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Abstract 

The past decade has witnessed an exponential increase in the number of publications 

referring to extracellular vesicles (EVs). For many years considered to be extracellular 

debris, EVs are now seen as novel mediators of endocrine signalling via cell-to-cell 
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communication. With the capability of transferring proteins and nucleic acids from one cell to 

another, they have become an attractive focus of research for different pathological settings 

and are now regarded as both mediators and biomarkers of disease including cardio-

metabolic disease. They also offer therapeutic potential as signalling agents capable of 

targeting tissues or cells with specific peptides or miRNAs. In this review, we focus on the 

role that microvesicles and exosomes, the two most studied classes of EV, have in diabetes, 

cardiovascular disease, endothelial dysfunction, coagulopathies and polycystic ovary 

syndrome. We also provide an overview of current developments in microvesicle/exosome 

isolation techniques from plasma and other fluids, comparing different available commercial 

and non-commercial methods. We describe different techniques for their optical/biochemical 

characterization and quantitation. We also review the signalling pathways that exosomes 

and microvesicles activate in target cells and provide some insight into their use as 

biomarkers or potential therapeutic agents. In summary, we give an updated focus on the 

role that these exciting novel nanoparticles offer for the endocrine community. 
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Introduction 

It is well established that patients with metabolic diseases, in particular insulin resistance 

and type two diabetes mellitus (T2DM), are more than twice as likely to develop accelerated 

cardiovascular disease (CVD) including atherosclerosis, stroke and coronary artery disease 
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(reviewed in (Rask-Madsen and King 2013)). Coronary artery disease is a major cause of 

morbidity and mortality worldwide, and is a leading cause of death in T2DM, with excess risk 

of fatality in women compared to men (Peters, et al. 2014). Extensive coronary artery 

disease can result in myocardial infarction, severe loss of cardiac function, and subsequently 

lead to the development of heart failure (Hausenloy and Yellon 2013). A cluster of risk 

factors have recently been defined by the American Diabetes Association and the American 

College of Cardiology Foundation as reliable indicators of a patient’s risk for T2DM and 

CVD, and has been defined as cardiometabolic risk (CMR; (Brunzell, et al. 2008)). These 

risks include obesity, hyperglycemia, hypertension, insulin resistance and dyslipidemia.  The 

presence of secondary cardiovascular disease in patients with IR or T2DM may be referred 

to as cardio-metabolic disease (CMD). Given its increasing prevalence and severe 

consequences, new approaches are needed to diagnose and treat CMD.  

Extracellular vesicles (EVs) are small (50 nm to 2 µm) vesicles released from the surface of 

many different cell types into different bodily fluids, including plasma, milk, saliva, sweat, 

tears, semen and urine. There are several classes of EV, including exosomes, microvesicles 

(MV) and apoptotic bodies, which are produced by different mechanisms. Attracting perhaps 

the most attention recently have been exosomes (50-100 nm), a homogenous population of 

EV which are released from cells when multivesicular bodies (MVB; sometimes called 

multivesicular endosomes, MVE) fuse with the plasma membrane in a highly regulated 

process and release their contents. Cells can also produce a more heterogeneous 

population of EVs up to 2 µm in diameter called microvesicles (MVs), which are formed by 

budding and shedding of the cell membrane, a process that involves calcium dependent 

signalling and enzyme activity. Cells undergoing apoptosis also typically release EV of 1-5 

μm in diameter which are referred to as apoptotic bodies (Colombo, et al. 2014; Dignat-

George and Boulanger 2011; van der Pol, et al. 2012) (Figure 1).  

In some literature, MVs isolated by centrifugation are referred to as “microparticles”, 

particularly those isolated from platelets or endothelial cells. For clarity, this review will refer 

to EVs simply as exosomes or MV on the basis of the mechanism of their cellular production 

and their size range - an approach that has been taken by others (Thery, et al. 2009), with 

the caveat that most isolation methods do not provide a pure populations of vesicles. It is 

important to note that the size ranges of EVs may overlap and in particular, the size of 

microvesicles could overlap with the exosomal size range. Where a mixture of exosomes 

and MV is likely, for example when plasma vesicles are isolated by high speed (~100,000 g) 

ultracentrifugation, we refer to them more broadly as EV. These EV are sometimes also 

referred to as “exosome-like vesicles”. 
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One of the characteristic markers of all EVs is the presence on the outer surface of 

phosphatidyl serine (PS), due to loss of membrane asymmetry during blebbing (apoptotic 

bodies) or budding (MV) and inward folding of the membrane during vesicle formation in 

MVBs (exosomes). This can be identified by binding of labelled annexin V, a reagent often 

used for flow cytometric analysis of apoptotic cells. However, more recently several groups 
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have identified MVs lacking phosphatidyl serine (PS) on the outer membrane, suggesting 

that this is not essential for MV formation (Hou, et al. 2014; Larson, et al. 2012).  

Both exosomes and microvesicles characteristically carry a cargo, which they are able to 

deliver to cells in remote locations. The cargo can include genetic material such as mRNA, 

microRNA (miRNA) or even small amounts of DNA (Moldovan, et al. 2013), and proteins 

including transcription factors, cytokines and growth factors, have also been described. 

Importantly, MVs also carry cellular receptors and transmembrane proteins on their surface 

characteristic of the cells from which they were released. This aids in their identification but 

also means that they can interact with specific target cells instigating signalling cascades via 

receptor interactions (rececrine signalling – akin to cell-cell interactions) and also increasing 

specificity of cargo delivery. On the other hand, exosomes are characteristically decorated 

with markers including Alix, HSP70, and the tetraspanins CD9 and CD63, which may be 

associated with beta-2 integrin binding and intercellular communication. Although these are 

commonly used as markers of exosomes, they are not exclusive to exosomes and may be 

found on other EVs. Furthermore, not all EVs express CD63 and different sub-populations of 

exosomes may express different markers (Thery et al. 2009). It is important to consider that 

exosomes do not necessarily express the same marker proteins as their parent cells. For 

example, we found that the common endothelial marker CD144 is absent on exosomes from 

human umbilical vein endothelial cells (HUVECs)(Figure 2). Recent work has further defined 

plasma EV and exosome surface marker expression by using extensive antibody profiling 

which showed that exosomes can express surface membrane markers such as CD146, 

CD4, CD3 and CD45 (Jorgensen, et al. 2015a). There is some evidence that the protein and 

RNA content of exosomes depends on the state of the source cell (de Jong, et al. 2012). 

The mechanism behind the formation of exosomes and selective packaging of proteins, 

lipids and RNA is not completely understood but is gradually becoming revealed. The 

Endosomal Sorting Complex Responsible for Transport (ESCRT) pathway does not seem to 

be required for exosome biogenesis, although some components are involved in their 

formation, particularly Alix (Baietti, et al. 2012; Raposo and Stoorvogel 2013; Trajkovic, et al. 

2008). Other molecules that are enriched in exosomes such as tetraspanins and ceramide 

have also been implicated in exosome biogenesis. For example, inhibitors of neutral 

sphingomyelinase, an enzyme involved in ceramide production, inhibits exosome production 

(Trajkovic et al. 2008). Less well understood is the mechanism of exosome release. Certain 

members of the Rab GTPase family are required for efficient release of exosomes, although 

the exact members involved appears to depend on the cell type and experimental design, 
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and may reflect different subtypes of exosomes relating to the stage (early or late) of 

endosome/MVB formation (Colombo et al. 2014). 

Purification of EVs from different bodily fluids 
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Although MVs and exosomes are produced by distinct mechanisms, their sizes overlap, and 

most isolation protocols do not isolate a pure population. Therefore, in order to evaluate 

published experiments it is important to understand what type of EV is most likely to be 

isolated by different protocols. 

A number of different protocols have been optimised for purification of different classes of 

EVs from different sources, with isolation from plasma being the best described (reviewed 

in(Lobb, et al. 2015; Witwer, et al. 2013)). The isolation of EVs from blood requires its rapid 

collection with an anti-coagulant – citrate is now generally advised (Lacroix, et al. 2012). The 

most straightforward technique for isolation of EVs involves sequential steps of 

centrifugation. After the collection of plasma by centrifugation at 1500 x g for 15 minutes, the 

supernatant contains platelet-rich plasma and EVs (MVs and exosomes). This is followed by 

a further centrifugation at 13,000 x g for 30 min to pellet the platelets, with the remaining 

EVs in the platelet poor plasma (PPP) supernatant. PPP may be snap frozen at -80 °C until 

analysis, or analysed immediately, using one of the methods outlined below. For further 

purification the PPP can be centrifuged at 17,000 x g to pellet the larger MVs, which can 

then be used for analysis. The supernatant can also be further ultracentrifuged at 100,000 x 

g to pellet the remaining EVs (Thery, et al. 2006). Although the resultant EVs are sometimes 

referred to as exosomes, this population is not completely pure and in addition to exosomes 

is likely to contain MVs and possibly lipoproteins. Density gradient centrifugation may be 

used to further purify the exosomal population (Thery et al. 2006), but recent evidence 

suggests that this still does not completely remove contamination by lipoproteins. Several 

newer methods have recently been described using commercially available columns and 

magnetic separation techniques, either directly from plasma or after initial ultracentrifugation 

to pellet the EV fraction, typically based on CD9 or CD63, but a consensus has not yet 

developed on which technique is the most promising. 

Several companies produce reagents designed to precipitate exosomes from plasma or 

tissue culture medium, though purity using these techniques is generally low, particularly 

from plasma. Affinity purification using antibodies bound to columns or beads results in 

much higher purity of EVs but by definition selectively purifies only EVs expressing the 

marker protein of interest. Size-exclusion chromatography is increasingly popular as a 

technique to purify exosomes, having been demonstrated to result in isolates relatively pure 

of contaminating lipoproteins and protein complexes (Boing, et al. 2014; Welton, et al. 2015). 

Alternatively, new approaches on the horizon include the use of antibody arrays to directly 

identify and quantify exosomes in body fluids bypassing the need for purification all together 

(Jorgensen, et al. 2015b). 
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Since the results of EV isolation procedures may vary, it is important to characterize the 

particular population being used as much as possible. 

Methods for the identification and characterization of EVs 
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The small size of EVs makes their identification a challenge, indeed until relatively recently 

they were considered to be debris and not of any functional significance. Use of electron 

microscopy enables accurate sizing of all different classes of EVs, and is the gold standard 

to demonstrate presence of EVs, however this method is time consuming, not quantitative 

and not suitable for phenotyping (Figure 3; for review of methodology see (van der Pol, et al. 

2010)). Other non-optical methods have been used, notably atomic force microscopy, which 

enables accurate size detection and can also be used in after antibody labeling of vesicles 

enabling phenotyping. Once again, however, the technique is time consuming and requires 

concentration of the sample meaning that it is not quantitative. A number of optical methods 

have been used for detection of EVs, the most widely reported of which is flow cytometry, 

however detection is limited to particle sizes above ~200 nm, so exosome analysis is not 

possible with standard configurations and techniques. However, recent exciting 

developments have enabled direct visualization and characterization of microvesicles in 

whole blood, platelet-rich and platelet-free plasma using Image stream technology 

(Headland, et al. 2014). 

A number of sophisticated protocols have been described to differentiate MVs from 

background noise during detection using this method, and standardised guidelines have now 

been published for optimised collection of plasma for detection of MVs (Lacroix et al. 2012). 

Techniques are being developed which may even allow the detection of individual exosomes 

using dedicated flow cytometers with special labelling methods (Pospichalova, et al. 2015). 

An alternative and more widespread approach is to bind exosomes to carrier latex beads, 

which are easily detectable by flow cytometry (Thery et al. 2006) (Figure 3). 

Important considerations for detection of MVs by flow cytometry are that accurate sizing and 

enumeration of the MV population may be hampered by the light scattering of small particles 

compared to larger cells, for which flow cytometers are usually used. However, inclusion of 

commercially available pre-calibrated counting beads in all samples as internal controls and 

use of sizing beads can enable standardisation of measurements between samples in the 

same study (Figure 3) – although caution should be used when directly comparing data from 

flow cytometry with other methods of counting MV. The newer generations of flow 

cytometers have been optimised to enable detection of smaller particles. The use of surface 

markers for phenotyping MV has been reviewed elsewhere (Lacroix and Dignat-George 

2012; Macey, et al. 2011). 

Flow cytometry is very useful for detection of different phenotypic markers on the surface of 

MVs and enables accurate characterisation of the source of circulating EVs in bodily fluids, 

however this technique is not suitable for detection of smaller exosomes and several 
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alternative methodologies have been developed, each with its own instrumentation. These 

include dynamic light scattering (DLS), nanoparticle tracking analysis (NTA, Figure 3) and 

tunable resistive pulse sensing (TRPS) (van der Pol et al. 2010). These methods have 

greater size discrimination compared to flow cytometry (down to below 50 nm diameter) and 

so enable quantitation of exosomes and smaller MV more efficiently (cost and time) than by 
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EM or atomic force microscopy, however, they are limited by lack of multiple laser 

capabilities to enable accurate phenotyping, as well as sometimes requiring lengthy 

purification protocols to ensure that only exosomes are quantified. Importantly, they cannot 

distinguish EVs from other particulate matter such as protein aggregates, so confirmatory 

techniques are required to validate EV presence. Raman spectroscopy has also been used 

to define EV populations. This is a highly sensitive technique for analysis of the biochemical 

composition of EVs without labelling, and can provide quantitative data, however it is very 

time consuming. Direct detection of marker proteins on exosomes is challenging using these 

techniques.   

Extracellular vesicles can transfer proteins and RNA 

The field of EV research was greatly invigorated by the demonstration that they are able to 

deliver proteins and RNA to recipient cells. The first evidence for this was obtained in 

platelets, which released tissue factor (TF), which was subsequently functionally transferred 

via microvesicles to monocytes and other cells where TF was able to exert its biological 

effects (Del Conde, et al. 2005; Scholz, et al. 2002). Microvesicles from tumour cells were 

shown to be capable of transferring a truncated, oncogenic form of the epidermal growth 

factor receptor between cells, activating signalling pathways (MAPK and Akt) and thereby 

transferring the associated transformed phenotype (Al-Nedawi, et al. 2008). Microvesicles 

can also deliver mRNA (Skog, et al. 2008). 

Exosomes can also deliver molecules into the membrane of recipient cells. This appears to 

be part of their normal function in helping to establish morphogen gradients during 

development. For example, exosomes can transfer the Notch ligand Delta-like 4 (Dll4) 

between endothelial cells, where it is incorporated into the membrane of the target 

endothelial cells, and inhibits Notch signalling altering angiogenesis (Sheldon, et al. 2010). 

Interestingly, some cytoprotective proteins have been shown to be transferred between 

cells. αB crystallin is secreted from human retinal pigment epithelium in exosomes, and 

taken up by adjacent photoreceptors, protecting them from oxidative stress (Sreekumar, et 

al. 2010). 

In a seminal paper, Valadi et al, were first to show that exosomes can also transfer mRNA 

and miRNA between cells (Valadi, et al. 2007). In this study, mast cells were demonstrated 

to transfer functional mRNAs between cells that were subsequently translated. Importantly 

when exosomes were pre-treated with RNAse and trypsin, the effect was no longer 

observed, demonstrating that the mRNA was protected within the vesicles and not simply 

associated or co-purified.  
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The profile of miRNAs contained within exosomes appears to depend on the cell type of 

origin. The miRNA profile is different in exosomes released from C2C12 myoblasts 

compared with those released by C2C12 cells once they have differentiated into myotubes 

(Forterre, et al. 2014). The miRNA profile within exosomes was also found to differ from the 

parent C2C12 cells, which indicates that there is selective sorting of miRNA into exosomes 
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(Forterre et al. 2014). The mechanism for this is only beginning to be unravelled, but 

appears to involve recognition of particular sequence motifs by sumoylated heterogeneous 

nuclear ribonucleoprotein A2B1 (hnRNPA2B1) (Villarroya-Beltri, et al. 2013). When the 

exosomes secreted by C2C12 myotubes were taken up by myoblasts they suppressed 

expression of Sirt1, potentially modulating metabolic homeostasis and the commitment of 

myoblasts during differentiation (Forterre et al. 2014). 

There is also evidence that exosomes are used by some cells in the heart to communicate 

to each other. Cardiac fibroblasts secrete exosomes that are enriched in specific miRNAs, 

including miR-21-3p. Intriguingly, this particular miRNA is a “passenger strand” miRNA 

which normally undergoes intracellular degradation and was therefore believed to be non-

functional (Bang, et al. 2014). However, when neonatal cardiomyocytes took up these 

exosomes, they increased in size indicating a hypertrophic response (Bang et al. 2014). 

Endothelial cells have also been shown to transfer miRNA via EVs, in this case transferring 

EV to smooth muscle cells after stimulation by shear stress, which is known to be 

atheroprotective (Hergenreider, et al. 2012). The EVs delivered functional miR-143/145 into 

smooth muscle cells in co-culture, which controlled the expression of target genes 

(Hergenreider et al. 2012). Importantly, when administered in vivo to ApoE(-/-) mice, they 

reduced atherosclerotic lesion formation in the aorta (Hergenreider et al. 2012). The vesicles 

in this study were referred to conservatively as “extracellular vesicles”, because a maximum 

centrifugation speed of 20,500 g was used to pellet them, and the size range of most of the 

vesicles on electron micrographs ranged between 60 and 130 nm, therefore they likely 

contained a mix of exosomes and microvesicles. 

In view of the RNA content of EVs which is related to the cell type of origin, and can alter in 

pathological settings, they have become an attractive source of biomarkers for profiling and 

identification of disease markers (Cheng, et al. 2014; Jansen, et al. 2013; Kruger, et al. 

2014), as has been reviewed elsewhere (Gaceb, et al. 2014). 

The role of EVs in diabetes and metabolic disease 

T2DM is characterized by elevated fasting plasma glucose levels combined with insulin 

resistance. The metabolic syndrome additionally comprises abdominal (central) obesity, high 

blood pressure, insulin resistance, and lipid abnormalities (Perrone-Filardi, et al. 2015). It is 

present in 34% of the population, and greatly increases the risk of heart failure (Perrone-

Filardi et al. 2015). There is accumulating evidence that EVs are elevated in these 

conditions and can contribute to some of the pathophysiology, including vascular 
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complications, inflammation and alterations in blood coagulation (recent review Lakhter 

(Lakhter and Sims 2015)). 

Exosomes and MVs from different cellular sources can be identified constitutively in plasma 

from normal individuals (Caby, et al. 2005; Raposo and Stoorvogel 2013), including MVs 
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released from monocytes, lymphocytes, endothelial cells, erythrocytes and platelets. A 

number of studies have demonstrated that the numbers of circulating MVs is increased in 

insulin-resistant patients (Jayachandran, et al. 2011), and in patients with T2DM (Diamant, 

et al. 2002; Omoto, et al. 1999). Levels are further increased in those with microvascular 

complications (Ogata, et al. 2006; Omoto et al. 1999), or secondary macrovascular CVD, 

including atherosclerosis (Diamant et al. 2002). Increased numbers of MV have also been 

linked to obesity (Stepanian, et al. 2013). Interestingly, a significant reduction in MV 

numbers has been described after calorific restriction or bariatric surgery in these patients 

(Cheng, et al. 2013). Increased EVs are also a hallmark of CVD including atherosclerosis 

(Feng, et al. 2010), hypertension (Chen, et al. 2012), and following stroke or myocardial 

infarction (D'Alessandra, et al. 2010; Kim, et al. 2012). 

The role of chronic inflammation in progression of CVD and CMD has been highlighted in a 

number of studies (reviewed in (Hansson, et al. 2015);(Lindhardsen, et al. 2015)) and 

circulating EVs are increased in many inflammatory conditions (e.g. (Daniel, et al. 2006; 

Joop, et al. 2001; Suades, et al. 2015)). Their role in propagation of endothelial pro-

inflammatory cascades is also increasingly recognized, and was first described by Mesri et 

al. They stimulated EVs in vivo in healthy volunteers by infusion of a chemotactic peptide 

and showed that these were able to induce cytokine and chemokine release from endothelial 

cells in vitro (Mesri and Altieri 1998). A number of other studies have reported similar 

findings using EVs from patients or animal models (Meziani, et al. 2010; Wang, et al. 2011). 

We have recently shown that EVs induced by long term feeding of a high fat diet in a rat 

model of insulin resistance and T2DM were able to induce VCAM-1 adhesion molecule 

expression and ROS production in rat cardiac endothelial cells in vitro (Heinrich, et al. 2015). 

The same factors that increase the risk of cardiometabolic disease are also risk factors for 

polycystic ovary syndrome (PCOS)(Daskalopoulos, et al. 2015), the most common 

endocrine disorder in women aged 18-44, affecting up to 10% of the population, and which 

leads to reduced fertility (Teede, et al. 2010). Several studies have now shown that in 

accordance with these increased risk factors, PCOS patients have increased circulating 

levels of EVs, particularly pro-coagulant platelet MVs (Koiou, et al. 2011; Koiou, et al. 2013). 

Willis et al recently measured increased numbers of circulating EVs nearing the exosome 

size range (<150 nm), with a greater percentage of annexin V+ve MV and 16 miRNA that 

were differentially expressed compared to matched controls (Willis, et al. 2014). However, a 

causal relationship has not yet been established between MVs and the other symptoms of 

PCOS which include excess androgen activity, oligo-ovulation or anovulation, and polycystic 

ovaries (Teede et al. 2010). 
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The role EVs in the function and dysfunction of healthy and diseased endothelium 

A number of studies have demonstrated a correlation between the number of circulating 

endothelial (CD31+CD41–) MVs and endothelial dysfunction in patients with coronary artery 

disease (Chen et al. 2012; Wang, et al. 2014b; Werner, et al. 2006). Similarly, in T2DM 
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patients higher numbers of endothelial MVs correlate with impaired endothelium function, as 

determined by the measurement of flow mediated dilatation in the brachial artery (Feng et al. 

2010). In addition to their levels increasing with endothelial dysfunction, MVs may also have 

a direct effect on endothelial function. MVs isolated from T2DM patients by centrifugation 

have been shown to impair shear stress induced dilatation of mouse mesenteric arteries 

(Martin, et al. 2004) whilst aortic ring experiments have shown that endothelial derived EVs 

(obtained by ultracentrifugation at 100,000 x g) decrease nitric oxide (NO) and increase 

reactive oxygen species production, as well as impairing acetylcholine-mediated 

vasorelaxation (Brodsky, et al. 2004). Consequently, microvesicles have gained some 

notoriety as potentially detrimental factors contributing to cardiovascular disease. 

On the other hand, EVs have also been observed to have some beneficial effects, 

particularly with regards to the stimulation of endothelial proliferation, migration and tube 

formation in vitro (Deregibus, et al. 2007; Jansen et al. 2013)(Vrijsen, et al. 2010). This effect 

has been observed with EVs isolated from apoptotic endothelial cells (Deregibus et al. 2007; 

Jansen et al. 2013) (and therefore presumably containing many apoptotic vesicles), as well 

as with more pure populations of MVs isolated from platelets (Brill, et al. 2005; Kim, et al. 

2004), from endothelial progenitor cells (Deregibus et al. 2007; Vrijsen et al. 2010), or from 

ischemic muscle (Leroyer, et al. 2009). Exosomes isolated from cardiomyocyte progenitor 

cells (Vrijsen et al. 2010) or the conditioned medium of bone marrow CD34+ stem cells 

(Sahoo, et al. 2011) have been shown to have a similar effect on endothelial cell proliferation 

and migration. 

EVs can also stimulate endothelial repair. For example, endothelial EVs were isolated by 

centrifugation from human coronary artery endothelial cells undergoing apoptosis. When 

administered to mice in which a region of endothelium had been denuded, these EVs were 

found to be capable of repairing the endothelium via delivery of miR-126 (Jansen et al. 

2013). It is significant, however, that this effect was abrogated in EVs isolated from cells 

which had been grown under hyperglycaemic conditions in vitro or isolated from patients 

with T2DM, since this suggests that this reparative property of EVs is altered by diabetes 

and may contribute to continued vascular damage and dysfunction (Jansen et al. 2013). 

Similarly, exosomes from the cardiomyocytes of non-diabetic rats were founds to be pro-

angiogenic, stimulating endothelial proliferation, migration and tube formation in vitro, while 

those isolated from the cardiomyocytes of diabetic rats had the opposite effect (Wang, et al. 

2014a).In this example, the detrimental effect was attributed to exosomal transfer of miR320 

and the down-regulation of its target genes (IGF-1, Hsp20 and Ets2) (Wang et al. 2014a). 
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Various additional mechanisms have been implicated in the stimulatory effect of exosomes 

on endothelial cells. Platelet MVs appear to activate pro-angiogenic ERK and PI3K/Akt 

pathways (Brill et al. 2005; Kim et al. 2004) and may contain a contain a lipid growth factor 

(Kim et al. 2004), while EVs from endothelial progenitor cells appear to transfer mRNAs that 

activate PI3K/AKT and eNOS signaling in the recipient endothelial cells (Deregibus et al. 
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2007). The transfer of miR-214 has also been proposed to mediate induction of 

angiogenesis by endothelial exosomes by suppressing the expression of ATM in recipient 

cells (van Balkom, et al. 2013). Endothelial cells also communicate atheroprotective stimuli 

to smooth muscle cell via the transmission of miR-143/145 via EVs (Hergenreider et al. 

2012). In this study, EV were purified by centrifugation at 20,500 g for 1 h, resulting in 

vesicles that were mostly between 60 and 130 nm. 

In some cases, exosomes can also suppress hyperproliferative pathways such as those that 

contribute to hypoxia-induced pulmonary hypertension. Here, the beneficial effect of 

mesenchymal stromal cells was shown to be mediated by the release of exosomes which 

suppressed hyperproliferative pathways including those mediated by STAT3 and the miR-17 

superfamily, in addition to increasing lung levels of miR-204 (Lee, et al. 2012). 

Recently, pressure overload or stretch was shown to cause the release from cardiomyocytes 

of exosomes containing functional angiotensin II type 1 receptors, which are able to be 

transferred to skeletal muscle, mesenteric resistance vessels and cardiomyocytes, 

conferring responsiveness to angiotensin II (Pironti, et al. 2015). This exciting data suggests 

that exosomes may contribute to the in vivo tissue distribution of cell surface receptors such 

as angiotensin II, with functional consequences for the cardiovascular system. 

The role of EVs in coagulopathies  

When EVs were first described by Peter Wolf they were referred to as “platelet dust” (Wolf 

1967) because they were thought not to be functionally significant. Despite there being some 

reports to the contrary (Tushuizen, et al. 2012), numerous studies have shown that platelet 

EVs are procoagulant due to the exposure of negatively charged PS which can enhance clot 

formation (for review see (Hargett and Bauer 2013)). Indeed, platelet EVs have more binding 

sites for the factors involved in the clotting cascade than do activated platelets themselves 

(Sinauridze, et al. 2007). More recent studies have revealed the presence of tissue factor 

(TF) on the surface of endothelial- and monocyte-derived EVs (Breitenstein, et al. 2010), as 

well as P-selectin glycoprotein ligand-1 (PSGL-1) which can bind to P-selectin on the 

surface of activated platelets and become incorporated into the clot (Falati, et al. 2003). 

Other receptors including glycoprotein IIb/IIIa (Sommeijer, et al. 2005), factor VIII, factor Va 

(Nomura, et al. 1993) and protein disulphide isomerase (Raturi, et al. 2008) may also be 

present on the surface of EVs and participate in clot formation and thrombosis.  

In addition to hyperglycemia, hyperinsulinemia can cause an increase in procoagulant TF-

positive MVs (Boden and Rao 2007), and MVs are elevated in otherwise-healthy individuals 
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with signs of metabolic syndrome (Agouni, et al. 2008; Ueba, et al. 2008). A correlation 

between circulating endothelial microparticles (MVs) and cardiometabolic risk factors 

(particularly dyslipidaemia), was also detected in the Framingham Heart Study cohort 

(Amabile, et al. 2014). The presence of hypertension, elevated triglycerides, and metabolic 

syndrome all increased circulating MVs, but dyslipidaemia had the most severe effect. 
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Obesity has also been correlated with increased circulating endothelial MVs in children 

(Gunduz, et al. 2012). These increases may contribute to the disease, since MVs from 

individuals with metabolic syndrome have been shown to impair endothelium-dependent 

relaxation and decrease endothelial NO synthase expression when injected into mice 

(Agouni et al. 2008). Other cardiovascular risk factors such as uremia may also correlate 

with increased numbers of platelet MVs which may trigger thrombosis (Ando, et al. 2002). 

Elevated uric acid in chronic renal failure patients may also contribute to their increased risk 

of cardiovascular events (Faure, et al. 2006). 

Tsimerman et al measured increased numbers of pro-coagulant TF-positive EVs in patients 

with T2DM, but MV coagulability was significantly increased only in those who also had 

macrovascular complications (foot ulcers and coronary artery disease) (Tsimerman, et al. 

2011). EVs were isolated and evaluated for their ability to induce tube formation in 

endothelial cells in vitro. Endothelial tube formation was stimulated by MVs from healthy 

controls, but was defective when incubated with MVs from patients with macrovascular 

complications (Tsimerman et al. 2011).  

Thus, hyperglycemia, dyslipidaemia and hyperinsulinemia as well as hyperuricemia and 

uremia appear to contribute to cardiometabolic disease via the procoagulant activity of MVs, 

but also due to their diminished ability to support endothelial function. 

EVs as a potential therapy for cardiometabolic disease 

The heart is essentially terminally differentiated, meaning that there is very little division of 

cardiomyocytes after injury (e.g. IR), and instead those that remain tend to undergo a 

compensatory increase in size. The possibility of renewing the cardiomyocytes by stem cell 

therapy has been intensively investigated for a number of years, however, the results of this 

approach have been largely disappointing. Some improvements in cardiac function have 

been observed after stem cell therapy, although this is generally acknowledged to occur in 

the absence of new cardiomyocyte formation. Interestingly, similar levels of benefit could 

also be obtained experimentally after injecting medium that had been conditioned by stem 

cells. It was therefore proposed that stem cells release cytokines, growth factors and other 

proteins in a “paracrine” manner to improve survival and function of cardiomyocytes (Kim, et 

al. 2014; Menasche 2014; Yoon, et al. 2005).  

In 2010, it was shown that exosomes purified from the conditioned medium of human ESC-

derived mesenchymal stem cells (ESC-MSC) by HPLC size-exclusion fractionation, could 

protect the heart both in vitro and in vivo (Lai, et al. 2010). Cardiac function after 28 days 
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was also improved (Arslan, et al. 2013). An increase in the activity of cardioprotective 

kinases Akt and GSK3α/β was observed 1 h after exosome administration until the following 

day (Arslan et al. 2013). These kinases are known to be highly cardioprotective (Hausenloy, 

et al. 2005). In another study, exosomes were isolated from MSC cells overexpressing 

GATA4, and these also restored cardiac contractile function and reduced infarct size when 
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injected into rat hearts at the time of infarction (Yu, et al. 2014). Protection was attributed to 

an increase in the treated hearts of miR-19a, which targets PTEN, indirectly increasing Akt 

and ERK activation. However, with such experiments it is difficult to ascertain whether the 

miR-19a was transferred from the MSC exosomes or was a transcriptional response of the 

myocardium to the treatment (Yu et al. 2014). The ability to activate protective pathways 

does not appear to be restricted to exosomes, since microvesicles derived from human adult 

mesenchymal stem cells were also able to protect the kidney against ischaemia and 

reperfusion injury (Gatti, et al. 2011).  

MSC are not the only type of stem cell that has been shown to release exosomes with 

beneficial cardiovascular effects. Intramyocardial injection of exosomes from murine cardiac 

progenitor cells (CPCs) reduced apoptosis after ischaemia and reperfusion (Chen, et al. 

2013). In this study, however, exosomes were isolated by precipitation with polyethylene 

glycol (PEG) (Chen et al. 2013), which raises some uncertainty about the effects that the 

PEG might have itself. In another study EVs were isolated from CPCs derived from atrial 

appendage explants from patients undergoing heart valve surgery (Barile, et al. 2014). 

Injection of these CPCs-EVs into the hearts of rats subject to permanent coronary artery 

ligation reduced cardiomyocyte apoptosis and scar size, increased the amount of viable 

tissue in the infarct area, increased blood vessel density, and prevented the impairment of 

ventricular function between day 2 and day 7 (Barile et al. 2014). In contrast, exosomes 

isolated from normal human dermal fibroblasts exhibited no benefit, suggesting that effects 

depend on cell type of origin (Barile et al. 2014). Intramyocardial injection of exosomes 

isolated from CPCs that had been exposed to hypoxia for 12 h improved cardiac function 

and also reduced fibrosis 21 days (Gray, et al. 2015). The exosomes released after hypoxia 

had an altered miRNA content, and co-regulated miRNA with a beneficial profile were 

identified (Gray et al. 2015). Although cardiac endothelial cells and fibroblasts took up 

fluorescently stained exosomes in vitro, uptake was minimal in primary rat cardiomyocytes 

(Gray et al. 2015), suggesting either that they deliver miRNA directly to the former cells 

types, or that they interact with surface receptors on cardiomyocytes without delivering 

miRNA intracellularly. Thus, the exact mechanism of functional benefit conferred by CPC-

EVs remains unclear. 

When a nonviral mini-circle plasmid carrying HIF1, a transcription factor that mediates 

adaptive responses to ischemia, was delivered into the endothelium of ischemic mouse 

myocardium, these cells were found to release exosomes with a higher content of miR-126 

and miR-210. These exosomes could be taken up by CPCs administered to the heart, 

leading to the activation of pro-survival kinases and to a switch towards glycolysis. This 
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resulted in them having an increased tolerance against hypoxic stress (Ong, et al. 2014) and 

suggests the interesting possibility that endothelial cells can support CPC survival by 

exosomal transfer of miRNA. 
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An attractive aspect of using EVs for therapy is the potential for altering their cargo to 

augment their protective capabilities. In a study by Mackie et al, CD34+ cells or their 

exosomes showed no benefit after injection into ischaemic mouse hearts. However, CD34+ 

cells were then genetically modified to to express the sonic hedgehog (Shh) protein, in order 

to enhance the angiogenic quality of CD34+ cells. When CD34+Shh cells were injected into 

the infarct border zone in mice, infarct size was reduced, border zone capillary density was 

increased, and ventricular dilation and cardiac function were improved 4 weeks later 

(Mackie, et al. 2012). In vitro studies in cells were performed to demonstrate that Shh was 

released from the CD34+Shh cells in exosomes, and could be transferred to recipient cells 

and (modestly) activate transcription. Injection of the exosomes from CD34+Shh cells had 

the same benefit, though exosomes from CD34+ cells wihout Shh showed no benefit 

(Mackie et al. 2012).  

Strikingly, it has been shown that there are on the order of 1010 EVs per ml present in the 

blood of all individuals, after isolation using the technique of differential ultracentrifugation, 

(Caby et al. 2005), and these could potentially be continually delivering different miRNA or 

receptor-ligand mediated signals to the heart. This possibility was addressed by isolating 

plasma exosomes from rats or healthy individuals by differential ultracentrifugation and 

testing whether they were cardioprotective in in vitro, ex vivo and in vivo models of IR 

(Vicencio, et al. 2015). Indeed, exosomes from plasma were strongly cardioprotective, 

activating the cardioprotective ERK1/2 kinase and reducing infarct size (Vicencio et al. 

2015). Plasma exosomes were similarly protective in an isolated perfused rat heart model 

and in primary cardiomyocytes, suggesting a direct effect of the exosomes at the plasma 

membrane level, although interestingly exosomes did not appear to be taken up by the 

cardiomyocytes but they were endocytosed by endothelial cells (Vicencio et al. 2015). This 

study also showed that the number of exosomes in the plasma was increased by short (5 

min) cycles of limb IR. This manipulation is under investigation of a means of inducing 

protection of the heart and other organs via a phenomenon known as “remote ischaemic 

preconditioning (RIC)” (Hausenloy and Yellon 2008). As yet, the mechanism of RIC is 

unknown although evidence for several mediators has been presented, including SDF-1α 

and Il-10 (Cai, et al. 2012; Davidson, et al. 2013). As vehicles able to deliver multiple signals 

between cells, EVs had been proposed as possible candidates for carriers of the 

cardioprotective factor released by RIC (Yellon and Davidson 2014). A study by Giricz et al. 

suggested that this may be the case, since RIC was not effective when EVs were removed 

from medium containing the factor (Giricz, et al. 2014). However, in a dose-response 

experiment conducted using primary adult rat cardiomyocytes the EVs released after RIC 
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were found not to be significantly more protective that exosomes from baseline (Vicencio et 

al. 2015). 

On the other hand, the observation that plasma EVs themselves were cardioprotective is 

important and may suggest that they signal continuously to the heart, modulating the 
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protective state. Protection was shown to involve HSP70 in the exosome membrane, which 

binds to TLR4 on cardiomyocytes, activating ERK1/2, p38MAPK and downstream 

phosphorylation of the small heat shock protein HSP27 (Vicencio et al. 2015). TLR4 is part 

of the innate immune system, and strong activation by its ligands from bacteria leads to a 

cell damage response and can cause cell death. However, mild activation is known to be 

protective (Mathur, et al. 2011; Zhang, et al. 2013). Other studies have suggested a link 

between body fluid exosomes and TLR-dependent signaling pathways, possibly mediating 

immunosuppressive and anti-inflammatory pathways (Bretz, et al. 2013; Zhang, et al. 2014). 

 

Conclusion 

With T2DM reaching epidemic proportions and cardiovascular disease being the major 

cause of death worldwide, novel therapeutic strategies are urgently needed to offer cell and 

tissue repair mechanisms to the myocardium and also diseases characterized by endothelial 

dysfunction. EVs including MVs and exosomes have emerged over the past decade to 

attract immense interest due to their potential either as biomarkers or mediators of disease. 

Increased MVs in plasma can be observed in patients with insulin resistance, T2DM, 

atherosclerosis and also after stroke or myocardial infarct. MVs have been also described as 

mediators of inflammation and to be involved in the pro-coagulant actions of platelets. The 

protein or RNA cargo of EVs offers additional potential not only for their use as biomarkers 

but also for their use as vehicles for delivering bioactives. As such, they offer the capability 

of delivering multiple signals to target tissues. Stem cells are the best-explored example of 

cells that deliver miRNA via exosomes with beneficial effects on the heart, kidneys and the 

endothelium. Exosomes and MVs have also been implicated in protecting the heart from 

infarction and have been proposed as potential mediators of ischaemic conditioning. EVs 

therefore represent one of the most exciting and promising research areas for the endocrine 

community. However, there is still much left to understand regarding the mechanisms of EV 

formation and their specific targeting to a selective tissue. Although current research has 

provided valuable insight to the mechanisms of EV release, we are only beginning to 

understand mechanisms of RNA/protein loading into exosomes for instance, and exploring 

these mechanisms is essential to design efficient therapeutical strategies involving EVs.  
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Figure legends 

Figure 1 

(A) Timeline (1956-2014) of the publications referring to extracellular vesicles (black line), 

microvesicles (blue line) and exosomes (red line). (B) Schematic representation of the 
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mechanisms of formation of microvesicles, exosomes and apoptotic bodies. Microvesicles 

(0.2 – 2.0 µm) originate via budding and shedding from the plasma membrane of cells and 

therefore may contain specific surface markers from the cell of origin. Exosomes (50 - 100 

nm) on the other hand originate intracellularly through a sorting pathway involving 

intermediate organelles such as the early endosome and a late multivesicular body, which 

fuses with the plasma membrane to release exosomes via exocytosis. Apoptotic bodies (1 - 

2 µm) originate via blebbing of the plasma membrane.  

Figure 2 

 
The endothelial cells marker CD144 is absent from exosomes isolated from HUVEC 

endothelial cells (A), despite being detectable on the parent cells (B). HUVEC cells or 

HUVEC exosomes bound to 4 μm beads were labelled with anti-CD144 and fluorescent 

secondary antibody, before fluorescent detection using a BD AccuriC6 flow cytometer. 

 

Figure 3 

Flow cytometry (FCM) allows direct analysis of microvesicles (MVs) and indirect 

(conjugated) analysis of exosomes. Nanoparticle tracking analysis (NTA) is the preferred 

technique for EV quantitation. Electron microscopy (EM) is the golden standard for EV 

visualization. (A) Direct flow cytometric analysis of MVs in plasma of rats fed chow or high 

fat diets (HFD; Heinrich et al. 2015) after staining for phosphatidyl serine exposure (Annexin 

V PE-Cy7.7) and CD106 (PE) to determine MV release from activated endothelial cells. 

Enumeration beads (red) and 1,1 μm sizing beads (green) were added as internal controls. 

(B) NTA of MVs from rats fed chow or HFD. (C) Indirect flow cytometric analysis of 

exosomes bound to aldehyde sulphate beads (4 μm) after staining for the tetraspannin 

CD63 and surface HSP70 (Vicencio et al. 2015). (D) NTA of human plasma exosomes 

isolated via ultraceintrifugation (black line) or using the Exo-spinTM (Cell Guidance Systems) 

commercial kit (red line). (E) Electron micrograph of MVs and exosomes.  

 

 



 

47 

 



 

48 



 

49 



 

50 

 


