/Ar)* instead ofe /().

2.2. Levels lying close to dissociation

A general requirement for convergence is that both the imamer the outer
grid truncation values, and rmnax should be chosen such thermin) and
Vstatd'max) @re both much larger thds,. A problem arises when one is trying to
converge states very close to the dissociation limit, ab $amsely bound states
can extend to very large valuesrond therefore require an excessive number of
points when a uniformly spaced grid is used; this is illustdan fig. 2.
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energy level error in cm

outer grid truncation _ in angstroms

Figure 2: lllustrative example of thefect of the outer grid truncation parameter
I'max ON energy levels close to dissociation. Data are relativaeMworse potential
with De = 12728237432 cmt, we = 1751124844 cm*, re = 1 A, u = 1 Da.
This potential supports 15 bound states=( 0 tov = 14) and we consider in
this example the three highest-energy ones, with enekgies —250.7130 cn?,
E,;3 = —65.2068 cn1!, E;4 = —0.1000 cn1t. In all calculation we fixed min =
0.1 A and the grid stepr to 0.05 A. The dotted vertical lines are the outer turning
points for the three states, i.e. the poingg such thatV(roy) = E,; the error

in the computed energy levels is expected to decrease exp@hewhent ax >
rouw The plot shows that to converge the last energy |&gla very largerax

is required, which in turn leads to a large number of grid {®imhen they are
uniformly spaced. Specifically, to converg, to 10° cm™ it is sufficient to
chooserma > 6 A, leading to 120 points; foE;; we needma > 9 A and 180
points; forE;4 we need ma > 90 A and 1500 points.
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Excited states of alkali diatoms such as [45], N& [76] or K, [77] constitute
an important class of systems for which lamggy are needed; such systems are
prime choices for studies of ultracold atoms and molecui8s4nd often require
grids extending up to several tens [75, 76] or even hundfédsdf Angstroms.

In such cases it may be beneficial to use a non uniform gnid;iBplements
the adaptive analytical mapping approach of Meshétoad [79] and dfers several
mapping choices, which are described in the manual. Howavéhis time sup-
port for non uniform grids should be considered experimentd they cannot be
used in combination with the sinc DVR method but only with ldxes dficient 5-
point finite-diference one. Indicatively we recommend considering nofetmi
grids only wherr max is required to be larger than50 A.

2.3. States beyond the dissociation limit

Potential curves with local maxima higher than the disgadimit of the po-
tential forr - +co may support shape resonances, i.e. metastable statescim whi
the two atoms are trapped for a finite time in the potential et eventually
dissociate. Such states are also known as quasibound allingrpredissocia-
tion states. Fod > 0 the rotational potential will practically always introcki
such a maximum, and the corresponding quasibound levelaren as orbiting
resonances or rotationally predissociating states, se@digfor an example.

Several techniques have been developed to deal with quasilstates, most no-
tably in the context of diatomic molecules by Le Roy and cakeos [80—88]. At
the moment Do does not provide any explicit functionality to treat quasibd
states, although we plan to rectify this deficiency in futugesions.

Nevertheless, long-lived quasibound states (i.e., nam@swnance) can be
identified using the present version obi®by using the so-called stabilization
method [89—-94]. In one version of this approach energy $east computed for
increasing values of the outer grid truncatigp, and then plotted as function of
I'max, quasibound states manifests themselves by being rdiasteble with re-
spect to increase of,,x and undergo a series of avoided crossings, see . 3
for an example. From an analysis of these curves it is alseilplesto compute
the lifetime of the quasibound state [93].

2.4. Printing the wave functions

Both theJ = 0 vibrational basis functionstatev), see eq. (11), and the final
(J > 0, electronically coupled or both) rovibronic wave funa:ha:oéﬁcientscj:;,
see eq. (21), can be written to a file for further analysis, f®igplotting purposes

or for the computation ofj factors; see the manual for details.
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Figure 3: Example of a quasibound, orbiting resonance .stBtet a): Morse
potential ford = 0 andJ = 30 (same parameters as in fig. 2); the potential for
J = 30 has a local maximum higher than the dissociation lipitand supports
one quasibound state with energy=11 931.1 cm!. Plotb): eigenvalues for

E > D¢ as a function of the outer grid truncatiop.. The quasibound state
manifests itself as a series of avoided crossings.

14



2.5. Convergence of rotationally excited states

In our approachl > 0 calculations are performed using a basis expansion in
terms of theJ = 0 wave functions. As a guideline it was found by numerical
experimentation that in order to obtain converged resoltsdtationally excited
states up tamax ONe has to use a vibrationdl= 0 basis set of size only slightly
larger tharn,xand that a reasonable minimum value for the size of the vdrak
basis set is given by.25x vmax+ 2. FOr example, to converge rotationally excited
levels up tov = 30 it should be sflicient to use a vibrational basis set of size 40.

2.6. Additional terms in the Hamiltonian

Duo supports the inclusion of a number of terms additional tonttre relativistic
Hamiltonian (2) caused by spin-orlhiso, spin-rotationaHsg, spin-spinHss and
A-doublingH, p interactions [55, 95-99]:

1. The Breit-Pauli spin-orbit operatétso [99—102] has non-zero matrix ele-
ments between electronic states obeying the following lbogpules [95]:
AS =0,+£1; AA =0,+1; AQ = 0; if AS = 0 and¥’ = ¥” = 0 the matrix el-
ements is zero (this last rule implies that singlet-to-hmatrix elements
are zero)X* electronic states may have non-zero matrix elements With
states buE* < X* matrix elements are zero; finally, in case of homonuclear
diatomics, onlyg «& gandu < u matrix elements are non-zero.

The diagonal SO matrix elementa, S, Y|HsolA, S, =) determine the spin-
orbit splitting of a multiplefS*1A, whereS > 0 andA > 0. Both diagonal
and dt-diagonal matrix elements of the spin-orbit Hamiltonian te ob-

tained as functions afusing quantum chemistry programs.

2. The nonzero diagonal anefaliagonal matrix elements i operator are

given by
2
(ASIFsASS) = o n[2-SE+1],  (28)
2ur?
2
ASTFHA ST = 2y (M)[S(S +1)- 22+ DI
1
x [JA+1)-Q@Q =+ 1) (29)

wherey®R(r) is a dimensionless function of
3. The diagonal matrix elements of th&s operator are taken in the phe-
nomenological form

(A, S,IHsdA, S,3) = %zss(r) |32% - S(s +1)] (30)

Both ySR(r) andA5(r) functions can be obtained eithal initio or empiri-
cally.
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4. The lambda-doubling (LD) couplings fof& 11 state in the\-representation
(Eqg. (11)) are of the following three types [98]:

Hip = 1 Opq(r)(sz +82) - Eapzq(r)(Ls +JS )+ qLD(r)(J? +J).

(31)
whereagp, anda ;. are related to the conventional terms as given by Brown
and Merer [98]:

LD _ LD LD LD
Uopg = O +P° +Q

oD = pP+2qtP. (32)

5. It is now well-established that, at least far states, the small shifts to en-
ergy levels due to non-adiabatic interactions with remtdtes (as opposed
to near-degenerate ones) can be accurately modelled byyimggdihe vi-
brational and rotational energy operators in the Hami#iorj64, 103-107];
specifically, the vibrational energy operator in Eq. (5)aplaced by

" d d
‘z—a( +0) 3 (33)
while the rotational kinetic energy operatit/2ur? in Eq. (7) should be
replaced by
2

The functionsx(r) andg(r) are sometimes referred to as Born-Oppenheimer
breakdown (BOB) curves [108] and can also be interpretedtasducing
position-dependent vibrational and rotational massesy #re sometimes
expressed in terms of the dimensionlgstactor functionsg, and g, by
a(r) = (Mme/my)gi(r) andps(r) = (me/my)gy(r). The rotationaly, function
can be determined experimentally by analysis of the Zeemhttirsg of
energy levels due to an external magnetic field [109].

2.7. Representation of the couplings

Duo assumes that the coupling matrix elements and the translipmle mo-
ments are given in the representation of the basis func{idhjscorresponding to
Hund's case (a). In this representation thecomponent is diagonal and has
a signed valueA (see Eq.(13)) and therefore it will be referred to as the
representation. It can be shown that by choosing apprepplase factors for
the electronic wave functionstate A, S, X) all coupling matrix elements in the
A-representation can be made real; note that in this repganthe electronic
wave functions are complex numbers, as they contain a factthre kind €”?,
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whereg is the angle corresponding to rotation aroundzbgis [65]. On the other
hand quantum chemistry programs such asio [110] normally work with real
wave functions and consequently compute matrix elemerntgsnmepresentation,
which we call Cartesian as the electronic wave functionsiii@ately expressed
in terms of atom-centred Cartesian components [DO0]y), |2), |Xy) etc

Duo can accept input in either the Cartesian or Areepresentation. For the
Cartesian-representatioru®will then transform these inputs to tilerepresentation
as follows:

|=A) = [CTMID) + M) (35)

where 1 and 2 denote Cartesian componenysz, xy, . .. that correspond to the
A1, B; and Ay, B, Abelian point group symmetries, respectivey) are the ele-
ments of the unitary transformation from the Cartesian ®Akrepresentation.
The obvious way to reconstruct this transformation is t@dralize the Carte-
sian representation of th}a matrix. Thus the transformed matrix elements in the
A-representation are given by

(AZIANEY = > (Ch)'C (aZIABY) (36)
@,5=0,1,2

or, in tensorial formAP" = C"AC wherea = 3 = 0 correspond to £+1% (A = 0)
electronic state witlC) = 1.

In principle all Cartesian matrix elemens=|A|3%’) must be provided to per-
form the transformation in Eq. (36). However, by means ofdbepling rules all
non-zero matrix eIemenK&ElAlﬁZ’) can be related to only one, non-zero refer-
ence matrix element. For example, the matrix eleriant = = QHSOA’ = %’ =
+1) between' and®II is zero because it corresponds to a simultaneous change
of A andX by +1. This property together with the help of Eq. (35) allows tme
use the non-zero spin-orbit matrix eleme(@s> = 0|HS92, £ = 1) as a reference
and to reconstruct all other non-zero Cartesian component b

(0,2 =0H9Lx=1) = —g—im,z = 0H®92,% = 1), (37)

as required for Eq. (36).

Off-diagonal matrix elements of the various operators inaud® our model,
I.e. the various couplings between electronic states, st in actual calcula-
tions to arbitrary changes of sign due to the sign indeteawyirof the electronic
wave functions computed atfterent geometries. Often the phases of ealch
initio coupling F(r) have to be post-processed in order to provide a consistent,
smooth function ofr. It is important that the relative phases betweeiiedent
elements preserved. This issue is illustrated graphidsllfPatrascu et al. [47],
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where diferentab initio coupling curves of AlO obtained with Mrro were pre-
sented. Transition dipole moment functions, discussetiénnext section, also
may exhibit phase changes [111], which should be correctiegjthe same phase
convention used for other matrix elements [47].

2.8. Computational considerations

Duo uses the matrix diagonalization routines DSYEV or, optighBSYEVR
from the LAPACK library [112]. The subroutine DSYEVR useg tmultiple rel-
atively robust representations algorithm and is expeddxtfaster than DSYEV,
which is based on the QR algorithm [113, 114]; however, theecu version of
DSYEVR is poorly parallelized and therefore not recommelide parallel envi-
ronments.

The dimension of the final rovibrational Hamiltonian matdepends on the
number of vibrational functions selected, the number oftetmic states present,
the spin multiplicities of the electronic states and dhguantum number. For ex-
ample, forN electronic stated\, vibrational functions are retained for each of
them and denoting witim the average spin multiplicity, the size of the Hamil-
tonian matrix is approximately given By x N, x m and the size of the = +
parity matrix to be diagonalized is half of this value. Theesdf each block of the
Hamiltonian reaches dimensions of the order of a thousahdfonrather com-
plicated cases (e.g\ = 10, N, = 40 andm = 5) and consequently the time taken
to compute the energy levels for a givéns usually only a small fraction of a
second.

3. Line intensities and line lists

The Einstein coicientAs; (in 1/s) for a transitioni; < 2; is computed as

64 x 1073674

A = T(ZJi+1)V3t:ZL;)’1 ey e (38)

n;,Ng

2

(—1)9i( oL o )<vf|ﬁt”(r)|ui> , (39)

wherey, (t = —1,0, 1) are the electronically averaged body-fixed components of
the electric dipole moment (in Debye) in the irreducibleresgntation

- 1 -
Ho = Uz, MHi1 = $ﬁ(,uxil,uy), (40)

and the indexis defined by Eq. (22). The vibrationally averaged transitlpole
moments<vf|ﬁtf"(r)|ui> are computed using the vibrational wave functigps=

Y (r) -
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The absorption line intensity is then given by

gnS(ZJf + 1)Afi e_CZEi /T (1 _ e—Cszif/T)

I(f —i) = s oM , (41)
whereQ(T) is the partition function defined as
QT) = ns ) (23 + 1)e @5 /T, (42)

Ons IS the nuclear statistical weight factap, = hc/kg is the second radiation con-
stant,E; = E;/hcis the term value, and is the temperature in K. For heteronu-
clear moleculeg),s is a total number of combinations of nuclear spins as given
by gns = (2l + 1)(2 4 + 1), wherel, andl,, are the corresponding nuclear spins.
For a homonuclear molecules, these combinations arelistd among the four
symmetriests, —s, +a, —a, where+/— is the parity of the molecule with respect
to oy ands/ais the property of the total rovibronic wave function to bensget-
ric/asymmetric upon upon inversion [55]. In the representaifddy, point group
symmetry, this corresponds £, A,, B;, andB,. Thus, for the casé= I, = |,

two different valueg,s are necessary and these depend on whether the nuclei are
fermions ( is half-integer) or bosons {nteger) [115, 116]:

{ 21 + 12 - (21 +1)
Ons = 1
2

(21 + 12+ (21 +1)
For example, carbotfC hasl = 0 and therefore for the noleculeg,s are 1 for
A;, A> and O forBy, B, states, respectively.
The computed EinsteiA codficients can be used to compute radiative life-
times of individual states and cooling functions in a stnéigrward manner [117].

, Fermisand Bosea
, Fermiaand Boses.

NI

(43)

3.1. Line list format

A line list is defined as a catalogue of transition frequesi@ad intensities
[118]. In the basic ExoMol format [118], adopted by® a line list consists of
two files: ‘States’ and ‘Transitions’; an example for the smlle AlO is given
in Tables 2 and 3. The ‘States’ file contains energy term \&@hkupplemented
by the running numbem, total degeneracy,, rotational quantum numbé, (all
obligatory fields) as well as quantum numbeyg\, parity (), X, Q and the elec-
tronic state label (e.gk2Sigma+). The ‘Transitions’ file contains three obligatory
columns, the upper and lower state indemegndn; which are running numbers
from the ‘State’ file, and the Einstein dbeient As;. For the convenience we also
provide the wavenumbers "as the column 4. The line list in the ExoMol format
can be used to simulate absorption or emission spectra joteamperature in a
general way. Note that ExoMol format has recently been Saamtly extended
[119] but structure of the States and Transitions file has be&ined.
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Table 2: Extract from the output ‘State’ file produced bydXor the 2’Al*%0O
molecule [48].

n E g J +/- e/f State v Al X 19
1 0.000000 12 0.5 + e X2sIGMA+ O O 05 05
2 965.435497 12 0.5 + e X2sIGMA+ 1 0 05 05
3 1916.845371 12 0.5 + e X2SIGMA+ 2 0 05 05
4 2854.206196 12 05 + e X2siGMA+ 3 0 05 05
5 3777.503929 12 0.5 + e X2sIGMA+ 4 0 05 05
6 4686.660386 12 0.5 + e X2sIGMA+ 5 0 05 05
7 5346.116382 12 0.5 + e A2PI 0O 1 05 05
8 5581.906844 12 0.5 + e X2SIGMA+ 6 0 05 05
9 6066.934830 12 0.5 + e A2PI 1 1 05 05
10 6463.039443 12 05 + e X2SIGMA+ 7 0 05 05
11 6778.997803 12 0.5 + e A2PI 2 1 05 05
12 7329.427637 12 05 + e X2sIGMA+ 8 0 05 05
13 7483.145675 12 0.5 + e A2PI 3 1 05 05
14 8159.170405 12 0.5 + e A2PI 4 1 05 05
15 8201.467744 12 05 + e X2SIGMA+ 9 0 05 05
16 8857.266385 12 0.5 + e A2PI 5 1 05 05
17 9029.150380 12 0.5 + e X2SIGMA+ 10 0 0.5 05
18 9535.195842 12 0.5 + e A2PI 6 1 05 05
19 9854.882567 12 0.5 + e X2SIGMA+ 11 0 0.5 0.5
20 10204.019475 12 05 + e A2PI 7 1 05 05
21 10667.668381 12 0.5 + e X2SIGMA+ 12 0 05 05
22 10864.560220 12 0.5 + e A2PI 8 1 05 05
23 11464.897083 12 0.5 + e X2SIGMA+ 13 0 05 05
24 11519.212123 12 05 + e A2PI 9 1 05 05
25 12156.974798 12 05 + e A2PI 10 1 05 05
26 12257.694655 12 05 + e X2SIGMA+ 14 0 0.5 0.5
27 12793.671660 12 05 + e A2PI 11 1 05 05
28 13030.412255 12 05 + e X2sIGMA+ 15 0 05 05
29 13421583651 12 05 + e A2PI 12 1 05 05
30 13790.933964 12 05 + e X2SIGMA+ 16 0 0.5 0.5

n: State counting number.

E: State energy in cr.

g: State degeneracy.

J: Total angular momentum.

+/—: Total parity.

e/ f: Rotationless parity.

State: Electronic state label.

v: State vibrational quantum number.

A: Absolute value ofA (projection of the electronic angular momentum).
¥: Absolute value ok (projection of the electronic spin).

Q: Absolute value of2 = A + X (projegfion of the total angular momentum).



Table 3: Sample extracts from the output ‘Transition’ filesquced by Do for
the2’Al**O molecule [48].

Ne N Ay Vii

173 1 4.2062E-06 1.274220
174 1 1.3462E-02 966699387
175 1 1.3856E-02 1918099262
176 1 9.7421E-03 2855450672
177 1 1.2511E-06 3778740157
178 1 1.1544E-02 4687891466
179 1 6.7561E+02 5346110326
180 1 4.1345E+00 5583130067
181 1 2.4676E+03 6066924557
182 1 3.5289E+01 6464257469
183 1 4.6960E+03 6778981670
184 1 1.9771E+02 7330641321
185 1 6.1540E+03 7483122722
186 1 4.8062E+03 8159737396
187 1 1.9401E+03 8202080179

n¢: Upper state counting number.
n;: Lower state counting number.
Asi: Einstein-A codicient in s?.

V4. Transition wavenumber in crh (optional).

21



4. Inverse problem

The inverse problem consists in finding the potential enemgg coupling
curves which best reproduce a given set of energy Ieﬁé?gf), or frequencies
(i.e., diferences between energy levels), typically extracted fropeement. In
the following we will call this optimization procegsmpirical refinement

4.1. Implementation

The refinement problem can be formulated as a non-linear$epmres prob-
lem where one seeks to minimize the objective function [120]

E - Z [Ei(ObS) _ Ei(caIC)(an)]zwi, (44)

WhereEi(‘:a'C)(an) are the calculated energies or frequencies and implidéjyend
on the parameteis, a,, . . . defining the potential and coupling curves. We- 0
are weighting factor assigned to each value and may be class¥#n? whereo
is the experimental uncertainty &°*. The input weights are automatically
renormalized by Do so thaty,; w, = 1.

Duo uses the non-linear conjugate gradient method for the dgdtion; in
particular, the linearized least-square problem is sobyedefault using the LA-
PACK subroutine DGELSS, although the alternative builsutroutine LINUR
is also available. For each curve appearing i is possible to specify if any
given parameter should be refined (fitted) or should be keptfiw the value
given in the input file. The first derivatives with respecthe fitting parameters
a, required for the non-linear least squares are computed) fisiite differences
with a step sizé\a, taken as 0.1% of the initial valueg or 0.001 ifa, is initially
zero.

4.2. Constrained minimization

In order to avoid unphysical behaviour and also to avoid l@mls when the
amount of experimental data provided is iffauient for determining all the param-
eters, the shapes of the curves can be contrained to be asslpsssible to some
reference curves provided in the input (typicadlly initio ones) [28, 121-123].
This is done by including into the fitting objective functioat only diferences of
the computed energy levels but alsffeliences between the refined curvé€a©
and the reference on&%(®) as follows:

F = Z(Ei(obs) _ Ei(calc))zwien " Z d/l Z(Vl:l,(ref) _ Vlzl,(calc))zvv,l’ (45)
i A k

where 1 refers to thet-th curve,k counts over the grid pointsy! are the cor-
responding weight factors of the individual points normadi to one andl, are
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further weight factors defining the relative importancehaf torresponding curve.
The weights in Eq. (45) are normalized as follows:

DY > dw =1 (46)
i A k

When minimizing the functional given by Eq. (45) itis impanmt to control the
correctness of the match between the experimental andetieadrievels as they
appear in the corresponding observed (‘obs.’) and calkedlétalc.’) lists. It is
typical in complex fits involving close-lying electronicases that the order of the
computed energy levels in d,(r) block changes during the empirical refinement.
In order to follow these changes and update the positiortssoéxperimental val-
ues in the fitting set, we use the quantum numbers to iderédycorresponding
quantities by locking to their initial values. Since the exmentally assigned
quantum numbers may not agree with the ones useddoy-B which are based
on Hund’s cas&) — each experimental energy level (or frequenE)E})bS) is au-
tomatically labelled by Do with the following quantum numbersg;, parity r(+),
‘state’, v, |A[, |Z| and|Q; this set of six quantum numbers is then used for match-
ing with a calculated counterpaE®®. Note that only the absolute values &f
¥ andQ are used for this purpose, as their sign is undefined in thergkcase.

4.2.1. Morphing

The curves to be refined can also be ‘morphed’ [47, 124, 125Fhiing them
by a functionH(r), so that the refined functidf(r) at a given grid point; is given
by

F(ri) = H(ri)F™@ (ry), (47)
whereF2(r;) is initial function specified in the input file (e.g., obtadhbyab initio
methods). For this kind of empirical refinement the curF@sdo not necessarily
have to be specified by a parametrised analytical form buatssmbe provided as
a spline interpolant as described in Section 5.2.

The morphing functioH(r) is typically represented by a simple polynomial,
see Patrascu et al. [47] for an example. The morphing apprieaen alternative
way of constraining the refined properties to the referemeceecand is especially
useful when experimental information is sparse.

5. Types of functional forms

5.1. Analytical representations

A number of functional forms are currently available ivdto specifyr-
dependent curves (e.g., potential energy curves, dipotleenbcurves) as parametrised
analytical functions. In the following, will represent the value of the potential
at the equilibrium geometmy.
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. Expansion in Dunham variables [126]:

V(r) = Te+a0)2(r) (1 > aiy"D(r)), (48)
i>1
where
r—r
yo(r) = p .
e
. Taylor polynomial expansion:
V() =Te+ Y a(r—ro). (49)
i~0
. Simons-Parr-Finlan (SPF) [127, 128] expansion:
V(r) = Te + aoyzprr) (1 £ avgpp(r)), (50)
i>1
where
r—r
YspH(I) = .

. Murrell-Sorbie (MS) [129]:

V(r) = Te+ (A — Te)e ™™™ (1 + >l - re)‘),

i>1

whereA; is the asymptote d¥(r) atr — +oo relative to

T, of the lowest electronic state, related to the commonly asesbciation
energy of the given electronic steig = Ag — Te.

. Chebyshev polynomial expansion [130, 131]:

Y=o & Tk(Yp)
1+ (r/rref)n ,

in which n is a positive integer and(y) are the Chebyshev polynomials
of the first kind defined in terms of the reduced variapl¢) € [-1,1]:

V(r) = [Te+ De] - (51)

rP—rP
ref (52)

p p
re+ Vet — 2rmin

Yp(r; IMmins rref) =

with p as the fixed parameter. This form guarantees the correctrkomge
(LR) behaviour at — oo:
Cn

rn
n

V(r) - ur(r) = (53)

where theC,, are the long-range céiients.
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6. Perturbed Morse Oscillator (PMO) [132-137]:
V() = Te+ (A= TolYe + > air? (54)
i=1

where
ym =1 —exp(=B(r —re).
Whena; = 0 the form reduces to the Morse potential, otherwise the psym

totic value of the potential i8¢ + Y; &.
7. Extended Morse Oscillator (EMO) [138, 139]:

V() =Te+ (A= Te) (1 — exp{—Bemo(r)(r — re)}), (55)

which has the form of a Morse potential with a exponentidbiad a distance-
dependent exponent diieient

Bewo(r) = > ayplr), (56)
i=0
expressed as a power series in the reduced variable [140]:
rP—rd
() = =3 57
0 = 5 (57)

8. Morse Long-Range (MLR) function [23, 34, 139, 141]:

Ur(r)

Ur(re)

where the radial variablg in the exponent is given by Eq. (57), the long-
range potentiall g(r) by Eq. (53) while the exponent cfiieient function

Pur() = Y5 Be + [1-¥VEM] D alygio)] (59)
i=0

2
VO = To (A= T (1- 256 exl-pun0))] . 69

is defined in terms of two radial variables which are simitay', but are
defined with respect to a fierent expansion centigsy, and involve two
different powersp andq. The above definition of the functigy.r(r)
means that:

Bmir(r = o) = B = IN[2De/ULr(Te)]- (60)
9. Surkus-polynomial expansion [140]:
V() = Te+ (L -y3) > alysT +Yi'an, (61)

i>0

wherey;® is theSurkus variable (57) analy is the asymptote of the poten-
tial atr — oo.
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10. Surkus-polynomial expansion with a damping function [140]

V() = Tet [(1-Y3) D alyp] + Volaur | 9P+ 1ML - £92m),  (62)

>0
where the damping function is defined by
f9aMP = 1 _ tanhf(r — ro)],

andt®@™ r, anda are parameters.

5.2. Numerical representations

Any r-dependent curve(r) can be specified as a list of data poinisF (ry)}, k =
1,..., N, for arange of geometries.ud will then automatically interpolate or ex-
trapolate the data points whenever necessary. The in&gipolithin the speci-
fied range is performed either by using cubic or quintic gsirMore specifically,
Duo uses natural cubic splines in the form given in Ref. [142] atunal quin-
tic splines based on an adaptation of the routine QUINAT [1481]. Quintic
splines are used by default, as they generally provide guicgnvergence of the
interpolant with respect to the number of points given; havethey may lead
to spurious oscillations between the data points, espgélnon-uniform grids.
The number of data points should be4 for cubic splines an@ 6 for quintic
splines. It is sometimes useful to interpolate a transforset, such asi( r?F;)
or (1/ri, Fj), see, for example, Refs. [145, 146] or the discussion by [1otV];
this feature is not yet implemented in/®.

When necessary curves are extrapolated at short rangeirii e interval
[rmin, r1]) using one of the following functional forms:

fi(r) = A+B/r, (63)
fo(r) = Ar+Br? (64)
f3(r) = A+Br, (65)

where the constansandB are found by requiring that the functiofigyo through
the first two data points. By default the functional forfinis used for potential
energy curves, fornt, is used for the transition dipole moments and fofin
(linear extrapolation) for all other curves (for examplésprbit couplings). The
default choices should be appropriate in most cases.

Similarly, whenever necessary curves are extrapolateonat lange (i.e., in
the interval fy,, rmad) by fitting the last two data points to

fi(r) = A+B/r® (66)
fs(r) = A+ Br, (67)
fs(r) = A/r>+B/r3 (68)
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These functional forms were chosen to describe the behagsidong ranges of
the potential energy curved,[r)], of the curves corresponding to the electronic
angular momenta,(r), Ly(r), L.(r) [f5(r)]; for all other cases (including transi-
tion dipole moment) the functional forrfy is assumed. Note that form(r) is
appropriate in many but by no means in all cases, see ref] {@d8etails on the
the asymptotic behaviour of the potential energy curvearger.

Similarly, Ref. [149] discusses the asymptotic forms of exolar (diagonal)
dipole functions and states the correct limits have the f8rmBr™ with m = 3
or 5 forr — 0 andA + B/r™with m= 4 or 7 forr — oo so that our extrapolation
forms do not have the correct asymptotic forms. Nevertisalissially extrapola-
tion is performed quite far from the aymptotic region so thgihg the theoretically
correct form is not required nor, indeed, beneficial in suades.

It should be noted that the extrapolation procedures desttrintroduce a
small discontinuity in the first derivatives at the switapjpointsr; orry,. In some
situations these artifacts could become important, e.g.véoy loosely bound
states such as those discussed in section 2.2. In such t@&sescommeded to
use an analytical representation for the potential with @rapriate long-range
behaviour, e.g. the Morse long-range form given by Eq. (58).

6. Program inputs and structure

The Duo calculation set up is specified by an input file in the plain (&8CII)
format. The input contains the specifications of the reletams of the Hamil-
tonian (i.e., the potential energy and coupling curveg)pldi moment curves as
well as options determining the method used for the solytionvergence thresh-
olds etc. Diterent couplings, corrections or tasks are switched on bingdte
corresponding section to the input file, i.e. without angmation of the code.
The input is controlled by keywords and makes use of Stonewstiparser [150].
All keywords and options are fully documented in the manuaVjged along with
the source code. The structure of the program is illustrat&dy. 4.

In addition to the program source code and the manual, wepatside make-
files for various Fortran 2003 compilers as well as a set of examples with
sample inputs and corresponding outputs. These examphegrise (a) a very
simple test based on numerical solution of a single Morsemii@, (b) a fit of a
single?I] state to observed energies based on a recent study of the lR8uteo
[151], (c) a fit of a singlex~ based on a recent study of the PH molecule [151],
and (d) calculation of the spectrum of ScH involving 6 elecic states based on
recent study [49]; the output files in this case are given ioN&al format [118].
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Solution of the Refinement
rovibronic problem
—‘ Compute rovibronic Compute objects
Solve of J=0 problems for energies or on the grid
each electronic state frequencies

Form the rovibronic basis v

set Compare to Compare to ab

J/ experiment initio reference

| curves
Construct the Hamiltonian T
matrix J/
J/ Non-linear least
Diagonalize squares fit
Assignment with quantum . L
Intensity and line list
numbers
Matrix elements of the Transition line-
transition dipole strengths and
moments using J=0 Einstein
eigenvectors coefficients

Figure 4: Dvo program structure.

These examples only consider low levels of rotational exicin, J, to make them
fast to run.

7. Conclusion

Duo is a highly flexible code for solving the nuclear motion pexl for di-
atomic molecules with non-adiabatically coupled eledtmtates. It can sim-
ulate pure rotational, ro-vibrational and rovibronic dpaaising an entirelyab
initio input from electronic structure calculations or semi-emcpl data. The
latter can also be obtained withinub by fitting to experimental data. & is cur-
rently being further developed and extensively used toystutlmber of diatomic
species [47, 49-51, 152] as part of the ExoMol project [48)isTproject is pri-
marily interested in hot molecules, but®should be equally useful for studying
ultracold diatomic molecules.
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