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Abstract 

Membrane extrusion was investigated for predicting the stability of soya 

phosphatidylcholine liposomes and surfactosomes (Tween 80-enriched liposomes) to 

nebulization. Formulations were prepared with or without cholesterol, and salbutamol 

sulphate (SBS) or beclometasone dipropionate (BDP) were incorporated as model 

hydrophilic or hydrophobic drugs respectively. Formulations were extruded through 5, 2, 1 

and 0.4 µm polycarbonate membrane filters to study the influence of membrane pore size on 

drug retention by the vesicles. Surfactosomes were found to be very leaky to SBS; such that 

even without extrusion greater than 50% of the originally entrapped drug was lost, and 

cholesterol minimized drug losses. The smaller the pore size, the greater the leakage of SBS; 

hence only around 10% were retained in cholesterol-free surfactosomes extruded through 

0.4 µm filters. To study the influence of vesicle size on SBS retained entrapment, an 

excessive extrusion protocol was proposed (51 extrusion cycles through 1 µm filters) to 

compare the stability of freshly prepared vesicles (i.e. unextruded; approx. 4.5-6.5 µm) with 

those previously extruded through 1 µm pores. Cholesterol was essential for minimizing 

losses from liposomes, whilst for surfactosomes size reduction prior to extrusion was the 

only way to minimize SBS losses which reached up to 93.40% of the originally entrapped 

drug when no cholesterol was included. When extrusion was applied to BDP-loaded 

vesicles, greater proportions of the drug were retained in the vesicles compared to SBS. 

Even with extrusion through 0.4 µm, BDP retention was around 50-60% with little effect of 

formulation. Excessive extrusion showed BDP retention using small liposomes (1µm) to be 

as high as 71-87%, compared to 50-66% for freshly prepared vesicles. The findings, based 

on extrusion, were compared to studies of vesicle stability to nebulization, published by a 

range of investigators. It was concluded that extrusion is a valid method for predicting the 

stability of liposomes to nebulization.   
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1. Introduction 

Inhalation of liposomal drug formulations via nebulization can prolong drug residence 

within the lung, potentially maximizing therapeutic benefit, whilst reducing systemic 

adverse effects (Taylor et al., 1989; Saari et al., 1999; Fauvel et al., 2012; Gaspar et al., 

2012; Cipolla et al., 2013; Clancy et al., 2013). However, damage of the liposome structures 

during air-jet nebulization can cause loss of the originally entrapped material; thus liposome 

stability to nebulization-induced damage should be considered (Taylor et al., 1990b; Niven 

et al., 1991; Elhissi et al., 2006a; Elhissi et al., 2007; Chadha et al., 2012; Nasr et al., 2013). 

Loss of entrapped hydrophilic agent can be minimized by reducing liposome size before jet-

nebulization (Taylor et al., 1990b; Niven et al., 1991) or by inclusion of cholesterol (Taylor 

et al., 1990b; Tseng et al., 2007; Chadha et al., 2012) or high phase transition phospholipid 

(Niven and Schreier, 1990).  

 

Vibrating-mesh nebulizers have revolutionized pulmonary delivery of conventional 

solutions (Dhand, 2002) and novel drug delivery systems, such as liposomes (Elhissi and 

Taylor, 2005; Kleemann et al., 2007; Nasr et al., 2013; Cipolla et al., 2014; Lehofer et al., 

2014). Compared to air-jet nebulizers, vibrating-mesh devices may cause less damage to 

liposomal structures and hence higher proportions of the originally entrapped hydrophilic 

drug can be retained during aerosolization (Elhissi et al., 2006a; Elhissi et al., 2007), 

especially when the vesicles are extruded to the size of 1 µm prior to nebulization, and by 

using devices with large mesh apertures (Elhissi et al., 2007). Arikace® (Insmed, NJ, USA), 

a novel nebulizable liposome formulation of the hydrophilic anti-pseudomonal antibiotic 

amikacin is currently in phase III trials, and has been demonstrated to be well tolerated by 
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cystic fibrosis patients, with prolonged drug residence in the lung and enhanced penetration 

through pseudomonas aeruginosa biofilms. The success of this formulation has been 

attributed to the use of appropriate formulation (cholesterol-enriched 

dipalmitoylphosphatidylcholine with vesicle size around 300 nm) and suitable inhalation 

device (Pari e-Flow mesh nebulizer) (Clancy et al., 2013; Ehsan et al., 2014; Waters and 

Ratjen, 2014). 

 

Unlike hydrophilic drugs, the loss of hydrophobic materials (e.g. steroids) from liposomes 

during nebulization is dependent on lipid bilayer composition and mode of drug interaction 

with the bilayers (Darwis and Kellaway, 2001; Elhissi et al., 2006b). For example, 

beclometasone dipropionate (BDP) inhaled in liposomes showed prolonged retention in the 

respiratory tract of human volunteers, although liposomes underwent marked size reduction 

during jet-nebulization from 3.49 to 0.83 µm and from 5.07 to 0.91 µm for 

dilauroylphosphatidylcholine (DLPC; a low Tm phospholipid) and 

dipalmitoylphosphatidylcholine liposomes (DPPC; a high Tm phospholipid) respectively 

(Saari et al., 1999). Hence, size reduction (i.e. massive disruption) of the liposomes during 

nebulization did not cause marked loss of the entrapped BDP. These findings are consistent 

with in vitro studies using BDP (Elhissi et al., 2011) and other hydrophobic drugs, such as 

ciprofloxacin (Desai et al., 2002). Clinical trials have been conducted with Pulmaquin™ 

(Aradigm Corp., CA, USA), a nebulizable liposomal formulation of ciprofloxacin for 

inhalation by non-cystic fibrosis bronchiectasis patients (Cipolla et al., 2013; Serisier et al., 

2013). 

 

Studies investigating the physical stability of liposomes during nebulization are usually 

conducted using nebulizers linked with appropriate aerosol collection systems (e.g. 
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impingers or impactors), followed by analysis to determine drug losses from aerosolized 

liposomes (Taylor et al., 1990b; Desai et al., 2002; Elhissi et al., 2007; Kamalaporn et al., 

2014). This approach is laborious and time-consuming, and loss of aerosol to the 

surrounding environment is a potential hazard, even with standard aerosol-collection 

models. It has been reported that aerosolized particles to impingers may bounce from the 

bottom of the collection compartment or be re-aerosolized with liquid bubbles created by 

the air flowing into the impinge, causing particles to escape with the effluent air, resulting in 

reduced aerosol collection efficiency (Grinshpun et al., 2007). Moreover, hydrophobic 

particles might be poorly collected by the impinger’s liquid owing to poor particle 

wettability. The particle “bouncing” phenomenon and reduced collection efficiency is even 

more significant with dry collection models such as impactors (Xu et al., 1993). The 

“bouncing” effect has also been reported to be dependent on formulation, impactor design 

(Mitchell et al., 2003) and angle of particle deposition (Xu et al., 1993).  

 

In this study, we have proposed a convenient, economical, and environment-friendly 

approach to predict the stability of liposomes during nebulization without conducting 

aerosolization studies. This was achieved by performing excessive extrusion through 

polycarbonate membrane filters. The repetitive shearing provided by extrusion (51 cycles 

through 1 µm pore filters) aimed to simulate that occurring during nebulization. The 

extrusion approach was evaluated using salbutamol sulphate (SBS) and beclometasone 

dipropionate (BDP) as vesicle-entrapped hydrophilic and hydrophobic drugs respectively. 

Drug retention by liposomes upon extrusion was assessed as a stability indicator, using 

cholesterol as “rigidity” enhancer (Kirby et al., 1980) and Tween 80 as “fluidity” promoter 

(Young et al., 1983) of the vesicles. Vesicles made using Tween 80 were referred to as 

“surfactosomes” and were compared to conventional liposomes. The findings of extrusion 
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studies were appraised in relation to a range of liposome nebulization studies available in 

the literature.  

 

2. Materials and methods 

 

2.1. Materials 

Soya phosphatidylcholine (SPC; Lipoid S-100) was a gift from Lipoid, Switzerland. 

Cholesterol, beclometasone dipropionate (BDP) and Tween 80 were purchased from Sigma 

Aldrich, UK. Sodium chloride (ACS, 99.0%), salbutamol sulphate (SBS, 99%), sodium 1-

hexane sulfonate monohydrate (99%) and Triton X-100 were all purchased from Alfa Aesar, 

UK. Glacial acetic acid, chloroform (stabilized with ethanol), water (HPLC-grade) and 

methanol (HPLC-grade) were all supplied by Fisher Scientific, UK. Ferric chloride and 

Ammonium thiocyanate were purchased from VWR, UK, and Deuterium oxide (D2O; 

NMR-grade) was purchased from Acros organics, UK. 

 

2.2. Methods 

 

2.2.1. Preparation of liposomes and surfactosomes 

SPC alone or with cholesterol (1:1 mole ratio) were used to prepare liposomes by dissolving 

the lipids in chloroform (20 mg/ mL) within a round bottomed flask. The organic solvent 

was removed using a rotary evaporator (Büchi Rotavapor R-215, Büchi, Switzerland) under 

vacuum for 1 h in a water bath at 37ºC using the maximum rotation speed (280 rpm). The 

resultant thin lipid film was hydrated by adding SBS dissolved in 1 mL NaCl (0.9%) 

solution followed by manual shaking. The dispersion was left to anneal for 15 min before 
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further dilution with drug-free NaCl (0.9%) solution, followed by vigorous hand shaking to 

give a lipid concentration of 15 mg/mL, and further annealing was allowed for 2 h at room 

temperature. In other batches, the same procedure was repeated by inclusion of BDP in the 

lipid phase (2.5 mole% of lipid) and the same hydration procedure was followed, using D2O 

for hydration. Surfactosomes were prepared by using SPC with or without cholesterol (1:1 

mole ratio) with Tween 80 (15% w/w of total lipid). The lipid and surfactant were dissolved 

in chloroform in a round-bottomed flask to give a lipid concentration of 20 mg/mL. 

Following organic solvent removal, the thin film was hydrated as described above using 

either SBS (15mg/mL; added with the aqueous phase) or BDP (2.5 mole% incorporated into 

the lipid phase).  

 

2.2.2. Extrusion of formulations 

Avestin Liposofast Mini-extruder (GC technologies, UK) was employed to extrude 

liposomes or surfactosomes using Nucleopore Track-etched polycarbonate membrane filters 

with pore sizes: 5 µm (11 cycles), 2 µm (11 cycles), 1 µm (7 cycles) and 0.4 µm (7 cycles) 

(Nucleopore, UK). The number of cycles was chosen based on preliminary optimization 

experiments to ensure the desired vesicle size was achieved. 

 

2.2.3. Vesicle size analysis 

The size distribution of liposomes and surfactosomes was determined by laser diffraction 

(Malvern Mastersizer 2000, Malvern Instruments Ltd, UK) with the polydisperse mode of 

analysis. Volume median diameter (VMD; 50% undersize) and Span were recorded. Span is 

a term, used by Malvern Instrument software to express the polydispersity of particles. 

Mathematically, Span = (90% undersize – 10% undersize) / VMD.  
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2.2.4. Determination of SBS entrapment in liposomes and surfactosomes 

Vesicle-entrapped SBS was separated from unentrapped drug by centrifugation (Beckman 

ultracentrifuge, L8-80M, USA) at 55,000 rpm for 35 min at 6°C. The supernatant was 

collected to quantify the unentrapped (free) drug. Triton X-100 solution was added to the 

pellet of liposomes or surfactosomes to disrupt the vesicles and release the entrapped drug 

for quantification via HPLC. The mobile phase comprised an aqueous solution of sodium 1- 

hexane sulfonate (5 mM) and methanol (75:25 v/v) with glacial acetic acid added to 

constitute 1% of the total mobile phase volume. The Agilent 1200 HPLC instrument 

(Agilent, USA) was set up using a C18 column (Eclipse XDB-C18, 4.6 x 150 mm, Agilent, 

UK) with mobile phase flow rate 1 mL/min. The temperature was set at 40ºC and UV 

wavelength at 276 nm (Elhissi et al., 2006a). 

 

2.2.5. Determination of BDP entrapment in liposomes and surfactosomes 

Deuterium oxide (D2O; density = 1.053 g/mL) was used to separate entrapped and 

unentrapped BDP, by adapting the method of Batavia et al. (2001). Vesicles containing BDP 

were separated from free BDP crystals by centrifugation using D2O as dispersion medium. 

The sample was centrifuged within Eppendorf tubes at 13,000 rpm (relative centrifugal 

force: 15,300 x g) for 90 min at room temperature using a bench-top centrifuge (Jencons-

PLS, Spectrafuge 24D, Jencons Scientific Ltd., UK). Following centrifugation, the floating 

“creamy” layer comprised the lipid vesicles (and entrapped drug), was aspirated and 

dissolved using methanol to release entrapped BDP for quantification by HPLC. 

Centrifugation caused BDP crystals to sediment in the bottom of the tubes. The supernatant 

was separated, and the sedimented BDP was dissolved in methanol and aspirated for 

quantification of unentrapped drug using HPLC. Methanol and water (3:1 v/v) constituted 
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the mobile phase, and the flow rate was set at 2 mL/min with a sample injection volume of 

50 µL and UV detection at 238 nm (Nasr et al., 2014).  

 

2.2.6. Validation of separation of entrapped BDP using phospholipid assay and light 

microscopy 

To ensure that separation of entrapped BDP via centrifugation using D2O was effective, 

phospholipid was quantified in the floating layer, the sedimented spot, and the aqueous 

phase between the sediment and the floating layer, using the Stewart assay (Stewart, 1980)  

following the method designed by Elhissi and Taylor (2005). Liposome samples were 

placed into glass centrifuge tubes and ethanol was added to dissolve the liposomes. The 

solution was placed in an oven overnight to evaporate the ethanol and yield a dry lipid film. 

Chloroform (2 mL) was added followed by addition of an equal volume of ammonium 

ferrothiocyanate solution (prepared by dissolving 6.76 g ferric chloride and 7.6 g 

ammonium thiocyanate in deionized water made up to 250 ml with water). The tubes were 

vortexed for 20 s and centrifuged at 4,000 rpm for 10 min at 4ºC using a bench centrifuge 

(Jouan B4i, Thermo Electron Corporation, UK). The chloroformic layer was separated and 

the concentration of phospholipid was estimated at 485 nm using the Jenway 7315 

Spectrophotometer (Jenway, France). The rotation speed used for separation was chosen 

following extensive optimization aiming to ensure absence of phospholipid in the sediment 

and absence of BDP crystals in the floating layer. The sedimented material following 

centrifugation appeared as a spot at the bottom of the tube and was dispersed in deionized 

water followed by performing light microscopy (Novex B-series microscope, Euromex, The 

Netherlands) to investigate whether centrifugation using D2O was effective for separation of 

unentrapped BDP crystals from liposome-entrapped drug.  
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2.2.7. Stability of liposomes and surfactosomes on excessive extrusion  

Liposomes and surfactosomes, with or without cholesterol, were centrifuged using a bench 

centrifuge and the vesicles (containing the entrapped fraction of SBS or BDP) were 

separated (using the separation methods described above). The freshly prepared (i.e. 

unextruded) vesicles were collected following centrifugation and re-suspended in fresh 

drug-free aqueous phase (deionized water for SBS formulations and D2O for BDP 

preparations) to have a theoretically estimated drug entrapment efficiency of 100%. The 

vesicles were then extruded 51 times through 1 µm polycarbonate membranes. After 

extrusion, the drug entrapped in the vesicles was analysed using HPLC. The extruded 

liposomes or surfactosomes were again centrifuged and the medium containing the 

unentrapped drug was replaced with a drug-free medium. These 1µm vesicles, with 

theoretical 100% drug entrapment efficiency were further extruded 51 times through the 

same pores size filters, and the drug entrapment was again determined. This experiment was 

conducted to study the difference in drug retention between un-extruded (freshly prepared) 

and extruded (1 µm) vesicles using excessive extrusion (51 cycles). We have found that, 

regardless of formulation, 17 cycles of extrusion were sufficient to cause extensive 

disruption to liposomes and leakage of the originally entrapped drug (data not shown). In 

the present study, this number of extrusion cycles was tripled (i.e. using 51 cycles) to ensure 

that liposomes were massively disrupted, as would happen during nebulization.    

 

2.2.8. Saturation solubility of BDP in presence of Tween 80  

To determine the solubility of BDP in water, excess BDP was added to 1 mL water within 

an Eppendorf tube. The contents were mixed in a water bath for 24 h at 40°C. The 

Eppendorf tube was centrifuged for 20 min and the supernatant was tested for drug 
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concentration using HPLC. The same procedure was repeated to analyse the solubility of 

BDP in the presence of Tween 80 in water (15:85 v/v).  

 

2.2.9. Statistical analysis 

All experiments were conducted three times using three different batches, and the resultant 

data were analysed using the SPSS statistical program (IBM Corporation, New York, USA). 

Data were presented as mean ± standard deviation (SD). The difference between groups was 

regarded to be statistically significant when p value was lower than 0.05 using student t-tests 

or analysis of variance (ANOVA) to compare two groups or more than two groups 

respectively. 

 

3. Results and discussion 

 

3.1. Entrapment of SBS in liposomes and surfactosomes prior to extrusion 

SBS entrapment in unextruded liposome and surfactosome vesicles was higher (p˂0.05) 

when cholesterol was included (Table 1). The low entrapment of hydrophilic drugs in 

liposomes can be attributed to the limited aqueous space within the vesicles, with the 

majority of the drug molecules present in the continuous phase of the dispersion (Taylor et 

al., 1990a, Shivhare et al., 2012). The entrapment values obtained were higher than those 

found in other studies for the same drug using the thin film hydration method (Elhissi et al., 

2006a), which might be attributable to the two-step hydration protocol adopted in the 

present study. Cholesterol confers rigidity to liposome bilayers, reducing drug leakage and 

enhancing liposome stability (Kirby et al., 1980) and its inclusion in bilayers has been 

reported to increase the entrapment of hydrophilic drugs (Taylor et al., 1990a). Moreover, 
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the entrapment values for SBS in liposomes might be underestimated due to drug leakage 

during centrifugation (Bendas and Tadros, 2007).   

 

3.2. Size of liposomes and surfactosomes before and after extrusion 

To study the influence of shearing on vesicle stability a range of liposome and surfactosome 

formulations with defined particle sizes were prepared by extrusion. The appropriate 

number of extrusion cycles was determined in preliminary experiments (data not shown) to 

achieve the desired VMD (i.e. when median vesicle size is very similar to the pore size of 

the membrane pores). For each membrane pore size, the number of extrusion cycles which 

gave minimum Span and desired VMD was identified and used in subsequent studies. Since 

cholesterol maximizes vesicle stability and minimizes drug leakage during nebulization 

(Taylor et al., 1990b), liposomes prepared from SPC and cholesterol (1:1) were used to 

determine the number of extrusion cycles required. Thus, extrusion via 5 and 2 µm 

membrane filters was performed 11 times while extrusion through the 1 and 0.4 µm filters 

was conducted 7 times.  

 

Figure 1 shows the VMD (i.e. median size) and Span (i.e. size distribution) upon extrusion 

of SPC liposomes (liposomes without cholesterol), SPC:Chol (1:1) (liposomes with 

cholesterol), surfactant-enriched SPC vesicles (surfactosomes without cholesterol), and 

surfactant-enriched SPC:Chol (1:1) (surfactosomes with cholesterol). Unextruded vesicles 

had large VMD and relatively high Span values, indicating that vesicles at this stage had 

high polydispersity. For unextruded vesicles, liposomes with cholesterol were larger 

(p˂0.05) than surfactosomes with or without cholesterol. Extrusion through 5 µm membrane 

filters generally resulted in significant reduction in VMD and Span of liposomes and 

surfactosomes. The VMDs of liposomes and surfactosomes extruded through 5 µm 
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membranes were smaller than the pore size of the membrane used, possibly because of the 

presence of large populations of vesicles below 5 µm in the samples prior to extrusion. 

Subsequent extrusion of liposomes and surfactosomes through 2, 1 and 0.4 µm membranes 

produced vesicles with size similar to that of the filter pores (Fig. 1a), and the Span values 

were also lower (Figure 1b), indicating that smaller pore size made the vesicles smaller and 

more homogeneous. It was found that the Span values were reduced significantly when 

vesicles were extruded through 0.4µm membrane as compared to un-extruded vesicles 

(p<0.05). These findings show that extrusion as a means of generating vesicles of uniform 

size distribution is applicable not only using conventional liposomes, which is established in 

literature (Olson et al., 1979; Hope et al., 1986), but also with surfactosomes used in the 

present investigation.  

 

3.3. SBS retention in extruded liposomes and surfactosomes 

Unentrapped drug (i.e. in continuous phase) was removed by centrifugation and aqueous 

phase was replaced with drug-free water, to make drug entrapment efficiency having a 

theoretical estimate of 100%. Thus, extrusion through each membrane was undertaken with 

vesicles having a theoretical 100% SBS entrapment efficiency. However, before performing 

the extrusion cycles, experimental determination of drug entrapment efficiency gave values 

of less than 100%, indicating drug was partially lost from vesicles via the burst effect during 

the time taken for practical estimation of values (Figure 2). For surfactosomes, almost 50% 

of the originally entrapped drug was lost from cholesterol-containing surfactosomes, and the 

loss was even greater from cholesterol-free vesicles (Figure 2), indicating that Tween 80 has 

made the vesicles very leaky (Young et al., 1983) even when no extrusion was performed. 
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Compared to extrusion through relatively large pore filters (e.g. 1-5 µm), extrusion through 

smaller membrane pores (e.g. 0.4 µm) caused marked loss of the originally entrapped SBS 

(i.e. drug retention decreased). In a previous investigation, we studied the influence of 

vibrating-mesh nebulization on the stability of liposomes and vesicle retention of SBS. 

Customized nebulizers with large mesh apertures (8 µm) helped reduce drug loss during 

nebulization compared to devices having conventional 4µm apertures (Elhissi et al., 2006a; 

Elhissi et al., 2007), indicating correlation of membrane extrusion findings with previous 

vibrating-mesh nebulization studies. The membrane extrusion findings presented here 

correlate with previous vibrating-mesh and jet-nebulizer studies; greater drug loss occurs 

from liposomes forced through the smaller pores as the greater shearing forces are applied to 

the vesicles. In jet-nebulizers, the shearing force can be increased by increasing the flow rate 

of gas used to convert the nebulizer fluid into aerosols (O’Callaghan and Barry, 1997). 

Niven and co-workers (1992) have studied the influence of increased jet nebulizer shearing 

on liposome stability by increasing the flow rate of gas employed to convert liposomes into 

aerosol. They demonstrated that liposomes exhibited an air pressure-dependent leakage of 

the originally entrapped hydrophilic marker, with losses being in the range of 1.3% to 

88.2% using gas flow rates of 2.4 to 11.1 L/min respectively (Niven et al., 1992). 

 

Liposomes and surfactosomes containing cholesterol exhibited lower drug loss (i.e. highest 

drug retention) on extrusion, than those without, including vesicles extruded through 0.4µm 

pore membranes (Figure 2). Previous studies have shown that cholesterol produced a 

protective effect, helping phosphatidylcholine vesicles withstand shear stresses provided by 

magnetic field (Tseng et al., 2007) or jet-nebulization (Taylor et al., 1991; Bridges and 

Taylor, 2000), indicating a correlation of these extrusion findings with previous 

aerosolization studies. The liposomal formulation of Amikacin (Arikace®) is currently in 
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advanced stages of development and is actually enriched with cholesterol as bilayer 

composition (Cipolla et al., 2013; Ehsan et al., 2014), further highlighting the importance of 

cholesterol in nebulizable liposome formulations. 

 

Drug loss was greater for vesicles enriched with surfactant (i.e. surfactosomes) even prior to 

extrusion (Figure 2), demonstrating that bilayers have become more permeable and/or 

susceptible to damage during shearing, as a result of surfactant inclusion in the formulation. 

Lehofer and co-workers (2014) have reported greater losses from PEGylated liposomes 

during nebulization when compared to conventional cholesterol-enriched vesicles, 

indicating the PEG polymer has interfered with the integrity of the liposome bilayers. 

Differential scanning calorimetry studies on liposomes have shown that amphiphilic 

materials can interfere with liposome stability by inducing phase separation in the bilayers 

and changing the packing patterns of the phospholipid molecules (Castile et al., 1999; 

Castile et al., 2001; Tasi et al., 2003). These findings indicate that surfactants included with 

the aim of promoting the “ultradeformability” of liposomes to enhance vesicle stability may 

actually interfere with the integrity of the bilayers and promote drug leakage from the 

vesicles (Elhissi et al., 2012). For this reason, our surfactant-enriched liposomes were 

referred to as “surfactosomes” rather than “ultradeformable” liposomes which are 

commonly used for enhancing transdermal drug delivery (Verma et al., 2003; Dubey et al., 

2006; Subongkot et al., 2014). 

 

3.4. Stability of SBS-entrapped liposomes and surfactosomes using excessive extrusion 

Large liposomes are “processed” during air-jet or vibrating-mesh nebulization, as they are 

exposed to excessive, repeated shearing and undergo size reduction to gain the optimum size 

for delivery from the nebulizer (i.e. to be incorporated into the generated aerosol droplets) 
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(Elhissi and Taylor, 2005; Kleemann et al., 2007). In jet-nebulizers, the reservoir contents 

undergo extensive shearing before being released in fine aerosol droplets for inhalation 

(O’Callaghan and Barry, 1997; Kleemann et al., 2007).   

 

Niven and co-workers (1991) showed that that extent of soluble material loss from 

liposomes was dependent on the duration of nebulization, with longer processing within the 

nebulizer causing multiple times of shearing cycles within the nebulizer reservoir, and 

subsequently greater vesicle damage and drug losses. In an attempt to simulate these 

shearing conditions, we have designed an excessive shearing procedure by subjecting 

freshly prepared non-extruded (i.e. large) liposomes and surfactosomes to 51 cycles of 

extrusion through 1 µm membrane filters, followed by studying SBS entrapment in the 

vesicles. In order to investigate whether the resultant extruded vesicles (1 µm diameter) 

would retain the drug upon applying further shearing, the unentrapped drug, as a result of 

extrusion damage was removed and replaced with drug-free deionized water and further 51 

cycles of extrusion through the same size filter was conducted, followed by determination of 

the drug entrapment (Table 2).  

 

Following extrusion 51 times through 1µm polycarbonate membrane filters, liposomes or 

surfactosomes containing cholesterol retained significantly greater SBS proportions than 

cholesterol-free formulations (Table 2; p<0.05), with liposomes retaining markedly greater 

drug proportions than surfactosomes (p<0.05). When the extruded vesicles, after separation 

of the unentrapped drug (i.e. to theoretically yield 100% drug entrapment efficiency) were 

further extruded through 1µm membranes, further SBS loss occurred, but drug retention was 

significantly higher that observed with the large vesicles (Table 2). This clearly indicates 

that smaller liposomes had greater ability to retain entrapped hydrophilic materials 
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compared to large liposomes (Table 2), agreeing with nebulization studies of liposomes 

(Taylor et al., 1990; Niven et al., 1991; Elhissi et al., 2007; Kleemann et al., 2007; Lee et al., 

2013).   

 

Table 2 indicated that the influence of extrusion on drug retention was mainly affected by 

two factors, namely vesicle size and bilayer composition. For surfactosomes, the inclusion 

of cholesterol and using small vesicles (1µm) were needed to minimize drug losses, whilst 

for liposomes cholesterol inclusion was more important at minimizing the loss of entrapped 

SBS; this justifies the use of cholesterol in the liposomal formulation of the hydrophilic 

antibiotic amikacin (Arikace®) (Cipolla et al., 2013). Regardless of bilayer composition and 

vesicle size, surfactosomes exhibited lower retention for SBS (Table 2). Surfactant-enriched 

vesicles were found to be very unstable during nebulization, regardless of aerosolization 

mechanism, causing extensive losses of the hydrophilic drug SBS (Elhissi et al., 2012). This 

suggests that the use of extensive membrane extrusion, introduced in this study, has 

applicability in predicting vesicle stability during nebulization.  

 

3.5. Entrapment of BDP by liposomes and surfactosomes prior to extrusion 

Whilst vesicle shearing within nebulizers may cause loss of liposome-entrapped 

hydrophobic drugs, this generally occurs to a much lesser extent compared to hydrophilic 

materials (Desai et al., 2002). Determination of BDP entrapment in liposomes and 

surfactosomes requires reliable separation of the unentrapped drug from the vesicle-

entrapped BDP. BDP tends to form crystals during centrifugation in aqueous media, usually 

resulting in simultaneous sedimentation of the BDP-entrapping vesicles and the free drug 

crystals (Batavia et al., 2001; Khan et al., 2015). However, concomitant sedimentation of 

drug crystals and liposomes did not occur when vesicles were dispersed in high density 
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water (i.e. deuterium oxide; D2O) (Batavia et al., 2001; Khan et al., 205); thus in the present 

work, the thin lipid films containing BDP were hydrated with D2O instead of deionized 

water.  

 

As demonstrated in Figure 3, by using D2O and an optimum centrifugation speed, BDP 

crystals were sedimented while liposomes containing incorporated drug constituted a 

floating creamy layer. Some dissolved BDP might be present in the middle region of the 

centrifugation tube (i.e. between the floating liposomes and BDP sediment), and this 

fraction was considered with the sedimented fraction of the drug as the total proportion of 

unentrapped steroid (Figure 3). The sedimented crystals appeared as a “spot” at the bottom 

of the tube; this fraction was ascertained to be BDP analytically using HPLC and visually 

using light microscopy (Figure 4). Light microscopy also confirmed that the floating layer 

comprised liposomes (Figure 4). The Stewart phospholipid assay (Stewart, 1980) indicated 

that the sediment contained negligible phospholipid, confirming successful separation of the 

vesicle-entrapped drug from the free BDP crystals. BDP tends to crystallize during storage 

due the incompatible steric fit between the steroid and the liposome bilayers, restricting 

incorporation of this drug into liposomes (Batavia et al., 2001), though BDP interaction with 

bilayers is highly dependent on the excipients used, and the liposome preparation method 

employed (Elhissi et al., 2006b). 

 

Figure 5 shows the proportion of lipid in each layer of the centrifuged cholesterol-

containing liposomes and surfactosomes. The amount of lipid in the top layer was 

considerably greater than that in the middle layer and sedimented material (Figure 5), 

indicating that separation of BDP-entrapping liposomes from free BDP was successful and 
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agreeing with our recent findings using a slurry method to prepare liposomes from 

proliposome powders (Khan et al., 2015).  

 

BDP entrapment was determined using HPLC (Table 3). Drug entrapment and loading were 

dependent on formulation, and inclusion of cholesterol has enhanced the drug entrapment 

(p˂0.05; Table 3). The limited entrapment of BDP in phospholipid vesicles (Table 3) has 

been reported in a range of previous investigations (Fildes and Oliver, 1978; Batavia et al., 

2001; Darwis and Kellaway, 2001). When liposomes were compared with surfactosomes, 

Table 3 has shown that BDP entrapment was influenced by cholesterol (p˂0.05) whilst 

Tween 80 had no effect (p>0.05) on the steroid entrapment.  

 

3.6. BDP incorporation and retention in extruded liposomes and surfactosomes 

Liposomes and surfactosomes were separated from the dispersion medium by 

centrifugation, then re-suspended in drug-free D2O to make the theoretical entrapment 

efficiency of the drug 100%. On extrusion,  as the pore size of polycarbonate membrane was 

reduced, drug entrapment decreased, with greatest loss occurred when vesicles were 

extruded through 0.4 µm membranes (p<0.05) (Figure 6). The reduction in entrapment of 

BDP as a result of extrusion (Figure 6) was less than that of SBS (Figure 2). Liposomes with 

cholesterol retained significantly more BDP than those without cholesterol (p<0.05). 

Conversely, cholesterol did not significantly affect drug retention in surfactosomes during 

extrusion, regardless of filter pore size (p>0.05). Following extrusion of cholesterol-

containing vesicles, it can be generally seen that the entrapment efficiency of BDP in 

liposomes and surfactosomes was not greatly different (Figure 6).  
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When cholesterol was included in the formulations prior to extrusion, liposomes tended to 

provide higher BDP retention compared to cholesterol-free liposomes. By contrast, 

inclusion of cholesterol in surfactosome formulations did not enhance the retention of BDP 

during extrusion (Figure 6). We hypothesise here that cholesterol might have displaced a 

fraction of Tween 80 molecules from the bilayers to the continuous phase. The free 

surfactant molecules have possibly solubilized some BDP in the continuous phase, causing 

less entrapment of the steroid in the bilayers. To investigate whether this hypothesis is valid, 

a simple solubility study of BDP in Tween 80 solution versus solubility in pure deionized 

water was conducted. In presence of Tween 80, greater quantities of BDP became soluble 

(Table 4). This possibly means that formulations with surfactosomes had greater proportions 

of BDP solubilized in the continuous phase by the free surfactant molecules, hence, less 

incorporation of BDP in the lipid bilayers of surfactosomes has occurred. Whilst some 

investigators have reported lower drug entrapment in the bilayers as a result of enhancing 

fluidity of liposome membranes (Young et al., 1983), other reports have demonstrated 

enhanced entrapment of hydrophobic drugs (e.g. BDP) when liposomes with more fluid 

membranes were prepared (Darwis and Kellaway, 2001).      

 

3.7  Stability of BDP-entrapped liposomes and surfactosomes using excessive extrusion 

Freshly prepared BDP formulations (i.e. unextruded liposomes) were extruded 51 times 

through 1 µm polycarbonate membrane filters. Vesicles containing cholesterol retained 

significantly greater BDP proportions than those without cholesterol (p<0.05; Table 5). 

Earlier in this study cholesterol did not improve the retention of BDP in surfactosomes using 

the normal extrusion procedure (Figure 6), leading to the hypothesis that cholesterol has 

displaced Tween 80 from the bilayers, leading to enhanced steroid solubility in the 

continuous phase and reduced drug incorporation into the bilayers. However, the findings 
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with excessive extrusion were different since cholesterol significantly enhanced BDP 

retention in surfactosomes (p˂0.05; Table 5). It is possible that excessive extrusion and 

repetitive shearing have enhanced the intermixing of phospholipid with Tween 80, hence 

reducing the proportion of the free surfactant in the continuous phase and enhancing BDP 

retention in the bilayers. Further studies are needed to evaluate the influence of cholesterol 

on the stability of surfactant-enriched phospholipid vesicles.   

 

After separation of the unentrapped drug from the 1 µm vesicles and replacing that with 

drug-free dispersion medium (i.e. to reach a theoretical entrapment of 100%), the vesicles 

were again extruded 51 times through 1µm polycarbonate membranes. In this case, BDP 

retention was greater than values obtained upon extruding the freshly prepared vesicles. 

Moreover, when the small size vesicles were extruded the advantage of cholesterol at 

retaining greater BDP proportions was diminished, especially for liposomes (Table 5). 

Excessive jet-nebulizer shearing of BDP-liposomes made with different lipid compositions 

did not compromise the controlled release property of the formulations inhaled by healthy 

volunteers (Saari et al., 1999). This correlates well with findings employing high sensitivity 

differential scanning calorimetry to evaluate BDP interaction with the liposome bilayers 

following jet-nebulization; it was found that drug interaction with the bilayers was preserved 

despite the aggressive shearing of liposomes (Elhissi et al., 2011).  

 

To our best knowledge, the present work is the first of its kind that has correlated extrusion 

of liposomes with in vitro and in vivo literature findings of stability of drug-loaded 

nebulized liposomes. The use of polycarbonate membrane extrusion to predict the stability 

of vesicle-based systems to nebulization can save time, reduce cost in the formulation and 

manufacturing development of nebulizable liposomes and minimize potential hazards 
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associated with reduced collection efficiency of liposomal aerosols during nebulization. It is 

important to bear in mind that these experiments employing mini-extruders have been used 

here to predict the general trend of vesicle stability to nebulization, rather than correlating 

with vesicle stability findings using specific nebulizer designs or operating mechanisms. 

Future studies will investigate the possible optimization of extrusion conditions to correlate 

with particular nebulizers operating mechanisms at particular operating conditions. Future 

investigations may also involve large extruders attached to gas cylinders in order to 

investigate the effect of gas flow rate on drug retention in vesicles. The extrusion approach 

introduced here will not eliminate the ultimate need for performing aerosolization studies 

but would rather markedly reduce them, by providing a screening tool for formulations that 

are best candidates for nebulization experiments. 

 

4. Conclusion 

Shearing studies via membrane extrusion have demonstrated greater retention of the 

hydrophobic drug BDP into liposomes and surfactosomes when compared to the hydrophilic 

drug SBS. This correlates with previously reported findings of vesicle stability to 

nebulization-induced shearing published by our research group and several other 

investigators. Hence, membrane extrusion may offer a means for predicting the stability of 

liposomes to aerosolization, avoiding the time consuming procedures of nebulization, and 

minimizing the possibility of laboratory contamination with unsuccessfully collected 

aerosols during development of nebulizable liposome formulations. Currently, Arikace® and 

PulmaquinTM are in late stage development and further  nebulizable liposome formulations 

are in the pipeline. We expect future development of inhalable liposomes to benefit from 

this study and consider extrusion as a tool for predicting liposome stability to nebulization.   
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Figure 1. VMD (a)  and span (b) of liposomes and surfactosomes prepared with or 

without cholesterol, and with or without extrusion through 5, 2, 1 or 0.4 µm 

polycarbonate membrane filters (n = 3 ± SD) 
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Figure. 2. SBS retention in liposomes and surfactosomes with or without 

cholesterol, before or after passing the vesicles through polycarbonate 

membrane filters of pore size 5, 2, 1 or 0.4 µm (n=3 ± SD) 
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Figure 3. Eppendorf tube following centrifugation of liposomes in D2O medium. 

Three regions were apparent: the upper floating layer ( liposomes with 

entrapped drug), the sediment (free BDP crystals) and middle region (D2O-

soluble fraction of BDP) 
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Figure 4. Light microscopy images for samples collected from the 

floating creamy layer (a) and the sedimented material (b). Samples 

revealed that the creamy layer constituted of liposomes whilst the 

sediment was mainly BDP crystals. The samples were typical of 3 

different experiments 

(a) 

(b) 



32 

 

 
Figure 5. Phospholipid content in the three regions, following centrifugation of  

cholesterol-containing liposome and surfactosome BDP preparations (n=3 

±SD) 
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Figure. 6. BDP entrapment in liposomes and surfactosomes, with or without 

cholesterol, before extrusion or after passing through polycarbonate membrane 

filters of pore size 5, 2, 1 or 0.4 µm (n=3 ± SD) 
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Table 1. Entrapment efficiency and loading of SBS in unextruded liposomes 

and surfactosomes, as determined by HPLC (n = 3 ± sd) 

Formulation 

Entrapment 

efficiency 

(%) 

Drug loading 

(mg drug/100 

mg lipid)  

Liposomes with cholesterol 30.03 ± 1.69 2.00 ± 0.11 

Liposomes without cholesterol 23.25 ± 0.75 1.55 ± 0.05 

Surfactosomes with cholesterol 29.7 ± 7.26 1.98 ± 0.48 

Surfactosomes without cholesterol 21.36 ± 5.5 1.42 ± 0.37 
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Table 2. Stability of SBS liposomes and surfactosomes using excessive extrusion 

through 1µm polycarbonate membrane (n = 3 ±sd) 

Formulation SBS retention after 51  

extrusion cycles of large 

freshly prepared vesicles 

through 1 µm membrane 

pores (%) 

SBS retention  after 

further 51 extrusion 

cycles of previously 

extruded vesicles through 

1 µm membrane pores 

(%) 

Liposomes with 

cholesterol 

60.10  ±  3.67 67.27  ±  1.86 

Liposomes without 

cholesterol 

45.06  ±  2.95 63.77  ±  1.65 

Surfactosomes with 

cholesterol 

14.60  ±  1.04 52.00  ±  1.17 

Surfactosomes without 

cholesterol 

6.60  ±  0.98 47.9  ±  3.30 
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Table 3. Entrapment efficiency and loading of BDP in unextruded liposomes 

and surfactosomes, as determined by HPLC (n = 3 ± sd)  

Formulation 
Entrapment 

efficiency (%) 

Drug loading (mg 

drug/100 mg lipid) 

Liposomes with cholesterol 31.66 ± 3.05 2.10 ± 0.20 

Liposomes without 

cholesterol 
24.66 ± 2.82 1.64 ± 0.23 

Surfactosomes with 

cholesterol 
30.66 ± 3.21 2.04 ± 0.21 

Surfactosomes without 

cholesterol 
22.66 ± 4.72 1.5 ± 0.31 
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Table 4. Solubility of BDP in water and Tween 80 solution (n = 3 ± sd) 

 

Medium Saturated solubility of BDP 

Deionized water 0.14  µg/ml 

Tween 80 aqueous solution 12.67 µg/ml 
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Table 5. Stability of BDP liposomes and surfactosomes using excessive extrusion 

through 1µm polycarbonate membrane (n = 3 ±sd) 

 

Formulation BDP retention after 51  

extrusion cycles of 

large freshly prepared 

vesicles through 1µm 

membrane pores (%) 

BDP retention  after 51 

further extrusion cycles 

of previously extruded 

vesicles through 1µm 

membrane pores (%) 

Liposomes with cholesterol 65.8  ± 1.79 87.13  ±  1.8 

Liposomes without cholesterol 55.27  ± 2.97 84.10  ±  1.10 

Surfactosomes with cholesterol 55.30  ±  3.08 78.47  ±  1.45 

Surfactosomes without 

cholesterol 

49.50  ±  2.36 71.03  ± 2.15 

 

 

 


