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Crossmodal integration and binding
have been treated as synonymous in
the literature, with no clear delineation
between perceptual changes and other
interactions such as decision-making.

Crossmodal binding is proposed as a
distinct form of integration leading to
multisensory object formation.

Multisensory stimuli are most beneficial
in noisy situations, but few studies use
stimulus competition to investigate the
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Introduction: What Is an AV Object?
What we hear and see take strikingly different physical forms, and are necessarily encoded by
different sensory receptor organs, but auditory and visual features are effortlessly bound
together to create a coherent percept. Binding stimulus features from a common source is
not only a problem across sensory systems – within sensory systems, parallel and independent
perceptual feature extraction mean that stimulus features, such as pitch and space, must also be
appropriately combined into a single perceptual object (Box 1, Figure 1A). The formation of
cross-sensory objects is a problem synonymous with feature-binding in the visual system, or
auditory scene analysis in the auditory system.

We define an AV object as ‘a perceptual construct which occurs when a constellation of stimulus
features are bound within the brain’. Participating in a conversation at a crowded bar is assisted
by pairing your friend's face and mouth movements with her voice; picking out the melody of the
first violin in a string quartet is made easier by watching the player's bowing action. In each case
what you see and hear are bound into a single crossmodal object. Conversely, trying to listen to
one friend while watching another's face makes listening more difficult. These examples
demonstrate two fundamental aspects of object-based attention [1–3], namely (i) attending
to one feature of an object enhances the representation of the other features of the object
(Figure 1B), and (ii) dividing attention between two features across two objects is costly
compared to when attending to two features within the same object (Figure 1C,D). The purpose
of this Opinion article is twofold. First, we wish to distinguish binding, which underlies cross-
modal ‘objecthood’, from other mechanisms of crossmodal integration (see Glossary). In
making this distinction we will argue that crossmodal binding can best be demonstrated by
leveraging competition in tasks based on theories of object-based attention. Second, we
propose that the purpose of early cross-sensory integration is to support binding.
74 Trends in Neurosciences, February 2016, Vol. 39, No. 2 http://dx.doi.org/10.1016/j.tins.2015.12.007

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:j.bizley@ucl.ac.uk
mailto:akclee@uw.edu
http://www.twitter.com/bizifer
http://dx.doi.org/10.1016/j.tins.2015.12.007
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tins.2015.12.007&domain=pdf


Glossary
Crossmodal binding: a specific
form of crossmodal integration
wherein perceptual features are
grouped into a unified crossmodal
object.
Crossmodal integration: any
process in which information across
sensory modalities is combined to
make a perceptual judgment.
McGurk effect: an illusion whereby
mismatched visual mouth movements
and auditory phonemes result in a
merged percept. For example, a
visual /ga/ and an auditory /ba/ are
perceived as a /da/.
Orthogonal stimulus feature:
perceptual dimensions that do not
depend on one another. For
example, the pitch of a sound can
vary independently from its perceived
location.
Sound-induced flash illusion
(SIFI): a phenomenon in which the
number of visual flashes reported is
influenced by the number of rapidly
presented auditory stimuli.
Ventriloquist illusion: an illusion
whereby the spatial location of a
sound-source is ‘captured’ by a
visual stimulus. For example, we
perceive an actor's voice as
originating from the image of their
mouth on a screen rather than from
the loudspeakers around the cinema.

Box 1. Forming Auditory and Visual Objects

Auditory and visual objects share particular properties: both have linked features that change over time and perceptually
group together the acoustic or visual features that come from a common source [78]. The process of forming objects is
often described as scene analysis in audition [79] and image segmentation [80] in vision. In both instances a continuous
sensory input is represented across an array of sensory receptors in the cochlea or retina, and this input must be
appropriately segmented into components [78,80]. Segmenting a visual image is computationally difficult because
objects can occlude one another, although arguably the challenge faced by the auditory system is greater because a
single sound-source can elicit a complex, discontinuous pattern of activity at the cochlea and multiple sound-sources
may elicit overlapping or interdigitating patterns of activity.

Objects must therefore be inferred from low-level cues: for example, in the auditory system, acoustic cues such as inter-
aural timing and level differences, used for localizing sound in the horizontal plane, and harmonicity lead to perceptual
features (space and pitch respectively) that define an object and enable grouping of sound-elements from the mixture of
sounds that form an acoustic scene [79]. Similarly, in the visual domain, objects are defined by perceptual features such
as location, color, and shape that allow them to be separated from other objects in the environment [81,82].

For sensory objects, the ability to group stimulus features enables the separation of the object from the features of
competing stimuli that comprise the whole sensory representation [83]. In both vision and audition the formation of a
perceptual object allows a level of abstraction that facilitates perceptual invariance and subsequent object recognition
[78,83,84]. For both auditory and visual objects, observers can deploy top-down mechanisms to selectively attend to an
object of interest by focusing on a particular stimulus feature – such as color or pitch [3,85]. Selective attention can also be
engaged by automatic, bottom-up mechanisms driven by salient attributes of a visual [2] or auditory [3] scene. Evidence
suggests that both visual [1] and auditory [86] attention are object based as demonstrated by changes in the continuity of
a task-irrelevant feature having an influence on behavior.
Section I. Behavioral Assays
Binding as a Special Case of Multisensory Integration
There are a multitude of ways in which stimuli in one sensory modality can influence or perturb
the behavioral response to stimuli in another modality [4,5]. We conceptually describe two
stages of interaction (Figure 2A): first, the features of an incoming sound are perceived in a
manner related to its physical value (e.g., a physical intensity is coded as loudness according to
a probability distribution) and, second, this percept is subsequently used as the basis for a
judgment about the sound. The term crossmodal (or multisensory) integration applies to any
instance in which one sensory modality influences the judgment of stimuli in an other, and could
therefore occur at either of these two stages. One example of crossmodal integration would be
weighting information from different sensory modalities by their reliability to reach a decision [6–8].

Binding, we argue, is a specific concept that should be reserved for crossmodal linking of
perceptual features resulting in a unified AV object (i.e., the change happens in the first stage of
Figure 2A). Binding is a form of integration; however, integrating information at the decision
stage, for example, is not a form of binding. We further argue that binding relies upon
consistency between the modalities – in particular their temporal coherence [9]. Binding can
theoretically be built on other consistencies, such as agreement in auditory and visual spatial
location, or phoneme–viseme relationships (e.g., between an auditory /u/ vowel and an image of
protruded lips); however, when such features are dynamic and coherent, the binding should be
substantially strengthened. It is also worth noting that, for a dynamic stimulus, the only way for
features to be consistent as they change in time is for them to be temporally coherent.
Furthermore, temporal coherence allows disparate cross-sensory features to be bound, such
as pitch and color (which have no presumed natural connection), thereby forming a coherent
multisensory perceptual object. We see binding as a largely perceptual, rather than cognitive,
process – and therefore distinct from the integration of information at the decision-making level.
Importantly, as discussed in Section II, the processing stage that is affected by a multisensory
stimulus carries implications about where in the brain the influence may be occurring.

Distinguishing binding from other forms of integration experimentally is non-trivial; most previous
studies, while demonstrating a diverse range of integration effects, fall short of unambiguously
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Figure 1. Binding of Features into Uni- and Crossmodal Objects Through Temporal Coherence. (A) When one
attends to pitch (attended features shown with a highlighting box), all the other auditory features will be enhanced (depicted
by an increased font size), but not features belonging to a separate visual object. (B) The amplitude of the sound is now
comodulated with the size of the visual stimulus, and this temporal coherence (highlighted in yellow) enables these two
sensory stimuli to bind into one object. We hypothesize that in this situation when one attends pitch, the ability to make color
judgment would also be enhanced. This enhancement should also be bidirectional: when one makes a color judgment,
there is enhancement in a pitch-related task [32]. (C) In a divided attention task, the cost of attending two features spanning
across two objects should be more than when the two features belong to the same crossmodal object. (D) The perceptual
cost can be measured behaviorally as a decrement in sensitivity of these features or an increase in reaction time compared
to when both attended features are within the same crossmodal object. The fluctuating lines extending from “ampl” and
“size” show those dynamic features’ time envelopes. Abbreviations: ampl, amplitude; lumin, luminance.
showing binding due to a change in perception. Figure 2B–G demonstrates several ways in
which behavioral results that may seem to show binding can actually be the result of integration
at a later stage of processing. For example, given a certain pattern of behavioral responses for an
auditory-only stimulus (Figure 2B), observing a bias in discrimination with a simultaneous visual
stimulus can result from a shift in perception (which would be binding, Figure 2C) or from a shift in
the decision criterion (which is integration, but is not binding, Figure 2D). Importantly, the
behavioral readouts of these are identical, rendering the underlying processing changes indis-
tinguishable. A change in sensitivity, seemingly free of bias, does not necessarily show binding
either, as demonstrated in Figure 2E–G. If a visual stimulus changes in a way that is consistent
with changes in the auditory stimulus, it can lead to a variable decision criterion that biases towards
the correct behavioral response in a stimulus-dependent manner. The result might be interpreted
as a measured improvement in sensitivity, with zero bias, that belies the underlying mechanism.
There may actually be a perceptual change resulting from binding, but, in these situations – namely
where the visual stimulus could reasonably shift the decision criterion for the auditory task – it is
not possible to know. In fact, a variable decision criterion is a direct violation of a central axiom
of the decision model used in signal detection theory: the criterion value must remain constant
throughout an experiment for each perceptual judgment [10,11]. Thus, applying signal detection
theory as in Figure 2G where the criterion may in fact be changing (Figure 2F) is flawed.
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Figure 2. Interpreting Behavioral Results as Binding or Integration. (A) The processing underlying a psychophysical
task involves perception of the auditory (aud) stimulus then judgment. Integration could happen at any stage. Binding implies
a perceptual change. (B) An auditory task involving discriminating between auditory stimuli 1/2. Blue/green curves represent
the conditional probability density function (PDF) for the perception of each stimulus. Perception below/above the decision
criterion (vertical line) determines stimulus judgment as 1/2 (colored shadings). The table shows the probability of reporting
stimulus 1/2 given 1/2 was presented, yielding d0 of 2.0. (C,D) Different influences of a visual (vis) stimulus yielding identically
biased behavioral responses, making the underlying mechanisms indistinguishable. In (C), visual stimulus binds with
auditory stimulus, shifting auditory perception towards 2 (PDFs move rightwards), yielding reporting bias despite no criterion
shift. In (D) there is no binding. The visual stimulus effects a leftwards criterion shift, again yielding bias towards reporting 2.
Both (C) and (D) represent integration, but only (C) represents binding. (E–G) Stimulus-dependent decision bias (i.e.,
integration, but not binding) causing spurious measurements of improved perceptual sensitivity, (E) shows the task in the
absence of a visual stimulus for reference. In (F) the visual stimulus in each trial is consistent with each auditory stimulus.
Thus, for stimulus 1 (left), the visual stimulus pushes the criterion to the right, biasing responses towards stimulus 1 (correct
response), and similarly for stimulus 2 (right). There is no change (neither shift nor expansion/contraction) in either PDF (G).
These responses yield d0 of 3.0 and the erroneous conclusion that perceptual sensitivity has increased. However, no binding
has occurred.
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Behavioral Tests for Identifying Binding: The Necessity of Assessing Stimulus Features
Orthogonal to Those Leading to Binding
The question then becomes: how do we demonstrate binding experimentally? We believe that
there is an essential experimental element to achieving this empirically: behavioral measures
must be made on a stimulus feature orthogonal to the features that create the binding. In other
words, none of the features that are intended to bind should be the dimension on which subjects
report some type of perceptual judgment. A crossmodal feature orthogonal to that being tested
will not influence the decision criterion. Thus, any measured changes in behavior can be
assumed to result from changes in perception. This approach has been successfully used in
unimodal studies, for example to objectively measure auditory object formation [12].

How could an orthogonal stimulus feature affect perception? If stimulus features are being
bound to form a perceptual object then, consistent with object-based theories of attention [1–
3,13], all of the features of that object should subsequently be enhanced. These assumptions are
easily extendable to the case of crossmodal objects. Furthermore, by making a judgment on a
feature orthogonal to the features that lead to binding, we remove the possibility of crossmodal
influence through simple decision biasing.

A wide variety of experimental paradigms have been used to investigate crossmodal interac-
tions. Of these, illusions have gained particular traction because they provide insight into the
obligatory mechanisms for resolving conflicting multisensory information. Reports of illusory
percepts have been held up as demonstrating multisensory integration and crossmodal binding,
but without consideration of their differences. We use three commonly investigated illusions to
show how the bulk of these studies demonstrate multisensory integration and are consistent
with – but do not conclusively indicate – binding of features into AV objects at the perceptual
level. These examples also highlight the need for tests based on orthogonal features.

The first example is the ventriloquist illusion [7,14]. Here the location of a sound-source can be
‘captured’ by a visual stimulus, for example, the voice of the ventriloquist appears to come from
her puppet's moving mouth rather than from her own (stationary) mouth. This illusion is
compelling; intuitively, we have the impression that the voice and mouth have been ‘combined’
to form an object. However, does this illusion necessarily tell us that the brain has bound the
auditory and visual signals? Observers have been shown to weigh their estimate of location
according to the reliability of the signals in each modality in a manner consistent with Bayesian
decision-making [7]. This finding suggests that independent estimates are made for each
modality at a later decision-making stage that combines information across sensory modalities,
and would therefore be consistent with our definition of crossmodal integration, rather than
crossmodal binding. If observers are asked to localize both the auditory and visual source
separately, then the location of the sound is much less biased than when observers treat the two
signals as a single source, suggesting independent perceptual estimates are maintained [15–
17]. Moreover top-down factors such as emotional valence or reward expectation can alter the
magnitude of the ventriloquism effect observed [16,17]. Such top-down mediation of the effect
suggests that it is, at least in part, attributable to changes in judgment rather than perception.

A second commonly used illusion is the McGurk effect, in which a video of a mouth movement
affects the auditory phoneme that listeners report hearing [18], whereby the percept is neither of
the veridical unisensory percepts but is instead a third one. This illusion is also influenced by
higher-level contextual effects [19,20] as well as visual attention [21]. Even in these cases the
illusory percept could represent a bias in the consonant perception continuum, influenced by
both auditory and visual stimuli. Such processes, in which stimuli in each modality are coded
independently, and then a judgment is made by considering the information provided by each,
are consistent with the results discussed above for the ventriloquist illusion [7], as well as other
78 Trends in Neurosciences, February 2016, Vol. 39, No. 2



illusory [22] and non-illusory multisensory behaviors [6]. Furthermore, uncertainty in visual
speech signals can also potentially explain some of the observations in McGurk paradigms
[23], making it unclear at what stage the integration is occurring. One study that does test an
orthogonal feature [temporal (a)synchrony as opposed to phoneme identity] finds that subjects
are more sensitive to asynchronies in illusory audiovisual syllables than in congruent ones,
suggesting that the former are not integrated as strongly, further casting doubt on binding as the
sole explanation for the illusion [24].

A third commonly explored illusion is the sound-induced flash illusion (SIFI) [25]. The SIFI is an
illusion in which brief visual and auditory stimuli are presented rapidly, and the number of auditory
stimuli influences the reported number of visual stimuli. Signal-detection theory analysis has
demonstrated that illusory flashes are accompanied by measured changes in sensitivity (and not
only bias) [26,27], suggesting that this illusion is due in part to a change in perception. However,
illusory flashes are not perceived in the same way as real flashes: when offered a third ‘not-one,
not-two’ option many subjects choose it [28]. While most experiments utilizing the SIFI do not
fulfill our proposed criteria of testing for AV object formation, by using a stimulus feature
orthogonal to the one being bound, a few do. One recent study asked subjects to not only
count the number of flashes but also describe their color (an orthogonal feature dimension) [29],
and a second tested contrast perception in addition to the number of events [27] and found that
the effect is likely explained by both a perceptual change as well as a criterion shift.

Most studies of illusions equate changes in stimulus judgments with truly altered perception
resulting from binding. However, with a few exceptions [24,27,29], all three illusion paradigms
suffer from the problems indicated in Figure 2 – the dimension that links the auditory and visual
stimuli is not orthogonal to the stimulus dimension being judged, making it impossible to tell
binding apart from other forms of multisensory integration. In the ventriloquist illusion, visual
space influences auditory spatial judgments; in the McGurk effect, a visual speech cue influences
the phoneme reported; in the SIFI, the number of auditory events influences the number of visual
events reported. The ambiguity inherent in interpreting such results underscores the need for
testing features orthogonal to the crossmodal influence if one wishes to conclusively demon-
strate crossmodal binding.

Behavioral Tests for Identifying Binding: The Case for Stimulus Competition
In most laboratory situations, experimenters do not impose competition in their experimental
design. We argue that, by introducing an element of stimulus competition, we can draw upon
the object-based attention literature to generate specific and testable predictions about the
processing advantages conferred upon the features associated with a single AV object. We
further argue that introducing stimulus competition provides a more naturalistic and taxing
situation that increases the perceptual benefit offered by crossmodal binding, making binding
easier to detect. Competition has been proposed as similarly important for studying multisensory
attentional processing [8].

The importance of stimulus competition can be demonstrated by comparing the outcomes of
studies testing the influence of space on the SIFI. Those studies showed that the probability of
an illusory percept was uninfluenced by the degree of spatial separation between auditory and
visual stimuli [30], and that visual sensitivity was the key determinant of the probability of
perceiving a SIFI, and not audiovisual spatial proximity [26]. However, when two spatially
separated stimulus streams were placed in competition, and subjects were instructed to direct
their spatial attention to only one of these streams, spatial factors became apparent [31].

A crossmodal object should be more salient than a unimodal one, which should provide a
processing benefit, especially in the case of competing stimuli. For example, a recent study
Trends in Neurosciences, February 2016, Vol. 39, No. 2 79



engaged observers in a selective attention task which required that they report brief pitch or
timbre deviants in one of two ongoing independently amplitude-modulated sound-streams [32].
Observers also attended a radius-modulated disk that changed coherently with the amplitude of
either the target stream or the masker stream, and were asked to report occasional brief
changes in color. Performance was better when the visual stimulus was temporally coherent with
the target auditory stream than when it was coherent with the masker stream. Because the
modulations of the visual stimulus offered no information as to the timing of the target auditory
deviants, the authors suggested a conceptual model proposing that the temporally-coherent
auditory and visual streams formed an AV object whose properties were subsequently
enhanced. Thus when the auditory target stream and the visual stimulus were bound into a
single object, performance was improved because observers were no longer required to divide
their attention across two sensory objects. Drawing on theories of object-based attention [1,8],
this model [32] leads to testable behavioral predictions. For example, while this study showed
visual enhancement of auditory perception, we expect an equivalent auditory enhancement of
visual perception [32].

In this section we have delineated the difference between binding leading to crossmodal object
formation from broader integration, and suggest ways to determine unambiguously the exis-
tence of binding. We now discuss the differing neural processing that underlies these distinct
ideas and offer guidelines for neural experiments to complement the behavioral approaches
discussed above.

Section II. Neural Basis
What mechanism might allow temporally-coherent auditory and visual information to be bound?
In Figure 2 we drew a distinction between multisensory integration at the level of perception
(decision-making remains unchanged, but a crossmodal input alters the stimulus coding and
consequently perception) and at the level of decision-making (the stimulus coding within a
modality is unchanged but information in another modality changes the way in which the
stimulus is interpreted). Specifically, we highlighted binding as a perceptual effect rather than
one that was caused by interactions at the level of decision-making (Figure 2A). Multisensory
interactions are found in a multitude of cortical and subcortical locations [4], and it seems likely
that different anatomical loci might perform different types of multisensory integration. We
propose here that multisensory integration in early sensory cortex provides the neurophysiologi-
cal substrate for crossmodal binding. We extend the conceptual model described above to a
neurophysiological one in which a visual stimulus can modulate the activity of auditory cortical
neurons via direct feedforward or lateral visual inputs into auditory cortex, providing a mecha-
nism through which auditory and visual stimuli can be bound together, enhancing their repre-
sentations (Figure 3). Because neural activity in early auditory cortex is closely tied to perception
[33,34], integrating visual information early would facilitate genuine perceptual shifts. We argue
that visual inputs to auditory cortex might act to enhance the activity of neurons that represent a
sound-source that is coherent with a visual stimulus, and that this enhanced neural subpopula-
tion could form the substrate on which top-down connections mediating selective attention
further hone neural processing.

As in the behavioral studies mentioned above, we argue that the use of a competing stimulus
stream will be instrumental in elucidating the neural mechanisms underlying binding and AV
object formation. Moreover, the use of stimulus competition offers the potential to test the
hypothesis that visual stimulus-induced neural correlates of binding occur independently of
selective attention – something that is impossible to test with any form of behavioral paradigm. It
has been observed that a second sound-source can radically change the response properties
of neurons in auditory cortex even in the absence of selective attention [35,36]. Whereas single
neurons display broad sensitivity to sound-sources presented in isolation, when two sources are
80 Trends in Neurosciences, February 2016, Vol. 39, No. 2
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Figure 3. The Effect of a Coherent Visual Stimulus and Selective Attention on the Neural Representation of
Competing Auditory Streams. (A) Starting at the bottom of the figure, two amplitude-modulated tones are the auditory
inputs. These inputs are processed by neurons arranged in a tonotopic array such as those found in early auditory cortex
(with white sinusoids denoting best frequencies), generating two peristimulus time histograms (PSTH) at each of the
respective outputs. The two streams are equally salient (i.e., equal overall spike rates, but different temporal patterns). These
two streams are combined at higher levels of processing with equal weighting. The color of the PSTH in the higher cortices
reflects its similarity to each of the two input waveforms (blue and yellow). (B) The same as (A) but with a modulated visual
stimulus that is coherent with the higher-frequency auditory input (blue). The influence of the blue modulation time-course
(which could be achieved through spiking or subthreshold visual inputs) enhances the response to the blue (higher-frequency)
waveform and reduces the response to the yellow (lower-frequency) waveform. This results in the response in higher cortices
more resembling the blue waveform than the yellow. (C) The same as (B) but with the added effect of selective attention to
the higher-frequency band resulting in the final neural readout resembling even more the original blue input.
presented in competition neural selectivity is greatly enhanced, resulting in discrete populations
of neurons each representing one of the two competing sources [35,36]. We predict that a
visual stimulus would selectively enhance (or suppress) neural populations based on their
temporal (in)coherence.

Consistent with the variety of forms that multisensory integration can take, crossmodal inter-
actions can be observed at many processing stages in the brain from sensory thalamus [37,38]
to prefrontal cortex [39–41]. However, we propose that cross-sensory inputs to early sensory
cortex play a key role in binding and thus AV object formation, while multisensory processing
at later sites predominantly supports other forms of multisensory integration such as decision-
making.

Early Cross-Sensory Interactions: A Mechanism for Binding Auditory and Visual Information?
We suggest that the pattern of anatomical innervation and physiological response properties in
early sensory cortex make them ideally suited to supporting the binding of auditory and visual
Trends in Neurosciences, February 2016, Vol. 39, No. 2 81



stimulus features. The incidence of early multisensory interactions has been demonstrated in
rodents [42–44], carnivores [45], non-human primates [46–48], and humans [49–52]. Anatomi-
cal studies reveal a plethora of potential bottom-up and lateral visual inputs, including primary
visual cortex, secondary visual cortex, and multisensory thalamus [43,45,47,53,54], and func-
tional evidence is consistent with a role for visual inputs in feedforward processing [45,55,56].
Direct connections from auditory to visual cortex have been shown to modulate both spiking
activity in visual cortex and visual perception, demonstrating that direct cortico-cortical con-
nections can mediate multisensory integration [44]. Despite this evidence, the role of such early
cross-sensory projections remains elusive – likely in part because of the relative scarcity of
invasive neurophysiological studies in behaving animals performing multisensory tasks.

AV interactions within auditory cortex can be facilitative or suppressive, and may be visible as a
spiking response [45,57–59], an evoked local field potential response [58,60], or as an entrain-
ment of rhythmic activity across cortical areas [61,62]. The relative timing of auditory and visual
signals can influence the nature of multisensory interactions such that the same neuron can
show facilitation or inhibition depending on the AV (a)synchrony [45,59,63,64]. Spatial coinci-
dence also determines the nature of multisensory interactions in both subcortical and cortical
structures [57,63,65]. Thus the properties of multisensory interactions in early sensory cortex are
known to be dependent on the temporal coherence necessary for binding [58,60]. Most invasive
studies of multisensory integration in sensory cortex have relied upon artificial stimuli presented
as brief transient bursts, while parameters such as their onset timing or spatial location have
been manipulated. Studies with more naturalistic stimuli suggest that temporally-dynamic visual
stimuli can modulate the local field potential and spiking activity in a manner that improves the
reliability of auditory cortical responses [66]. Stimulus-evoked deflections of the field potential
could potentially modulate the firing rates of cortical neurons because activity from coincident
sound arriving at high-excitability phases of the field potential [48,58,66] will be enhanced, while
activity arriving at non-coincident times is likely to fall in low-excitability phases, thus decreasing
the overall response to the acoustic stimulus. Spiking inputs (more common in secondary areas)
could modulate activity in the same way, but provide more robust modulation (Figure 3). For a
recent review of the mechanisms that might support these effects see [67].

Evidence consistent with the idea that interactions between sensory cortices play a key role in
binding auditory and visual stimulus features is provided by human neuroimaging studies. The
SIFI is thought to be mediated via early sensory cortex [68]. Modulation of the evoked EEG
response to McGurk stimuli correlates with perception of the illusory syllables [69] and, although
there is no direct mapping of EEG topography to underlying neural sources, modulation of the
earliest components is consistent with visual stimuli eliciting changes occurring in auditory
cortex. A concurrent visual stimulus can enhance the representation of a sound-source in
human auditory cortex both for single sound-sources [41] and when listeners are faced with two
competing talkers [70]. In the first instance such an effect could result simply from a multisensory
stimulus being more salient, and would not necessarily indicate binding nor confer any percep-
tual advantages. In the second case, however, the representation of the coherent sound-source
is enhanced over that of the competing stream; this finding cannot be explained by a general
effect of arousal and is therefore likely to be indicative of binding.

If early sensory areas mediate binding then what are the roles of multisensory responses in other
brain regions? Multisensory interactions are not exclusive to early sensory cortex and occur
throughout the brain in various forms. For example, neurons in prefrontal cortex are sensitive to
multimodal mismatch [40,71,72]. Tasks requiring a level of semantic processing highlight areas,
including the superior temporal sulcus (STS) and intraparietal sulcus (IPS), where the size of
multisensory enhancement observed predicts the behavioral advantage an individual shows for
multisensory over unisensory object classification [41,73]. Feedforward and lateral connections
82 Trends in Neurosciences, February 2016, Vol. 39, No. 2



Outstanding Questions
Bidirectionality. We have focused on
visual influences on auditory scene
analysis and within auditory cortex.
Our behavioral predictions should be
bidirectional across modalities. Does
attending to a sound also enhance
visual judgments in a bound crossmo-
dal object?

Competing Visual Stimuli. We have
focused on the role of a single visual
stimulus on an auditory mixture – but
what about multiple competing visual
stimuli? Do the same rules apply and
how do they trade off against each
other?

Interaction with Attention. As has
recently been highlighted for multisen-
sory attentional processing [8], stimu-
lus competition is likely to be crucial to
revealing such interactions: in the
instance of single auditory or visual
event streams, each is highly salient
and they are likely to be automatically
bound. How does bottom-up sensory
integration interact with top-down
attention both behaviorally and at the
cellular level?

Active Sensing. What role do eye and
head movements play in forming AV
objects in a realistic multisensory
environment?

Neural Underpinnings of Audiovisual
Binding. Which (anatomical) inputs
might shape neuronal response mod-
ulation in auditory cortex? How are
diverse latencies compensated for?
Do effects ‘build up’?
in early sensory cortex are also complemented by feedback connections from higher brain areas
such as the STS and IPS [60,74–76], and one role for these connections is proposed to be in
mediating predictive coding [77] or object recognition [76].

Physiological Tests for Binding
We have identified several features that are consistent with the hypothesis that multisensory
integration in early auditory cortex plays a key role in binding and hence AV object formation. We
suggest that the following observations would demonstrate a role for early cross-sensory
interactions in the formation of an AV object. (i) In the presence of two competing auditory
stimuli a visual stimulus that is temporally coherent with one stream should boost the represen-
tation of the subset of neurons that are driven by that auditory stream. This could occur by
facilitating the responses of the neurons responding to the coherent sound-stream and/or
suppressing the responses of neurons responding to the temporally-incoherent stream, and
would require invasive neurophysiological recordings to disambiguate these two possibilities. (ii)
These physiological effects should be observed in the absence of attention, but we predict that
selective attention to the coherent AV source would further amplify them. (iii) A crucial test for a
neural correlate of binding is an enhancement of all of the features that a neuron represents and
not simply those that are temporally coherent with the visual stimulus. For example, a neuron in
which visual and auditory information are bound by coherent changes in sound intensity and
visual luminance should be better able to represent a change in other features of the sound-
source than when the luminance and intensity vary independently. (iv) Finally, eliciting a behav-
ioral deficit in a task that requires crossmodal binding by selectively silencing inputs from visual
cortex to auditory cortex would provide a causal demonstration of the importance of interactions
between sensory cortices in forming AV objects. While some studies looking at macro-scale
signals with human imaging methods have provided empirical evidence in favor of the first of
these proposals (e.g., [70], addressing point ii above) the remaining points remain unaddressed.

Concluding Remarks
We have provided a functional definition of an AV object as a perceptual construct which occurs
when a constellation of stimulus features are bound within the brain. Further, we identified
binding as a specific case of multisensory integration in which stimulus features are perceptually
grouped across modalities, leading to the formation of crossmodal objects. We argue that the
formation of an AV object can be determined by demonstrating a crossmodal influence on a
feature dimension orthogonal to the one that promotes binding. We further believe that stimulus
competition is important because binding is most beneficial under naturalistic listening situations
with multiple sound-sources, and such situations provide a way of investigating binding based
on theories of object-based attention. Finally, we propose that feedforward or lateral cross-
sensory connections in early sensory cortex facilitate binding.
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