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The study of mediation has a long tradition in the social sciences and a relatively more recent one in epidemiol-

ogy. The first school is linked to path analysis and structural equation models (SEMs), while the second is related

mostly to methods developed within the potential outcomes approach to causal inference. By giving model-free

definitions of direct and indirect effects and clear assumptions for their identification, the latter school has formalized

notions intuitively developed in the former and has greatly increased the flexibility of the models involved. However,

through its predominant focus on nonparametric identification, the causal inference approach to effect decomposi-

tion via natural effects is limited to settings that exclude intermediate confounders. Such confounders are naturally

dealt with (albeit with the caveats of informality andmodeling inflexibility) in the SEM framework. Therefore, it seems

pertinent to revisit SEMs with intermediate confounders, armed with the formal definitions and (parametric) iden-

tification assumptions from causal inference. Here we investigate: 1) how identification assumptions affect the

specification of SEMs, 2) whether the more restrictive SEM assumptions can be relaxed, and 3) whether existing

sensitivity analyses can be extended to this setting. Data from the Avon Longitudinal Study of Parents and Children

(1990–2005) are used for illustration.

eating disorders; estimation by combination; G-computation; parametric identification; path analysis; sensitivity

analysis

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BMI, body mass index; CDE, controlled direct effect;

PNDE, pure natural direct effect; SEM, structural equation model; TNIE, total natural indirect effect.

The epidemiologic literature on causal inference is alight
with contributions dedicated to the study of mediation. (A
PubMed search for articles on mediation analysis in epidemi-
ology produced 118 “hits” for articles published in 2012 and
110 “hits” for articles published in 2013.) The topic owes its
origins, however, to an older body of literature that is well
known in the social sciences. This school is often referred
to as the “Baron and Kenny approach” (1, 2) but is linked to
Sewall Wright’s path analysis (3) and its extension, structural
equation models (SEMs) (4). It includes several important
publications that are less well known in the epidemiologic
literature (5–10).
Contributions from the causal inference school have for-

malized and generalized notions intuitively developed in
the SEM school, first by defining (using potential outcomes)

precisely what is meant by direct and indirect effects, then by
giving clear assumptions under which they can be identified,
and lastly by generalizing the statistical methods available for
carrying out such analyses to allow for nonlinearities, inter-
actions, discrete outcomes, and semiparametric estimation
(11–26).
With a few notable exceptions (11, 27–29), the literature

on natural direct and indirect effects focuses predominantly
on nonparametric identification, which leads to the strong as-
sumption of “no intermediate confounders”—that is, that no
confounders (measured or unmeasured) of the mediator and
outcome may be affected by the exposure. By relying on
parametric models, however, such confounders are naturally
dealt with in the SEM framework. Therefore, it is pertinent
and timely to revisit SEMs with intermediate confounders,
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armed with the formal definitions and (parametric) identifi-
cation assumptions from causal inference to reconcile the 2
approaches in this particular context.

In this article, we review how paths are traced in order to
derive direct and indirect effects in simple linear SEMs which
include intermediate confounders but exclude nonlinearities,
and show their equivalence to the definitions based on poten-
tial outcomes. We then investigate how different parametric
assumptions for identification of the natural effects in the
presence of intermediate confounders affect the specifica-
tion of an extended SEM that includes nonlinearities. We
further investigate whether the usual SEM assumption of
“no omitted influences” of any pair of variables in the sys-
tem can be relaxed when estimation of the natural effects is
the goal. Finally, we widen existing sensitivity analyses to
the setting with intermediate confounding, exploiting the
SEM framework.

THE 2 FRAMEWORKS

Settings and aims

We will discuss settings involving an exposure X, an out-
come Y, a mediator M, background confounders C of 1 or
more of the relationships X-Y, M-Y, and X-M, and intermedi-
ate confounders L of theM-Y relationship (Figure 1). The aim
is to separate the causal effect of X acting along pathways that
includeM from the causal effect of X acting along other path-
ways that do not involve M (the indirect and direct effects,
respectively).

For simplicity, we let X be a binary variable and assume
that observations are not affected by missingness or measure-
ment error.

The causal inference framework

The causal inference framework (11, 12) invokes potential
outcomes (30). For mediation analysis, these are: M(x), the
potential value of M if X had been set, possibly counter to
fact, to the value x; Y(x, m), the potential value of Y if X
had been set to x and M to m; and Y(x, M(x′)), the composite
potential value of Y if X had been set to x and M to M(x′).

Several definitions of direct and indirect effects have been
proposed, with the choice depending on the causal question
being addressed. We focus here on those most widely used
and define them as linear contrasts, although definitions on
other scales have been given (31–33).

Definitions

The controlled direct effect (CDE) of X on Y when M is
controlled at m, CDE(m), and the pure natural direct effect
(PNDE) of X on Y (11, 12) are

CDEðmÞ ¼ EfYð1;mÞg � EfYð0;mÞg:
PNDE ¼ EfYð1;Mð0ÞÞg � EfYð0;Mð0ÞÞg:

CDE(m) is a comparison of 2 hypothetical worlds where, in
the first, X is set to 1 and, in the second, X is set to 0, while in
both worldsM is set to m. The PNDE is also a comparison of
2 hypothetical worlds where X is set to 0 or 1 but M is set to
take its natural value M(0). Because in each of these com-
parisons M is set at the same value in both worlds (at least
within the individual), they are measures of effects of X un-
mediated by M, that is, “direct.”

The complement of the PNDE is the total natural indirect
effect (TNIE) of X on Y (11, 34):

TNIE ¼ TCE� PNDE

¼ EfYð1;Mð1ÞÞg � EfYð1;Mð0ÞÞg;
where TCE = E{Y(1)} − E{Y(0)} represents the total causal
effect. The TNIE is a comparison of 2 hypothetical worlds
in which X is set to 1 in both, while M changes from its nat-
ural value when X is 1 to its natural value when X is 0. Intu-
itively, this is an indirect effect, since it captures the part of
the effect of X on Y that is transmitted by M. There is no
equivalent complement of CDE(m) (35).

Assumptions

In the absence of intermediate confounders. Identifi-
cation of these estimands is possible if certain assumptions
hold. Those most commonly invoked are specific versions of
no interference, consistency, and conditional exchangeability.

Briefly, in the settingwith no intermediate confounders and
for CDE(m), the assumption of no interference states that an
individual’s outcome is not influenced by the exposure sta-
tus of another person (36–39) and also that the mediator value
for one individual has no effect on the outcome in another.
The assumption of consistency states that Y(x, m) equals Y
among subjects with observed exposure level X = x and me-
diator level M =m (40–43). The assumption of conditional
exchangeability states that once individuals are stratified ac-
cording to confounders C, their allocation to X is essentially
“random” within these strata, and once they are stratified ac-
cording to X andC, their allocation toM is essentially random
within those strata. More formally, conditional exchange-
ability states that YðxÞ⊥⊥XjC and Yðx;mÞ⊥⊥MjC;X, imply-
ing no X-Y confounding conditionally on C and no M-Y
confounding conditionally on C and X (30, 44). Under these
extended assumptions, CDE(m) is nonparametrically identi-
fied by regression standardization. For discrete C (45, 46),

CDEðmÞ ¼
X
c

fEðY jX ¼ 1;M ¼ m;C ¼ cÞ

� EðYjX ¼ 0;M ¼ m;C ¼ cÞg PrðC ¼ cÞ:
ð1Þ

X Y

M

L
C

Figure 1. Causal diagram for exposure X, mediator M, outcome Y,
background confounder C, and intermediate confounder L.
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The sums here are replaced by integrals and Pr(C = c) by the
corresponding density, if C is continuous.
In order to identify the PNDE, the assumption of no inter-

ference is expanded also to mean that the exposure of one
individual has no effect on themediator of another; the assump-
tion of consistency is expanded also to mean that M(x) =M
when X = x and that Y(x,M(x)) = Y when X = x (denoted gen-
eralized consistency or composition (46)); and the assump-
tion of conditional exchangeability is expanded to mean
that there is also no X-M confounding conditional on C (for-
mally, MðxÞ⊥⊥XjC).
Under these extended assumptions, and whenM and C are

discrete, the PNDE is nonparametrically identified (12, 45,
46) by

X
c

X
m

fEðY jX ¼ 1;M ¼ m;C ¼ cÞ

� EðY jX ¼ 0;M ¼ m;C ¼ cÞg
× PrðM ¼ mjX ¼ 0;C ¼ cÞ PrðC ¼ cÞ:

ð2Þ

The same assumptions are invoked to nonparametrically
identify the TNIE, leading to (46)

TNIE ¼
X
c

X
m

EðY jX ¼ 1;M ¼ m;C ¼ cÞ

× fPrðM ¼ mjX ¼ 1;C ¼ cÞ
� PrðM ¼ mjX ¼ 0;C ¼ cÞg PrðC ¼ cÞ:

ð3Þ

For continuous C/M, summations are replaced by integrals
and probabilities by density functions (see part A of the Web
Appendix, available at http://aje.oxfordjournals.org/). Equa-
tions 2 and 3 are known as the mediation formula (45).

In the presence of intermediate confounders. Identifying
CDE(m) in the presence of intermediate confounders L can
be achieved by adapting the assumption of no unaccounted
M-Y confounding to include conditioning on L ðYðx;mÞ⊥⊥
MjC;X; LÞ and updating identification formula 1 (equation 1)
to include the contribution via L. This is commonly referred
to as the G-computation formula (46, 47) (Web Appendix,
part B).
In contrast, identification of the natural effects, PNDE and

TNIE, additionally involves some parametric restrictions on
the relationships among X,M, L, and Y. Originally the restric-
tion was stated by Robins and Greenland (11) as no X-M in-
teraction at an individual level. Alternatively, Petersen et al.
(27) suggested assuming that, conditional on C, the CDE
does not vary with M(0). Under either of these additional
parametric assumptions, PNDE and TNIE are identified by
formulae that are extensions of equations 2 and 3. (Identifica-
tion can also be obtained under certain “no-3-way-interaction”
assumptions when the exposure is randomly assigned (48) or
under no average L-M interaction in a nonparametric SEM
with mutually independent errors (29).)

Estimation

Several approaches have been proposed for the estimation
of these estimands, with standard errors typically obtained by

sandwich estimation or bootstrapping (for a review, see
Vansteelandt (46)). Among them, an extension of Robins’
(47) G-computation that incorporates the mediation formula
posits regression models for each of the (conditional) expec-
tations/probabilities/densities in the identifying equations,
estimates their parameters (e.g., using maximum likelihood),
and then plugs these estimates into the sums/integrals above
(47, 49). When the G-computation formula is too cumber-
some to be evaluated analytically, the integration can be ap-
proximated through Monte Carlo simulation (47, 50) (see
Appendix 2). The advantage of this approach is efficiency
when all models are correctly specified, as well as flexibility.
Essentially any combination of types (binary/categorical/
continuous) of outcomes, mediators, and intermediate con-
founders can be modeled with little restriction on the as-
sumed models, although the resulting complexities are a
drawback (26).
To lessen the reliance on parametric modeling assumptions,

many alternative semiparametric estimation approaches have
been suggested, in particular G-estimation of structural
nested models (21), inverse probability weighting of mar-
ginal structural models (20), doubly and multiply robust
methods that combine 1 or more of these approaches (24,
25), and multiply robust methods based on targeted maxi-
mum likelihood (51).

The SEM framework

Unlike the above, the definitions of direct and indirect ef-
fects given in the SEM literature depend on the specification
of a particular statistical model (49). In the setting of Figure 2
(with single C and L), the following model for continuous Y,
M, and L could be specified:

L ¼ γ0 þ γxX þ γcC þ ϵl
M ¼ α0 þ αxX þ αlLþ αcC þ ϵm
Y ¼ β0 þ βxX þ βmM þ βlLþ βcC þ ϵy;

8<
: ð4Þ

where X and C are exogenous variables (no equations are
specified for them), Y, M, and L are endogenous variables,
and ϵl, ϵm, and ϵy are mean-zero error terms, uncorrelated
with each other and with the exogenous variables. This is a
linear path model for the joint distribution of Y, M, and L
(4, 52).

X Y

M

L
C

βx

βm

βc

αx

αc

γx

γc

βl

αl

Figure 2. Structural equationmodel for exposureX, mediatorM, out-
come Y, background confounder C, and intermediate confounder L
(error terms omitted for simplicity).
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Sequentially replacing the expression for L into the equation forM and that forM into the equation for Y, we obtain the reduced
form of model 4 (equation 4):

Y ¼ ðβ0 þ α0βm þ αlβmγ0 þ βlγ0Þ þ ðβx þ αxβm þ αlβmγx þ βlγxÞX
þ ðβc þ αcβm þ βlγc þ αlβmγcÞC þ ðβmϵm þ αlβmϵl þ βlϵl þ ϵyÞ:

Here (βx + αxβm + αlβmγx + βlγx) is taken to represent the total causal effect of X on Y. It can be partitioned into the direct (not
mediated byM) and indirect (mediated) effects of X by tracing the paths in Figure 2 that make up the total effect (52). The indirect
effect is found by multiplying the parameters along each of the (directed) paths from X to Y that includeM and summing them; here,
this is (αxβm + γxαlβm). The direct effect is the sum of the remainder, (βx + γxβl). This is a more general version of the product of
coefficients method (2, 13, 53).

Tracing the paths is possible only when the models for the endogenous variables are linear and do not include any interactions
or other nonlinearities, although generalizations to settings with binary outcomes (via logit or probit regression) have been sug-
gested, with standardization of the estimated parameters used to deal with their differences in scale across models (54). Other
approaches within the SEM framework (i.e., without relying on counterfactuals) have also been proposed for general link func-
tions and for models with interactions and other nonlinearities (9, 10, 49, 55), but these are only approximate and do not explicitly
deal with settings with intermediate confounding.

Assumptions and estimation

Depending on the author, the identifying assumptions given in the SEM literature vary in detail, but essentially they are (5, 7, 8,
52, 56):

1. Correct temporal order between X, L, M, and Y.
2. “No omitted influences” (8), or “no lack of self-containment” (7), or “no other hidden relevant causes” (52).
3. Correct functional forms of each equation in the model.
4. Accurate measurements of all of the observed variables.
5. Error terms that are uncorrelated with each other and with the exogenous variables.

The first 2 assumptions are structural, that is, causal, meaning that the regression equations fully reflect the underlying data-
generating process and that they justify the apportioning of the mediation effects described above (7, 8, 52). For settings with
intermediate confounders, “no omitted influences” is a stronger assumption than the conditional exchangeability assumption
invoked in the causal inference literature, since it also involves no L-Y confounding.

The last 3 assumptions are statistical. The first refers to the linearity and additivity of the relationships among the variables, the
second to the reliability of the available data, and the third to the behavior of the error terms. Requiring the error terms to be
uncorrelated with each other and with the exogenous variables guarantees unbiased estimation of the model’s parameters via least
squares. These estimated parameters can then be combined to obtain estimates of the direct and indirect effects, with measures of
their precision obtained via the delta method (6) or bootstrapping (57). Importantly, departures from the statistical assumptions
have repercussions for the structural ones. Correlated error terms—or correlated error terms and exogenous variables—would
indicate departures from the structural assumption of no omitted relevant variables (52). Departures from the assumption of accurate
measurements of the observed variables would lead to biased estimates of the model parameters and consequently of the medi-
ation parameters (58).

Interestingly, the SEM literature does not mention the assumptions of no interference and consistency invoked by the causal
inference literature, even though both are required for the estimated parameters to be interpreted as causal (59).

INSIGHTS

The causal inference estimands are defined in generality, although identification is achieved only parametricallywhen intermediate
confounding is present. The SEMestimands are derived from specific parametric structural models that naturally include intermediate
confounders. The 2 approaches are therefore very different, but they converge under certain scenarios.We believe that understanding
their overlap when intermediate confounding is present can offer useful analytical insights.

Equivalence in estimands

The SEM approach to mediation applied to model 4 identifies the mediated effect of X on Y viaM as (αxβm + γxαlβm) and the
nonmediated one as (βx + γxβl).

Under the same structural and parametric assumptions, the causal inference estimands can be written in closed form (see Web
Appendix, part B):

Mediation Analysis With Intermediate Confounding Using SEM 67

Am J Epidemiol. 2015;181(1):64–80

 at U
niversity C

ollege L
ondon on M

arch 23, 2016
http://aje.oxfordjournals.org/

D
ow

nloaded from
 

http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwu239/-/DC1
http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwu239/-/DC1
http://aje.oxfordjournals.org/


PNDE ¼
Z
c

�Z
l 0

Z
m

Z
l

�
EðY jX ¼ 1;M ¼ m; L ¼ l;C ¼ cÞ fLðljX ¼ 1;C ¼ cÞ

� EðY jX ¼ 0;M ¼ m; L ¼ l;C ¼ cÞ fLðljX ¼ 0;C ¼ cÞ� dl
× fMðmjL ¼ l 0;X ¼ 0;C ¼ cÞ fLðl 0 jX ¼ 0;C ¼ cÞ dmdl 0

�
fCðcÞ dc

¼
Z
c

�Z
l 0

Z
m
ðβx þ βlγxÞ fMðmjL ¼ l 0;X ¼ 0;C ¼ cÞ flðl 0jX ¼ 0;C ¼ cÞ dm dl 0

�
fCðcÞ dc

¼ βx þ βlγx:

CDEðmÞ ¼
Z
c

�Z
l
E
�ðY jX ¼ 1;M ¼ m;C ¼ c; L ¼ lÞ fLðljX ¼ 1;C ¼ cÞ dl

�
Z
l
EðY jX ¼ 0;M ¼ m;C ¼ c; L ¼ lÞ fLðljX ¼ 0;C ¼ cÞ dl

�
fCðcÞ dc

¼
Z
c
ðβx þ βlγxÞ fCðcÞ dc

¼ βx þ βlγx:

TNIE ¼
Z
c

�Z
l 0

Z
m

Z
l
EðYjX ¼ 1;M ¼ m; L ¼ l;C ¼ cÞ fLðljX ¼ 1;C ¼ cÞ

× f fMðmjX ¼ 1; L ¼ l 0;C ¼ cÞ fLðl 0jX ¼ 1;C ¼ cÞ

� fMðmjX ¼ 0; L ¼ l 0;C ¼ cÞ fLðl 0jX ¼ 0;C ¼ cÞ� dl dm dl 0
�
fCðcÞ dc

¼
Z
c
fβmðαx þ αlγxÞ

�
fCðcÞ dc

¼ βmðαx þ αlγxÞ:

Hence the estimands from the 2 approaches coincidewhen the
same parametric assumptions are made; likewise in the sim-
ple setting without intermediate confounders (10, 13, 45, 49).
Although these equivalences apply only to linear SEMs that
have no interactions or other nonlinear terms involving X,
M, and L, closed-form solutions for the causal estimands
above are not restricted to these simple models. Appendix 1
shows the closed-form solutions obtained for a more general
linear SEM:

L ¼ γ0 þ γxX þ γcC þ ϵl
M ¼ α0 þ αxX þ αlLþ αcC þ αxlXLþ ϵm
Y ¼ β0 þ βxX þ βlLþ βllL

2 þ βmM þ βmmM
2

þ βcC þ βxlXLþ βxmXM þ ϵy;

8>><
>>:

ð5Þ

where the residual terms are uncorrelated with each other and
the explanatory variables in their equations and have constant
variances σ2l , σ

2
m, and σ2y , respectively.

Parametric G-computation of the causal estimands above
can then be achieved by combining the relevant estimated
parameters of the assumed SEM, leading to what we refer
to as estimation by combination (see Appendix 2 for its im-
plementation in Mplus (Muthén and Muthén, Los Angeles,
California); this implementation is more general than
those in the papers by Valeri and VanderWeele (15) and

Emsley et al. (60), which deal only with settings without
L). Comparing the results obtained from analytical (i.e., by-
combination) and Monte Carlo G-computation allows evalu-
ation of the extent of the Monte Carlo error, as illustrated in
the example.

Understanding the assumptions required for parametric

identification

Identifiability of the natural direct and indirect effects in
the presence of intermediate confounding involves some
parametric restrictions on the relationships among X, M, L,
and Y. Specifically, Robins and Greenland (11) proposed
the assumption of no individual X-M interaction—formally,
that Yð1;mÞ � Yð0;mÞ is the same for all m. For settings in
which parametric models for Y,M, and L are specified via lin-
ear regression, this can be formally examined.
For example, consider model 5 (equation 5). Assuming it

is correctly specified, we see that

Yð1;mÞ�Yð0;mÞ¼βxþβlðLð1Þ�Lð0ÞÞþβllðLð1Þ2�Lð0Þ2Þ
þβxlLð1Þþβxmm

¼βxþβlγxþβllfγ2xþ2γxðγ0þγcCþϵlÞg
þβxlðγ0þγxþγcCþϵlÞþβxmm;
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and thus the Robins and Greenland assumption holds if and
only if βxm ¼ 0: Note that, had our model for Y included a
term in LM, the Robins and Greenland assumption would
also have constrained its coefficient (βlm) to be zero (in line
with the constraint proposed by Tchetgen Tchetgen and
VanderWeele (29)).

Petersen et al. (27) propose the alternative identifying as-
sumption that, within levels ofC, the CDE does not vary with
M(0). Formally,

EfYð1;mÞ � Yð0;mÞjMð0Þ ¼ m;C ¼ cg
¼ EfYð1;mÞ � Yð0;mÞjC ¼ cg:

Again, assuming that model 5 is correct, we see that

Mð0Þ ¼ αx þ αlLð0Þ þ αcC þ ϵm
¼ αx þ αlðγ0 þ γcC þ ϵlÞ þ αcC þ ϵm:

Conditional onC, therefore, we see that both Y(1,m)− Y(0,m)
andM(0) are functions of ϵl, except when βll ¼ βxl ¼ 0:Note
that, given our model, assuming that γx = 0 (in place of βll) or
that αl = 0 would be equivalent to assuming no intermediate
confounding, which is why we do not consider them.

Thus, given this particular model, we have 2 options in the
presence of intermediate confounders: Either we identify the
PNDE and TNIE under the assumption that βxm = 0 or we
identify them under the assumption that βll = βxl = 0. Hence,
examining the significance of these parameters in an associ-
ational model for Y that contains all of these terms should aid
in the selection of identification assumptions.

Equivalence in assumptions

As we stated above, there is an interesting difference with
regard to the identifying assumptions invoked by the 2 ap-
proaches when the model involves intermediate confounders.
Under the SEM, all of the error terms are assumed to be un-
correlated with each other, a scenario which would not be sat-
isfied were the L-Y relationship affected by unmeasured
confounding, given C and X (represented by U in Figure 3).
This is not a restriction invoked by the causal inference
framework (as it concerns only confounding of X-Y, X-M,
and M-Y).

However, when the focus is identification of mediation
effects within the SEM framework, the assumption of no L-Y

confounding is actually not required once the parametric as-
sumptions discussed above are made (for a justification based
on the theory described by Wermuth and Cox (61), see part C
of the Web Appendix and—for a simpler setting—Moerkerke
et al. (62); also see Pearl (63)). Thus, there is no contradiction in
fitting a SEM without assuming no L-Y confounding.

Sensitivity analyses

It is possible to perform simple sensitivity analyses of the
assumption of no unmeasured M-Y confounding by fitting
SEMs that allow for ϵy and ϵm to be correlated (10, 49,
64). We extend the sensitivity analysis of Imai et al. (49) to
a setting with intermediate confounders—for example,

L ¼ γ0 þ γxX þ ϵl
M ¼ α0 þ αxX þ αlLþ ϵm
Y ¼ β0 þ βxX þ βmM þ βlLþ ϵy;

8<
: ð6Þ

where, for simplicity, there are no confounders or interac-
tion terms and the residuals are uncorrelated with the explan-
atory variables in their equations and have constant variance
(Var(ϵlÞ ¼ VarðϵljXÞ ¼ σ2l , VarðϵmÞ ¼ VarðϵmjX; LÞ ¼
σ2m, and VarðϵyÞ ¼ VarðϵyjX; L;MÞ ¼ σ2y)) but ϵm and ϵy
are correlated with Corrðϵm; ϵyÞ ¼ Corrðϵm; ϵyjX; L;MÞ ¼
ρ. This would occur in the presence of uncontrolled M-Y
confounding.

Now consider the alternative specification:

L ¼ γ0 þ γxX þ ϵl
M ¼ α0 þ αxX þ αlLþ ϵm
Y ¼ β00 þ β0xX þ β0lLþ ϵ0y;

8<
: ð7Þ

where the model for Y does not include M and Varðϵ0yÞ ¼
Varðϵ0yjX; LÞ ¼ σ02

y , and Corrðϵm; ϵ0yÞ¼Corrðϵm; ϵ0yjX; LÞ¼
ρ0. The parameters of model 6 (equation 6) are not identified
because βm and ρ are collinear, whereas the parameters of model
7 (equation 7) are.

Similarly to Imai et al. (49), we focus on ρ′ and interpret it
as a measure of the strength of any unmeasured M-Y con-
founding that would imply an indirect effect of zero. Estimat-
ing ρ′ is straightforward: Model 7 is fitted and the residuals are
calculated,with their sample correlation being ρ̂0. A confidence
interval for ρ̂0 is then obtained by bootstrapping (Stata code
(StataCorp LP, College Station, Texas) given in Appendix 3).

RESULTS

To illustrate the advantages of fitting SEMs when studying
mediation, we analyze data on eating-disorder behaviors in
adolescent girls. An adolescent eating-disorder study was
carried out as part of the Avon Longitudinal Study of Parents
and Children (ALSPAC), a birth cohort study of babies born
between 1990 and 1992 in the South West of the United
Kingdom (65). It involved data on eating-disorder behaviors
collected by parental questionnaire on nearly 3,000 girls
when they were around age 13.5 years. This information was
used to identify 3 (standardized) latent scores for disordered
eating patterns via factor analysis (66). For illustration, we

X Y

M

L
U

C

Figure 3. Causal diagram for exposure X, mediator M, outcome Y,
intermediate confounder L, and unmeasured intermediate L-Y con-
founder U. The circle around U indicates that it is unmeasured.
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use one of these latent dimensions, “bingeing or overeating,”
as the outcome of interest and study whether the influence of
high maternal prepregnancy body mass index (BMI; weight
(kg)/height (m)2; coded >25 for high and ≤25 for low) is

mediated by the daughter’s BMI in childhood (prospectively
calculated from measurements taken at about age 7 years). It
is of interest to separate the effects that maternal BMI may
have through and not through potentially modifiable child-
hood factors.
The assumed causal diagram is shown in Figure 4, with

maternal prepregnancy mental illness and education as back-
ground confounders (C1 and C2) and birth weight as an inter-
mediate confounder (L). The appropriate extension (i.e.,
incorporating the mediation formula) of the G-computation
formula by Monte Carlo simulation was performed via the
gformula command in Stata 13 (50) (details given in Ap-
pendix 2, part A); estimation by combination was performed
after fitting models by maximum likelihood in Mplus 7.11
(67) and combining the relevant estimated parameters as
appropriate (details given in Appendix 2, part B). Standard
errors were obtained via the bootstrap and delta methods,
respectively.
Analyses are restricted to the 2,749 girls with complete

data on all variables. Table 1 characterizes the data and shows
marginal and partial correlations. “Bingeing or overeating” is
both marginally and conditionally correlated with all other
variables except maternal education, while maternal BMI
(but not childhood BMI) is correlated with birth weight.
Table 2 shows the estimated coefficients for the condi-

tional expectation of Y expressed without any of the paramet-
ric constraints needed for identification in the presence of
intermediate confounders. In particular, we allowed interac-
tions between X and M, L andM, and nonlinearities in L and

Table 1. Mean Values/Percentages andMarginal (Above Main Diagonal) and Partial (BelowMain Diagonal) Correlations for Variables Used in an

Analysis of Eating-Disorder Behaviors Among Adolescent Girls (n = 2,749), Avon Longitudinal Study of Parents and Children, United Kingdom,

1990–2005a

Variable Symbol Mean (SD) %

Correlation

Bingeing or
Overeating

Childhood
BMIb

Birth
Weight

High Maternal
BMI

Low Maternal
Education

Poor Maternal
Mental Health

Bingeing or
overeating

Y 0.00 (1.00) 1 0.33c 0.05c 0.06c −0.01 0.11c

Childhood BMId M −0.02 (0.99) 0.34c 1 −0.02 0.26c 0.10c −0.02

Birth weighte L 0.10 (0.92) 0.05c 0.01 1 0.12c −0.04 −0.04

Highmaternal BMIf,g X 19 0.17c 0.31c 0.13c 1 0.17c −0.03

Low maternal
educationg,h

C1 55 0.04 0.13c −0.03c 0.20c 1 0.04

Poor maternal
mental healthg

C2 13 0.11c 0.01 −0.03 −0.01 0.04 1

Abbreviations: BMI, body mass index; SD, standard deviation.
a Information on maternal education, prepregnancy BMI, and history of mental illness was obtained from postal questionnaires administered

during pregnancy. Birth weight was measured at the time of birth. Childhood BMI was prospectively calculated from measurements taken at

about age 7 years.
b Weight (kg)/height (m)2.
c P < 0.05.
d Childhood BMI was age-standardized (leading to a standardized score). Because of missing values on other variables, its mean and SD were

not exactly 0 and 1.
e Birth weight was internally standardized using the complete sample (leading to a standardized score). Because of missing values on other

variables, its mean and SD were not exactly 0 and 1.
f Maternal prepregnancy BMI was dichotomized (<25, low; ≥25, high).
g Polychoric (or tetrachoric) correlations are reported when calculations involved this variable.
h Maternal education was dichotomized: “no high school” versus “at least high school.”

Maternal BMI
Bingeing or
Overeating

Childhood
BMI

Maternal Mental Illness,
Maternal Education

Birth
Weight

Figure 4. Causal diagram for the relationships between high mater-
nal prepregnancy body mass index (BMI; weight (kg)/height (m)2) (X ),
birth weight (L), offspring childhood BMI (prospectively calculated
from measurements taken at about age 7 years) (M ), and off-
spring “bingeing or overeating” score, measured at around age 13.5
years (Y ), Avon Longitudinal Study of Parents and Children, United
Kingdom, 1990–2005.
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M. It appears that there is little evidence to reject βxm = 0
(P = 0.76), while the evidence for βxl and βll being nonzero
is greater (P = 0.08 and P = 0.01, respectively), suggesting
that the Robins and Greenland assumption may be more plau-
sible in this example. We nevertheless report the estimates of
the mediation effects obtained under both assumptions in
Table 3 (see also Web Table 1). The results suggest a strong
mediated effect of high maternal BMI on “bingeing or over-
eating” via childhood BMI, with a smaller direct effect captur-
ing all other pathways. It appears therefore that more than
60% of the total effect of maternal overweight is transmitted
via the daughter’s own size in childhood and not via other
pathways, including birth weight, implicating a contribution
of childhood environmental factors. Table 3 also highlights
the closeness of the results obtained using Monte Carlo G-
computation and G-computation via estimation by combi-
nation; however, this required the size of the Monte Carlo
sample to be increased to 100,000.

Sensitivity analyses show that a noncausal residual corre-
lation between childhood BMI and “bingeing or overeating”
would have to be very large, at least equal to 0.324 (95% con-
fidence interval: 0.287, 0.361), to remove the path mediated
by childhood BMI.

DISCUSSION

We have reviewed 2 alternative approaches to the study of
mediation in settings with intermediate confounding. The
one emerging from the SEM framework has a long tradition
in the social sciences and uses definitions of direct and in-
direct effects that are intuitive but are embedded within simple
linear models. In contrast, the approach proposed within the
causal inference literature is general, as it compares expected
potential outcomes without reference to any particular model.

We have extended work done by others (10, 13, 45, 49,
64) in deriving closed-form solutions to the identification
equations for the causal inference estimands for general

Table 3. Estimation of the Total Effect of High Maternal BMI on

“Bingeing or Overeating” Among Adolescent Girls (n = 2,749) and of

the Effects Mediated and Not Mediated by Childhood BMI (Estimation

by Monte Carlo Simulation vs. Estimation by Combination), Avon

Longitudinal Study of Parents and Children, United Kingdom,

1990–2005

Model and
Estimand

Estimation Method and Estimate (SE)

Monte Carlo
G-Computationa

Estimation
by Combinationb

Model 1c

TCE 0.287 (0.052) 0.287 (0.049)

PNDE 0.102 (0.050) 0.103 (0.047)

TNIE 0.185 (0.021) 0.184 (0.019)

CDE(0) 0.104 (0.050) 0.103 (0.047)

Model 2d

TCE 0.297 (0.052) 0.297 (0.049)

PNDE 0.102 (0.051) 0.103 (0.051)

TNIE 0.195 (0.031) 0.194 (0.028)

CDE(0) 0.105 (0.049) 0.105 (0.049)

Abbreviations: CDE, controlled direct effect; PNDE, pure natural

direct effect; SE, standard error; TCE, total causal effect; TNIE, total

natural indirect effect.
a Estimation by G-computation via Monte Carlo simulation was

carried out using the gformula command (50) in Stata 13, with an

enlarged Monte Carlo sample of 100,000 to increase agreement

with closed-form results (see Appendix 2, part A); SEs were esti-

mated via bootstrap.
b Estimation by combination was carried out by combining the

maximum likelihood estimates of the relevant structural equation

model parameters obtained in Mplus, version 7.11 (see Appendix 2,

part B); SEs were estimated via the delta method.
c Model 1 follows the Robins and Greenland assumption (11) that

there is no interaction between X and M at the individual level in their

effects on Y. The model was specified as follows. The equation for

“bingeing or overeating” (Y ) included childhood BMI (M ; linear and

quadratic terms), high maternal BMI (X; binary), birth weight (L;
linear and quadratic terms), the interaction between high mater-

nal BMI and birth weight, maternal education (C1; binary), and pre-

pregnancy mental health (C2; binary). The equation for childhood

BMI included high maternal BMI (binary), birth weight (linear term), the

interaction between high maternal BMI and birth weight, maternal

education (binary), and prepregnancy mental health (binary). The

equation for birth weight included high maternal BMI (binary), mater-

nal education (binary), and prepregnancy mental health (binary).
d Model 2 follows the Petersen et al. assumption (27) that (con-

ditional on C) the CDE does not vary with M(0). The model was

specified as follows. The equation for “bingeing or overeating” in-

cluded childhood BMI (linear and quadratic terms), high maternal

BMI (binary), birth weight (linear term), the interaction between high

maternal BMI and childhood BMI, maternal education (binary), and

prepregnancy mental health (binary). The equation for childhood BMI

included high maternal BMI (binary), birth weight (linear term), the

interaction between high maternal BMI and birth weight, maternal

education (binary), and prepregnancy mental health (binary). The

equation for birth weight included high maternal BMI (binary), mater-

nal education (binary), and prepregnancy mental health (binary).

Table 2. Estimated Coefficients From a Regression Model for

“Bingeing or Overeating” Among Adolescent Girls (n = 2,749), Avon

Longitudinal Study of Parents and Children, United Kingdom,

1990–2005

Variable Symbol Parameter Estimate (SE) PValue

High maternal BMIa X βx 0.068 (0.050) 0.18

Childhood BMI
score

M βm 0.312 (0.021) <0.001

Childhood BMI
score squared

M2 βmm 0.043 (0.012) <0.001

Birth weight score L βl 0.034 (0.022) 0.13

Birth weight score
squared

L2 βll 0.032 (0.012) 0.01

High maternal
BMI × birth weight

XL βxl 0.078 (0.045) 0.08

High maternal
BMI × child BMI

XM βxm 0.014 (0.045) 0.76

Low maternal
education

C1 βc1 −0.011 (0.036) 0.76

Poor maternal
mental health

C2 βc2 0.207 (0.054) <0.001

Abbreviations: BMI, body mass index; SE, standard error.
a Weight (kg)/height (m)2.
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linear SEMs that include intermediate confounders. This has
helped in clarifying the parametric assumptions needed for
identification—and the consequent advantages of examining
certain regression parameters, justifying the relaxation of the
assumption of no L-Y unmeasured confounders made by the
causal inference school and extending sensitivity analyses of
unmeasured M-Y confounding. These results are novel and
should help analysts investigating mediation in the presence
of intermediate confounding. Although these results are re-
stricted to settings that can be modeled with systems of linear
equations, the insights gained here should also apply more
generally, given the approximate closed-form expressions re-
cently derived for binary outcomes and mediators (31, 68)
and the recent nonparametric identifying constraints involv-
ing L-M interactions (29, 64).
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APPENDIX 1

Estimation by Combination for a More General Linear SEM

Consider the following linear structural equation model (SEM):

L ¼ γ0 þ γxX þ γcC þ ϵl
M ¼ α0 þ αxX þ αlLþ αcC þ αxlXLþ ϵm
Y ¼ β0 þ βxX þ βlLþ βllL

2 þ βmM þ βmmM
2 þ βcC þ βxlXLþ βxmXM þ ϵy;

8<
: ð8Þ

where the residual terms are uncorrelated with each other and the endogenous variables and have variances σ2l , σ
2
m, and σ2y ,

respectively. (Note that these variances are assumed to be constant, so that VarðϵljX;CÞ ¼ σ2l , VarðϵmjX; L;CÞ ¼ σ2m, and
VarðϵyjX; L;M;CÞ ¼ σ2y .)
For this model, the expression for the pure natural direct effect (PNDE) (see Web Appendix, part B),

Z
c

Z
l 0

Z
m

Z
l
fEðY jX ¼ 1;M ¼ m; L ¼ l;C ¼ cÞ fLðljX ¼ 1;C ¼ cÞ

�

� EðY jX ¼ 0;M ¼ m; L ¼ l;C ¼ cÞ fLðljX ¼ 0;C ¼ cÞg dl

× fMðmjL ¼ l 0;X ¼ 0;C ¼ cÞ fLðl 0jX ¼ 0;C ¼ cÞ dm dl 0
�
fCðcÞ dc;

ð9Þ

can be written in closed form. Consider first its inner component:
Z
l
fEðY jX ¼ 1;M ¼ m; L ¼ l;C ¼ cÞ fLðljX ¼ 1;C ¼ cÞ

� EðY jX ¼ 0;M ¼ m; L ¼ l;C ¼ cÞ fLðljX ¼ 0;C ¼ cÞg dl:

This is equal to

fβ0 þ βx þ ðβl þ βxlÞL1ðcÞ þ βllL
2
1ðcÞ þ βmmþ βmmm

2 þ βccþ βxmmg
� fβ0 þ βlL0ðcÞ þ βllL

2
0ðcÞ þ βmmþ βmmm

2 þ βccg
¼ βx þ βlðL1ðcÞ � L0ðcÞÞ þ βllðL21ðcÞ � L20ðcÞÞ þ βxlL1ðcÞ þ βxmm;

ð10Þ

where

LxðcÞ ¼ EðLjX ¼ x;C ¼ cÞ ¼ γ0 þ γxxþ γcc

L2xðcÞ ¼ EðL2jX ¼ x;C ¼ cÞ ¼ ðLxðcÞÞ2 þ σ2l
L1ðcÞ � L0ðcÞ ¼ γx

L21ðcÞ � L20ðcÞ ¼ ðL1ðcÞÞ2 � ðL0ðcÞÞ2 ¼ γ2x þ 2γxðγ0 þ γccÞ:

Let

AðcÞ ¼ βx þ βlγx þ βllfγ2x þ 2γxðγ0 þ γccÞg þ βxlðγ0 þ γx þ γccÞ:

Writing equation 10 as A(c) + βxmm, we can rewrite equation 9 as
Z
c

Z
l 0

Z
m
ðAðcÞ þ βxmmÞ fMðmjL ¼ l 0;X ¼ 0;C ¼ cÞ flðl 0jX ¼ 0;C ¼ cÞ fCðcÞ dmdl 0 dc

¼
Z
c
fAðcÞ þ βxmM0ðcÞg fCðcÞ dc

¼ Aþ βxmM0;
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where

MxðcÞ ¼ EðMjX ¼ x;C ¼ cÞ ¼ α0 þ αxxþ ðαl þ αxlxÞLxðcÞ þ αcc

M0ðcÞ ¼ α0 þ αlðγ0 þ γccÞ þ αcc

�A ¼
Z

AðcÞ fcðcÞ dc

¼ βx þ βlγx þ βllfγ2x þ 2γxðγ0 þ γcμcÞg þ βxlðγ0 þ γx þ γcμcÞ

M0 ¼
Z

M0ðcÞ fcðcÞ dc

¼ α0 þ αlðγ0 þ γcμcÞ þ αcμc:

Thus, equation 9 becomes

βx þ βlγx þ βllfγ2x þ 2γxðγ0 þ γcμcÞg þ βxlðγ0 þ γx þ γcμcÞ þ βxmfα0 þ αlðγ0 þ γcμcÞ þ αcμcg:

If the model is correctly specified and if, additionally, the assumptions of no interference, strong consistency, and conditional
exchangeability are met and one of the parametric assumptions described in the text is met, then this expression can be interpreted
as the PNDE. However, note that the additional parametric assumptions constrain some of the parameters above to be zero, and
thus the expression simplifies.

Similar calculations for CDE(m), the controlled direct effect (CDE) of X on Y whenM is controlled at m (see Web Appendix,
part B), lead to

CDEðmÞ ¼ �Aþ βxmm

¼ βx þ βlγx þ βllfγ2x þ 2γxðγ0 þ γcμcÞg þ βxlðγ0 þ γx þ γcμcÞ þ βxmm;

with the interpretation as CDE(m) being justified if the model is correctly specified and if the appropriate assumptions (no in-
terference, consistency, conditional exchangeability) are met; note that the parametric restrictions described in the text are not
required for this estimand.

Finally, for the total natural indirect effect (TNIE) (see Web Appendix, part B), we have the expressionZ
c

Z
l 0

Z
m

Z
l
EðY jX ¼ 1;M ¼ m; L ¼ l;C ¼ cÞ fLðljX ¼ 1;C ¼ cÞ

× f fMðmjX ¼ 1; L ¼ l 0;C ¼ cÞ fLðl 0jX ¼ 1;C ¼ cÞ
� fMðmjX ¼ 0; L ¼ l 0;C ¼ cÞ fLðl 0jX ¼ 0;C ¼ cÞg fCðcÞ dl dm dl 0 dc;

which can be rewritten as Z
c
fðβm þ βxmÞðM1ðcÞ �M0ðcÞÞ þ βmmðM2

1ðcÞ �M2
0ðcÞÞg fCðcÞ dc; ð11Þ

where

M1ðcÞ �M0ðcÞ ¼ αx þ αxlðγ0 þ γx þ γccÞ þ αlγx

M2
1ðcÞ �M2

0ðcÞ ¼ EðM2jX ¼ 1;C ¼ cÞ � EðM2jX ¼ 0;C ¼ cÞ
¼ fM1ðcÞg2 � fM0ðcÞg2 þ VarðMjX ¼ 1;C ¼ cÞ � VarðMjX ¼ 0;C ¼ cÞ
¼ fα0 þ αx þ ðαl þ αxlÞðγ0 þ γx þ γccÞ þ αccg2 � fα0 þ αlðγ0 þ γccÞ þ αccg2

þ ðαl þ αxlÞ2σ2l þ σ2m � ðα2
l σ

2
l þ σ2mÞ

¼ fα0 þ αlðγ0 þ γx þ γccÞ þ αccg2
þ 2fα0 þ αlðγ0 þ γx þ γccÞ þ αccgfαx þ αxlðγ0 þ γx þ γccÞg
þ ð2αl þ αxlÞαxlσ

2
l :
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Thus, equation 11 can be rewritten as

ðβm þ βxmÞfαx þ αxlðγ0 þ γx þ γcμcÞ þ αlγxg þ βmmðfαx þ αlγx þ αxlðγ0 þ γxÞg2
þ 2ðα0 þ αlγ0Þfαx þ αlγx þ αxlðγ0 þ γxÞg
þ 2½ðα0 þ αlγ0Þαxlγc þ fαx þ αlγx þ αxlðγ0 þ γxÞgðαc þ αlγc þ αxlγcÞ�μc
þ f2ðαc þ αlγcÞ þ αxlγcgαxlγcðμ2c þ σ2cÞ þ ð2αl þ αxlÞαxlσ

2
l Þ;

where σ2c is the variance of C.
Again, this can be interpreted as the TNIE if the model is correctly specified and if, additionally, the assumptions of no in-

terference, strong consistency, and conditional exchangeability are met and one of the parametric assumptions is met. Note again
that the additional parametric assumptions constrain some of the parameters above to be zero, simplifying the expression.

APPENDIX 2

G-Computation in Stata and Mplus

y dependent variable
x exposure
m mediator
l intermediate confounder
c_1 first baseline confounder
c_2 second baseline confounder
m2 m2

l2 l2

xl x × l
xm x ×m

A. G-computation by Monte Carlo simulations using Stata

To implement G-computation by Monte Carlo simulation, we have used the user-written command gformula. The syntax
used was as follows (for more details, refer to Daniel et al. (50)):

1. Model 1 (Robins and Greenland’s identifying assumptions (11)):

#delimit ;
gformula y x m m2 l l2 c1 c2 xl,
mediation outcome(y) exposure(x) mediator(m)
post_confs(l) base_confs(c1 c2)
obe control( m:0)
commands(y:regress, m:regress, l:regress)
equations(y:x m m2 l l2 c1 c2 xl, m:x l c1 c2 xl, l:x c1 c2)
derived(m2 l2 xl) derrules(m2:m*m,l2:l*l, xl:x*l)
minsim samples(1000) moreMC simulations(100000) replace seed(79);

#delimit cr

2. Model 2 (Petersen et al.’s identifying assumptions (27)):

#delimit ;
gformula y x m m2 l l2 c1 c2 xl xm,
mediation outcome(y) exposure(x) mediator(m)
post_confs(l) base_confs(c1 c2)
obe control( m:0)
commands(y:regress, m:regress, l:regress)
equations(y:x m m2 l c1 c2 xm, m:x l c1 c2 xl, l:x c1 c2)
derived(m2 l2 xl xm) derrules(m2:m*m,l2:l*l, xl:x*l, xm:x*m)
minsim samples(1000) moreMC simulations(100000) replace seed(79);

#delimit cr
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B. G-computation via estimation by combination using Mplus

The implementation with 2 confounders requires an extension of the expressions given in Appendix 1.
Let μc1 and μc2 be the mean values of the 2 confounders, σ2c1 and σ2c1 their variances, and σ12 their covariance. Also let

L0 ¼ γ0 þ ðγc1μc1 þ γc2μc2Þ
L1 ¼ L0 þ γx
P1 ¼ α0 þ αlγ0
P2 ¼ αx þ αlγx þ αxlðγ0 þ γxÞ
�A ¼ βx þ βlγx þ βllfγ2x þ 2γxL0g þ βxlL1

M0 ¼ fα0 þ αlL0 þ αc1μc1 þ αc2μc2g
Pc1 ¼ ðαc1 þ αlγc1 þ αxlγc1Þμc1
Pc2 ¼ ðαc2 þ αlγc2 þ αxlγc2Þμc2:

Then,

CDEðmÞ ¼ �Aþ βxmm

PNDE ¼ �Aþ βxmM0

TNIE ¼ ðβm þ βxmÞfαx þ αxlL1 þ αlγxg
þ βmmðP2

2 þ 2P1P2 þ 2½P1αxlγc1μc1 þ P2Pc1�μc1 þ 2½P1αxlγc2μc2 þ P2Pc2�μc2
þ ½2ðαc1 þ αlγc1Þ þ αxlγc1�αxlγc1ðμ2c1 þ σ2c1Þ þ ½2ðαc2 þ αlγc2Þ þ αxlγc2�αxlγc2ðμ2c2 þ σ2c2Þ
þ ð½2ðαc1 þ αlγc1Þ þ αxlγc2�αxlγc1 þ ½2ðαc2 þ αlγc2Þ þ αxlγc1�αxlγc2Þðμc1μc2 þ σ12Þ
þ ð2αl þ αxlÞαxlσ

2
l Þ:

The code below is for Mplus, version 7.11 (67), where we use the labeling options to identify the relevant parameters.

1. Model 1 (Robins and Greenland’s identifying assumptions (11)):

TITLE: Model 1
DATA: FILE IS “......”;

Format is free;
LISTWISE=ON;

VARIABLE: NAMES ARE id y x m m2 l l2 c_1 c_2 xl xm;
USEVARE y x m m2 l l2 c_1 c_2 xl;
MISSING ARE .;
IDVARIABLE= id;

MODEL:
[y] (beta0);

y ON x (betax);
y ON m (betam);
y ON m2 (betamm);
y ON l (betal);
y ON l2 (betall);
y ON c_1 (betac1);
y ON c_2 (betac2);
y ON xl (betaxl);

[m] (alpha0);
m ON x (alphax);
m ON l (alphal);
m ON c_1 (alphac1);
m ON c_2 (alphac2);
m ON xl (alphaxl);
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m (sigma2m);
[l] (gamma0);

l ON x (gammax);
l ON c_1 (gammac1);
l ON c_2 (gammac2);

l (sigma2l);
[c_1] (muc1);
[c_2] (muc2);
c_1 (sigma2c1);
c_2 (sigma2c2);
c_1 WITH c_2 (covc1c2);
MODEL CONSTRAINT:
!this command lists all the terms used for the calculations
!and gives them starting values:

NEW (betaxm*0 L0*.1 L1*.1 P1*.1 P2*.1 P_c1*.1 P_c2*.1
A_bar*.1 M_barbar_0*.1 cde0*.1 pnde*.1 tnie*.1 tce*0.1 );

!this is to remind ourselves of the Robins and Greenland assumption
! while using the general expressions

betaxm=0;

!for CDE(0)
L0 = gamma0+(gammac1*muc1+gammac2*muc2);
L1 = gamma0+gammax+(gammac1*muc1+gammac2*muc2);
A_bar=betax+betal*gammax+betall*(gammax*gammax+2*gammax*L0)+betaxl*L1;
cde0=A_bar+betaxm*0;

!for PNDE
M_barbar_0=alpha0+alphal*L0+(alphac1*muc1+alphac2*muc2);
pnde=A_bar+betaxm*M_barbar_0;

!for TNIE
P1=alpha0+alphal*gamma0;
P2= (alphax +alphal*gammax+alphaxl*(gamma0+gammax));
P_c1=(alphac1+alphal*gammac1+alphaxl*gammac1)*muc1;
P_c2=(alphac2+alphal*gammac2+alphaxl*gammac2)*muc2;
tnie=(betam+betaxm)*(alphax+alphaxl*L1+gammax*alphal)
+ betamm*(P2*P2+2*P1*P2

+2*(P1*alphaxl*gammac1*muc1+P2*P_c1)
+2*(P1*alphaxl*gammac2*muc2+P2*P_c2)
+(2*(alphac1+alphal*gammac1)+alphaxl*gammac1)*alphaxl*gammac1*

(muc1*muc1+sigma2c1)
+(2*(alphac2+alphal*gammac2)+alphaxl*gammac2)*alphaxl*gammac2*

(muc2*muc2+sigma2c2)
+( (2*(alphac1+alphal*gammac1)+alphaxl*gammac1)*alphaxl*gammac2

+(2*(alphac2+alphal*gammac2)+alphaxl*gammac2)*alphaxl*gammac1
)*(muc1*muc2+covc1c2)

+(2*alphal+alphaxl)*alphaxl*sigma2l
);

tce=tnie+pnde;
OUTPUT: SAMPSTAT ;

2. Model 2 (Petersen et al.’s identifying assumptions (27)):

TITLE: Model 2
DATA: FILE IS “ ........dat”;

Format is free;
LISTWISE=ON;
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VARIABLE: NAMES ARE id y x m m2 l l2 c_1 c_2 xl xm;
USEVARE y x m m2 l c_1 c_2 xm xl;

MISSING ARE .;
IDVARIABLE= id;

MODEL:
[y] (beta0);

y ON x (betax);
y ON m (betam);
y ON m2 (betamm);
y ON l (betal);
y ON c_1 (betac1);
y ON c_2 (betac2);
y ON xm (betaxm);

[m] (alpha0);
m ON x (alphax);
m ON l (alphal);
m ON c_1 (alphac1);
m ON c_2 (alphac2);
m ON xl (alphaxl);

m (sigma2m);
[l] (gamma0);

l ON x (gammax);
l ON c_1 (gammac1);
l ON c_2 (gammac2);

l (sigma2l);
[c_1] (muc1);
[c_2] (muc2);
c_1 (sigma2c1);
c_2 (sigma2c2);
c_1 WITH c_2 (covc1c2);

MODEL CONSTRAINT:
NEW (betall*0 betaxl*0 L0*.1 L1*.1

P1*.1 P2*.1 P_c1*.1 P_c2*.1
A_bar*.1 M_barbar_0*.1
cde0*.1 pnde*.1 tnie*.1 tce*0.1 );

!this is to remind us of the Petersen et al assumptions
! while using the general expressions
betall=0;
betaxl=0;

!for CDE(0)
L0 = gamma0+(gammac1*muc1+gammac2*muc2);
L1 = gamma0+gammax+(gammac1*muc1+gammac2*muc2);
A_bar=betax+betal*gammax+betall*(gammax*gammax+2*gammax*L0)+betaxl*L1;
cde0=A_bar+betaxm*0;

!for PNDE
M_barbar_0=alpha0+alphal*L0+(alphac1*muc1+alphac2*muc2);
pnde=A_bar+betaxm*M_barbar_0;

!for TNIE
P1=alpha0+alphal*gamma0;
P2= (alphax +alphal*gammax+alphaxl*(gamma0+gammax));
P_c1=(alphac1+alphal*gammac1+alphaxl*gammac1)*muc1;
P_c2=(alphac2+alphal*gammac2+alphaxl*gammac2)*muc2;
tnie=(betam+betaxm)*(alphax+alphaxl*L1+gammax*alphal)
+ betamm*(P2*P2+2*P1*P2

+2*(P1*alphaxl*gammac1*muc1+P2*P_c1)
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+2*(P1*alphaxl*gammac2*muc2+P2*P_c2)
+(2*(alphac1+alphal*gammac1)+alphaxl*gammac1)*alphaxl*gammac1*

(muc1*muc1+sigma2c1)
+(2*(alphac2+alphal*gammac2)+alphaxl*gammac2)*alphaxl*gammac2*

(muc2*muc2+sigma2c2)
+( (2*(alphac1+alphal*gammac1)+alphaxl*gammac1)*alphaxl*gammac2

+(2*(alphac2+alphal*gammac2)+alphaxl*gammac2)*alphaxl*gammac1
)*(muc1*muc2+covc1c2)

+(2*alphal+alphaxl)*alphaxl*sigma2l
);

tce=tnie+pnde;
OUTPUT: SAMPSTAT ;

APPENDIX 3

Stata—Sensitivity Analysis

Sensitivity analyses were carried out using the ado file called sens_rho.ado, outlined below. It fits a posited structural
equation model (SEM), with an equation each for Y, M, and L. In this example, it fits a model consonant with Robins and
Greenland’s assumption (11). Note that the model for Y does not includeM or any function ofM among its explanatory variables,
in order to allow for a correlation between the error terms of the Y and M equations.

program define sens_rho, rclass
version 13
preserve
cap matrix drop Psi
sem (y <- x l xl l2 c_1 c_2) (l<- x c_1 c_2) (m <- x l xl l2 c_1 c_2), \\\

nocapslatent cov(e.y*e.m)
qui estat framework, fitted
matrix Psi=r(Psi)
matrix list Psi
scalar rho_dash=(Psi[3,1])/(sqrt(Psi[1,1]*Psi[3,3]))
scalar list rho_dash
return scalar rho=rho_dash
restore
end

It is best to check that sens_rho.ado picks the right elements of the error term’s variance-covariance matrix by running the
program once:

. sens_rho

Then, one needs to type

. bootstrap rho_dash=r(rho), reps(1000) saving(sens_rho,replace):sens_rho

. estat bootstrap, all

to run the Stata bootstrap command with 1,000 replications and see the results.
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