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Abstract

Duo is a general, user-friendly program for computing rotational, rovibrational
and rovibronic spectra of diatomic molecules. Duo solves the Schrödinger equa-
tion for the motion of the nuclei not only for the simple case of uncoupled, isolated
electronic states (typical for the ground state of closed-shell diatomics) but also for
the general case of an arbitrary number and type of couplingsbetween electronic
states (typical for open-shell diatomics and excited states). Possible couplings in-
clude spin-orbit, angular momenta, spin-rotational and spin-spin. Corrections due
to non-adiabatic effects can be accounted for by introducing the relevant couplings
using so-called Born-Oppenheimer breakdown curves.

Duo requires user-specified potential energy curves and, if relevant, dipole
moment, coupling and correction curves. From these it computes energy levels,
line positions and line intensities. Several analytic forms plus interpolation and
extrapolation options are available for representation ofthe curves. Duo can refine
potential energy and coupling curves to best reproduce reference data such as
experimental energy levels or line positions. Duo is provided as a Fortran 2003
program and has been tested under a variety of operating systems.

Keywords: diatomics, spectroscopy, one-dimensional Schrödinger equation,
excited electronic states, intramolecular perturbation,coupled-channel radial
equations, transition probabilities, intensities

✩This paper and its associated computer program are available via the Computer Physics Com-
munication homepage on ScienceDirect

∗Corresponding author
Email addresses:s.yurchenko@ucl.ac.uk (Sergei N. Yurchenko),l.lodi@ucl.ac.uk

(Lorenzo Lodi),j.tennyson@ucl.ac.uk (Jonathan Tennyson),avstol@phys.chem.msu.ru
(Andrey V. Stolyarov)

Preprint submitted to Computer Physics Communications January 26, 2016

http://arxiv.org/abs/1601.06531v1


Program summary

Program title:Duo
Catalogue number:
Program summary URL:
Program obtainable from:CPC Program Library, Queen’s University, Belfast, N.
Ireland
Licensing provisions:Standard CPC licence.
No. of lines in distributed program, including test data, etc.: 160 049
No. of bytes in distributed program, including test data, etc.: 13 957 785
Distribution format:tar.gz
Programming language:Fortran 2003.
Computer:Any personal computer.
Operating system:Linux, Windows, Mac OS.
Has the code been vectorized or parallelized?:Parallelized.
Memory required to execute:case dependent, typically< 10 MB
Nature of physical problem:Solving the Schrödinger equation for the nuclear
motion of a diatomic molecule with an arbitrary number and type of couplings
between electronic states.
Solution method: Solution of the uncoupled problem first, then basis set trunca-
tion and solution of the coupled problem. A line list can be computed if a dipole
moment function is provided. The potential energy and othercurves can be empir-
ically refined by fitting to experimental energies or frequencies, when provided.
Restrictions on the complexity of the problem:The current version is restricted to
bound states of the system.
Unusual features of the program:User supplied curves for all objects (potential
energies, spin-orbit and other couplings, dipole moment etc) as analytic functions
or tabulated on a grid is a program requirement.
Typical running time:Case dependent. The test runs provided take seconds or a
few minutes on a normal PC.

1. Introduction

Within the Born-Oppenheimer or adiabatic approximation [1] the rotational-
vibrational (rovibrational) energy levels of a diatomic molecule with nucleia and
b and in a1Σ± electronic state are given by the solution of the one-dimensional
Schrödinger equation:

− ~
2

2µ
d2

dr2
ψυJ(r) +

[

Vstate(r) +
J(J + 1)

2µr2

]

ψυJ(r) = EυJψυJ(r), (1)
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whereµ−1 = Ma
−1+Mb

−1 is the reduced mass of the molecule andMa andMb are
the (nuclear) masses of atomsa andb, respectively.Vstate(r) is the potential energy
curve (PEC) for the electronic state under study,J is the total angular momentum
of the molecule andυ = 0, 1, . . . is the vibrational quantum number. The solu-
tion of this one-dimensional Schrödinger equation is a well-studied mathematical
problem [2, 3] for which many efficient numerical methods are available [4–19];
the most popular of them is probably the iterative “shooting” Cooley-Numerov
[20–22] method which is notably used in the program Level due to Le Roy [23].

As well as the ‘direct’ problem of solving the Schrödinger equation for a given
PEC, also of great interest is the corresponding inverse problem [24, 25], that is
the task of determining the potentialVstate(r) which leads to a given set of energy
levelsEυJ, typically obtained from experiment. A traditional way of performing
this task approximately is to use the semi-classical Rydberg-Klein-Rees (RKR)
method [24]; a more precise strategy called inverse perturbation analysis (IPA)
has been suggested by Kosman and Hinze [25, 26] and a program implementing
this approach was presented by Pashovet al [27]. A different, grid-based fit-
ting strategy has been recently suggested by Szidarovszky and Császár [28]. The
program DPotFit [29], a companion to Le Roy’s Level, also provides this func-
tionality for isolated states of closed shell diatomics. Indeed, for single potential
problems there is an extensive literature on the determination of potential curves
from experimental data; in this context we particularly note the work of Coxon
and Hajigeorgiou [30–32] and Le Roy and co-workers [33–36].

When the diatomic molecule has a more complex electronic structure (i.e.,
the electronic term is not1Σ) the situation is more complicated, as interactions
between the various terms are present and it is not possible to treat each electronic
state in isolation. Although there are a growing number of studies treating coupled
electronic states, for example see Refs. [37–44], there appears to be no general
program available for solving the coupled problem, the closest being a general
coupled-state program due to Hutson [45]. We have thereforedeveloped a new
computer program, Duo, particularly to deal with such complex cases.

Duo is a flexible, user-friendly program written in Fortran 2003and capable
of solving both the direct and the inverse problem for a general diatomic molecule
with an arbitrary number and type of couplings between electronic states, includ-
ing spin-orbit, electronic-rotational, spin-rotationaland spin-spin couplings. Duo
also has auxiliary capabilities such as interpolating and extrapolating curves and
calculating lists of line positions and line intensities (so-called line lists). Duo is
currently being used as part of the ExoMol project [46], whose aim is to generate
high-temperature spectra for all molecules likely to be observable in exoplanet at-
mospheres in the foreseeable future. Completed studies based on the use of Duo
include ones on AlO [47, 48], ScH [49], CaO [50] and VO [51]. Our methodology
is the subject of a very recent topical review [52].
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This paper is organised as follows. In Section 2 we review thetheory and the
basic equations used by Duo to solve the coupled nuclear motion problem for di-
atomics. In Section 3 we discuss the calculation of molecular line intensities and
line lists. Section 4 is devoted to the inverse problem, i.e.to the refinement (‘fit-
ting’) of potential and coupling curves so that they reproduce a set of reference
energy levels or line positions. Section 5 reviews the functional forms imple-
mented for the various curves. In Section 6 the program structure is explained.
Finally, we draw our conclusions in Section 7. Technical details on program us-
age such as detailed explanations of the program options andsample inputs are
reported in a separate user’s manual.

2. Method of solution

After separating out the centre-of-mass motion and having introduced a body-
fixed set of Cartesian axes with origin at the centre of nuclear mass and with thez
axis along the internuclear direction the non-relativistic Hamiltonian of a diatomic
molecule can be written as [53–57]:

Ĥtot = Ĥe + Ĥµ + Ĥvib + Ĥrot (2)

where the meaning of the various terms is as follows.Ĥe is the electronic Hamil-
tonian and is given by

Ĥe = −
~

2

2me

Ne
∑

i=1

∇i
2
+ V(r, ξi) (3)

whereV(r, ξi) is the Coulomb electrostatic interactions between all particles (elec-
trons and nuclei) and we indicated withr the internuclear coordinate and collec-
tively with ξi the full set of electron coordinates;Ĥµ is the mass-polarisation term
given by

Ĥµ = −
~

2

2mN

Ne
∑

i=1

Ne
∑

j=1

∇i · ∇ j (4)

wheremN is the total nuclear mass;̂Hvib is the vibrational kinetic energy operator
and is given by

Ĥvib = −
~

2

2µ
d2

dr2
(5)

whereµ is the reduced mass of the molecule.Ĥrot is the rotational Hamiltonian
and can be expressed in terms of the body-fixed rotational angular momentum
(AM) operator as

Ĥrot =
~

2

2µr2
R̂2. (6)
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In turn, the rotational AM can be expressed asR̂ = Ĵ − L̂ − Ŝ where Ĵ is the
total AM, L̂ is the electron orbital AM and̂S is the electron spin AM. The total
AM operatorĴ acts on the Euler angles (θ, φ, χ) relating the laboratory-fixed and
the body-fixed Cartesian frame and its expression can be found, e.g., in Ref. [53].
Introducing the ladder operatorŝJ± = Ĵx ± i Ĵy, Ŝ± = Ŝx ± iŜy andL̂± = Lx ± iLy

we can express the rotational Hamiltonian as

Ĥrot =
~

2

2µr2

[

(Ĵ2 − Ĵ2
z) + (L̂2 − L̂2

z) + (Ŝ2 − Ŝ2
z)+

+ (Ĵ+Ŝ− + Ĵ−Ŝ+) − (Ĵ+L̂− + Ĵ−L̂+) + (Ŝ+L̂− + Ŝ−L̂+)
]

. (7)

The approach used by Duo to solve the total rovibronic Schrödinger equa-
tion with the Hamiltonian (2) follows closely the standard coupled-surface Born-
Oppenheimer treatment [1, 58, 59]. It is assumed that one haspreliminary solved
the electronic motion problem with clamped nuclei

Ĥe|state,Λ,S,Σ〉 = Vstate(r)|state,Λ,S,Σ〉 (8)

for all electronic states of interest. The electronic wave functions depend on the
electron coordinatesξi and parametrically on the internuclear distancer and can
be labelled by total spinS = 0, 1/2, 1, . . ., projection ofL̂ along the body fixedz
axisΛ = 0,±1,±2, projection ofŜalong the body fixedzaxisΣ = 0,±1/2,±1, . . .
and by a further label ‘state’=1, 2, . . .which counts over the electronic curves. For
|Λ| ≥ 1 the spacial part of the electronic wave functions is doublydegenerate; we
choose the degenerate components|state,Λ,S,Σ〉 so that they satisfy the following
conditions [55]:

〈state,Λ,S,Σ|L̂z|state,Λ,S,Σ〉 = Λ, (9)

σ̂v(xz)|state,Λ,S,Σ〉 = (−1)s−Λ+S−Σ|state,−Λ,S,−Σ〉, (10)

whereσ̂v(xz) is the symmetry operator corresponding to a reflection through the
body-fixedxz-plane (parity operator) ands = 1 for |Σ−〉 states ands = 0 for all
other states.

Once the potential energy curvesVstate(r) have been obtained, for example
using anab initio quantum chemistry program, Duo solves the rotationless (J =
0) one-dimensional Schrödinger given by Eq. (1) separately for each electronic
curveVstate(r), producing a set of vibrational eigenvaluesEυ and vibrational wave
functions|state, υ〉, whereυ = 0, 1, . . . is the vibrational quantum number assigned
on the basis of the energy ordering; technical details on this step are given in
Section 2.1. A subset ofNυ(state) vibrational functions are selected to form a
basis set of rovibronic basis functions defined by

|state, J,Ω,Λ,S,Σ, υ〉 = |state,Λ,S,Σ〉|state, υ〉|J,Ω,M〉, (11)
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where|J,Ω,M〉 is a symmetric-top eigenfunction [53] (a function of the Euler an-
gles) and describes the overall rotation of the molecule as awhole,Ω = Λ+Σ and
M is the projection of the total angular momentum along the laboratory axisZ.
Only combinations ofΣ andΛ which satisfy|Ω| ≤ min(J, |Λ| + S) are selected in
the rovibronic basis set (11). The selection of vibrationalbasis functions to retain
can be made either by specifying an energy threshold (all vibrational states be-
low the threshold are retained) or by specifying a maximum vibrational quantum
numberυmax.

The rovibrational basis set (11) is used to solve the complete rovibronic Hamil-
tonian given by Eq. (2); this amounts to using an expansion inHund’s case (a)
functions to solve the coupled problem. In particular, the ladder operators ap-
pearing inĤrot couple rovibrational states belonging to different electronic states;
specifically, the non-vanishing matrix elements of the angular momentum opera-
tors in the rotational Hamiltonian (7) are given by the standard rigid-rotor expres-
sions [60]:

〈J,Ω|Ĵz|J,Ω〉 = Ω, (12)

〈J,Ω|Ĵ2|J,Ω〉 = J(J + 1), (13)

〈J,Ω ∓ 1|Ĵ±|J,Ω〉 =
√

J(J + 1)− Ω(Ω ∓ 1), (14)

while matrix elements of the spin operators between electronic wave functions
(omitting the ‘state’ label for simplicity) are given by

〈Λ,S,Σ|Ŝz|Λ,S,Σ〉 = Σ, (15)

〈Λ,S,Σ|Ŝ2|Λ,S,Σ〉 = S(S + 1), (16)

〈Λ,S,Σ ± 1|Ŝ±|Λ,S,Σ〉 =
√

S(S + 1)− Σ(Σ ± 1). (17)

(18)

The coupling rules for the Hamiltonian (7) are as follows; the first line in Eq. (7)
is the diagonal part of the rotational Hamiltonian, i.e. is non-zero only for∆S =
∆Σ = ∆Λ = 0. The term containinĝJ±Ŝ∓ is called S-uncoupling and is non-zero
for ∆S = 0;∆Σ = ±1;∆Λ = 0. The term containinĝJ±L̂∓ is called L-uncoupling
and is non-zero for∆S = 0;∆Σ = 0;∆Λ = ±1. Finally, the term containinĝS±L̂∓
is called spin-electronic and is non-zero for∆S = 0;∆Σ = ±1;∆Λ = ∓1.

Matrix elements of the orbital AM operatorŝL2
x + L̂2

y ≡ L̂2 − L̂2
z andL̂± when

averaged over the electronic wave functions give rise tor-dependent curves; these
can be computed byab initio methods [61] or estimated semi-empirically, for
example using quantum defect theory [62, 63].

The expectation value of the sum of the vibrational and the mass-polarisation
Hamiltonian using the electronic wave functions gives rise[58, 64] to the so-called
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Born-Oppenheimer diagonal correction (also called adiabatic correction), which
can be added to the Born-Oppenheimer PECVstate(r) if desired.

At this stage Duo builds the full Hamiltonian matrix in the basis of Eq. (11)
and using the Hamiltonian operator (2), possibly complemented by supplementary
terms such as spin-orbit coupling (see section 2.6 for a listof possible additional
terms to the Hamiltonian). The vibrational matrix elements

〈stateλ, υλ|F̂(r)|stateµ, υµ〉 (19)

for all operatorsF̂(r) including couplings, dipole moments, corrections etc. be-
tween different vibrational basis set functions are computed and stored; note that
in the equation above stateλ and stateµ indicate different electronic states ifλ , µ.

At this point a basis set transformation is carried out, fromthe basis given
by Eq. (11) to a symmetrized one in which the basis functions have well-defined
parity; parity (even or odd) is defined with respect to inversion of all laboratory-
fixed coordinates [55, 56, 65, 66] and is equivalent to the reflection operation
through the molecule-fixedxz plane,σ̂v(xz). The parity properties of the basis
functions of Eq. (11) are given by Kato [55]

σ̂v(xz)|state, J,Ω,Λ,S,Σ, υ〉 = (−1)s−Λ+S−Σ+J−Ω |state, J,−Ω,−Λ,S,−Σ, υ〉, (20)

wheres = 1 for |Σ−〉 states ands = 0 for all other states. The symmetrized basis
functions are symmetric (+) or antisymmetric (−) with respect to ˆσv(xz). Use of
the symmetrized basis set leads to two separate Hamiltonianblocks with defined
parities.

The two parity blocks are then diagonalized (see Section 2.8for technical
details), to obtain the final rovibronic eigenvaluesEJ,τ

λ and corresponding eigen-
functionsφJ,τ

λ , whereτ = ±1 is the parity quantum number,λ = 1, 2, . . . is a simple
counting index. The corresponding rovibronic wave function φJ,τ

λ can be written
as an expansion in the basis set (11)

φJ,τ
λ =

∑

n

CJ,τ
λ,n|n〉, (21)

where theCJ,τ
λ,n are expansion coefficients andn here is a shorthand index for the

basis set labels ‘state’,J, Ω, Λ, S, Σ, andυ:

|n〉 = |state, J,Ω,Λ,S,Σ, υ〉. (22)

As the notation above indicates, in the general case the onlygood quantum
numbers (i.e. labels associated with the eigenvalues of symmetry operators) are
the total angular momentum valueJ and the parityτ. Nevertheless, Duo ana-
lyzes the eigenvectors and assigns energy levels with the approximate quantum
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Table 1: Sample Duo energy output for AlO [47]. The energy is given in cm−1, and
the exact (J, n, parity) and approximate (state, v (υ), lambda (Λ), spin (S),
sigma (Σ), andomega (Ω)) quantum numbers. The final column contains labels
of the electronic states as given by the user and the separator || is to facilitate
selecting the energy entries in the program output.

J N Energy/cm State v lambda spin sigma omega parity

0.5 1 0.000000 1 0 0 0.5 0.5 0.5 + ||X2SIGMA+

0.5 2 965.435497 1 1 0 0.5 0.5 0.5 + ||X2SIGMA+

0.5 3 1916.845371 1 2 0 0.5 0.5 0.5 + ||X2SIGMA+

0.5 4 2854.206196 1 3 0 0.5 0.5 0.5 + ||X2SIGMA+

0.5 5 3777.503929 1 4 0 0.5 0.5 0.5 + ||X2SIGMA+

0.5 6 4686.660386 1 5 0 0.5 0.5 0.5 + ||X2SIGMA+

0.5 7 5346.116382 2 0 1 0.5 -0.5 0.5 + ||A2PI

0.5 8 5581.906844 1 6 0 0.5 0.5 0.5 + ||X2SIGMA+

0.5 9 6066.934830 2 1 1 0.5 -0.5 0.5 + ||A2PI

0.5 10 6463.039443 1 7 0 0.5 0.5 0.5 + ||X2SIGMA+

0.5 11 6778.997803 2 2 1 0.5 -0.5 0.5 + ||A2PI

0.5 12 7329.427637 1 8 0 0.5 0.5 0.5 + ||X2SIGMA+

0.5 13 7483.145675 2 3 1 0.5 -0.5 0.5 + ||A2PI

0.5 14 8159.170405 2 4 1 0.5 -0.5 0.5 + ||A2PI

0.5 15 8201.467744 1 9 0 0.5 0.5 0.5 + ||X2SIGMA+

0.5 16 8857.266385 2 5 1 0.5 -0.5 0.5 + ||A2PI

numbers ‘state’,υ,Λ, Σ, andΩ on the basis of the largest coefficient in the basis
set expansion (21). It should be noted that the absolute signs ofΛ andΣ are not
well defined, only their relative signs are. This is related to the symmetry prop-
erties of the eigenfunctions of the Hamiltonian (2), which are 50/50 symmetric
and antisymmetric mixtures of the|Λ,Σ〉 and | − Λ,−Σ〉 contributions. There-
fore the absolute value of the quantum numberΩ is required additionally in order
to fully describe the spin-electronic-rotational contribution. In situations where
some couplings are absent some approximate quantum numberscan become ex-
act; for example, in the absence of spin-orbit and spin-spininteractions the basis
functions (11) with different values of spinS do not interact and, hence,S be-
comes a “good” quantum number. As another example, without the presence of
3Σ− or 1Π states there is no mechanism for the ro-vibrational functions of a1Σ+

state to interact with other electronic states and therefore the corresponding eigen-
functions will have well defined values ofS = Σ = Λ = 0.

Table 1 gives an example of a Duo output with the energy term values com-
puted for the case of the first three electronic states,X 2Σ+, A 2Π, andB 2Σ+, of
AlO [47].

2.1. Solution of the uncoupled vibrational problem

The main method of solving the radial equation used by Duo is the so-called
sinc DVR (discrete variable representation); this method (or closely related ones)
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has been independently applied to the one-dimensional Schrödinger equation by
various authors [9, 10, 67, 68].

In this method ther coordinate is truncated to an interval [rmin, rmax] and dis-
cretized in a grid ofNp uniformly spaced pointsr i = rmin + i∆r (where i ∈
[0,Np − 1]) with grid step∆r = (rmax− rmin)/(Np − 1). The Schrödinger Eq. (1) is
then transformed to an ordinary matrix eigenvalue problem

(T + V)~ψυ = Eυ
~ψυ, (23)

whereT is the matrix representing the kinetic energy and is given inthe sinc
method by [68, 69]

Ti j =
~

2

2µ(∆r)2















π2

3 i = j

2(−1)i− j

(i− j)2 i , j
(24)

andV = diag[V(r0),V(r1), . . . ,V(rNp−1)] while the vector~ψυ contains the values
of ψ(r) at the grid points. The resultingNp × Np real symmetric matrixH is then
diagonalized (see section 2.8 for details). The sinc DVR method usually provides
very fast (faster than polynomial) convergence of the calculated energies and wave
functions with respect to the number of the grid points,Np. Figure 1a) shows the
convergence for threeJ = 0 energy levels of a Morse potential, showing a rate of
convergence approximately exponential with respect to thenumber of grid points.

Duo obtains all integrals over vibrational coordinates by summation over the grid
points:

∫ rmax

rmin

ψλ(r)F(r)ψµ(r) dr = ∆r
Np−1
∑

i=0

ψλ(r i)F(r i)ψµ(r i). (25)

The rectangle rule is simple and exponentially accurate forintegration over infinite
range of functions which decay fast (exponentially or faster) and which do not
have singularities in the complex plane close to the real axis [70]. We illustrate in
fig. 1 b) the quick convergence of matrix elements of the type〈0|(r − re)4|v〉 for a
Morse potential; analytical formulae for matrix elements of this kind are available
from the literature [71, 72] and were used to obtain exact reference values. In plot
1 b) it is apparent that the accuracy of matrix elements does not improve beyond a
certain value; for example, the matrix elements〈0|(r−re)4|10〉 always has less than
about 10 significant digits no matter how many points are used. This behaviour
is completely normal and expected when performing floating-point calculations
with a fixed precision; Duo uses double precision numbers with a machine epsilon
ε = 2× 10−16 [73] and the expected relative error due to the finite precision in the

9
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Figure 1: Illustrative examples of the fast convergence forenergies (plota)
and matrix elements (plotb) using the sinc DVR method; in both cases the
rate of convergence is approximately exponential with respect to the number of
grid points. Results are for a Morse potential which approximately models the
ground electronic state of the CO molecule,re = 1.1283 Å, De = 90674 cm−1,
ω = 2169.814 cm−1 with atomic masses for carbon and oxygen. A uniformly
spaced grid was used, keeping fixedrmin = 0.7 Å, rmax = 2.0 Å. In plot a) we
show absolute errors for thev = 1, v = 15 andv = 30 energy levels; in plotb) we
show relative errors of matrix elements of the type〈0|(r − re)4|v〉; the flattening of
the error for large numbers of grid points is due to the numerical error present in
floating point calculations (see text).
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sum given by eq. (25) is given by, indicating withS the value of the sum performed
with infinite accuracy and witĥS the value obtained with finite accuracy:

|S − Ŝ|
S

≈ εNp

∑

i |ψλ(r i)F(r i)ψµ(r i)|
|(
∑

i ψλ(r i)F(r i)ψµ(r i))|
(26)

The expression above implies that whenever the matrix element of a functionF
comes out very small with respect to the value of|F | significant digits will be lost;
there are techniques such as Kahan compensated summation [73] which reduce
the error above by a factorNp but these have not been implemented at this time.

A prime example of this situation if given by the line intensities of very high
vibrational overtones; in a recent study Medvedev et al. [74] observed that matrix
elements of the type|〈0|µ(r)|v〉| for the CO molecule when computed with double
precision floating-point arithmetic decrease approximately exponentially (as ex-
pected on the basis of theoretical models and as confirmed by quadruple precision
calculations) forv . 25, when they reach the value of about 10−15 D. This situa-
tion is fully expected on the basis of the considerations above but it should never
constitute a problem in practice.

Apart from the sinc DVR, Duo implements finite-difference (FD) methods for
solving the uncoupled vibrational problem, where the kinetic energy operatorT in
Eq. (23) can be approximated using, for example, a 5-point central FD5 formulae:

Ti j =
~

2

2µ(∆r)2



















5/2 i = j,
−4/3 |i − j| = 1,
1/12 |i − j| = 2.

(27)

and furthermore withT1 1 = TNpNp = 29/12. Note that the expression above gives
incorrect results for the first two and last two grid points, but this does not matter
as long as the grid truncation parametersrmin andrmax are chosen so thatψυ ≈ 0
near the borders of the grid.

The formulae (27) lead to a symmetric pentadiagonal banded matrix, which
can in principle be diagonalized more efficiently than a generic dense matrix.
However, the convergence of the eigenvaluesEυ is much slower, with error de-
creasing as (∆r)4 instead ofe−α/(∆r).

2.2. Levels lying close to dissociation

A general requirement for convergence is that both the innerand the outer
grid truncation valuesrmin and rmax should be chosen such thatVstate(rmin) and
Vstate(rmax) are both much larger thanEυ. A problem arises when one is trying to
converge states very close to the dissociation limit, as such loosely bound states
can extend to very large values ofr and therefore require an excessive number of
points when a uniformly spaced grid is used; this is illustrated in fig. 2.
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Figure 2: Illustrative example of the effect of the outer grid truncation parameter
rmax on energy levels close to dissociation. Data are relative toa Morse potential
with De = 12728.237432 cm−1, ωe = 1751.124844 cm−1, re = 1 Å, µ = 1 Da.
This potential supports 15 bound states (v = 0 to v = 14) and we consider in
this example the three highest-energy ones, with energiesE12 = −250.7130 cm−1,
E13 = −65.2068 cm−1, E14 = −0.1000 cm−1. In all calculation we fixedrmin =

0.1 Å and the grid step∆r to 0.05 Å. The dotted vertical lines are the outer turning
points for the three states, i.e. the pointsrout such thatV(rout) = Ev; the error
in the computed energy levels is expected to decrease exponentially whenrmax >

rout. The plot shows that to converge the last energy levelE14 a very largermax

is required, which in turn leads to a large number of grid points when they are
uniformly spaced. Specifically, to convergeE12 to 10−6 cm−1 it is sufficient to
choosermax > 6 Å, leading to 120 points; forE13 we needrmax > 9 Å and 180
points; forE14 we needrmax > 90 Å and 1500 points.
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Excited states of alkali diatoms such as Li2 [75], Na2 [76] or K2 [77] constitute
an important class of systems for which largermax are needed; such systems are
prime choices for studies of ultracold atoms and molecules [78] and often require
grids extending up to several tens [75, 76] or even hundreds [77] of Angstroms.

In such cases it may be beneficial to use a non uniform grid; Duo implements
the adaptive analytical mapping approach of Meshkovet al [79] and offers several
mapping choices, which are described in the manual. However, at this time sup-
port for non uniform grids should be considered experimental and they cannot be
used in combination with the sinc DVR method but only with theless efficient 5-
point finite-difference one. Indicatively we recommend considering non-uniform
grids only whenrmax is required to be larger than≈ 50 Å.

2.3. States beyond the dissociation limit
Potential curves with local maxima higher than the dissociation limit of the po-

tential forr → +∞ may support shape resonances, i.e. metastable states in which
the two atoms are trapped for a finite time in the potential well but eventually
dissociate. Such states are also known as quasibound or tunnelling predissocia-
tion states. ForJ > 0 the rotational potential will practically always introduce
such a maximum, and the corresponding quasibound levels areknown as orbiting
resonances or rotationally predissociating states, see fig. 3 a) for an example.

Several techniques have been developed to deal with quasibound states, most no-
tably in the context of diatomic molecules by Le Roy and co-workers [80–88]. At
the moment Duo does not provide any explicit functionality to treat quasibound
states, although we plan to rectify this deficiency in futureversions.

Nevertheless, long-lived quasibound states (i.e., narrowresonance) can be
identified using the present version of Duo by using the so-called stabilization
method [89–94]. In one version of this approach energy levels are computed for
increasing values of the outer grid truncationrmax and then plotted as function of
rmax; quasibound states manifests themselves by being relatively stable with re-
spect to increase ofrmax and undergo a series of avoided crossings, see fig. 3b)
for an example. From an analysis of these curves it is also possible to compute
the lifetime of the quasibound state [93].

2.4. Printing the wave functions
Both theJ = 0 vibrational basis functions|state, v〉, see eq. (11), and the final

(J > 0, electronically coupled or both) rovibronic wave functions coefficientsCJ,τ
λ,n,

see eq. (21), can be written to a file for further analysis, e.g. for plotting purposes
or for the computation ofg factors; see the manual for details.
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Figure 3: Example of a quasibound, orbiting resonance state. Plot a): Morse
potential forJ = 0 andJ = 30 (same parameters as in fig. 2); the potential for
J = 30 has a local maximum higher than the dissociation limitDe and supports
one quasibound state with energyE =11 931.1 cm−1. Plot b): eigenvalues for
E > De as a function of the outer grid truncationrmax. The quasibound state
manifests itself as a series of avoided crossings.
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2.5. Convergence of rotationally excited states
In our approachJ > 0 calculations are performed using a basis expansion in

terms of theJ = 0 wave functions. As a guideline it was found by numerical
experimentation that in order to obtain converged results for rotationally excited
states up toυmax one has to use a vibrationalJ = 0 basis set of size only slightly
larger thanυmax and that a reasonable minimum value for the size of the vibrational
basis set is given by 1.25×υmax+2. For example, to converge rotationally excited
levels up tov = 30 it should be sufficient to use a vibrational basis set of size 40.

2.6. Additional terms in the Hamiltonian
Duo supports the inclusion of a number of terms additional to thenon-relativistic

Hamiltonian (2) caused by spin-orbit̂HSO, spin-rotationalĤSR, spin-spinĤSS and
Λ-doublingĤLD interactions [55, 95–99]:

1. The Breit-Pauli spin-orbit operator̂HSO [99–102] has non-zero matrix ele-
ments between electronic states obeying the following coupling rules [95]:
∆S = 0,±1;∆Λ = 0,±1;∆Ω = 0; if ∆S = 0 andΣ′ = Σ′′ = 0 the matrix el-
ements is zero (this last rule implies that singlet-to-singlet matrix elements
are zero);Σ+ electronic states may have non-zero matrix elements withΣ−

states butΣ± ↔ Σ± matrix elements are zero; finally, in case of homonuclear
diatomics, onlyg↔ g andu↔ u matrix elements are non-zero.
The diagonal SO matrix elements〈Λ,S,Σ|ĤSO|Λ,S,Σ〉 determine the spin-
orbit splitting of a multiplet2S+1Λ, whereS > 0 andΛ > 0. Both diagonal
and off-diagonal matrix elements of the spin-orbit Hamiltonian can be ob-
tained as functions ofr using quantum chemistry programs.

2. The nonzero diagonal and off-diagonal matrix elements of̂HSR operator are
given by

〈Λ,S,Σ|ĤSR|Λ,S,Σ〉 =
~

2

2µr2
γSR(r)

[

Σ2 − S(S + 1)
]

, (28)

〈Λ,S,Σ|ĤSR|Λ,S,Σ ± 1〉 = ~
2

4µr2
γSR(r) [S(S + 1)− Σ(Σ ± 1)]1/2

× [J(J + 1)− Ω(Ω ± 1)]1/2 (29)

whereγSR(r) is a dimensionless function ofr.
3. The diagonal matrix elements of thêHSS operator are taken in the phe-

nomenological form

〈Λ,S,Σ|ĤSS|Λ,S,Σ〉 =
2
3
λSS(r)

[

3Σ2 − S(S + 1)
]

(30)

BothγSR(r) andλSS(r) functions can be obtained eitherab initio or empiri-
cally.
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4. The lambda-doubling (LD) couplings for a2S+1Π state in theΛ-representation
(Eq. (11)) are of the following three types [98]:

ĤLD =
1
2
α LD

opq(r)
(

Ŝ2
+ + Ŝ2

−

)

−
1
2
αLD

p2q(r)
(

Ĵ+Ŝ+ + Ĵ−Ŝ−
)

+
1
2

qLD(r)
(

Ĵ2
+ + Ĵ2

−

)

,

(31)
whereαLD

opq andαLD
p2q are related to the conventional terms as given by Brown

and Merer [98]:

αLD
opq = oLD + pLD + qLD

αLD
p2q = pLD + 2qLD . (32)

5. It is now well-established that, at least for1Σ states, the small shifts to en-
ergy levels due to non-adiabatic interactions with remote states (as opposed
to near-degenerate ones) can be accurately modelled by modifying the vi-
brational and rotational energy operators in the Hamiltonian [64, 103–107];
specifically, the vibrational energy operator in Eq. (5) is replaced by

− ~
2

2µ
d
dr

(1+ β(r))
d
dr

(33)

while the rotational kinetic energy operator~2/2µr2 in Eq. (7) should be
replaced by

~
2

2µr2
(1+ α(r)) . (34)

The functionsα(r) andβ(r) are sometimes referred to as Born-Oppenheimer
breakdown (BOB) curves [108] and can also be interpreted as introducing
position-dependent vibrational and rotational masses; they are sometimes
expressed in terms of the dimensionlessg-factor functionsgv and gr by
α(r) = (me/mp)gr(r) andβ(r) = (me/mp)gv(r). The rotationalgr function
can be determined experimentally by analysis of the Zeeman splitting of
energy levels due to an external magnetic field [109].

2.7. Representation of the couplings

Duo assumes that the coupling matrix elements and the transition dipole mo-
ments are given in the representation of the basis functions(11) corresponding to
Hund’s case (a). In this representation theL̂z component is diagonal and has
a signed valueΛ (see Eq.(13)) and therefore it will be referred to as theΛ-
representation. It can be shown that by choosing appropriate phase factors for
the electronic wave functions|state,Λ,S,Σ〉 all coupling matrix elements in the
Λ-representation can be made real; note that in this representation the electronic
wave functions are complex numbers, as they contain a factorof the kindeiΛφ,
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whereφ is the angle corresponding to rotation around thezaxis [65]. On the other
hand quantum chemistry programs such as Molpro [110] normally work with real
wave functions and consequently compute matrix elements inthis representation,
which we call Cartesian as the electronic wave functions areultimately expressed
in terms of atom-centred Cartesian components [100]|x〉, |y〉, |z〉, |xy〉 etc.

Duo can accept input in either the Cartesian or theΛ-representation. For the
Cartesian-representation Duowill then transform these inputs to theΛ-representation
as follows:

| ± Λ〉 =
[

C±|Λ|1 |1〉 +C±|Λ|2 |2〉
]

, (35)

where 1 and 2 denote Cartesian componentsx, y, z, xy, . . . that correspond to the
A1, B1 andA2, B2 Abelian point group symmetries, respectively.CΛα are the ele-
ments of the unitary transformation from the Cartesian to the Λ-representation.
The obvious way to reconstruct this transformation is to diagonalize the Carte-
sian representation of thêLz matrix. Thus the transformed matrix elements in the
Λ-representation are given by

〈ΛΣ|Â|Λ′Σ′〉 =
∑

α,β=0,1,2

(CΛα )∗CΛ
′

β 〈αΣ|Â|βΣ′〉 (36)

or, in tensorial formÂDuo = Ĉ†ÂĈ whereα = β = 0 correspond to a2S+1Σ (Λ = 0)
electronic state withC0

0 = 1.
In principle all Cartesian matrix elements〈αΣ|Â|βΣ′〉must be provided to per-

form the transformation in Eq. (36). However, by means of thecoupling rules all
non-zero matrix elements〈αΣ|Â|βΣ′〉 can be related to only one, non-zero refer-
ence matrix element. For example, the matrix element〈Λ = Σ = 0|HSO|Λ′ = Σ′ =
±1〉 between1Σ and3Π is zero because it corresponds to a simultaneous change
of Λ andΣ by ±1. This property together with the help of Eq. (35) allows oneto
use the non-zero spin-orbit matrix elements〈0,Σ = 0|HSO|2,Σ = 1〉 as a reference
and to reconstruct all other non-zero Cartesian component by

〈0,Σ = 0|HSO|1,Σ = 1〉 = −
C2

C1
〈0,Σ = 0|HSO|2,Σ = 1〉, (37)

as required for Eq. (36).
Off-diagonal matrix elements of the various operators included into our model,

i.e. the various couplings between electronic states, are subject in actual calcula-
tions to arbitrary changes of sign due to the sign indeterminacy of the electronic
wave functions computed at different geometries. Often the phases of eachab
initio couplingF(r) have to be post-processed in order to provide a consistent,
smooth function ofr. It is important that the relative phases between different
elements preserved. This issue is illustrated graphicallyby Patrascu et al. [47],
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where differentab initio coupling curves of AlO obtained with Molpro were pre-
sented. Transition dipole moment functions, discussed in the next section, also
may exhibit phase changes [111], which should be corrected using the same phase
convention used for other matrix elements [47].

2.8. Computational considerations
Duo uses the matrix diagonalization routines DSYEV or, optionally, DSYEVR

from the LAPACK library [112]. The subroutine DSYEVR uses the multiple rel-
atively robust representations algorithm and is expected to be faster than DSYEV,
which is based on the QR algorithm [113, 114]; however, the current version of
DSYEVR is poorly parallelized and therefore not recommended for parallel envi-
ronments.

The dimension of the final rovibrational Hamiltonian matrixdepends on the
number of vibrational functions selected, the number of electronic states present,
the spin multiplicities of the electronic states and theJ quantum number. For ex-
ample, forN electronic states,Nυ vibrational functions are retained for each of
them and denoting withm the average spin multiplicity, the size of the Hamil-
tonian matrix is approximately given byN × Nυ × m and the size of theτ = ±
parity matrix to be diagonalized is half of this value. The size of each block of the
Hamiltonian reaches dimensions of the order of a thousand only for rather com-
plicated cases (e.g.,N = 10,Nυ = 40 andm= 5) and consequently the time taken
to compute the energy levels for a givenJ is usually only a small fraction of a
second.

3. Line intensities and line lists

The Einstein coefficientAf i (in 1/s) for a transitionλ f ← λi is computed as

Af i =
64× 10−36π4

3h
(2Ji + 1) ν̃3

∑

t=−1,0,1

∣

∣

∣

∣

∣

∣

∣

∣

∑

ni ,nf

(

C
Jf ,τ f

λ f ,nf

)∗
CJi ,τi
λi ,ni

(38)

(−1)Ωi

(

Ji 1 Jf

Ωi t −Ω f

)

〈υ f |µ̄ f ,i
t (r)|υi〉

∣

∣

∣

∣

∣

∣

2

, (39)

whereµ̄t (t = −1, 0, 1) are the electronically averaged body-fixed components of
the electric dipole moment (in Debye) in the irreducible representation

µ̄0 = µ̄z; µ̄±1 = ∓ 1
√

2
(µ̄x ± iµ̄y), (40)

and the indexn is defined by Eq. (22). The vibrationally averaged transition dipole
moments〈υ f |µ̄ f ,i

t (r)|υi〉 are computed using the vibrational wave functions|υ〉 ≡
ψυ(r) .
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The absorption line intensity is then given by

I ( f ← i) =
gns(2Jf + 1)Af i

8πcν̃2

e−c2Ẽi/T
(

1− e−c2ν̃i f /T
)

Q(T)
, (41)

whereQ(T) is the partition function defined as

Q(T) = gns

∑

i

(2Ji + 1)e−c2Ẽi/T , (42)

gns is the nuclear statistical weight factor,c2 = hc/kB is the second radiation con-
stant,Ẽi = Ei/hc is the term value, andT is the temperature in K. For heteronu-
clear moleculesgns is a total number of combinations of nuclear spins as given
by gns = (2Ib + 1)(2Ia + 1), whereIa andIb are the corresponding nuclear spins.
For a homonuclear molecules, these combinations are distributed among the four
symmetries+s, −s, +a, −a, where+/− is the parity of the molecule with respect
to σv ands/a is the property of the total rovibronic wave function to be symmet-
ric/asymmetric upon upon inversion [55]. In the representationof C2v point group
symmetry, this corresponds toA1, A2, B1, andB2. Thus, for the caseI ≡ Ia = Ib

two different valuesgns are necessary and these depend on whether the nuclei are
fermions (I is half-integer) or bosons (I integer) [115, 116]:

gns =















1
2

[

(2I + 1)2 − (2I + 1)
]

, Fermi, s and Bose, a
1
2

[

(2I + 1)2 + (2I + 1)
]

, Fermi, a and Bose, s.
(43)

For example, carbon12C hasI = 0 and therefore for the C2 moleculegns are 1 for
A1, A2 and 0 forB1, B2 states, respectively.

The computed EinsteinA coefficients can be used to compute radiative life-
times of individual states and cooling functions in a straightforward manner [117].

3.1. Line list format
A line list is defined as a catalogue of transition frequencies and intensities

[118]. In the basic ExoMol format [118], adopted by Duo, a line list consists of
two files: ‘States’ and ‘Transitions’; an example for the molecule AlO is given
in Tables 2 and 3. The ‘States’ file contains energy term values supplemented
by the running numbern, total degeneracygn, rotational quantum numberJn (all
obligatory fields) as well as quantum numbersυ, Λ, parity (±), Σ,Ω and the elec-
tronic state label (e.g.X2Sigma+). The ‘Transitions’ file contains three obligatory
columns, the upper and lower state indexesnf andni which are running numbers
from the ‘State’ file, and the Einstein coefficientAf i. For the convenience we also
provide the wavenumbers ˜νi f as the column 4. The line list in the ExoMol format
can be used to simulate absorption or emission spectra for any temperature in a
general way. Note that ExoMol format has recently been significantly extended
[119] but structure of the States and Transitions file has been retained.
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Table 2: Extract from the output ‘State’ file produced by Duo for the 27Al 16O
molecule [48].

n Ẽ g J +/− e/ f State υ |Λ| |Σ| |Ω|
1 0.000000 12 0.5 + e X2SIGMA+ 0 0 0.5 0.5
2 965.435497 12 0.5 + e X2SIGMA+ 1 0 0.5 0.5
3 1916.845371 12 0.5 + e X2SIGMA+ 2 0 0.5 0.5
4 2854.206196 12 0.5 + e X2SIGMA+ 3 0 0.5 0.5
5 3777.503929 12 0.5 + e X2SIGMA+ 4 0 0.5 0.5
6 4686.660386 12 0.5 + e X2SIGMA+ 5 0 0.5 0.5
7 5346.116382 12 0.5 + e A2PI 0 1 0.5 0.5
8 5581.906844 12 0.5 + e X2SIGMA+ 6 0 0.5 0.5
9 6066.934830 12 0.5 + e A2PI 1 1 0.5 0.5

10 6463.039443 12 0.5 + e X2SIGMA+ 7 0 0.5 0.5
11 6778.997803 12 0.5 + e A2PI 2 1 0.5 0.5
12 7329.427637 12 0.5 + e X2SIGMA+ 8 0 0.5 0.5
13 7483.145675 12 0.5 + e A2PI 3 1 0.5 0.5
14 8159.170405 12 0.5 + e A2PI 4 1 0.5 0.5
15 8201.467744 12 0.5 + e X2SIGMA+ 9 0 0.5 0.5
16 8857.266385 12 0.5 + e A2PI 5 1 0.5 0.5
17 9029.150380 12 0.5 + e X2SIGMA+ 10 0 0.5 0.5
18 9535.195842 12 0.5 + e A2PI 6 1 0.5 0.5
19 9854.882567 12 0.5 + e X2SIGMA+ 11 0 0.5 0.5
20 10204.019475 12 0.5 + e A2PI 7 1 0.5 0.5
21 10667.668381 12 0.5 + e X2SIGMA+ 12 0 0.5 0.5
22 10864.560220 12 0.5 + e A2PI 8 1 0.5 0.5
23 11464.897083 12 0.5 + e X2SIGMA+ 13 0 0.5 0.5
24 11519.212123 12 0.5 + e A2PI 9 1 0.5 0.5
25 12156.974798 12 0.5 + e A2PI 10 1 0.5 0.5
26 12257.694655 12 0.5 + e X2SIGMA+ 14 0 0.5 0.5
27 12793.671660 12 0.5 + e A2PI 11 1 0.5 0.5
28 13030.412255 12 0.5 + e X2SIGMA+ 15 0 0.5 0.5
29 13421.583651 12 0.5 + e A2PI 12 1 0.5 0.5
30 13790.933964 12 0.5 + e X2SIGMA+ 16 0 0.5 0.5

n: State counting number.
Ẽ: State energy in cm−1.
g: State degeneracy.
J: Total angular momentum.
+/−: Total parity.
e/ f : Rotationless parity.
State: Electronic state label.
υ: State vibrational quantum number.
Λ: Absolute value ofΛ (projection of the electronic angular momentum).
Σ: Absolute value ofΣ (projection of the electronic spin).
Ω: Absolute value ofΩ = Λ + Σ (projection of the total angular momentum).20



Table 3: Sample extracts from the output ‘Transition’ files produced by Duo for
the27Al 16O molecule [48].

nf ni Af i ν̃ f i

173 1 4.2062E-06 1.274220
174 1 1.3462E-02 966.699387
175 1 1.3856E-02 1918.099262
176 1 9.7421E-03 2855.450672
177 1 1.2511E-06 3778.740157
178 1 1.1544E-02 4687.891466
179 1 6.7561E+02 5346.110326
180 1 4.1345E+00 5583.130067
181 1 2.4676E+03 6066.924557
182 1 3.5289E+01 6464.257469
183 1 4.6960E+03 6778.981670
184 1 1.9771E+02 7330.641321
185 1 6.1540E+03 7483.122722
186 1 4.8062E+03 8159.737396
187 1 1.9401E+03 8202.080179

nf : Upper state counting number.
ni: Lower state counting number.
Af i: Einstein-A coefficient in s−1.
ν̃ f i: Transition wavenumber in cm−1 (optional).
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4. Inverse problem

The inverse problem consists in finding the potential energyand coupling
curves which best reproduce a given set of energy levels,E(obs)

i , or frequencies
(i.e., differences between energy levels), typically extracted from experiment. In
the following we will call this optimization processempirical refinement.

4.1. Implementation

The refinement problem can be formulated as a non-linear least-squares prob-
lem where one seeks to minimize the objective function [120]:

F =
∑

i

[

E(obs)
i − E(calc)

i (an)
]2

wi , (44)

whereE(calc)
i (an) are the calculated energies or frequencies and implicitlydepend

on the parametersa1, a2, . . . defining the potential and coupling curves. Thewi > 0
are weighting factor assigned to each value and may be chosenas 1/σ2

i whereσi

is the experimental uncertainty ofE(obs)
i . The input weights are automatically

renormalized by Duo so that
∑

i wi = 1.
Duo uses the non-linear conjugate gradient method for the optimization; in

particular, the linearized least-square problem is solvedby default using the LA-
PACK subroutine DGELSS, although the alternative built-insubroutine LINUR
is also available. For each curve appearing in Duo it is possible to specify if any
given parameter should be refined (fitted) or should be kept fixed to the value
given in the input file. The first derivatives with respect to the fitting parameters
an required for the non-linear least squares are computed using finite differences
with a step size∆an taken as 0.1% of the initial valuesan or 0.001 ifan is initially
zero.

4.2. Constrained minimization

In order to avoid unphysical behaviour and also to avoid problems when the
amount of experimental data provided is insufficient for determining all the param-
eters, the shapes of the curves can be contrained to be as close as possible to some
reference curves provided in the input (typicallyab initio ones) [28, 121–123].
This is done by including into the fitting objective functionnot only differences of
the computed energy levels but also differences between the refined curvesVλ,(calc)

and the reference onesVλ,(ref) as follows:

F =
∑

i

(E(obs)
i − E(calc)

i )2wen
i +

∑

λ

dλ
∑

k

(Vλ,(ref)
k − Vλ,(calc)

k )2wλ
k, (45)

whereλ refers to theλ-th curve,k counts over the grid points,wλ
i are the cor-

responding weight factors of the individual points normalized to one anddλ are
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further weight factors defining the relative importance of the corresponding curve.
The weights in Eq. (45) are normalized as follows:

∑

i

wen
i +

∑

λ

∑

k

dλw
λ
k = 1. (46)

When minimizing the functional given by Eq. (45) it is important to control the
correctness of the match between the experimental and theoretical levels as they
appear in the corresponding observed (‘obs.’) and calculated (‘calc.’) lists. It is
typical in complex fits involving close-lying electronic states that the order of the
computed energy levels in a (J, τ) block changes during the empirical refinement.
In order to follow these changes and update the positions of the experimental val-
ues in the fitting set, we use the quantum numbers to identify the corresponding
quantities by locking to their initial values. Since the experimentally assigned
quantum numbers may not agree with the ones used by Duo— which are based
on Hund’s casea) — each experimental energy level (or frequency)E(obs)

i is au-
tomatically labelled by Duo with the following quantum numbers:J, parityτ(±),
‘state’,υ, |Λ|, |Σ| and|Ω|; this set of six quantum numbers is then used for match-
ing with a calculated counterpartE(calc)

i . Note that only the absolute values ofΛ,
Σ andΩ are used for this purpose, as their sign is undefined in the general case.

4.2.1. Morphing
The curves to be refined can also be ‘morphed’ [47, 124, 125] byscaling them

by a functionH(r), so that the refined functionF(r) at a given grid pointr i is given
by

F(r i) = H(r i)F
initial (r i), (47)

whereFai(r i) is initial function specified in the input file (e.g., obtained byab initio
methods). For this kind of empirical refinement the curvesFai do not necessarily
have to be specified by a parametrised analytical form but canalso be provided as
a spline interpolant as described in Section 5.2.

The morphing functionH(r) is typically represented by a simple polynomial,
see Patrascu et al. [47] for an example. The morphing approach is an alternative
way of constraining the refined properties to the reference curve and is especially
useful when experimental information is sparse.

5. Types of functional forms

5.1. Analytical representations
A number of functional forms are currently available in Duo to specify r-

dependent curves (e.g., potential energy curves, dipole moment curves) as parametrised
analytical functions. In the followingTe will represent the value of the potential
at the equilibrium geometryre.
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1. Expansion in Dunham variables [126]:

V(r) = Te + a0 y2
D(r)















1+
∑

i≥1

aiy
i
D(r)















, (48)

where
yD(r) =

r − re

re
.

2. Taylor polynomial expansion:

V(r) = Te +
∑

i≥0

ai (r − re)
i . (49)

3. Simons-Parr-Finlan (SPF) [127, 128] expansion:

V(r) = Te + a0y
2
SPF(r)
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i
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


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



, (50)

where
ySPF(r) =

r − re

r
.

4. Murrell-Sorbie (MS) [129]:

V(r) = Te + (Ae − Te)e
−a(r−re)















1+
∑

i≥1

ai(r − re)
i















,

whereAe is the asymptote ofV(r) at r → +∞ relative to
Te of the lowest electronic state, related to the commonly useddissociation
energy of the given electronic stateDe = Ae − Te.

5. Chebyshev polynomial expansion [130, 131]:

V(r) = [Te + De] −
∑

i=0 aiTk(yp)

1 + (r/rref)
n , (51)

in which n is a positive integer andTk(y) are the Chebyshev polynomials
of the first kind defined in terms of the reduced variableyp(r) ∈ [−1, 1] :

yp(r; rmin, rref) =
r p − r p

ref

r p + r p
ref − 2r p

min

(52)

with p as the fixed parameter. This form guarantees the correct long-range
(LR) behaviour atr →∞:

V(r)→ uLR(r) =
∑

n

Cn

rn
(53)

where theCn are the long-range coefficients.
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6. Perturbed Morse Oscillator (PMO) [132–137]:

V(r) = Te + (Ae − Te)y
2
M +

∑

i=1

aiy
i+2
M , (54)

where
yM = 1− exp(−β(r − re) .

Whenai = 0 the form reduces to the Morse potential, otherwise the asymp-
totic value of the potential isAe +

∑

i ai.
7. Extended Morse Oscillator (EMO) [138, 139]:

V(r) = Te + (Ae − Te)
(

1 − exp{−βEMO(r)(r − re)}
)2
, (55)

which has the form of a Morse potential with a exponential tail and a distance-
dependent exponent coefficient

βEMO(r) =
∑

i=0

aiy
eq
p (r)i , (56)

expressed as a power series in the reduced variable [140]:

yeq
p (r) =

r p − r p
e

r p + r p
e
. (57)

8. Morse Long-Range (MLR) function [23, 34, 139, 141]:

V(r) = Te + (Ae − Te)

(

1− uLR(r)
uLR(re)

exp
{

−βMLR(r)yeq
p (r)

}

)2

, (58)

where the radial variableyeq
p in the exponent is given by Eq. (57), the long-

range potentialuLR(r) by Eq. (53) while the exponent coefficient function

βMLR(r) = yref
p (r) β∞ +

[

1− yref
p (r)

]
∑

i=0

ai[y
ref
q (r)] i (59)

is defined in terms of two radial variables which are similar to yeq
p , but are

defined with respect to a different expansion centrerref, and involve two
different powers,p and q. The above definition of the functionβMLR(r)
means that:

βMLR(r → ∞) ≡ β∞ = ln[2De/uLR(re)]. (60)

9. Šurkus-polynomial expansion [140]:

V(r) = Te + (1− yeq
p )

∑

i≥0

ai[y
eq
p ] i + yeq

p ainf , (61)

whereyeq
p is theŠurkus variable (57) andainf is the asymptote of the poten-

tial at r → ∞.
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10. Šurkus-polynomial expansion with a damping function [140]:

V(r) = Te +








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(1− yeq
p )
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ai[y
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
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









f damp+ tdamp(1− f damp), (62)

where the damping function is defined by

f damp= 1− tanh[α(r − r0)],

andtdamp, r0 andα are parameters.

5.2. Numerical representations
Any r-dependent curveF(r) can be specified as a list of data points{rk, F(rk)}, k =

1, . . . ,Np for a range of geometries. Duowill then automatically interpolate or ex-
trapolate the data points whenever necessary. The interpolation within the speci-
fied range is performed either by using cubic or quintic splines. More specifically,
Duo uses natural cubic splines in the form given in Ref. [142] or natural quin-
tic splines based on an adaptation of the routine QUINAT [143, 144]. Quintic
splines are used by default, as they generally provide quicker convergence of the
interpolant with respect to the number of points given; however, they may lead
to spurious oscillations between the data points, especially for non-uniform grids.
The number of data points should be≥ 4 for cubic splines and≥ 6 for quintic
splines. It is sometimes useful to interpolate a transformed set, such as (r i , r2

i Fi)
or (1/r i, Fi), see, for example, Refs. [145, 146] or the discussion by Lodi [147];
this feature is not yet implemented in Duo.

When necessary curves are extrapolated at short range (i.e., in the interval
[rmin, r1]) using one of the following functional forms:

f1(r) = A+ B/r, (63)

f2(r) = Ar + Br2, (64)

f3(r) = A+ Br, (65)

where the constantsA andBare found by requiring that the functionsfi go through
the first two data points. By default the functional formf1 is used for potential
energy curves, formf2 is used for the transition dipole moments and formf3
(linear extrapolation) for all other curves (for example spin-orbit couplings). The
default choices should be appropriate in most cases.

Similarly, whenever necessary curves are extrapolated at long range (i.e., in
the interval [rNk, rmax]) by fitting the last two data points to

f4(r) = A+ B/r6 (66)

f5(r) = A+ Br, (67)

f6(r) = A/r2 + B/r3. (68)
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These functional forms were chosen to describe the behaviour at long ranges of
the potential energy curves [f4(r)], of the curves corresponding to the electronic
angular momentaLx(r), Ly(r), L±(r) [ f5(r)]; for all other cases (including transi-
tion dipole moment) the functional formf6 is assumed. Note that formf4(r) is
appropriate in many but by no means in all cases, see ref. [148] for details on the
the asymptotic behaviour of the potential energy curves at larger.

Similarly, Ref. [149] discusses the asymptotic forms of molecular (diagonal)
dipole functions and states the correct limits have the formA + Brm with m = 3
or 5 for r → 0 andA+ B/rm with m= 4 or 7 forr → ∞ so that our extrapolation
forms do not have the correct asymptotic forms. Nevertheless usually extrapola-
tion is performed quite far from the aymptotic region so thatusing the theoretically
correct form is not required nor, indeed, beneficial in such cases.

It should be noted that the extrapolation procedures described introduce a
small discontinuity in the first derivatives at the switching pointsr1 or rNp. In some
situations these artifacts could become important, e.g. for very loosely bound
states such as those discussed in section 2.2. In such cases it is recommeded to
use an analytical representation for the potential with an appropriate long-range
behaviour, e.g. the Morse long-range form given by Eq. (58).

6. Program inputs and structure

The Duo calculation set up is specified by an input file in the plain text (ASCII)
format. The input contains the specifications of the relevant terms of the Hamil-
tonian (i.e., the potential energy and coupling curves), dipole moment curves as
well as options determining the method used for the solution, convergence thresh-
olds etc. Different couplings, corrections or tasks are switched on by adding the
corresponding section to the input file, i.e. without any alternation of the code.
The input is controlled by keywords and makes use of Stone’s input parser [150].
All keywords and options are fully documented in the manual provided along with
the source code. The structure of the program is illustratedin Fig. 4.

In addition to the program source code and the manual, we alsoprovide make-
files for various Fortran 2003 compilers as well as a set of four examples with
sample inputs and corresponding outputs. These examples comprise (a) a very
simple test based on numerical solution of a single Morse potential, (b) a fit of a
single2Π state to observed energies based on a recent study of the PS molecule
[151], (c) a fit of a single3Σ− based on a recent study of the PH molecule [151],
and (d) calculation of the spectrum of ScH involving 6 electronic states based on
recent study [49]; the output files in this case are given in ExoMol format [118].
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Figure 4: Duo program structure.

These examples only consider low levels of rotational excitation,J, to make them
fast to run.

7. Conclusion

Duo is a highly flexible code for solving the nuclear motion problem for di-
atomic molecules with non-adiabatically coupled electronic states. It can sim-
ulate pure rotational, ro-vibrational and rovibronic spectra using an entirelyab
initio input from electronic structure calculations or semi-empirical data. The
latter can also be obtained within Duo by fitting to experimental data. Duo is cur-
rently being further developed and extensively used to study a number of diatomic
species [47, 49–51, 152] as part of the ExoMol project [46]. This project is pri-
marily interested in hot molecules, but Duo should be equally useful for studying
ultracold diatomic molecules.
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