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In this study, we link a water resource management simulator to multi-objective search to reveal the key
trade-offs inherent in planning a real-world water resource system. We consider new supplies and
demand management (conservation) options while seeking to elucidate the trade-offs between the best
portfolios of schemes to satisfy projected water demands. Alternative system designs are evaluated using
performance measures that minimize capital and operating costs and energy use while maximizing resi-
lience, engineering and environmental metrics, subject to supply reliability constraints. Our analysis
shows many-objective evolutionary optimization coupled with state-of-the art visual analytics can help
planners discover more diverse water supply system designs and better understand their inherent trade-
offs. The approach is used to explore future water supply options for the Thames water resource system
(including London’s water supply). New supply options include a new reservoir, water transfers, artificial
recharge, wastewater reuse and brackish groundwater desalination. Demand management options
include leakage reduction, compulsory metering and seasonal tariffs. The Thames system’s Pareto
approximate portfolios cluster into distinct groups of water supply options; for example implementing
a pipe refurbishment program leads to higher capital costs but greater reliability. This study highlights
that traditional least-cost reliability constrained design of water supply systems masks asset combina-
tions whose benefits only become apparent when more planning objectives are considered.
� 2015 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Population and economic growth drive increased water demand
(Vorosmarty et al., 2000) while climate change may further
increase stress on the water supplies in some regions (Milly
et al., 2008). Water supply capacity expansions are being consid-
ered in many areas, especially in fast growing cities (McDonald
et al., 2011). In such cases, water resource system planners are
faced with choosing the most appropriate mix of proposed new
supply and demand management options for their system. This
study investigates the trade-offs revealed by a many objective
optimization approach to selecting future Thames basin (UK)
infrastructure options. The term ‘‘many-objective” refers to opti-
mizing systems with 4 or more design objectives as introduced
by Fleming et al. (2005). Both supply and demand management
options are considered to meet demands forecasted to 2035. Opti-
mal water supply portfolios are evaluated according to their per-
formance across a range of measures (economic, engineered, and
ecological). We show how incorporating a broader suite of objec-
tives into the planning exercise reveals information that is hidden
when only one or two objectives are considered. The trade-offs
generated by the many objective optimization reveal that ecologi-
cal, engineered and economic performance can be improved with
relatively modest investments. Trade-off visualization shows how
similar schemes may cluster in certain areas of the trade-off, or
Pareto, space. Pareto optimality is defined as those solutions whose
performance cannot be improved in any single objective without
degrading their performance in one or more remaining objectives
(Coello Coello et al., 2005). The set of all Pareto points is referred
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to as the Pareto optimal set and when plotted constitute the Pareto
frontier. Visualizing the trade-offs and how portfolio mixes are dis-
tributed throughout the Pareto-space gives planners valuable
information about the diverse array of planning options that are
available for the Thames system.

Optimization algorithms such as mathematical programming
and dynamic programming have long been used to solve the water
resource capacity expansion problem (Loucks et al., 1981; Loucks
and van Beek, 2005; Mays, 2005; Revelle, 1999). Such optimization
methods have known success but also have limitations including
the difficulty of representing the non-linearities of simulations,
the diversity of discrete options and their potential to mask impor-
tant performance trade-offs for real systems (Woodruff et al.,
2013). Water resource systems often use non-linear rules and are
likely subject to nonlinear cost and benefit functions. Their com-
plexity may mean that aggregation and simplification of perfor-
mance measures are often required when using classical
optimization methods in water management models. Often mini-
mizing costs or maximizing economic benefits has been the sole
objective with non-commensurable objectives translated into costs
or benefits (Harou et al., 2009; Lund et al., 2006). When classical
optimization methods address multiple objectives, the relative
weightings of each of the objectives must be pre-assigned, or chan-
ged iteratively. In real systems planners seek to simultaneously
minimize expenditures while maximizing performance criteria
such as resilience, reliability and ecological benefits. Given the his-
torical consensus view that the water planning problem is inher-
ently multi-objective (Cohon and Marks, 1975; Haimes and Hall,
1977), it is critical to move beyond classical commensuration
approaches that require a single common unit of measure (typi-
cally monetary). The interaction of multiple objectives with invest-
ment opportunities has been long argued in many fields (Brill et al.,
1982; Major, 1969) and water is no exception (Maass et al., 1962).
Linking a multi-objective evolutionary algorithm to a water
resource management simulator can overcome many traditional
limitations of water management modelling. Water resource sys-
tem simulators are able to incorporate non-linearities and explic-
itly calculate system performance using multiple criteria without
the need to translate non-commensurable metrics into a single
monetary metric.

The addition of multiple performance objectives in the infras-
tructure portfolio problem can reduce the possibility of human
decision biases (Brill et al., 1982) such as ‘cognitive myopia’ or
‘short-sightedness’ (Hogarth, 1981) which can negatively bias
planning decisions. This typically occurs in low-dimensional prob-
lems when managers feel they have sufficient knowledge about
their system’s behavior but may in fact lack a full understanding
of innovative possibilities (Woodruff et al., 2013). A second deci-
sion bias was described by Gettys and Fisher (1979) as ‘‘cognitive
hysteresis”, where decision makers’ pre-conceptions limit their
incorporation of new ideas in their formulations of the future.
These biases can lead to under- or over-estimation of reliability
risks as shown by Kasprzyk et al. (2009) where adding additional
objectives and decision variables led to alternative solutions that
met reliability requirements at lower cost. Kollat et al. (2011)
demonstrate how adding objectives can change the objective space
and decision makers’ preferences about the system’s performance.
They show that considering only two objectives can result in ‘‘ex-
treme” solutions located at the edges of the objective space where
they fail to satisfy other decision relevant concerns. Fogel (1997)
argues that heuristic global optimization techniques such as
evolutionary algorithms (EAs) can help overcome our biases by
discovering new solutions to new problems.

Evolutionary algorithms imitate the process of natural
evolution and have strongly contributed to the water resources
literature as reviewed by Nicklow et al. (2010). Evolutionary
algorithms are heuristic search algorithms that mimic the biologi-
cal process of natural selection to produce an approximation of the
Pareto optimal solution space. Classical optimization methods may
require simplifications to the problem structure (e.g. removing
non-linearities) in order to find global optima; in contrast, evolu-
tionary algorithms link directly with simulation models and often
do not require any simplification of the problem during the solu-
tion process. Evolutionary algorithms are suitable for solving
real-world problems which often exhibit nonlinear, discrete, non-
convex and high-dimensionality characteristics (Reed et al.,
2013). A detailed review of evolutionary algorithms can be found
in Coello Coello et al. (2005).

Evolutionary optimization has been shown particularly suitable
for multi-objective water management applications (Nicklow et al.,
2010; Reed et al., 2013; Maier et al., 2014) when linked to
non-linear simulation models. Simulators are often developed over
decades by water management agencies that include customized
performance metrics which become trusted measures to evaluate
management alternatives. In this approach, simulation models
evaluate the optimization model’s objective function, which means
the full flexibility and descriptive ability of simulation models is
harnessed (Labadie, 2004).

As reviewed by Reed et al. (2013) our study falls within a
rapidly growing body of water resources literature focused on evo-
lutionary multi-objective optimization. More formally, we are
seeking an approximation to the set of Pareto optimal solutions.
Rapid and highly interactive visualization of ‘Pareto-optimal’ solu-
tions including their corresponding design components is critical
for understanding complex trade-offs for applications with large
numbers of objectives. Many-objective visual analytics (‘visual
analytics’ for short, Woodruff et al., 2013) refers to emerging soft-
ware packages that facilitate this process. The approximations of
Pareto optimal sets usually contain a large number of solutions
that increases rapidly with the number of objectives considered.
It is important not only to visualize these solutions in multi-
dimensional space but also to be able to isolate promising solu-
tions with adequate justification. As the number of trade-off
dimensions increases, the role of visual analytics becomes more
central to the design and decision making process. Many water
related problems are complex and formulating such problems
appropriately usually requires a continuous learning process and
the exploration of multiple problem formulations (Kasprzyk
et al., 2012; Zeleny, 2005).

Current planning regulations in the UK require water compa-
nies to demonstrate that their water resource system designs can
meet future demand at least-cost. This is done using a least-cost
planning approach (Padula et al., 2013) that does not directly con-
sider important environmental and engineering performance met-
rics. This study addresses this limitation of the current framework
by investigating the performance trade-offs inherent in designing
the future Thames basin (UK) water resource system as revealed
by many-objective optimization. The Thames basin is the most
populous river basin in the UK and includes major urban centers
such as London. Both supply and demand management options
(proposed by the basin’s water companies), with a wide range of
capacities and impacts, are considered to meet demands in 2035.
Optimal portfolios (mixes) of different schemes are evaluated
according to their performance across a range of measures (eco-
nomic, engineered, and environmental). The proposed approach
contributes to an improved supply-demand planning process for
English water companies where there is demand to improve the
current approach (Defra, 2011).

Section 2 presents the Thames basin portfolio selection case
study. The methods and optimization formulation is presented in
Section 3 followed by results in Section 4 and a discussion in
Section 5.



Fig. 1. Thames basin showing the river Thames and its major tributaries together with the existing and possible water supply options. Adapted from Matrosov et al. (2011).
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Fig. 2. Lower Thames Control Diagram (LTCD) showing the four demand restriction
and minimum ecological flow thresholds as a function of London aggregate storage
and the time of year. Adapted from Matrosov et al. (2011).
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2. Case study: London water supply planning

This study focuses on water supply source selection in the
Thames basin of Southeast England (Fig. 1) considering demand
levels projected for the year 2035. The basin (16,000 km2) has over
12.5 million inhabitants and contains important cities including
London. The United Kingdom’s Environment Agency (EA) considers
the region to be seriously water stressed. Parts of the basin are
over-abstracted damaging the environment during low flow events
(Environment Agency, 2008). The region has experienced six major
droughts in the last 90 years (Marsh et al., 2007). Water stresses
are expected to worsen resulting from an increase in demand
and a decrease in supply resulting from climate change
(Borgomeo et al., 2014; Walsh et al., 2015; Christierson et al.,
2012; Sanderson et al., 2012). The population is estimated to
increase by 2 million by 2026 (WWF-UK, 2008) while average
baseline household water use is expected to remain the same
(�150 l/person/day).

Surface water accounts for 60% of supply in the basin. London is
the largest water user and relies on ten raised reservoirs fed from
the Thames between Slough and Teddington Weir. Thirteen reser-
voirs supplement the storage in the Lee Valley with abstractions
from the river Lee. Combined London-area storage is small
(200 Mm3). One surface water-groundwater conjunctive use
scheme, the North London Artificial Recharge Scheme (NLARS),
supplements supply during droughts and is recharged with treated
water during wet periods. Additional groundwater is available
from the West Berkshire Groundwater Scheme (WBGW) during
dry conditions. A desalination plant along the Thames tidal estuary
began operation in 2009.

These existing supply schemes are activated when thresholds
on the Lower Thames Control Diagram (LTCD) (Fig. 2) are crossed.
The LTCD is a function of real-time aggregate storage and the time
of year and also controls when the minimum environmental flow
on the Thames is reduced and demand restrictions come into
effect. Demand restrictions are divided into four levels ranging
from media campaigns to severe water rationing.

A combination of infrastructure expansion and demand man-
agement is likely necessary to maintain the supply-demand bal-
ance in the Thames basin. In their water resources management
plan (Thames Water, 2010), Thames Water outlines many plausi-
ble supply and demand management options. In this study, we
consider the seven main proposed supply options: three water
transfers, a reservoir, a wastewater reuse scheme, a conjunctive
use groundwater scheme and a brackish groundwater desalina-
tion plant. We also consider four demand management options:
water efficiency improvements, increasing active leakage control,
water mains pipes refurbishment and the installation of smart
meters coupled with the introduction of seasonal tariffs. Please
refer to Table 1 for a list of the supply and demand options
considered.



Table 1
Possible future supply and demand options considered in this study.

Option Description

Demand management options
Active Leakage Control (ALC) ALC refers to proactively seeking and fixing leaks in the water distribution system. Water companies consider levels of ALC

implementation. Higher levels result in diminishing returns: higher costs are required for the same reduction in demand
Pipes refurbishment (Pipes) Pipes includes replacement of water mains, communication pipes and supply pipes to reduce leakage in the distribution

system
Enhanced efficiency improvements (EFI) EFI includes water efficiency campaigns, retrofitting and household and commercial customer audit programmes
Installation of smart meters with

seasonal tariffs (Meters)
Meters includes installing meters in properties. Seasonal tariffs can also be implemented and (Tariffs) are based on a
summer/winter trail tariff implemented by Veolia Three Valleys Water (Veolia Water Central Limited, 2010). Tariffs effects
on demand were calculated using the point expansion method (Griffin, 2006) to estimate the demand function at a known
point on the demand curve assuming a constant price elasticity, e, of �0.15 (Herrington, 2007)

Supply options
Upper Thames Reservoir (UTR) The UTR is a proposed reservoir which would release water into the Thames during times of low flow and provide constant

supply to a neighboring area
River Severn Transfer (RST) The RST is a proposed water transfer that would bring water from the River Severn to the Thames and a neighboring area

during periods of low flow
Northern Transfer (NT) The NT is a proposed water transfer that would bring water from Northern England to the Thames and a neighboring area

during periods of low flow
South London Artificial Recharge

Scheme (SLARS)
SLARS is a proposed conjunctive use groundwater recharge scheme what would function analogous to the existing NLARS

Deepham Reuse Scheme (DRS) The DRS is a proposed planned indirect water reuse scheme in which a proportion of wastewater from Deepham’s treatment
plant would undergo additional treatment and be pumped into a surface storage reservoir during drought periods

Columbus Transfer (CT) The CT is a proposed water transfer scheme that would bring water from the Dwr Cymru Welsh Water area to the Thames
river and a neighboring area during periods of low flow

Long Reach Desalination (LRD) LRD is a possible reverse osmosis treatment plant that would desalinate brackish groundwater leaking from the Thames
Tideway and the Chalk aquifer underlying the Thames

Table 2
Important nodes in the IRAS-2010 model.

Node Description

LAS London Aggregate Storage (surface reservoirs)
Teddington Gauging station downstream of all the Thames abstractions
London Demand node representing Thames Water’s distribution input

for London (2377Ml/day)
Central_Abs Demand node representing aggregate raw water abstractions

from the Thames for the Central WRZ (239 Ml/day)
Southern_Abs Demand node representing aggregate raw water abstractions

from the Thames for the Southern WRZ (160 Ml/day)
Essex_BS Demand node representing a bulk supply transfer of

105 Ml/day
SWOX Demand node representing supply to the SWOX Water

Resource Zone (WRZ) (24 or 48 Ml/day depending on capacity
of a future reservoir or water transfer scheme)
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3. Many-objective optimization formulation and
implementation

3.1. IRAS-2010

We model the Thames water resource system with the open-
source and computationally efficient Interactive River Aquifer Sim-
ulation IRAS-2010 (Matrosov et al., 2011) water resource system
simulator. The model includes 51 nodes (reservoirs, aquifers, junc-
tions, treatment and desalination plants, etc.) and 55 links (rivers,
pipes, canals, water transfers) and has been shown to emulate the
water infrastructure model maintained by the Environment
Agency (Matrosov et al., 2011). The IRAS-2010 model focuses on
the river Thames and major abstraction points and other supply
and demand management schemes.

The IRAS-2010 Thames model incorporates the Lower Thames
Control Diagram (LTCD) (Fig. 2), system operating rules and gener-
ates multiple performance measures. We model 2035 demands
using 85 years of historical hydrology using a weekly time-step;
by this we mean that we use 85 years of historical hydrology to
represent hydrological conditions that could occur in the year
2035. We assume any one of these hydrological years could occur
in 2035. This historical flow sequence is the same that water com-
panies are required to use under the current accepted planning
framework (Environment Agency, 2012). We use estimated
demands for the year 2035 projected by the water companies
and based on expected population growth and household water
use (Essex and Suffolk Water, 2010; Thames Water, 2010; Veolia
Water Central Limited, 2010). Important nodes in the IRAS-2010
Thames model are summarized in Table 2; refer to Matrosov
et al. (2011) for further detail.

3.2. Epsilon-Dominance Non-dominated Sorting Genetic Algorithm II
(e-NSGAII)

The IRAS-2010 simulator is linked to the Epsilon-Dominance
Non-dominated Sorting Genetic Algorithm II (e-NSGAII) (Kollat
and Reed, 2006) evolutionary algorithm. e-NSGAII was chosen for
its search effectiveness and efficient parallel performance (Reed
et al., 2013; Hadka and Reed, 2012; Kollat and Reed, 2006; Tang
et al., 2006). The algorithm employs non-dominated sorting,
e-dominance archiving (Laumanns et al., 2002) and adaptive
population sizing tournament selection. The e-dominance archive
sorts solutions based on the user specified levels of significant
precision for the objectives (i.e., the minimum magnitude of
change in the objectives that the user cares about). e-NSGAII uses
a series of connected runs between which the population size is
adjusted with the introduction of new random solutions. Initially,
the algorithm starts the search with a small number of candidate
solutions. Over successive generations of each connected run, high
quality solutions are passed into the epsilon-dominance archive.
The archived solutions are injected into the population at the
beginning of the next run and used to automatically adjust the
search population size. A quarter of this population size is
comprised of the archived solutions while the remaining three
quarters are randomly generated solutions (Kollat and Reed, 2006).
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3.3. Optimization formulation

The full problem formulation is described as a seven-objective
optimization problem with 34 decision variables:

FðxÞ ¼ ðf LondSR; f StoTSRel3; f StoRes3; f EnvSI; f ResMin; f CAPEX; f OPEXÞ ð1Þ
x ¼ ðxi;Capi; Þ
8x�X
xi�f0;1g 8 i 2 N

X
i2TransRes

xi

 !
6 1

subject to:

clevel2 : AnnRel; 2 P 0:9 ð2Þ
clevel3 : AnnRel; 3 P 0:95 ð3Þ
clevel4 : AnnRel; 4 ¼ 1:0 ð4Þ

The decisions include a binary variable xi that represents the deci-
sion to activate supply or demand management option i at capacity
Cap. Objectives include maximizing the engineering (reliability,
resilience and minimum storage) and environmental (ecological
flow) performance of the system while minimizing economic costs
(capital and operating costs). Table 3 summarizes the formulation’s
decision variables: the supply and demand options and their capac-
ities or capacity ranges. The TransRes decision includes the Upper
Thames Reservoir (UTR), Northern Transfer (NT) and the River Sev-
ern Transfer (RST) supply options. The total sum of these mutually
exclusive options must be lower than or equal to 1 to ensure that
maximum of only one of these options can be selected at a time.
Table 3
Supply and demand options and their possible capacities included as decision
variables in the study.

Option (i) Capacity, Capi
(Ml/day)

Exclusivity or dependence

Demand management options
London ALC 0–50 None
London Pipes 165.1 None
London EFI 11.6 None
London Meters 88.7 None
Essex ALC 0–1.36 None
Essex Pipes 3.0 None
Essex EFI 0.7 None
Essex Meters 2.4 None
Central ALC 0–3.29 None
Central Pipes 4.8 None
Central EFI 2.8 None
Central Meters 10.2 None
Southern ALC 0–2.08 None
Southern Pipes 1.4 None
Southern EFI 1.7 None
Southern Meters 6.3 None

Supply options
Upper Thames Reservoir

(UTR)
133.5–267 to London
(75–150 Mm3)

Mutually exclusive to RST
and NT

20 or 40 to SWOX
River Severn Transfer

(RST)
267 to London Mutually exclusive to UTR

and NT40 to SWOX
Northern Transfer (NT) 74 to London Mutually exclusive to UTR

and RST8 to SWOX
South London Artificial

Recharge Scheme
5–19 None

Deepham Reuse Scheme 25–95 None
Columbus Transfer 39 to London None

14.8 to SWOX
Long Reach Desalination 15 None
3.3.1. Cost objectives
Costs include capital (CAPEX), fixed operating costs (FOPEX) and

variable operating costs (VAREX) and are incurred by the supply
and demand management options (SDOs). This study considers
forecasted demand conditions for 2035 and uses a historical hydro-
logical sequence to help evaluate supply and demand management
options. Because there is no passage of time in this approach, and it
does not propose a schedule of option implementation, discount-
ing is not performed. This approach simply tests future options
by simulating them over the entire historical period. The different
supply options have different lifespans (LS). To take into account
the varying lifespan of each option, the capital costs of each option
are normalized with respect to its lifespan (80 years for reservoirs;
60 for transfers, reuse, pipe refurbishment and meters; and 25 for
all other options) so that their capital costs are directly comparable
to each other. This normalization involves dividing the capital
expenditure of each option by the number of years it is meant to
be active, thus providing an expression for an undiscounted annual
capital cost. Because the investments are not scheduled and cannot
be discounted, this cannot be considered equivalent to capital costs
which will need to be financed, but still is a pragmatic financial
metric essential to the optimization formulation. The normalized
but undiscounted annual capital costs are aggregated via summa-
tion into a capital cost metric that is minimized:

Minimize : f CAPEX ¼
X
SDO

CAPEXSDO

LSSDO
ð5Þ

New and existing infrastructure as well as some demand manage-
ment options incur fixed and variable operating costs. Variable
operating costs are correlated with energy requirements of the sup-
ply options; i.e., options with high energy use such as desalination
have high operating costs. Fixed and variable operating costs are
aggregated into a single (similarly undiscounted) operating cost
metric (OPEX) that is averaged over the 85-years of historical flows
representing plausible conditions in 2035 (Ns) and minimized:

Minimize : f OPEX ¼
P

SDOVAREXSDO þPSDOFOPEXSDO

Ns
ð6Þ
3.3.2. Engineering objectives
The set of engineering performance objectives includes the reli-

ability, resilience and minimum storage of the London aggregate
storage node, LAS. We focused on this node because it provides
the majority of surface water supplies to the London Water
Resource Zone (WRZ) and when certain LAS storage volume
thresholds are breached, water use restrictions in the London
demand node (explained below) are imposed to reduce demand.
The London reservoir reliability objective, f StoTSRel3, is a temporal
reliability indicator (Kiritskiy and Menkel, 1982; Klemeš, 1969)
and gives the ratio of the number of weeks the LAS was above fail-
ure level 3, St (Fig. 2) to the total number of simulated weeks, Nts:

Maximize : f StoTSRel3 ¼ St
Nts

� �
ð7Þ

In addition to indicating storage performance, the London reservoir
reliability objective gives a measure of how often LTCD level 3
restrictions (hosepipe and non-essential use bans) were imple-
mented in the basin (see Fig. 2). Level 3 restrictions were chosen
to be minimized because the non-essential use ban that corre-
sponds to the level 3 restrictions is likely to cause severe disruption
to the public. Hashimoto et al. (1982) base their resilience metric on
the average duration of failure. We minimize the average duration
of failure FD3 for LTCD level 3 failure events:

Minimize : f StoRes3 ¼ FD3 ð8Þ



Table 4
Algorithm parameters and objective epsilon values used in the case study.
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We define a minimum London reservoir storage objective as the
lowest storage level reached (in % of total capacity) by LAS over
the historic time-series representing possible conditions in 2035.
This value is maximized:

Maximize : f ResMin ¼ MinLASVol ð9Þ
When LAS drops below 22.5% of capacity pressure-related distribu-
tion problems occur in the network (Cookson and Weston, 2008).

Finally, the volumetric supply reliability gives an idea of how
well the London demand was met. The London supply reliability
objective is an annual volumetric reliability metric (Kiritskiy and
Menkel, 1982; Klemeš, 1969) that gives the ratio of the total volu-
metric shortage to the total demanded over each year. The year
with the lowest annual volumetric supply reliability is recorded:

Maximize : f LondSR ¼ min 1�
PNts

t¼1WStsPNts
t¼1WDts

 !
� 100 ð10Þ

where WSts is the time-step (weekly) (ts) flow shortage and WDts is
the weekly flow demand target. The supply reliability gives an indi-
cation of the average deficit over the whole simulation run. The
supply reliability is not calculated for the other demand nodes
listed in Table 2. These nodes represent exports to other water com-
panies and are not reduced during droughts.

3.3.3. Environmental objective
The environmental performance objective is a measure of how

well the ecological flow of the Thames is maintained. An ecological
shortage measure is adapted from the Shortage Index (SI)
(Fredrich, 1975; Hsu et al., 2008):

Minimize : f EnvSI ¼
100
Nts

XNts

ts¼1

WSt
WDt

� �2

ð11Þ

Higher SI values signal worse performance. Because of the square in
the term, larger and longer shortages will have more effect on the SI
index than a sequence of smaller and shorter shortages. SI increases
when the residual flow at Teddington goes below 800 Ml/day
(shaded zones in Fig. 2). For reference, the probability of exceedance
of 800 Ml/day on the Thames at Kingston is 92% while for
300 Ml/day, the lowest allowable ecological flow at Teddington, it
is 99% (Q92 = 800 Ml/day and Q99 = 300 Ml/day).2

3.3.4. Constraints
In their plan, ThamesWater state that level 2 failures should not

occur more often than once every 10 years. Level 3 failures should
not occur more often than once every 20 years and level 4 failures
should never occur (Fig. 2) (Thames Water, 2010). An occurrence
reliability (Kiritskiy and Menkel, 1982; Klemeš, 1969) metric is
used to impose these constraints which gives the ratio of the num-
ber of years that LAS did not experience a failure of level i, Sy, to the
number or years in the time horizon, Ny.

AnnRel; i ¼ Sy
Ny

� �
ð12Þ

The algorithm implements a constraint based tournament selection
operator over all solutions within the generation where solutions
are successively compared in pairs with respect to their objective
function performance. Feasible solutions are always preferred to
infeasible solutions. In general, simulations that do not meet these
constraints are considered infeasible and are not passed into the
archive of the MOEA. However, if all solutions are infeasible,
the constrained tournament selection promotes solutions with the
2 Q92 and Q99 were calculated using daily gauging records from the National River
Flow Archive (1883–2010).
smallest aggregate constraint violations (Deb, 2001; Kasprzyk
et al., 2009).

3.4. Computational experiment

The e-NSGAII generates its initial random population of candi-
date solutions composed of combinations of decision variables by
exploiting uniform random sampling within the user specified
ranges given in Table 3. These variables are then passed as input
variables to the IRAS-2010 simulator. The simulation evaluates
performance using 85 years of historical hydrology. The perfor-
mance information is passed back to e-NSGAII for computing
objectives and constraints upon which the algorithm evaluates
the fitness of the decision variables and applies its selection oper-
ator to select ‘‘better” individuals to reproduce. The variation oper-
ators – crossover and mutation – are subsequently applied to these
individuals, where the former combines genetic information of two
individuals (parents) while the latter perturbs a genetic code of a
single individual (parent) to create new individuals (children) for
the next generation of decision variables. This represents one gen-
eration of the heuristic search process. The operator parameters
such as the probability of crossover and mutation are user defined.
Both of these operators when applied within real-coded genetic
algorithms to multi-objective continuous problems have been pro-
ven to perform well (e.g. Deb and Kumar, 1995; Kollat and Reed,
2006). The parameter values for these operators were chosen based
on recommendations of previous work that applied the e-NSGAII
algorithm to a multi-objective problem (Kollat and Reed, 2006;
Kasprzyk et al., 2009). Even though the selection decision variables
are in the final results binary (Eq. (1)), the algorithm treats them as
real variables, i.e. generates a real value between 0 and 1. This
value is then rounded for further analysis to determine if an option
was selected or not (i.e. if the value is greater than or equal to 0.5, it
is rounded up to 1, otherwise it is rounded down to 0). Often con-
sistent rounding or truncation of real operators has been shown to
outperform classical binary crossover (Nicklow et al., 2010) and
many water resource applications demonstrate the importance of
real-valued mating/mutation operators when focusing on continu-
ous or mixed integer optimization (Bayer and Finkel, 2004; Kollat
and Reed, 2006; Yoon and Shoemaker, 2001). We ran the algorithm
for 70,000 function evaluations based on a visual assessment of the
convergence and time-varying diversity of the evolving solutions.
The initial population size was set to 72 and the algorithm operator
parameters were chosen according to previous study recommen-
dations (Kasprzyk et al., 2009; Kollat and Reed, 2007; Kollat
et al., 2008). The algorithm parameters and objective epsilon val-
ues are summarized in Table 4. The epsilon values were set to cap-
ture the minimum level of precision to be used in distinguishing an
alternative’s performance in each objective. The population scaling
factor directs the adaptive population sizing and represents the
proportion of the population size at the beginning of each new
run which consists of the e-archived individuals. For instance,
the population scaling factor of 0.25 means that if there are 50
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archived solutions at the end of one run, the following run will
begin with the population size of 200, where one quarter will con-
sist of the archived solutions and the remaining 150 individuals
will be generated randomly. This improves the search by directing
it with previously evolved solutions and by adding new solutions
to further explore the search space (Kollat and Reed, 2006).

Random number generation can strongly impact evolutionary
search, particularly the randomly generated initial search popula-
tion. To minimize random seed effects we ran the algorithm 10
times with different seed values. The results from each run are
then sorted together to provide the best overall reference set based
on the approach of Kollat et al. (2008). It should be noted that this
reference set was found to be nearly identical to our original run
results which indicates the search solutions are replicable and
likely highly representative of the true Pareto optimal set.
1.0 24.0 Capital Costs (M£/year)Index

(b)

98.9 

99.5 

1 

Direction of optimization Selected solutions 

Operating Costs 
(M£/year) 

4.1 20.2 39 26 

Minimum 
Storage (%) 

0 15 

Resilience
(weeks) 
4. Results

This section presents the results of the many-objective opti-
mization formulation discussed in Section 3 for the Thames infras-
tructure portfolio design problem. Fig. 3 shows the approximation
of the Pareto front generated by the multi-objective search process
projected onto the two dimensional capital cost vs. London reser-
voir reliability (Eq. (5)) trade-off space. Each point represents a
non-dominated solution, in our case, a portfolio of new supply
and demand management measures. Many solutions show 100%
London reservoir reliability. The upper left side and lower center
of the figure is characterized by a steep cost to reliability gradient
(i.e., small financial investments result in large reliability improve-
ments). The cost vs. reliability subspace represents a classic lower
dimensional view that has been the dominant focus of prior water
resources systems design (Kundzewicz and Kindler, 1995; Lund
and Israel, 1995; Rani and Moreira, 2009; Watkins and
McKinney, 1997; Wurbs, 1993). This lower dimensional view
shows the often discussed ‘‘flat surface” nature of the water supply
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ig. 4. Many-dimensional interactive plot showing the performance of the Pareto-
pproximate solutions. Plot A shows the London reservoir reliability, ecological flow
nd the capital cost performance metrics in the cardinal axes. B shows the same
rface seen from a different angle. Additionally the color of the cones (glyphs) in
lot B represents the operating costs metric while their orientations and size
present the minimum storage and resilience metrics, respectively. The arrows
oint towards the optimization direction (optimal value of the objective).
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London reservoir reliability. Each sphere on the plot represents a unique portfolio of
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cost and reliability performance measures yielding many solutions
with seemingly identical levels of performance (Loucks et al., 1981;
Loucks and van Beek, 2005). As was discussed in our introduction,
this lower dimensional view can negatively bias decision making
hiding the broad array of water supply options discoverable in a
many-objective formulation.

Fig. 4A shows the same Pareto-approximate solution set in
three dimensions by adding the ecological flow index dimension.
A benefit of many-objective visual analytics is that it facilitates
rapid and interactive exploration of multiple views of the same
high dimensional Pareto-approximate set. This view strongly dis-
tinguishes the performance of the solutions that appear as being
analogous to one another in Fig. 3. Fig. 4B shows a rotated view
of Fig. 4A and visualizes three additional dimensions by using cone
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color, orientation and size to represent the average operating cost,
minimum reservoir storage and resilience metrics. These visualiza-
tions show the complex multi-dimensionality of the problem. The
bottom right corner of Fig. 4B shows that the most capital cost
intensive solutions also incur higher operating costs while achiev-
ing better performance in the engineering and environmental met-
rics. The Pareto-approximate space is divided into two ‘fronts’
where one front, at the top left of Fig. 4A and B, is characterized
by green, yellow and red3 cones (i.e. high operating costs) but is
located on the lower end of the capital cost spectrum. The most reli-
able solution on this front achieves 99.7% London reservoir reliabil-
ity. The reliability of the solutions that comprise the front on the
right side of the plot ranges from 98.9% to 100%. If a decision maker
wants to achieve 100% storage reliability, he/she must choose a solu-
tion from the right front. Up to 99.7% reliability, the two fronts also
imply a trade-off between capital and operating costs; a similar level
of reliability can be achieved by either increasing capital costs and
reducing operating costs or vice-versa (e.g. by picking solutions with
similar reliabilities from either the right or left fronts).

Five solutions are singled out for further analysis in Fig. 4A and B.
Solution 1, the ‘Lowest cost’ solution, has the lowest undiscounted
sum of annualized capital and operating costs in the Pareto-
approximate set which satisfied the minimum service constraints
(annual reliability constraints, Section 3.3.4). This portfolio is most
similar to what would be recommended by the least-cost asset
selection approach currently in use in England (Padula et al.,
2013). Solution 2, the ‘Highest cost’ solution (undiscounted sum
of annualized capital and operating costs) is Pareto-approximate
because of its excellent performance in all but the two cost perfor-
mancemeasures. Solution 3 corresponds to the lowest cost solution
that resulted in perfect London reservoir reliability. Decision mak-
ers could pick solution 3, whichwe call the ‘Cost efficient reliability’
solution if they were only concerned about London reservoir relia-
bility and cost. Solutions 4 and 5 show similar performance in all
objectives except for the two cost objectives. Solution 4 is located
on the left front and is more operating cost intensive than solution
5 (which is located on the right front) but has lower capital costs.
Solutions 4 and 5 are named the ‘Low capex compromise’ and
‘Low opex compromise’ solutions, respectively.

Fig. 5 explores the portfolio composition of the Pareto-
approximate solutions based on Fig. 4B. Color represents the
activation of the Long Reach Desalination scheme; red represents
solutions that activated the schemewhile blue represents solutions
that did not. Cones facing up represent solutions that include the
Pipe refurbishment program in the London WRZ, a demand
management option, while cones pointing down are solutions that
do not. Transparency adds an additional dimension; opaque solu-
tions build the Deepham reuse scheme while translucent solutions
exclude it. Not all decisions are included in Fig. 5. Differently com-
posed figures could show how other option choices lead to different
areas of the efficient trade-off. Such figures can be used to show that
certain options appear less favorably overall than others, e.g. in our
analysis every solution in the Pareto-approximate space includes
the Upper Thames Reservoir and none of the solutions include the
River Severn Transfer.

Fig. 5 displays a mixture of both decisions (the option choices)
and a subset of performance objectives. As noted by Tsoukias
(2008), decision makers find the strict mathematical separation
of decisions and objectives to be a false construct that can limit
decision relevant insights. By visualizing decisions and objectives
simultaneously Fig. 5 allows decision makers to discover how dif-
ferent mixes (portfolios) of supply and demand options can quan-
3 For interpretation of color in Fig. 4, the reader is referred to the web version of
this article.
titatively affect performance. For example, the inclusion of the Pipe
refurbishment program results in increased performance in the
engineering and environmental metrics and an increase in capital
costs without increasing operating costs. This relationship results
in the two fronts described earlier; all solutions in the capital cost
intensive front on the right of Fig. 4A and B include the Pipe refur-
bishment program while those in the left front do not. The solu-
tions on the bottom right of the right front in the figures include
the Pipe program, Long Reach Desalination and the Deepham reuse
scheme resulting in large capital and operating costs. To contrast,
the solutions at the top of the left front in the figures have lower
capital costs and do not perform as well in the London reservoir
reliability, resilience and environmental performance metrics.
These solutions are less infrastructure intensive and implement
fewer demand management schemes (e.g. they do not implement
the Pipe refurbishment scheme). However as noted previously,
despite lower capital costs, the solutions on the left front still incur
high operating costs because they build the Deepham Reuse
scheme. Fig. 5 shows that the discrete water supply decisions yield
different clusters of portfolio options (i.e. the groupings created by
London Pipes, Deepham Reuse, and Long Reach Desalination). The
figure further shows that while solutions 4 (‘Low capex compro-
mise’) and 5 (‘Low opex compromise’) achieve similar London
reservoir reliability, minimum storage and environmental perfor-
while solutions represented by cones pointing down do not implement it. The size
of the cones represents the operating costs metric. The arrows point towards the
optimization direction (optimal value of the objective). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version o
this article.)
.
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Table 5
Decisions and objective values characterized by the five selected solutions.

Solution 1 (Lowest
cost)

2 (Highest
cost)

3 (Cost efficient
reliability)

4 (Low capital costs
compromise)

5 (Low operating costs
compromise)

Objectives
London supply reliability (%) 96.3 99.3 98.0 97.4 97.3
Capital costs (M£/year) 26,933 65,763 49,410 39,494 46,244
Operating costs (M£/year) 9500 19,919 13,780 20,227 10,745
Resilience (time-steps) 11.75 0 0 3.5 3.5
Reliability (%) 98.9 100.0 100.0 99.7 99.7
Ecological flow shortage index 1.79 1 1.25 1.45 1.43
Minimum reservoir storage (%) 26.5 38.7 32.5 30.2 30.3

Supply decisions objectives
UTR capacity (Mm3)/RST/NT 149 150 149 150 148
SLARS capacity (Ml/day) 23.7 24.0 22.8 24.0 20.1
Deepham reuse capacity (Ml/day) 62.1 93.0 41.4 94.8 0
Columbus transfer No Yes Yes Yes Yes
Long reach desalination No Yes No Yes No

Demand management decisions
London ALC (Ml/day) 49.2 49.6 49.9 49.9 45.9
London Pipes No Yes Yes No Yes
London EFI Yes Yes No Yes No
London Meters (M)/Seasonal Tariffs (T) MT MT MT MT MT
Central ALC (Ml/day) 2.9 3.0 3.0 3.2 0.7
Central Pipes No Yes No Yes No
Central EFI Yes Yes No Yes No
Central Meters (M)/Seasonal Tariffs (T) M M No M M
Southern ALC (Ml/day) 1.5 1.9 2.0 1.6 1.1
Southern Pipes No Yes No Yes No
Southern EFI No Yes No Yes Yes
Southern Meters (M)/Seasonal Tariffs (T) MT MT MT MT MT
Essex ALC (Ml/day) 0.8 1.2 0.9 1.3 0.7
Essex Pipes No Yes No Yes No
Essex EFI Yes Yes No Yes No
Essex Meters (M)/Seasonal Tariffs (T) No MT No MT No

Fig. 6. Parallel plot of the five selected solutions. Each line on the figure represents the performance of one candidate Pareto approximate solution. The intersections of the
lines with the vertical axes represent the objective performance. The arrow points towards the optimization direction (optimal value of the objective). Ideal performance
would be a horizontal line at the bottom of the axes. Diagonal lines represent objective trade-offs.
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mance they do so by implementing different options. Solution 4
builds the Long Reach Desalination and Deepham Reuse schemes
resulting in high operating costs while solution 5 refurbishes the
pipes in the London WRZ resulting in higher capital expenditure.
Table 5 summarizes the decisions and performance objectives of
the five selected solutions.

The defining attribute of visual analytics (Keim et al., 2010) is
the exploitation of multiple, linked views of high dimensional data.
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Fig. 7. Minimum storage performance of the five selected solutions during a major
drought event.
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The parallel axis plot (Inselberg, 2009) provides a highly scalable
tool for exploring the trade-offs and performance differences of
the five highlighted solutions illustrated in Figs. 4 and 5. The volu-
metric glyph plots discussed above show the strong geometrical
context of the alternatives and when supplemented with the par-
allel axis plot in Fig. 6, the full suite of the Thames system’s
trade-offs come into perspective.

When interpreting Fig. 6 each vertical axis represents objective
performance. Each line represents the many-objective perfor-
mance of the five highlighted solutions. An ideal solution would
be a horizontal line intersecting the bottom of every axis. Conflicts
in the objectives are represented by diagonal lines between the
respective objectives’ vertical axes. The figure shows that trade-
offs (and correlations) exist between the seven performance met-
rics. Solutions 1 and 5 perform well in the operating cost metric,
but solution 1 has reduced performance with respect to the London
reservoir reliability objective. Solution 2 has strong performance in
all but the cost objectives. Relationships can be seen between other
pairings and across all objectives. This helps decision makers visu-
alize the consequences of only considering one or two objectives.
As depicted in Figs. 4 and 5 solutions 2 and 3 have 100% London
reservoir reliability (and therefore resilience). However, the
parallel plot demonstrates that these solutions exhibit significantly
different performance in the other performance metrics.

Solution 3 has good performance in most of the objectives.
Despite the major infrastructure differences between solutions 4
and 5 (solution 4 includes the Long Reach Desalination and
Deepham Reuse schemes while 5 includes the Pipes refurbishment
program) they have similar performance in all metrics except for
the two cost objectives as was seen in Fig. 4. The least infrastruc-
ture intensive portfolio, solution 1, displays the worst performance
in the London supply reliability, resilience, London reservoir
reliability, minimum storage and ecological flow metrics but has
the best performance in the two cost measures. Conversely, the
most infrastructure-intensive portfolio, solution 2, exhibits the
best performance in all but the two cost metrics.

Visual analytic plots enable planners to ‘browse’ the Pareto-
approximate front and introduce preferences for individual options
based on non-optimized factors (ease of construction, land use,
public opinion, etc.). The refurbishment of leaking water pipes in
solution 5 vs. adding new desalination and reuse plants in solution
4 needs to be decided by strategic thinking on how these options
help meet other less tangible goals (e.g. the relationship with reg-
ulators and client base).

The volumetric glyph and parallel axis plots show the perfor-
mance objectives of each solution evaluated over the whole of a
simulation run. The use of a simulation model in this optimization
approach allows for direct performance comparison between any
of the Pareto-approximate plans. Fig. 7 shows the simulated results
for the London aggregate storage node during a major drought for
each of the five selected portfolios. The plot serves as a reminder
that each cone or point in the Pareto-approximate plots is backed
up by a detailed and realistic system simulation. The ‘Highest cost’
portfolio (solution 2) sees the least drawdown of the London
Aggregate Storage (LAS) node. The ‘Lowest cost’ solution 1 per-
forms most poorly. In this early 1930s drought scenario, the exist-
ing storage becomes stressed signaling that solution 1 may suffer
from under-investment. In the 1920s drought (not shown) the
minimum storage for solution 1 goes down to 27% storage, which
is near the 22.5% critical threshold. Solutions 3, 4 and 5 have sim-
ilar minimum storage performance and may be good candidates
for droughts such as the one seen in Fig. 7 as they achieve good
performance without incurring high costs.
5. Discussion

This study demonstrates linking a water system simulator to
multi-objective search to generate a diverse set of Pareto-
approximate optimal water supply portfolios. The set is assessed
using interactive visual analytic plots that reveal the trade-offs in
the performance space and that map the composition of portfolios
to the trade-offs. Belowwe discuss the innovations, limitations and
implications of the water infrastructure selection approach pre-
sented here.
5.1. Improving system designs by increasing problem dimensions

Increasing the number of dimensions considered in scheme
selection gives decision makers information they would not have
if the problem were solved considering fewer factors of perfor-
mance (e.g., a cost-only optimization). In our example the ‘lowest
cost’ solution (selection 1) meets minimum service reliability
requirements set by government regulators (i.e. model constraints
in Section 3.3.4). Had decision makers only considered cost they
would have likely chosen this portfolio. The parallel plot (Fig. 6)
reveals this portfolio (solution 1) performs poorly in the London
supply reliability, resilience, London reservoir reliability, minimum
storage and ecological flowmetrics. Many-objective visual analysis
shows relatively small increases in cost can result in better perfor-
mance across all of these metrics as is seen for the ‘cost efficient
reliability’ portfolio, solution 3. Similarly, if London reservoir relia-
bility were the sole selection criteria (with perhaps a maximum
cost constraint), single objective optimization would lead to multi-
ple optima as many solutions in the Pareto-approximate front dis-
play perfect London reservoir reliability (Fig. 3). Of all the solutions
with 100% London reservoir reliability, all are non-dominated and
have a range of varying performance in other objectives. Without
the possibility to visualize these other dimensions, valuable gains
could be missed and even the presence of multiple optima along
one metric could be easily missed. Considering multiple objectives
allows these solutions to be differentiated (Fig. 4). Figs. 3 and 4
show how solutions can have similar performance in some metrics
but have diverging performancewhen seen using other dimensions.

Work by Woodruff et al. (2013) corroborates our findings and
suggests how aggregated analyses of complex engineered systems
can suffer from myopia and mathematical biases that lead to
opportunity costs by ignoring key tradeoff alternatives between
otherwise aggregated metrics. These aggregations occur for exam-
ple in traditional cost minimization-only approaches (Padula et al.,
2013) and cost-benefit analysis (Banzhaf, 2009).
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5.2. Visualization

Many-objective visual analytics allows decision makers to
survey the trade-offs between objectives and to distinguish the
effects of individual supply or demand options within the
Pareto-approximate set (Lotov and Miettinen, 2008). Interactive
visualization of trade-offs in multiple dimensions is well suited
for situations where stakeholders have diverse interests. For
instance, an environmental regulator could be interested in how
different portfolios impact the environmental flows downstream
of abstraction sites while water companies could be interested in
seeing how well portfolios meet service reliability requirements.

We demonstrate that it is important to exploit visual analytics
to promote linked views of both performance objectives and
investment decision variables simultaneously. We show how the
Thames system’s Pareto-approximate portfolios ‘cluster’ into dis-
tinct suites of water supply options. Visualizing these diverse
groups of water supply plans in the performance space provides
water managers with a rich perspective on key decision trade-
offs and significant flexibility when choosing alternatives for fur-
ther consideration. The many-dimensional visualization allows
decision makers to consider the quantifiable performance metrics
and navigate through them directed by factors not considered in
the optimization (such as easiness of construction permits, land
rights, etc.). Decision makers can quickly build a mental map of
the consequences of including certain water supply schemes.

5.3. Uncertainty of future supply and demand

A limitation of the application described here is its consideration
of one set of future conditions: it assumes historical inflows are rep-
resentative of future plausible ones and that future demands are
known. The historical record used in this study contains several sev-
ere droughts and therefore provides a useful stress test for future
system designs. A 30-year historical hydrological record is used in
the current planning framework English water companies use, and
is substantially shorter than the ones used in this study. This deter-
ministic study provides a baseline against which results from a
future stochastic ormulti-scenario optimization seeking robustness
could be compared. An implementation accommodating multiple
plausible futures (Matrosov et al., 2013a,b; Borgomeo et al., 2014)
could incorporate the uncertainty of exogenous and endogenous
factors into the planning approach.

5.4. Use of proposed approach for water utility system design

Current modeling to assist water supply-demand planning in
England uses single objective least-cost optimization subject to
reliability constraints (Padula et al., 2013). In the approach pro-
posed here, the use of a water resource simulator allows perfor-
mance metrics to be measured in diverse units familiar to
stakeholders who may not agree on how or whether metrics
should be monetized. As such the approach documented here is
a contribution towards improved water planning for water utili-
ties. Matrosov et al. (2013a,b) apply simulation-based water plan-
ning approaches on a UK case-study (Robust Decision Making and
Info-Gap Analysis) and contrast them to the current regulator
approved least-cost optimization approach. Borgomeo et al.
(2014) present a risk-based framework that uses simulation to
incorporate climate change projections into water resource plan-
ning. These simulation-based system design approaches allow con-
sidering engineering, economic and environmental performance in
greater detail, but they do not consider all combinations of pro-
posed interventions as economic optimization does. A few options
with ranges of possible capacities (even if coarsely discretized)
quickly lead to an exponential number of possible scheme portfo-
lios to try. Simulation based approaches such as those applied by
Matrosov et al. (2013a,b) can be criticized for choosing to evaluate
in depth portfolios of options that are to some extent arbitrary
defined. The approach presented in this study frees planners from
having to choose a priori which portfolios of options (at fixed
capacities) to evaluate; instead here the search for the most
promising groupings of options and their capacities is automated.

If trusted simulators are used in the proposed analysis, and per-
formance metrics used in the optimization have been defined with
stakeholders (Herman et al., 2015), the Pareto-approximate solu-
tions will likely be of interest to decision makers. The IRAS-2010
Thames basin simulator used in this study was shown to accurately
emulate a similar simulation model used by the Environment
Agency of England (Matrosov et al., 2011).

A detailed proposal and assessment of how this approach could
be integrated into utility decision-making, collaborative river-basin
planning and regulatory practice is beyond the scope of this article.
The multi-objective infrastructure system portfolio design
approach proposed here is more complex to implement in a regu-
lated industry (as exists in England) than the current least-cost
approach because the relevant performance metrics and relevant
stakeholders vary somewhat by region and system. For each appli-
cation a concerted effort would need to be made to define the most
regionally relevant system goals, iteratively working with stake-
holders to develop appropriate performance measures. A
stakeholder-driven planning approach (Groves et al., 2013) using
the proposedmethodswould benefit from stakeholders (a) defining
system goals (metrics) to be optimized, (b) interactively using
trade-off visualizations and (c) interacting in a deliberative forum
to negotiate down to one or to a reduced number of preferred plans.
Task (b) could for example include stakeholders adding a posteriori
minimal acceptable performance thresholds and ‘‘brushing”
(Kasprzyk et al., 2013) out solutions (erasing them from trade-off
plots) that do not meet these negotiated preferences from task
(c), thus reducing the number of solutions to consider. Stakeholder
use of efficient trade-off analysis for collaborative decision-making
and negotiationwill benefit from further research. Readers can note
that multi-criteria methods (Dodgson et al., 2009; Tanyimboh and
Kalungi, 2009) to choose a candidate solution could supplement
the proposed approach.

6. Conclusions

Water resource system and water supply planning are inher-
ently multi-objective problems where decision makers must bal-
ance complex priorities such as costs, resilience and reliability,
ecosystem services, etc. Single-objective planning such as least
cost optimization gives planners only part of the picture when
designing real systems where many aspects of system performance
are relevant. Even if all system goals can and have been translated
to one commensurate unit system (typically monetary), planners
would lack the ability to understand the trade-offs embodied by
different system designs. This study presented a water resources
and supply system design optimizationmodel with 7 simultaneous
objectives: minimizing capital and operating costs while maximiz-
ing environmental performance and engineering performance
metrics such as storage, resilience and reliability. The objectives
were subject to regulatory supply reliability and environmental
flow constraints. The optimization problem was solved by linking
a water resource system management simulation model and a
many-objective evolutionary optimization algorithm. The multi-
objective search engine used the system simulator as the optimiza-
tion function evaluator.

The approach was applied to identify promising designs for
London’s future water supply system assuming projected demands
for 2035. Seven supply and four demand management options
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were considered in a many-objective capacity expansion optimiza-
tion formulation. The output of the optimization was a set of
Pareto-approximate (non-dominated) portfolios of supply and
demand management schemes. Results showed that, out of the
new options tested in our study (from the 2009 price review),
the Upper Thames Reservoir (UTR) is always selected in all of the
Pareto-approximate portfolios. We also showed that implementing
demand management through pipe refurbishment in the London
WRZ can reduce the need for a new desalination plant and reuse
scheme. Visualizing time-series of detailed simulated results that
underlie each point (‘glyph’) on the trade-off plots helps planners
assess system responses to specific extreme events and helps pre-
vent over- and under-investment.

State-of-the art many-objective visual analytics was used to
explore the Pareto-approximate solution space which manifests
as a multi-dimensional trade-off surface. These multi-
dimensional interactive visual aids help analysts and decision
makers see how individual supply and demand management
options affect performance in each dimension. Portfolios which
share certain schemes were seen in some cases to cluster in some
parts of the decision space showing that choosing certain options
leads to certain types of performance. Conversely, other parts of
the Pareto-approximate front revealed that quite different portfo-
lios had similar performance. Together the graphics underline the
complexity of selecting interventions in complex human-natural
systems when many metrics of performance are relevant, and also
the richness of information communicable through a multi-
objective search-based approach. The visual analytics graphics
allow stakeholders and decision makers to assess trade-offs
between objectives and show how different options and portfolios
of options map to those trade-offs. The study showed that in cases
where multiple optima are present in one dimension, other objec-
tives can be used to differentiate between these solutions.
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Appendix A. Key to variables and abbreviations
Acronym
 Definition
ALC
 Active Leakage Control

AnnRel,i
 Annual reliability occurrence metric – ratio of

the number of years that LAS did not experience
a failure of level i
Cap
 Capacity

CAPEX
 Capital costs

Central_Abs
 Demand node representing aggregate raw

water abstractions from the Thames for the
Central WRZ
Cleveli
 Constraint, minimum annual reliability for
LTCD level i
CT
 Columbus Transfer

DRS
 Deepham reuse scheme

EFI
 Enhanced efficiency improvements

e-NSGAII
 Epsilon-Dominance Non-dominated Sorting

Genetic Algorithm II
Appendix A (continued)
Acronym
 Definition
f CAPEX
 Capital costs objective

FD3
 Average duration of failure of LTCD level 3

failure events

f EnvSI
 Environmental objective

f LondSR
 London volumetric supply reliability objective

FOPEX
 Fixed operating costs

f OPEX
 Operating costs objective

f ResMin
 Minimum reservoir storage objective (see

MinLASVol)

f StoRes3
 Resilience objective (see FD3)

f StoTSRel3
 London reservoir reliability objective – the ratio

of the number of time-steps (weeks) the LAS
was above LTCD failure level 3
IRAS-2010
 Interactive River Aquifer Simulation 2010

LAS
 London Aggregate Storage

LRD
 Long Reach Desalination

LTCD
 Lower Thames Control Diagram

Pipes
 Mains pipes refurbishment

Meters
 Installation of smart meters

MinLASVol
 Lowest storage level reached (in % of total

capacity) by LAS over the entire modelled time
horizon
MOEA
 Many-objective evolutionary algorithm

NLARS
 North London Artificial Recharge Scheme

NT
 Northern Transfer

Nts
 Total time-steps (weeks) in the simulation time

horizon

Ny
 Number of years in the simulation time horizon

RST
 River Severn Transfer

SDO
 Supply or demand management option

SI
 Shortage Index

SLARS
 South London Artificial Recharge Scheme

Southern_Abs
 Demand node representing aggregate raw

water abstractions from the Thames for the
Southern WRZ
St
 Number of time-steps (weeks) the LAS was
above LTCD failure level 3
Sy
 Number of years that did not experience a
supply failure
Tariffs
 Activation of seasonal tariffs

ts
 Time-step (week)

UTR
 Upper Thames Reservoir

VAREX
 Variable operating costs

WBGW
 West Berkshire Groundwater Scheme

WDts
 Time-step (weekly) flow demand target

WRZ
 Water Resource Zone

WSts
 Time-step (weekly) flow shortage

Xi
 The decision to activate supply or demand

management option i

XTransRes
 The XTransRes supply option includes the

mutually exclusive UTR, NT and RST supply
options which are represented by decision
values of 1, 2 and 3 respectively
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