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Abstract  

Autism is known to be associated with major perceptual atypicalities. We have recently proposed a 

general model to account for these atypicalities in Bayesian terms, suggesting that they under-

utilize predictive information, or priors. We tested this idea by measuring adaptation to numerosity 

stimuli in children diagnosed with autistic spectrum disorder (ASD). After exposure to large 

numbers of items, stimuli with fewer items appear to be less numerous (and vice versa). We found 

that children with ASD adapted much less to numerosity than typically developing children, 

although their precision for numerosity discrimination was similar to the typical group. This result 

reinforces recent findings showing reduced adaptation to facial identity in ASD, and goes on to 

show that reduced adaptation is not unique to faces (social stimuli with special significance in 

autism), but occurs more generally, for both parietal and temporal functions, probably reflecting 

inefficiencies in the adaptive interpretation of sensory signals. These results provide strong support 

for the Bayesian theories of autism.  
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Introduction 

Autism is a heritable, lifelong neurodevelopmental condition with striking effects on social 

communication. However, the condition is also associated with a range of non-social symptoms, 

including both hypersensitivity and hyposensitivity to perceptual stimuli, and sensory seeking 

behaviours such as attraction to light, intense looking at objects and fascination with brightly 

coloured objects. These sensory atypicalities, which now form part of the diagnostic criteria for 

autism (1), can have debilitating effects on the lives of autistic people (2) and their families (3).  

 We have recently proposed a Bayesian account of autism (4), suggesting that it is not 

sensory processing itself that is disrupted in autism, but the interpretation of the sensory input. The 

Bayesian class of theories – including predictive coding and other generative models (5-7) assume 

that perception is an optimized combination of external sensory data (the likelihood) and an internal 

model (the prior). We suggested that this process may be atypical in autism, in that the internal 

priors are under-weighted, less utilized than in typical individuals. Our theory has been followed by 

several others along similar lines (8-11).  

The suggestion of under-utilization of priors leads to several specific predictions. One strong 

prediction is that autistic individuals should show reduced adaptation aftereffects. Adaptation, 

which occurs throughout sensory systems, represents a form of experience-dependent plasticity in 

which our current sensory experience is intimately affected by how we viewed the world only 

moments before. It is widely held to pose numerous functional advantages (12-16), including 

serving to auto-calibrate perceptual systems to their environment by dynamically tuning its 

responses to match the distribution of stimuli to make maximal use out of the limited working range 

of the system (12-16). It achieves this by reducing the transmission of redundant information, and 

maximising sensitivity to relevant information.  

Some evidence exists to suggest that certain forms of adaptation are reduced in autism. 

Adaptation to faces, which normally biases perception away from the adapted identity (17, 18), is 

significantly attenuated in children with autism relative to typical children (19). This has been 

confirmed by several subsequent studies demonstrating diminished adaptation to faces in children 

with autism for facial configuration (20), emotion (21) and diminished adaptation to apparent eye-

gaze direction (22). Relatives of autistic children also show reduced adaptation (23).  

These effects thus far have been demonstrated with high-level social information (faces or 

facial attributes). There has been little evidence showing that adaptation to other, non-social stimuli 

is reduced in autism – at least at lower levels of the visual hierarchy. For example, preliminary 

measurements in our lab suggest that the motion aftereffect, one of the most robust and most 
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studied forms of perceptual adaptation, is as strong in autistic children as in age- and ability-

matched typical children. Autistic children also showed the same amount of adaptation (24) to a 

more complex combination of moving stimuli, purportedly reflecting perceptual “causality” (25): 

two colliding objects can appear to bounce off (“causing” the other to reverse direction), or slide 

over each another. Adapting to an unambiguous bounce biases observers to favour of the sliding 

interpretation. While this would appear to be a form of high-level adaptation (causality), there is 

some controversy, with evidence that it actually operates at a lower level, biasing the interpretations 

of shape (26).  

 Faces are important social stimuli – particularly so for individuals with autism. Autistic 

children show atypical gaze patterns to faces, especially to the eyes, even at a very early age (27, 

28). It is therefore possible that the atypical adaptation to faces may be specific to this emotionally 

charged, high-level social stimulus, in line with some prominent theoretical models of autism that 

posit autism as a disorder of social information processing (28-30). Alternatively, it is possible that 

diminished adaptation is a more general atypicality of autistic perception, confined to coding high-

level stimulus dimensions. This is plausible since the adaptability of neurons is thought to increase 

as one progresses along the visual hierarchy, enabling higher visual areas to stay alert to novel, 

salient stimuli (16). High-level attributes could therefore be at greater risk of atypicality.   

In this study, we therefore sought to examine the extent and nature of diminished adaptation 

in children with autism by measuring adaptation to numerosity. We chose numerosity specifically 

for three reasons. First, it is a relatively high-level perceptual attribute, quite distinct from other 

visual attributes such as texture (31, 32), and elaborated at relatively high levels of analysis, 

including intra-parietal sulcus (IPS) and pre-frontal cortex (33, 34). Second, numerosity is both 

functionally and neurally distinct from face stimuli. Indeed, while faces are processed in temporal 

cortex (35), number is clearly a parietal function (33, 34). Third, unlike face recognition skills, 

number skills are often reported anecdotally as a relative strength for individuals with autism (for 

example, in the popular film “Rain Man”). While there is evidence for superior number skills in 

some autistic individuals (36), it is currently unclear whether such superiorities are manifest more 

broadly (37, 38).  

Like most perceptual systems, numerosity is susceptible to adaptation: prolonged exposure 

to a more numerous visual stimulus makes a subsequent stimulus appear less numerous, and vice 

versa (39). As mounting evidence suggests that numerosity adaptation occurs at a high level, across 

modalities and types of presentation (32, 40), it seemed an ideal candidate to test whether reduced 
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adaptation in autism is a general phenomenon affecting much of the perceptual brain, or restricted 

to socially relevant visual stimuli, such as faces.  

 
 

 
Figure 1. The paradigm used to measure the numerosity effect in children. In the baseline 
condition, “adaptation” was to a neutral numerosity (40 dots each side, the average number in the 
test) and lasted 500 ms. In the adaptation condition (shown here) the adaptation stimuli comprised 
of 80 dots on the left and 20 on the right, and lasted for 3000 ms (with dot positions randomised 
every 500 ms). Participants were told to respond after each pair was presented (to prevent confusion 
of when to respond) but only responses following the test pair were of interest. 
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Figure 2. Example Psychometrics Functions, plotting the proportion of trials participants reported 
the left side as appearing more numerous, as a function of numerosity of the left side (the right side 
varied inversely by the same proportion, so the geometric mean of the two stimuli equalled the 
standard 40 dots, indicated by the grey arrows on the abscissae). The vertical dashed lines point to 
the estimates the points of subjective equality (PSE), given by the median of the fitted cumulative 
Gaussian functions. Data in red refer to baseline conditions, black to adaptation conditions. A: Data 
for a representative typically developing child. B: Data for a representative child with ASD. C: All 
data for the typical group pooled (n=18). D: All data for the ASD group pooled (n=16).  

 

 

Results 

We measured adaptation with a child-friendly computer game in which the children were asked to 

help an animated fish (“Freddy”) shown in centre-screen to find food (see Fig. 1). Trials started 

with participants fixating the animated fish, then two dot-sequences were presented sequentially: 

the adaptor pair followed by the test pair. After each pair, participants were asked to indicate which 

of the two patches of dots were more numerous (“contained more food”). To maintain concentration 

and to avoid confusion, children were asked to respond after both sets, but only the response to the 
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test pair was recorded. In the baseline condition the adaptation pair was neutral with 40 dots (the 

standard number) on each side; in the adaptation condition it comprised 80 dots on the left and 20 

dots on the right.  

For each participant and condition we plotted psychometric functions like those of Fig. 2, 

plotting the proportion of responses the left side was more numerous against the number of dots in 

the left test pair. The number of dots on the right varied inversely to that on the left, by the same 

proportion, so the geometric mean of both patches was always 40. The data were fit with 

cumulative Gaussian functions, whose median (50% point) estimates the point of subjective equality 

(PSE), the point where the two patches are judged equally numerous. Fig. 2A shows representative 

psychometric functions for a typical child, and Fig. 2B for a child with autism. In the baseline 

condition, the PSE for both children was near 40, where left and right patches were equally 

numerous, indicating that perception was unbiased. After adaptation, however, the curve of the 

typical child moved to the right, yielding a PSE of 53. This means that for the dot-clouds to appear 

perceptually equal, the side adapted to high numbers needed to contain 54 dots and the other 27 

dots. Adaptation also occurred with the child with ASD, but to a much lesser extent, with a PSE of 

47. The lower figures show similar functions pooled over all participants. The pooled data show the 

same trend as the individual participants, with the group of typical children showing a much 

stronger adaptation effect than the group of children with ASD.  

 Pooling raw data over participants is not strictly justified, as each may have individual 

biases which, when averaged, give a misleadingly broad function (indeed, the pooled functions of 

Fig. 2 are broader than the individual ones). Also, any outliers would bias the data without being 

observable or excludable. A more robust approach is to consider the adaptation effect of the 

individual participants. We defined adaptation magnitude as the percentage increase/decrease in 

PSE (see eqn. 1), and plotted this on the ordinate of Fig. 3A, separately for children with ASD (red 

symbols) and typical children (blue). The difference is clearly systematic, with most autistic 

children showing far less adaptation than typical children. Adaptation effects for the autistic 

children are on average 3 times less than the typical children, and not one single autistic child has 

adaptation levels that encroach on the 95% confidence intervals for the typical group. This is also 

clear from the plot of Fig. 3B, plotting the same data as a bar graph. The difference between the two 

is significant at p<0.0001.  

 The abscissa of Fig. 3A reports the Coefficient of Variation of the participants (averaged 

pre- and post-adaptation), given by the standard deviation of the best-fitting Gaussians to the 

psychometric functions, normalized by the average physical quantity, 40 dots. Although the average 
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of the ASD group is slightly higher, the confidence intervals show there is no significant separation. 

This is also clear from the bar graphs of Fig. 3C, separating the Coefficient of Variation for the 

baseline and adaptation conditions, suggesting similar discrimination precision between the groups. 

A mixed-design ANOVA, with condition (baseline, adaptation) as a repeated measures factor and 

group (autism and typical) as a between-participants factor on the Coefficient of Variation, revealed 

no main effect of condition, F(1,32) = 2.35, p = 0.14, no significant main effect of group, F(1,32) = 

0.37, p = 0.55, and no significant condition by group interaction, F(1,32) = 0.39 p = 0.54.  

We also examined the relationship between the size of the aftereffect and measures of 

symptomatology. No significant correlations were found, either with ADOS-2 total (r = 0.28, 

p=0.35) or subscale scores (Social Affect, r = −0.26, p=0.45; Restricted, Repetitive Behavior, 

r=0.24, p=0.50). Nor did the magnitude of the aftereffect correlate significantly with chronological 

age, verbal, or nonverbal ability in either group of children (p > 0.18 in all cases). Coefficient of 

Variation, however, correlated negatively with age (r = −0.41, p=0.015, pooling the two groups 

together), as might be expected.  
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Figure 3. A: Scatter plot of adaptation magnitude against Coefficient of Variation for all 
participants (children with ASD: red symbols; typical children: blue). The arrows indicate the mean 
of the two groups and shaded areas 95% confidence intervals. Coefficient of Variation are similar 
between typically developing comparison children and children with ASD, whereas the size of the 
adaptation is different between the two groups. B: Bar graphs showing the size of the aftereffect for 
the two groups, with symbols showing individual data. Error bars correspond to ±1 SEM. C: Mean 
Coefficient of Variation for discriminating numerosity in the baseline and adaptation conditions for 
the two groups. 

 
 

Discussion 

The results clearly show that children with autism adapt to numerosity much less than typical 

children, by only a third as much. However, discrimination precision was similar in both groups of 

children, showing that the difference in adaptation does not reflect inattention, or some other more 

generic difficulty with judging number in these children. This result is similar to the face identity 

aftereffect findings, where adaptation was significantly reduced relative to typical children, but their 

ability to discriminate between faces was not (19).  
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 Reduced numerosity adaptation in autism is consistent with the previous research showing 

reduced levels of face adaptation (19-23), and suggests that adaptive mechanisms may be in general 

atypical in autism, not only for social stimuli, but also for other high-level extractions such as 

number perception. Although both face- and number-perception are generally considered to be 

“high level” processes, the neural substrates underlying each are quite distinct: faces are processed 

through the inferotemporal cortex (35), while number involves intra-parietal and pre-frontal cortex 

(33, 34) – a different processing stream, thought to have very different functional roles (41). Thus 

reduced adaptation in autism seems to generalize throughout the perceptual brain, for both social 

and non-social stimuli.  

 It is unclear why other lower-level functions that have been tested, such as simple and 

complex motion tasks do not show reduced adaptation (24). Adaptation effects occur at multiple 

levels of visual processing, from photoreceptors through to complex perceptual systems, but the 

mechanisms may be quite distinct. Some forms of adaptation, particularly at low neural levels, may 

simply reflect reduced neural responsiveness after extensive stimulation (15). However, many 

theories take the view that adaptation is not simply neural fatigue, but is functionally beneficial – an 

active process that serves to maximize efficient use of neural mechanisms (12-16). It may only be 

this latter class of adaptation that is reduced in autism. Perhaps adaptation to motion stimuli, 

including those purported to reflect “causality” (but may in fact reflect deformation of objects (26)), 

act at lower levels of processing by processes akin to “neural fatigue”, and these more automatic 

processes are unaffected by autism. Indeed there is good evidence that the motion aftereffect is low-

level, occurring before the combination of luminance and colour information (42) and in retinotopic 

coordinates (43). Adaptation to so-called “causality” is also in retinotopic coordinates (25), 

suggesting that it too, is quite low-level. On the other hand, adaptation to numerosity occurs in 

spatiotopic coordinates (40). Nevertheless, more work is needed to understand better why some, but 

not all types of perceptual function, are affected in individuals on the autism spectrum.  

Two prominent theories of autistic perception are the weak central coherence theory, which 

suggests difficulties in the integration of local sensory signals, which compromise the formation of 

global percepts in autism (44), and the enhanced perceptual functioning account (45), which posits 

that a local-processing bias leads to strengths in the processing of simple stimuli and to weaknesses 

in the processing of more complex stimuli. It is not immediately obvious how either can fully 

account for the results here, as the overall performance in number discrimination – both before and 

after adaptation – was not reduced in autism, as may be expected if there were difficulties in 

integrating the distributed information (the dots) to yield an estimate of number. However, in the 

more general sense, reduced adaptation is broadly consistent with both theories, as they each 
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suggest that autism is characterized by reduced influence of top-down contextual information, 

which could include the adaptor.  

These accounts, however, are unable to specify the underlying (altered) computational 

mechanisms in reduced adaptation. These mechanisms may be more readily explained by the recent 

Bayesian models of autism (4, 8-11), which clearly predict that individuals with autism should give 

less weighting to prior or predictive information, such as the consequences of previous stimulation. 

Critically, in this study, number perception of autistic children was more accurate, in that the target 

patch of dots corresponded better to physical reality than to expectations. While the mechanisms of 

adaptation may not be fully understood, adaptation is one of the clearest examples of transient 

neural plasticity, where the output of perceptual processes depend not only on the current stimuli, 

but on the immediate history. Many models link adaptation effects to Bayesian prediction (46, 47), 

suggesting that priors may serve as standards for self-calibration, which is the function of 

adaptation. Atypicalities in the prior – either in its construction or use as a calibration standard – 

should impact on the magnitude of adaptation. 

More generally, we believe our results fit well with the notion that autism is associated with 

atypicalities in flexible perceptual processing, and in particular, of prediction (11). Fundamental 

difficulties in the ability to predict the forthcoming sensory environment will result in less 

adaptation and habituation (as observed here), and this reduced adaptation may underlie some of the 

symptoms of sensory overload that can have catastrophic influences on the lives of people with 

autism (2). Problems in effectively adapting to and calibrating against observed sensory evidence 

could lead to both hypersensitivities and hyposensitivities in perception, which can be very 

disturbing and stressful to people with autism. Future work should examine both the precise neural 

underpinnings of attenuated adaptation in autism and ways of addressing it to enable people with 

autism to perceive and experience the world around them with less distress.   

 

Methods 

Participants 

We tested 16 children with autistic spectrum disorder (ASD) aged 7-14 years (mean 10.3 years, SD 

2.2) and 18 typically developing children (mean 11.0 years, SD 2.1). All children with autism met 

Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria (1) for 

autism, according to an independent clinician, and met criteria for an ASD on the Autism 

Diagnostic Observation Schedule – 2nd edition (ADOS-2; (48)), see Table 1. The comparison group 

comprised 18 typically developing children, individually matched with children with autism in 



 11 

terms of chronological age, t(32)=1.54, p=0.132, and full-scale IQ, t(32)=1.49, p=0.151 

(independent samples t-test, two tailed), as measured by the Wechsler Abbreviated Scales of 

Intelligence (WASI (49)) , see Table 1. All children had a total IQ score above 80 and were thus 

considered “cognitively able”. No child had a medical or developmental disorder other than ASD, 

as reported by parents, nor was on medication. Also, no typically developing child had with a 

current or past medical or psychiatric diagnosis, as reported by parents. All children showed normal 

visual acuity. Participants were tested individually in a quiet room either at home or at the Stella 

Maris Research Hospital. The study was approved by the regional paediatrics ethics committee at 

the Azienda Ospedaliero-Universitaria Meyer.  

 

 
 
Table 1. Descriptive statistics for developmental variables for children with autism and typically 

developing children. 

 
 

 

 

 

 

 

 

 

 

Notes:  

aFull-Scale IQ were measured using the Wechsler Abbreviated Scales of Intelligence (49); bADOS-2: Autism 

Diagnostic Observation Schedule – 2nd Edition (48) . Higher scores reflect increased autistic symptomatology.  

 

 

 Children with ASD Typical children 
N 16 18 

Gender (male : female) 13 : 3 11 : 7 
Age (years) 
Mean (SD) 

Range 

 
10.30 (2.11) 

7 – 14 

 
11.05 (2.1) 

7 – 14 
Full-Scale IQa 

Mean (SD) 
Range 

 
107.15 (15.31) 

80 – 126 
 

 
115.44 (7.55) 

104 – 124 

ADOS-2b 
Mean (SD) 

Range 

 
10.53 (3.7) 

7 - 18 

 
- 
- 
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Stimuli and Procedure 

Stimuli were generated with the Psychophysics Toolbox (50) and presented at a viewing distance of 

57 cm on a 23” LCD Acer monitor (resolution = 1920 × 1080 pixels; refresh rate = 60 Hz; mean 

luminance = 60 cd/m2), run by Macintosh laptop. All stimuli were patches of dots of 10° diameter, 

filled with non-overlapping dots of diameter 10 arcmin, half white and half black, at 90% contrast. 

To encourage participants to attend to the central fixation point, an animation of a fish jumping, 

bouncing, sliding, or rolling was continually displayed at screen centre. Fixation was monitored by 

the experimenters (two were present throughout all trials). 

We used a child-friendly computer game in which children earned points by helping the 

centrally displayed animated fish (Freddy) to find the most food. Each trial comprised of two 

separate presentations of two stimuli, both pairs of dot patches: the first pair were the adaptor pair 

and the second test pair. After 500 ms fixation on the animated fish, the adaptor pair was displayed 

and participants were asked to indicate (by button-press) which cloud of dots was more numerous 

(“Which patch has the more food”). In the baseline condition, the adaptator pair had a neutral 

numerosity (40 dots on each side, like the standard) and was displayed for only 0.5 s (to reduce 

testing time, as the adaptation was neutral). In the adaptation condition the adaptor pair comprised 

of 80 dots at the left location (twice the standard) and 20 dots at the right location (half the 

standard). In this condition the adaptor pair was displayed for 3 seconds, and refreshed 6 times with 

new random samples (always 80 at left, 20 at right).  

After a 2500 ms, during which the participant had 2000 ms to respond and 500ms of 

fixation, the probe pair was displayed. The number of dots in the test pair were varied by the 

QUEST adaptive algorithm (51), which computed a Gaussian distribution centred at the PSE with 

standard deviation of 0.15 log units. The stimuli were varied symmetrically, so that if the stimulus 

at right was increased, that on the left was decreased by the same proportion, leaving the geometric 

average at 40: for example, if the right stimulus was 60 (40×1.5), the left would be 27 (40÷1.5). 

Participants were then given 2000 ms to respond which patch had more food. To prevent the 

children from becoming confused over to which pair to respond, the adaptation pair or the test pair, 

they were instructed to respond to both, although only responses to the probe pair were analysed 

here. 

Data were plotted as the proportion of responses where the left side appeared greater than 

the right, as a function of the number of the left patch, and fit with a Gaussian error function. The 

median of this function yields the point of subjective equality (PSE) and the standard deviation the 

precision threshold (just-noticeable difference) which, divided by the tested number, estimates the 
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Coefficient of Variation. Overall, 50 trials were presented to all children (25 each in baseline and 

adaptation conditions), all in one session. Experimenters monitored gaze at all times to ensure they 

were fixating centre-screen. 

We defined the magnitude of adaptation (A) as the percentage increase in dot number of the 

left hand side compared with baseline condition:  

 𝐴 = !!"#$%
!!"#$

− 1 ×100%      (1) 

where NAdapt and NBase refer respectively to the number of dots at PSE in the adaptation and 

baseline conditions.  
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