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a b s t r a c t

In vitro and in vivo imaging of protein tyrosine kinase activity requires minimally invasive,
molecularly precise optical probes to provide spatiotemporal mechanistic information of
dimerization and complex formation with downstream effectors. We present here a
construct with genetically encoded, site-specifically incorporated, bioorthogonal reporter
that can be selectively labelled with exogenous fluorogenic probes to monitor the structure
and function of fibroblast growth factor receptor (FGFR). GyrB.FGFR1KD.TC contains a
coumermycin-induced artificial dimerizer (GyrB), FGFR1 kinase domain (KD) and a tet-
racysteine (TC) motif that enables fluorescent labelling with biarsenical dyes FlAsH-EDT2
and ReAsH-EDT2. We generated bimolecular system for time-resolved FRET (TR-FRET)
studies, which pairs FlAsH-tagged GyrB.FGFR1KD.TC and N-terminal Src homology 2
(nSH2) domain of phospholipase Cg (PLCg), a downstream effector of FGFR1, fused to
mTurquoise fluorescent protein (mTFP). We demonstrated phosphorylation-dependent
TR-FRET readout of complex formation between mTFP.nSH2 and GyrB.FGFR1KD.TC. By
further application of TR-FRET, we also demonstrated formation of the GyrB.FGFR1KD.TC
homodimer by coumermycin-induced dimerization. Herein, we present a spectroscopic
FRET approach to facilitate and propagate studies that would provide structural and
functional insights for FGFR and other tyrosine kinases.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Fibroblast growth factors (FGFs) and their receptors (FGFR1-4) play a critical role in many physiological processes
including embryogenesis, wound healing, inflammation and angiogenesis as well as adult tissue homeostasis (Beenken and
Mohammadi, 2009). Importantly, aberrant FGFs/FGFRs signalling has been causatively linked to several developmental
syndromes and a broad range of human malignancies (Carter et al., 2015; Helsten et al., 2015). This involvement in the pa-
thology of many cancer types provided a strong rationale for development of effective agents for these targets; consequently,
there is a large ongoing effort to develop FGFR inhibitors as anticancer treatments (Touat et al., 2015).
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FGFs mediate their diverse biological responses by binding to FGFRs, leading to their dimerization and autophosphor-
ylation; despite extensive insights into isolated extracellular and intracellular regions of FGFRs, overall process of dimer-
ization is not clearly defined (Goetz and Mohammadi, 2013; Maruyama, 2014). Subsequent to dimerization, similar to other
receptor tyrosine kinases (RTKs), activated FGFRs dimers recruit and phosphorylate a complement of signalling molecules
that mediate the cellular activities of FGFs (Bradshaw et al., 2015; Lemmon and Schlessinger, 2010; McCubrey et al., 2015). In
case of FGFRs, the two main direct binding proteins that propagate signalling are the adaptor molecule FRS2 and phos-
pholipase Cg (PLCg) (Beenken and Mohammadi, 2009; Eswarakumar et al., 2005). PLCg is recognized as a key component
downstream of RTKs involved in dynamic coupling of modifying enzymeswith signalling lipids (Blind, 2014; Follo et al., 2015)
and, furthermore, has been recently implicated in disease development through gain-of-function mutations (Koss et al.,
2014).

Several lines of experimental evidence have demonstrated that FGFR is constitutively bound to FRS2 via FGFR juxta-
membrane region, whereas PLCg is recruited to the C-terminal tail of the receptor upon autophosphorylation of a highly
conserved tyrosine (Y766 in case of FGFR1) (Eswarakumar et al., 2005). Themain interacting domain in PLCg is the N-terminal
Src-homology 2 domain (nSH2) present within the PLCg regulatory region (or g-specific array, gSA); the interaction involves
not only the canonical binding site centered on pY766 at the FGFR1 tale, but also a secondary binding site (Bae et al., 2009).
Interestingly, the selectivity of PLCg binding and signalling via activated FGFR1 are determined by interactions between this
secondary binding site on nSH2 domain and a region in FGFR1 kinase domain. Thus, binding of nSH2 from PLCg1 to two
distinct sites on FGFR1 (the tale and kinase domain) represents a highly specific and high affinity (kD about 5 nM) event that
is, overall, dependent on activation status of FGFR (Bae et al., 2009; Bunney et al., 2012). Measurements of this interaction
using fluorescent reporters and FRET could provide a sensitive method to assess activation of FGFR in vitro and in cells or an
inhibition of this process in the presence of small molecule drugs.

We here describe generation and characterisation of constructs that provide new tools to assess spatiotemporal mech-
anistic details of dimerization and downstream signalling. We generated GyrB.FGFR1KD.TC construct comprising a
coumermycin-induced artificial dimerizer (GyrB), FGFR1 kinase domain (KD) e exhibiting wild-type analogous autophos-
phorylation, substrate recruitment, and inhibitor response in kinase assays and chromatography measurements e and a
tetracysteine (TC) motif that enables fluorescent labelling with biarsenicals FlAsH-EDT2 and ReAsH-EDT2. We conceived
systems for TR-FRET studies, which pair either FlAsH- and ReAsH-tagged GyrB.FGFR1KD.TC or pair FlAsH-tagged
GyrB.FGFR1KD.TC and nSH2 domain of PLCg fused to mTurquoise fluorescent protein (mTFP). We demonstrated
coumermycin-induced dimerization and phosphorylation-dependent TR-FRET readout of complex formation between
mTFP.nSH2 and GyrB.FGFR1KD.TC.

2. Material and methods

2.1. TR-FRET

For fluorescence lifetime decay measurements in a quartz cuvette using a TR-FRET multidimensional spectrofluorometer.
GyrB.FGFR1KD.TC (1 mM) tagged with FlAsH-EDT2 (5 mM and 50 mM) and its partner mTFP.nSH2 (1 mM) in 40 mM TriseHCl
(pH8.0), 20 mM MgCl2, 20 mM NaCl, 100 mM TCEP, and 100 mM Na3VO4 were incubated in the presence or absence of ATP
(50 mM) in at ambient conditions for 30 min. Excitation of the FRET pair was performed at 410e425 nm using the super-
continuum source, and fluorescence emission detected at 430e520 nm (10 nm steps) in order to record the decrease in
fluorescence lifetime of the donor mTFP. Analysis of lifetime and anisotropy decays was performed using TRFA data processor
(Scientific Software Technologies Center, Minsk, Belarus).

Details for cloning, expression and purification of recombinant proteins, kinase assays, in vitro labelling of purified proteins
and Supplementary Figures can be found in Supplementary Information.

3. Results

3.1. Constructs for a TR-FRET approach to detect FGFR1 dimerization and complex formation with PLCg

Accumulating evidence show that ligand-induced dimerization of RTK extracellular regions leads to activation of the
intracellular KD, which, in turn, alters complex downstream signalling networks (Lemmon and Schlessinger, 2010). However,
intact RTKs are difficult to generate and reconstruct into in vitro signalling systems. In order to study the molecular in-
teractions of the FGFR1 in vitro, a dimerizer was incorporated at the N-terminus and a fluorescent self-labelling peptide
sequence at the C-terminus of FGFR1KD (Fig. 1 A, top). Our previous work (Bunney et al., 2012, 2015) involved the con-
struction of a synthetic open reading frame (ORF) encoding for a mutant form of human FGFR1 kinase domain (KD), FGFR1KD
[amino acids 457e774, (Y463, 583, 585F), (L457V, C488A, C584S)] that forms a central part of our new construct (Fig. 1 A, top).
FGFR1 dimerization could be monitored in vitro by using an artificial dimerization motif at the N-terminus of the KD tomimic
the extracellular portion of the wild-type protein. For this purpose, the N-terminal 24-kDa subdomain of the B subunit of
bacterial DNA gyrase (GyrB), which dimerizes in the presence of the antibiotic coumermycin (Farrar et al., 1996; Liu et al.,
2003), was incorporated into the construct, generating GyrB.FGFR1KD. Using recombinant cloning methods, an optimised
TC motif (FLNCCPGCCMEP) (Spagnuolo et al., 2006) was introduced at the C-terminus of GyrB.FGFR1KD to generate



Fig. 1. Representation of the constructs used in dimerization and complex formation of FGFR1KD. (A) Representation of the wild type FGFR1 and PLCg as well as
domains of protein constructs used in this study. FGFR1 (top) comprises Ig-like domains 1, 2, and 3 (D1, 2, and 3, respectively), trans-membrane domain (TM) and
intracellular kinase domain (KD). KD (with mutations shown as yellow dots) is incorporated in GyrB.FGFR1KD.TC that also includes an N-terminal GyrB and a C-
terminal TC motif. PLCg (bottom) contains domains common to PLC family: N-terminal pleckstrin homology domain (PH), EFehands (EF), catalytic domain (PLC,
X-box and Y-box, shown as two parts) and C2 calcium/lipid-binding domain (C2). PLCg Specific Array (PLCg SA) comprises a split PH domain (PH), two SH2
domains (nSH2 and cSH2) and the SH3 domain. mTurquoise.nSH2 fusion protein (mTFP.nSH2) comprises an mTurquoise (mTFP) and an nSH2 domain. (B) Specific
and quantitative labelling of GyrB.FGFR1KD.TC upon incubation with FlAsH-EDT2 demonstrated by SDS-PAGE (Coomassie staining) (top) and in-gel fluorescence
(bottom). (C) Mass spectrum of the full length intact GyrB.FGFR1KD.TC before (left) and after (right) labelling with FlAsH-EDT2. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.)
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GyrB.FGFR1KD.TC (Fig. 1A, top). The protein was then isolated from transformed Escherichia coli strain C41(DE3). The opti-
mised FlAsH- or ReAsH- binding TC motif has been previously used to monitor protein structure in vitro and in mammalian
cells (Luedtke et al., 2007; Martin et al., 2005; Roberti et al., 2007; Spille et al., 2011).

The high affinity of the TCmotif to the biarsenical dye (Adams and Tsien, 2008) suggests that the complex should be stable
under typical denaturing conditions. The identity and integrity of TC-tagged protein was verified by survival of fluorescence
after SDS-PAGE. The recombinant protein was incubated with FlAsH-EDT2 for 30 min at room temperature in a modified
sample buffer for SDS-PAGE in which the typical thiol reductant (2-mercaptoethanol) was substituted by tris(2-carboxy-
ethyl)phosphine (TCEP). After electrophoresis, a single major fluorescent species running at the anticipated molecular weight
for the GyrB.FGFR1KD.TC (60.1 kDa) was visible by UV illumination (Fig. 1B). Excess FlAsH-EDT2, which could result in
increased levels of background fluorescence, is removed as it migrates with the dye front. Subsequent staining with Coo-
massie Blue confirmed the specific binding of dye to the TC-containing protein. This result suggests that GyrB.FGFR1KD.TC
tagged with FlAsH-EDT2 (or ReAsH-EDT2) can be studied in a mixture of proteins or in a crude lysate. The identity of the fully
labelled protein was further confirmed by native mass spectroscopy (Fig. 1C), in which the GyrB.FGFR1KD.TC/FlAsH-EDT2
complex was clearly observed as a single peak at the anticipated molecular weight (found: 62543.0, calc.: 62539.0). Based on
these data, labelling of GyrB.FGFR1KD.TC is suitable for further FRET experiments to test dimerization.

As a second model system for RT-FRET experiments, the FGFR1 KD and its downstream target PLCgwere used; it has been
previously established that a stable complex is formed between the C-terminus of activated FGFR1KD and two different sites
on the surface of the nSH2 from PLCg regulatory region (Fig. 1A, bottom) (Bae et al., 2009). The canonical phosphorylation-
dependent binding site consists of a positively charged patch on the surface of the nSH2 domain that binds to pY766 and a
hydrophobic pocket in the FGFR1 C-terminal tail. A second binding site of the nSH2 forms mediates high affinity binding by
forming contacts with the backside of the C-lobe of the KD away from the activation segment of FGFR1. The co-crystal
structure of nSH2 of PLCg with activated FGFR1KD (PDB code: 3GQI) (Bae et al., 2009), estimates a distance of 28.7 Å be-
tween nSH2 (N-terminus) and FGFR1KD (C-terminus), making the protein interaction measurable by FRET. As a FRET donor,
cyan fluorescent protein (CFP) variant mTurquoise (mTFP) (excitation: 434 nm, emission: 474 nm) fused to the nSH2 domain
of PLCg (mTFP.nSH2) was used (Fig. 1A, bottom).
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3.2. Kinase profiling of GyrB.FGFR1KD.TC demonstrates that its biochemical properties match those of the wild-type protein in vitro

To determine the in vitro tyrosine kinase activity of recombinant GyrB.FGFR1KD.TC, a bioluminescent, ADP detection assay
was used (Zegzouti et al., 2009). The kinase substrates used here were PolyE4Y1 and a part of PLCg regulatory region, which
comprises the two SH2 domains of PLCg followed by a segment containing Y783 (Fig. 1A, bottom). Inhibitors used here were
PD173074, an established ATP-competitive inhibitor of FGFR1 (inhibitor constant, Ki: ~44 nM, IC50: ~22 nM) (Mohammadi
et al., 1998) and AZD4547, a selective inhibitor of FGFR1 currently in clinical trials (Ki: 6.1 nM, IC50: 0.2 nM) (Bunney et al.,
2015; Gavine et al., 2012).

To optimise assay conditions, we first determined the ATP concentration that equals the Km value for GyrB.FGFR1KD.TC
(Fig. 2A). The data were fitted to the MichaeliseMenten equation, thereby determining the GyrB.FGFR1KD.TC ATP Km to be
126 mM. After identifying appropriate substrates and an optimal ATP concentration, the dependence of signal linearity to
kinase concentration was established in a series of GyrB.FGFR1KD.TC titrations with PolyE4Y1 (Fig. 2B) and PLCg SA WT
(Supplementary Figure S3A). Here, we have chosen to use 0.3 nM and 30 nM of GyrB.FGFR1KD.TC with inhibitors AZD4547
and PD173074 respectively, to guarantee sufficiently high assay signal as well as substrate conversion below 70%. In the last
step of the optimisation process, the contribution of the autophosphorylation state of the kinase on the total assay signal was
examined in the absence of substrate. Increasing enzyme concentration were titrated with 150 mM ATP (Fig. 2C), resulting in
higher levels of signal readout corresponding to autophosphorylation.

In order to validate the optimised GyrB.FGFR1KD.TC assay, the kinase activity was quantified with increasing concen-
trations of inhibitor AZD4547 (Fig. 2D) and reference inhibitor PD173074 (Supplementary Figure S3B). For AZD4547, the IC50
value of 0.32 nM was in good agreement with the published value of 0.20 nM. For PD173074, the ICobs

50 was 13 nM, an esti-
mation that diverges slightly from the reported value of ~22 nM. This may be ascribed to dissimilarities between the assay
format used here and the one in literature, where a radiometric readout assay format and full length FGFR1 were used to
measure the IC50 values.
Fig. 2. Kinase profiling of GyrB.FGFR1KD.TC by bioluminescent ADP detection assays. (A) Determination of ATP Km for GyrB.FGFR1KD.TC by titrating with
10e240 mM ATP and 0.2 mg/ml PolyE4Y1. (B) Examination of the dependence of signal linearity to kinase concentration by titration of 0e1.1 mM GyrB.FGFR1KD.TC
with 150 mM ATP and 0.2 mg/ml PolyE4Y1. (C) Autophosphorylation assay at varying concentrations of 0e1.1 mM enzyme and 150 mM ATP. (D) Inhibitor dose
response titration of GyrB.FGFR1KD.TC in the presence of 150 mM ATP, 0.2 mg/ml PolyE4Y1 peptide and inhibitor AZD4547 at varying concentrations of
0.002e20 nM (FGFR1 IC50 ¼ 0.2 nM). Kinase inhibition was measured by detecting the decrease in phosphorylation of PolyE4Y1 after 1 h. Maximal activity of
GyrB.FGFR1KD.TC and the background signal were measured in the absence of inhibitor AZD4547. GyrB.FGFR1KD.TC activity was expressed by calculating the
ratio between the background-corrected assay signals in the absence and presence of the indicated inhibitor concentrations. Curve fitting for inhibitor dose
response titration was performed using GraphPad Prism® sigmoidal doseeresponse software. In all panels error bars indicate the standard deviations (SDs) of
three replicates.



L. Perdios et al. / Advances in Biological Regulation 60 (2016) 6e1310
3.3. Coumermycin-induced dimerization of FlAsH and ReAsH labelled GyrB.FGFR1KD.TC proteins results in a FRET readout

Extracellular dimerization of FGFRs involves the formation of 2:2:2 FGF:FGFR:heparin ternary complex. The recombinant
proteins used in this study contain the intracellular KD activity domain, which is suitable for enzyme activity assays, but do
not contain the extracellular domain of FGFR1. Attempts to get multi-domain FGFR constructs were not pursued as they show
low expression levels in E. coli, due to inadequate solubility and misfolding.

To achieve artificial dimerization of GyrB.FGFR1KD.TC, a model involving FGF ligand-mimic coumermycin, that induces
dimerization of GyrB, was used. Coumermycin binds GyrB at a stoichiometric ratio 1:2, whereas another antibody, novobi-
ocin, binds GyrB at 1:1 ratio (Ali et al., 1993) and was thereby suitable as a control of obtaining exclusively monomeric protein
population. To first test this dimerization model biochemically, analytical size-exclusion chromatography (SEC) was used
before and following incubationwith antibiotics. Samples incubated with coumermycin (GyrB to antibiotic molar ratio, 1.5:1)
exhibited major peaks that corresponded to the presence of predominantly the dimer (Supplementary Figure S4B). The
retention time of the coumermycin-bound dimer was equivalent to the retention time of species of 120 kDa when compared
to SEC standard molecular weight markers (Supplementary Figure S1A).

Coumermycin-induced dimerizationwas subsequently investigated by TR-FRET. In these studies FlAsH-EDT2 is used as the
donor to fluorescently tag a population of GyrB.FGFR1KD.TC while red-emitting biarsenical ReAsH-EDT2 (excitation: 593 nm,
emission: 608 nm), which binds to the C-terminal TC motif of GyrB.FGFR1KD.TC (Supplementary Figure S2), is issued as the
acceptor to tag another population of the same protein (Fig. 3A). The suitability of FlAsH-EDT2 and ReAsH-EDT2 as a donor
acceptor pair was demonstrated in vitro by bulk spectrofluorimetry (Fig. 3B), which highlighted that the two dyes have ideal
spectral overlap for FRET to occur. The change in donor emission in the presence and absence of coumermycin was analysed
by fitting the decays using single exponential models (Fig. 3C). Addition of coumermycin to the mixture of proteins tagged for
FlAsH-EDT2 and ReAsH-EDT2 resulted in a decrease in lifetime of ~60 ps for the sample (Fig. 3D). Thus, under conditions of
dimerization, the overall dye proximity increases resulting in faster lifetime decay of the donor and FRET. Since this is
triggered by addition of coumermycin to the sample in solution, FRET can be attributed to the formation of dimerization
complexes between FlAsH-tagged proteins and ReAsH-tagged proteins.

3.4. TR-FRET detection of the complex-formation between FlAsH-labelled GyrB.FGFR1KD.TC and mTFP.nSH2

For TR-FRET measurements, GyrB.FGFR1KD.TC was reacted with FlAsH-EDT2 and then incubated with mTFP.nSH2 for
30 min at room temperature (Fig. 4A). The suitability of FlAsH-EDT2 as a donor and mTFP as an acceptor was demonstrated
in vitro by bulk spectrofluorimetry (Fig. 4B). Next, fluorescence lifetime decays of the samples were recorded in the presence
and absence of ATP. To interpret these data, exponential decay models were fitted to the decays; it was apparent that both
Fig. 3. Coumermycin-induced dimerization of GyrB.FGFR1KD.TC observed by FRET. (A) Representation of the construct used for the TR-FRET investigating
coumermycin-induced dimerization. (B) Spectral overlap as precondition for FRET. The spectral overlap integral is indicated by the purple area. The region of
overlap between the excited donor's emission spectrum (green line) and the acceptor's absorption spectrum (orange line) has to be significant for FRET to occur.
(C) Single exponential fit of the fluorescence decay (normalised photon count) over time from fluorescence lifetime decay measurements in a quartz cuvette
using a TR-FRET multidimensional spectrofluorometer. (D) Donor lifetime decrease upon dimerization showing statistical significance assessed using data from a
minimum of three repeats by a two-tailed unpaired t-test (***0.0001 < P < 0.001). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)



Fig. 4. Complex formation between GyrB.FGFR1KD.TC and mTFP.nSH2 observed by FRET. (A) Representation of the constructs used for the TR-FRET examining
complex formation. (B) Spectral overlap (purple area) between the excited donor's emission spectrum (green line) and the acceptor's absorption spectrum
(orange line). (C) Single exponential fit of the fluorescence decay (normalised photon count) over time from fluorescence lifetime decay measurements. (D) Donor
lifetime decrease upon complex formation showing statistical significance assessed using data from a minimum of three repeats by a two-tailed unpaired t-test
(*0.0001 < P < 0.001). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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mTFP.nSH2 by itself and the protein pair were well fit to a single exponential decay (Fig. 4C). Addition of ATP to the incubated
protein pair resulted in a large decrease in lifetime of ~500 ps for the sample (Fig. 4D). The fluorescence decay observed
reflects the increase in spatial proximity of the donor and acceptor fluorophores, which was attributed to direct interaction
between the nSH2 domain of PLCg and activated FGFR1KD.

The interaction between GyrB.FGFR1KD.TC andmTFP.nSH2was also confirmed using SEC; the incubated proteins eluted at
the same retention time (elution volume 14.7 mL) indicating formation of a GyrB.FGFR1KD.TCemTFP.nSH2 complex
(Supplementary Figure S4A).

4. Discussion

We here demonstrate, using a TR-FRET approach, the suitability of GyrB dimerizer for studies of FGFR signalling and
application of bimolecular mTFP/FlAsH.TC system for monitoring the phosphorylation-dependent complex formation be-
tween the nSH2 domain of PLCg and functional GyrB.FGFR1KD.TC.

Use of non-physiological dimerization elements has been widely used to study signal transduction cascades triggered by
dimerization (Fegan et al., 2010). This approach has also been applied to FGFR; for example, a construct incorporating FKBPv
at the C-terminus of the FGFR KD and dimerization in the presence of a drug (AP20187) provided a basis for specific, inducible
and ligand independent activation of FGFR1 signalling in cells and mouse models (Acevedo et al., 2007; Freeman et al., 2003;
Tomlinson et al., 2012; Welm et al., 2002). We here demonstrate that GyrB allows not only previously observed dimerization
in cells (Liu et al., 2003), but also generation of purified, functional FGFR-GyrB fusion proteins (Figs. 1 and 3) for further
structural and in vitro studies of elements critical for dimerization and high-throughput screens for disruption of this key
activation step.

Interactions between RTKs and SH2 domains of downstream effectors have been explored for their potential to report
signalling events in cells and thus provide a platform for drug discovery that would overcome one of the common problems
based on kinase assays in vitro: the identification of potent hits in vitrowith poor cellular activity. One recent EGFR biosensor
that allows measurements of EGFR clustering as a readout of activation in cells is based on binding of the green fluorescent
protein fused to two tandem SH2 domains from adapter protein Grb2; it was subsequently shown that this system provides
an important high throughput system for drug discovery performed in a cellular context (Antczak et al., 2012). We here
suggest that the highly specific, high affinity interaction between FGFR1 and nSH2 domain from PLCg (Bae et al., 2009;
Bunney et al., 2012) can similarly be used in drug discovery. We generated a FRET pair for TR-FRET detection of the
complex-formation between FlAsH-labelled GyrB.FGFR1KD.TC and mTFP.nSH2 (Fig. 4). The decrease in fluorescence lifetime
of mTFP depends exclusively on its molecular proximity to the TC motif; hence, FRET occurrence can be attributed to binding
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of mTFP.nSH2 to activated GyrB.FGFR1KD.TC. The dramatic decrease in fluorescent lifetime of the donor may be ascribed to
the high affinity binding of the nSH2 domain to the activated FGFR1KD. In vitro experiments with isolated FRET pairs have
provided a straightforward readout of the proteineprotein interaction and can be adapted for screening of inhibitors that
directly affect kinase activity as well as interaction between FGFR and PLCg. Furthermore, this approach can be developed for
cellular FLIM-FRET. Using constructs that ensuremembrane localization of GyrB.FGFR1KD.TC and intracellular labelling of this
protein in the presence of FlAsH, subsequent activation in response to addition of coumermycin will result in binding of the
fluorescent fusion protein mTFP.nSH2 expressed in the same cell and the FRET readout.
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