
Probabilistic NetKAT

Nate Foster1, Dexter Kozen1, Konstantinos Mamouras2
∗
,

Mark Reitblatt3
∗
, and Alexandra Silva4

1 Cornell University
2 University of Pennsylvania

3 Facebook
4 University College London

Abstract. This paper presents a new language for network program-
ming based on a probabilistic semantics. We extend the NetKAT lan-
guage with new primitives for expressing probabilistic behaviors and
enrich the semantics from one based on deterministic functions to one
based on measurable functions on sets of packet histories. We establish
fundamental properties of the semantics, prove that it is a conservative
extension of the deterministic semantics, show that it satisfies a number
of natural equations, and develop a notion of approximation. We present
case studies that show how the language can be used to model a diverse
collection of scenarios drawn from real-world networks.

1 Introduction

Formal specification and verification of networks has become a reality in re-
cent years with the emergence of network-specific programming languages and
property-checking tools. Programming languages like Frenetic [11], Pyretic [37],
Maple [53], FlowLog [39], and others are enabling programmers to specify the
intended behavior of a network in terms of high-level constructs such as boolean
predicates and functions on packets. Verification tools like Header Space Analy-
sis [22], VeriFlow [23], and NetKAT [12] are making it possible to check properties
such as connectivity, loop freedom, and traffic isolation automatically.

However, despite many notable advances, these frameworks all have a funda-
mental limitation: they model network behavior in terms of deterministic packet-
processing functions. This approach works well enough in settings where the
network functionality is simple, or where the properties of interest only concern
the forwarding paths used to carry traffic. But it does not provide satisfactory
accounts of more complicated situations that often arise in practice:

– Congestion: the network operator wishes to calculate the expected degree
of congestion on each link given a model of the demands for traffic.

– Failure: the network operator wishes to calculate the probability that pack-
ets will be delivered to their destination, given that devices and links fail
with a certain probability.
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– Randomization: the network operator wishes to use randomized routing
schemes such as equal cost multi-path routing (ECMP) or Valiant load bal-
ancing (VLB) to balance load across multiple paths.

Overall, there is a mismatch between the realities of modern networks and the
capabilities of existing reasoning frameworks. This paper presents a new frame-
work, Probabilistic NetKAT (ProbNetKAT), that is designed to bridge this gap.

Background. As its name suggests, ProbNetKAT is based on NetKAT, a net-
work programming language developed in prior work [1, 12, 49]. NetKAT is an
extension of Kleene algebra with tests (KAT), an algebraic system for propo-
sitional verification of imperative programs that has been extensively studied
for nearly two decades [27]. At the level of syntax, NetKAT offers a rich collec-
tion of intuitive constructs including: conditional tests; primitives for modifying
packet headers and encoding topologies; and sequential, parallel, and iteration
operators. The semantics of the language can be understood in terms of a deno-
tational model based on functions from packet histories to sets of packet histories
(where a history records the path through the network taken by a packet) or
equivalently, using an equational deductive system that is sound and complete
with respect to the denotational semantics. NetKAT has a PSPACE decision
procedure that exploits the coalgebraic structure of the language and can solve
many verification problems automatically [12]. Several practical applications of
NetKAT have been developed, including algorithms for testing reachability and
non-interference, a syntactic correctness proof for a compiler that translates pro-
grams to hardware instructions for SDN switches, and an implementation that
handles programs written against virtual topologies [49].

Challenges. Probabilistic NetKAT enriches the semantics of NetKAT so that
programs denote functions that yield probability distributions on sets of packet
histories. Although this change is simple at the surface, it enables adding pow-
erful primitives such as probabilistic choice, making it possible to handle the
scenarios above involving congestion, failure, and randomized forwarding. At
the same time, it creates significant challenges, because the semantics must be
extended to handle probability distributions while preserving the intuitive mean-
ing of NetKAT’s existing programming constructs. A number of important ques-
tions do not have obvious answers: Should the semantics be based on discrete
or continuous distributions? How should it handle operators such as parallel
composition that combine multiple distributions into a single distribution? Do
suitable fixpoints exist that can be used to provide semantics for iteration?

Approach. The development of our semantics for ProbNetKAT follows a clas-
sic approach: we first define a suitable mathematical space of objects and then
identify semantic objects in this space that serve as denotations for each of the
syntactic constructs in the language. Our semantics is based on Markov kernels
over sets of packet histories. To a first approximation, these can be thought
of as functions that produce a probability distribution on sets of packet histo-
ries, but the properties of Markov kernels ensure that important operators such
as sequential composition behave as expected. The parallel composition oper-
ator is particularly interesting, since it must combine disjoint and overlapping

2



distributions—the latter models multicast—as is the Kleene star operator since
it requires showing that fixpoints exist.
Evaluation. To evaluate our design, we prove that the probabilistic semantics
of ProbNetKAT is a conservative extension of the standard NetKAT semantics.
This is a crucial point of our work: the language developed in this paper is based
on NetKAT, which in turn is an extension of KAT, a well-established frame-
work for program verification. Hence, this work can be seen as the next step in
the modular development of an expressive network programming language, with
increasingly sophisticated set of features, based on a sound and long-standing
mathematical foundation. We also develop a number of case studies that illus-
trate the use of the semantics on examples inspired by real-world scenarios. Our
case studies model congestion, failure, and randomization, as discussed above,
as well as a gossip protocol that disseminates information through a network.
Contributions. Overall, the contributions of this paper are as follows:

– We present the design of ProbNetKAT, the first language-based framework
for specifying and verifying probabilistic network behavior.

– We develop a formal semantics for ProbNetKAT based on Markov kernels,
prove that it conservatively extends the semantics of NetKAT, and develop
a notion of approximation between programs.

– We discuss a number of case studies that illustrate the use of ProbNetKAT
on real-world examples.

Outline. The rest of this paper is organized as follows: §2 introduces the ba-
sic ideas behind ProbNetKAT through an example; §3 reviews concepts from
measure theory needed to define the semantics; §4 and §5 present the syntax
and semantics of ProbNetKAT; §6 further illustrates the semantics by proving
conservativity and some natural equations; §8 discusses applications of the se-
mantics to real-world examples. We discuss related work in §9 and conclude in
§10. Proofs and further details on the semantics of iteration can be found in the
extended version of this paper [13].

2 Overview

This section introduces ProbNetKAT using a simple example and discusses some
of the key challenges in designing the language.
Preliminaries. A packet π is a record with fields x1 to xk ranging over stan-
dard header fields (Ethernet and IP addresses, TCP ports, etc.) as well as special
switch and port fields indicating its location in the network:

{x1 = n1, . . . , xk = nk}
We write π(x) for value of π’s x field and π[n/x] for the packet obtained from π
by setting the x field to n. We often abbreviate the switch field as sw . A packet
history is a nonempty sequence of packets π1 :π2 : · · · :πm, listed in order of
youngest to oldest. Operationally, only the head packet π1 exists in the network,
but in the semantics we keep track of the packet’s history to enable precise
specification of forwarding along specific paths through the network. We write
π :σ for the history with head π and tail σ and H for the set of all histories.
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Fig. 1. Barbell topology.

Example. Consider the network shown in Fig. 1
with six switches arranged into a “barbell” topol-
ogy. Suppose the network operator wants to con-
figure the switches to forward traffic on the two
left-to-right paths from I1 to E1 and I2 to E2. We
can implement this in ProbNetKAT as follows:

p , (sw = I1; dup; sw ← C1; dup; sw ← C2; dup; sw ← E1) &

(sw = I2; dup; sw ← C1; dup; sw ← C2; dup; sw ← E2)

Because it only uses deterministic constructs, this program can be modeled as
a function f ∈ 2H → 2H on sets of packet histories: the input represents the
initial set of in-flight packets while the output represents the final set of results
produced by the program—the empty set is produced when the input packets are
dropped (e.g., in a firewall) and a set with more elements than the input set is
produced when some input packets are copied (e.g., in multicast). Our example
program consists of tests (sw = I1), which filter the set of input packets, retaining
only those whose head packets satisfy the test; modifications (sw ← C1), which
change the value of one of the fields in the head packet; duplication (dup), which
archives the current value of the head packet in the history; and sequential (;)
and parallel (&) composition operators. In this instance, the tests are mutually
exclusive so the parallel composition behaves like a disjoint union operator.

Now suppose the network operator wants to calculate not just where traffic
is routed but also how much traffic is sent across each link. The determinis-
tic semantics we have seen so far calculates the trajectories that packets take
through the network. Hence, for a given set of inputs, we can use the semantics
to calculate the set of output histories and then count how many packets tra-
versed each link, yielding an upper bound on congestion. But now suppose we
want to predict the amount of congestion that could be induced from a model
that encodes expectations about the set of possible inputs. Such models, which
are often represented as traffic matrices, can be built from historical monitoring
data using a variety of statistical techniques [36]. Unfortunately, even simple
calculations of how much congestion is likely to occur on a given link cannot be
performed using the deterministic semantics.

Returning to the example, suppose that we wish to represent the following
traffic model in ProbNetKAT: in each time period, the number of packets origi-
nating at I1 is either 0, 1 or 2, with equal probability, and likewise for I2. Let π1
to π4 be distinct packets, and write πIj ,i! for the sequence of assignments that
produces the packet πi located at switch Ij . We can encode the distributions at
I1 and I2 using the following ProbNetKAT terms:5

d1 , drop⊕ πI1,1!⊕ (πI1,1! & πI1,2!)

d2 , drop⊕ πI2,3!⊕ (πI2,3! & πI2,4!)

5 An expression p1 ⊕ · · · ⊕ pn means that one of the pi should be chosen at random
with uniform probability and executed.
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Note that because d1 and d2 involve probabilistic choice, they denote functions
whose values are distributions on sets of histories rather than simply sets of
histories as before. However, because they do not contain tests, they are actually
constant functions, so we can treat them as distributions. For the full input
distribution to the network, we combine d1 and d2 independently using parallel
composition: d , d1 & d2.

To calculate a distribution that encodes the amount of congestion on links
in the network, we can push the input distribution d through the forwarding
policy p using sequential composition: d; p. This produces a distribution on sets
of histories. In this example, there are nine such sets of histories, where we write
I1,1 to indicate that π1 was processed at I1, and similarly for the other switches
and packets:

{ },
{E1,1:C2,1:C1,1:I1,1},
{E1,1:C2,1:C1,1:I1,1, E1,2:C2,2:C1,2:I1,2},
{E2,3:C2,3:C1,3:I2,3},
{E2,3:C2,3:C1,3:I2,3, E2,4:C2,4:C1,4:I2,4},
{E1,1:C2,1:C1,1:I1,1, E2,3:C2,3:C1,3:I2,3}
{E1,1:C2,1:C1,1:I1,1, E1,2:C2,2:C1,2:I1,2, E2,3:C2,3:C1,3:I2,3}
{E1,1:C2,1:C1,1:I1,1, E2,3:C2,3:C1,3:I2,3, E2,4:C2,4:C1,4:I2,4}
{E1,1:C2,1:C1,1:I1,1, E1,2:C2,2:C1,2:I1,2, E2,3:C2,3:C1,3:I2,3, E2,4:C2,4:C1,4:I2,4}

and the output distribution is uniform, each set occurring with probability 1/9.
Now suppose we wish to calculate the expected number of packets traversing the
link ` from C1 to C2. We can filter the output distribution on the set

b , {σ | C2,i:C1,i ∈ σ for some i}
and ask for the expected size of the resulting set. The filtering is again done by
composition, viewing b as a guard. (In this example, all histories traverse the
link `, so the filter b has no effect.) The expected number of packets crossing `
is given by integration: ∫

a∈2H
|a| · [[d; p; b]](da) = 2.

Hence, even in a simple example where forwarding is deterministic, our semantics
for ProbNetKAT is quite useful: it enables making predictions about quantitative
properties such as congestion, which can be used to provision capacity, inform
traffic engineering algorithms, or calculate the risk that service-level agreements
may be violated. More generally, ProbNetKAT can be used to express much
richer behaviors such as randomized routing, faulty links, gossip, etc., as shown
by the examples presented in Section 8.

Challenges. We faced several challenges in formulating the semantics of Prob-
NetKAT in a satisfactory way. The deterministic semantics of NetKAT [1, 12]
interprets programs as packet-processing functions on sets of packet histories.
This is different enough from other probabilistic models in the literature that it
was not obvious how to apply standard approaches. On the one hand, we wanted
to extend the deterministic semantics conservatively—i.e., a ProbNetKAT pro-
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gram that makes no probabilistic choices should behave the same as under the
deterministic NetKAT semantics. This goal was achieved (Theorem 2) using the
notion of a Markov kernel, well known from previous work in probabilistic se-
mantics [26, 10, 41]. Among other things, conservativity enables using NetKAT
axioms to reason about deterministic sub-terms of ProbNetKAT programs. On
the other hand, when moving to the probabilistic domain, several properties
enjoyed by the deterministic version are lost, and great care was needed to for-
mulate the new semantics correctly. Most notably, it is no longer the case that
the meaning of a program on an input set of packet histories is uniquely de-
termined by its action on individual histories (§6.4). The parallel composition
operator (&), which supplants the union operator (+) of NetKAT, is no longer
idempotent except when applied to deterministic programs (Lemma 1(vi)), and
distributivity no longer holds in general (Lemma 4). Nevertheless, the seman-
tics provides a powerful means of reasoning that is sufficient to derive many
interesting and useful properties of networks (§8).

Perhaps the most challenging theoretical problem for us was the formula-
tion of the semantics of iteration (∗). In the deterministic version, the iteration
operator can be defined as a sum of powers. In ProbNetKAT, this approach
does not work, as it requires that parallel composition be idempotent. Hence,
we formulate the semantics of iteration in terms of an infinite stochastic process.
Giving denotational meaning to this operational construction required an intri-
cate application of the Kolmogorov extension theorem. This formulation gives a
canonical solution to an appropriate fixpoint equation as desired (Theorem 1).
However the solution is not unique, and it is not a least fixpoint in any natural
ordering that we are aware of.

Another challenge was the observation that in the presence of both dupli-
cation (dup) and iteration (∗), models based on discrete distributions do not
suffice, and it is necessary to base the semantics on an uncountable state space
with continuous measures and sequential composition defined by integration.
Most models in the literature only deal with discrete distributions, with a few
noteable exceptions (e.g. [10, 25, 26, 41, 40]). To see why a discrete semantics suf-
fices in the absence of either duplication or iteration note that H is a countable
set. Without iteration, we could limit our attention to distributions on finite
subsets of H, which is also countable. Similarly, with iteration but without du-
plication, the set of histories that could be generated by a program is actually
finite. Hence a discrete semantics would suffice in that case as well, even though
iterative processes would not necessarily converge after finitely many steps as
with deterministic processes. However, in the presence of both duplication and
iteration, infinite sets and continuous measures are unavoidable (§6.3), although
in specific applications, discrete distributions sometimes suffice.

3 Measure Theory Primer

This section introduces the background mathematics necessary to understand
the semantics of ProbNetKAT. Because ProbNetKAT requires continuous prob-

6



ability distributions, we review some basic measure theory. See Halmos [18],
Chung [5], or Rao [44] for a more thorough treatment.
Overview. Measures are a generalization of the concepts of length or volume
of Euclidean geometry to other spaces, and form the basis of continuous probabil-
ity theory. In this section, we explain what it means for a space to be measurable,
show how to construct measurable spaces, and give basic operations and con-
structions on measurable spaces including Lebesgue integration with respect to
a measure and the construction of product spaces. We also define the crucial no-
tion of Markov kernels, the analog of Markov transition matrices for finite-state
stochastic processes, which form the basis of our semantics for ProbNetKAT.
Measurable Spaces and Measurable Functions. A σ-algebra B on a set
S is a collection of subsets of S containing ∅ and closed under complement and
countable union (hence also closed under countable intersection). A pair (S,B)
where S is a set and B is a σ-algebra on S is called a measurable space. If the
σ-algebra is obvious from the context, we simply say that S is a measurable
space. For a measurable space (S,B), we say that a subset A ⊆ S is measurable
if it is in B. For applications in probability theory, elements of S and B are often
called outcomes and events, respectively.

If F is a collection of subsets of a set S, then we define σ(F), the σ-algebra
generated by F , to be the smallest σ-algebra that contains F . That is,

σ(F) ,
⋂
{A | F ⊆ A and A is a σ-algebra}.

Note that σ(F) is well-defined, since the intersection is nonempty (we have
that F ⊆ P(S), and P(S) is a σ-algebra). If (S,B) is a measurable space and
B = σ(F), we say that the space is generated by F .

Let (S,BS) and (T,BT ) be measurable spaces. A function f : S → T is mea-
surable if the inverse image f−1(B) = {x ∈ S | f(x) ∈ B} of every measurable
subset B ⊆ T is a measurable subset of S. For the particular case where T is
generated by the collection F , we have the following criterion for measurability:
f is measurable if and only if f−1(B) is measurable for every B ∈ F .
Measures. A measure on (S,B) is a countably additive map µ : B → R. The
condition that the map be countably additive stipulates that if Ai ∈ B is a count-
able set of pairwise disjoint events, then µ(

⋃
iAi) =

∑
i µ(Ai). Equivalently, if

Ai is a countable chain of events, that is, if Ai ⊆ Aj for i ≤ j, then limi µ(Ai)
exists and is equal to µ(

⋃
iAi). A measure is a probability measure if µ(A) ≥ 0

for all A ∈ B and µ(S) = 1. By convention, µ(∅) = 0.
For every a ∈ S, the Dirac measure on a is the probability measure:

δa(A) =

{
1, a ∈ A,
0, a 6∈ A.

A measure is discrete if it is a countable weighted sum of Dirac measures.
Markov Kernels. Again let (S,BS) and (T,BT ) be measurable spaces. A
function P : S × BT → R is called a Markov kernel (also called a Markov
transition, measurable kernel, stochastic kernel, stochastic relation, etc.) if

– for fixed A ∈ BT , the map λs.P (s,A) : S → R is a measurable function on
(S,BS); and
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– for fixed s ∈ S, the map λA.P (s,A) : BT → R is a probability measure on
(T,BT ).

These properties allow integration on the left and right respectively.
The measurable spaces and Markov kernels form a category, the Kleisli cat-

egory of the Giry monad ; see [40, 41, 10]. In this context, we occasionally write
P : (S,BS) → (T,BT ) or just P : S → T . Composition is given by integration:
for P : S → T and Q : T → U ,

(P ;Q)(s,A) =

∫
t∈T

P (s, dt) ·Q(t, A).

Associativity of composition is essentially Fubini’s theorem (see Chung [5] or
Halmos [18]). Markov kernels were first proposed as a model of probabilistic
while programs by Kozen [26].

Deterministic Kernels. A Markov kernel P : S → T is deterministic if for
every s ∈ S, there is an f(s) ∈ T such that:

P (s,A) = δf(s)(A) = δs(f
−1(A)) = χA(f(s)).

The set function f : S → T is necessarily Borel measurable. Conversely, every
measurable function gives a deterministic kernel. Thus the deterministic kernels
and the Borel measurable functions are in one-to-one correspondence.

4 Syntax

ProbNetKAT extends NetKAT [1, 12], which is itself based on Kleene algebra
with tests (KAT) [27], a generic equational system for reasoning about partial
correctness of programs.

4.1 Kleene Algebra (KA) & Kleene Algebra with Tests (KAT)

A Kleene algebra (KA) is an algebraic structure (K, +, ·, ∗, 0, 1), where K is
an idempotent semiring under (+, ·, 0, 1), and p∗ · q is the least solution of the
affine linear inequality p · r+ q ≤ r, where p ≤ q is shorthand for p+ q = q, and
similarly for q · p∗. A Kleene algebra with tests (KAT) is a two-sorted algebraic
structure, (K, B, +, ·, ∗, 0, 1, ¬), where ¬ is a unary operator defined only on
B, such that

– (K, +, ·, ∗, 0, 1) is a Kleene algebra,
– (B, +, ·, ¬ , 0, 1) is a Boolean algebra, and
– (B, +, ·, 0, 1) is a subalgebra of (K, +, ·, 0, 1).

The elements of B and K are usually called tests and actions.
The axioms of KA and KAT (both elided here) capture natural conditions

such as associativity of · ; see the original paper by Kozen for a complete list-
ing [27]. Note that the KAT axioms do not hold for arbitrary ProbNetKAT
programs—e.g., parallel composition is not idempotent—although they do hold
for the deterministic fragment of the language.
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Naturals
n ∈ 0 | 1 | 2 | . . .

Fields
x ::= x1 | · · · | xk

Packets
π ::= {x1 = n1, · · · , xk = nk}

Histories
σ ::= π | π :σ

Guards
g ⊆ H

skip , H

drop , ∅
x = n , {π :σ | π(x) = n}

Tests
a ::= g Guard
| a1 & a2 Disjunction
| a1; a2 Conjunction
| a Negation

Actions
p ::= a Test
| x← n Modification
| p1 & p2 Parallel Composition
| p1; p2 Sequential Composition
| p1 ⊕r p2 Probabilistic Choice
| p∗ Iteration
| dup Duplication

Fig. 2. ProbNetKAT Syntax.

4.2 NetKAT Syntax

NetKAT [1, 12] extends KAT with network-specific primitives for filtering, mod-
ifying, and forwarding packets, along with additional axioms for reasoning about
programs built using those primitives. Formally, NetKAT is KAT with atomic
tests x = n and actions x← n and dup. The test x = n checks whether field x of
the current packet contains the value n; the assignment x← n assigns the value
n to the field x in the current packet; the action dup duplicates the packet in
the packet history, which keeps track of the path the packet takes through the
network. In NetKAT, we write ; instead of ·, skip instead of 1, and drop instead
of 0, as these names capture their intuitive use as programming constructs. We
often use juxtaposition to indicate sequential composition in examples. As an
example, the NetKAT expression

sw = 6 ; pt = 8 ; dst ← 10.0.1.5 ; pt ← 5

encodes the command: “For all packets located at port 8 of switch 6, set the
destination address to 10.0.1.5 and forward it out on port 5.”

4.3 ProbNetKAT Syntax

ProbNetKAT extends NetKAT with several new operations, as shown in the
grammar in Figure 2:

– A random choice operation p ⊕r q, where p and q are expressions and r is a
real number in the interval [0, 1]. The expression p ⊕r q intuitively behaves
according to p with probability r and q with probability 1−r. We frequently
omit the subscript r, in which case r is understood to implicitly be 1/2.

– A parallel composition operation p & q, where p and q are expressions.
The expression p & q intuitively says to perform both p and q, making
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[[x← n]](π :σ) = {π[n/x] :σ}

[[x = n]](π :σ) =

{
{π :σ}, π(x) = n

∅, π(x) 6= n

[[dup]](π :σ) = {π :π :σ}
[[skip]](σ) = {σ}

[[drop]](σ) = ∅

[[p+ q]](σ) = [[p]](σ) ∪ [[q]](σ)

[[p ; q]](σ) =
⋃
τ∈[[p]](σ)[[q]](τ)

[[p∗]](σ) =
⋃
n[[pn]](σ)

[[a]](σ) =

{
{σ}, if [[a]](σ) = ∅
∅, if [[a]](σ) = {σ}

Fig. 3. Semantics of NetKAT: on the left, semantics of the primitive actions and tests;
on the right, semantics of KAT operations.

any probabilistic choices in p and q independently, and combine the results.
The operation & serves the same purpose as + in NetKAT and replaces it
syntactically. We use the notation & to distinguish it from +, which is used
in the semantics to add measures and measurable functions as in [25, 26].

– Guards g which generalize NetKAT’s tests by allowing them to operate on
the entire packet history rather than simply the head packet. Formally a
guard g is just an element of 2H . The guard skip is defined as the set of all
packet histories and drop is the empty set. An atomic test x = n is defined
as the set of all histories σ where the x field of the head packet of σ is n. As
we saw in §2, guards are often useful for reasoning probabilistically about
properties such as congestion.

Although ProbNetKAT is based on KAT, it is important to keep in mind that
because the semantics is probabilistic, many familiar KAT equations no longer
hold. For example, idempotence of parallel composition does not hold in general.
We will however prove that ProbNetKAT conservatively extends NetKAT, so it
follows that the NetKAT axioms hold on the deterministic fragment.

5 Semantics

The standard semantics of (nonprobabilistic) NetKAT interprets expressions as
packet-processing functions. As defined in Figure 2, a packet π is a record whose
fields assign constant values n to fields x and a packet history is a nonempty
sequence of packets π1 :π2 : · · · :πk, listed in order of youngest to oldest. Recall
that operationally, only the head packet π1 exists in the network, but we keep
track of the history to enable precise specification of forwarding along specific
paths.

5.1 NetKAT Semantics

Formally, a (nonprobabilistic) NetKAT term p denotes a function

[[p]] : H → 2H ,

where H is the set of all packet histories. Intuitively, the function [[p]] takes an
input packet history σ and produces a set of output packet histories [[p]](σ).
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The semantics of NetKAT is shown in Figure 3. Intuitively, a test x = n
drops the packet if the test is not satisfied and passes it through unaltered if
it is satisfied—i.e., tests behave like filters. The dup construct duplicates the
head packet π, yielding a fresh copy that can be modified by other constructs.
Hence, the dup construct can be used to encode paths through the network, with
each occurrence of dup marking an intermediate hop. Note that + behaves like
a disjunction operation when applied to tests and like a union operation when
applied to actions. Similarly, ; behaves like a conjunction operation when applied
to tests and like a sequential composition when applied to actions. Negation is
only ever applied to tests, as is enforced by the syntax of the language.

5.2 Sets of Packet Histories as a Measurable Space

To give a denotational semantics to ProbNetKAT, we must first identify a suit-
able space of mathematical objects. Because we want to reason about probability
distributions over sets of network paths, we construct a measurable space (as de-
fined in §3) from sets of packet histories, and then define the semantics using
Markov kernels on this space. The powerset 2H of packet histories H forms a
topological space with topology generated by basic clopen sets,

Bτ = {a ∈ 2H | τ ∈ a}, τ ∈ H.
This space is homeomorphic to the Cantor space, the topological product of

countably many copies of the discrete two-element space. Let B ⊆ 22
H

be the
Borel sets of this topology. This is the smallest σ-algebra containing the sets
Bτ . The measurable space (2H ,B) with outcomes 2H and events B provides a
foundation for interpreting ProbNetKAT programs as Markov kernels 2H → 2H .

5.3 The Operation &

Next, we define an operation on measures that will be needed to define the
semantics of ProbNetKAT’s parallel composition operator. Parallel composi-
tion differs in some important ways from NetKAT’s union operator—intuitively,
union merely combines the sets of packet histories generated by its arguments,
whereas parallel composition must somehow combine measures on sets of packet
histories, which is a more intricate operation. For example, while union is idem-
potent, parallel composition will not be in general.

Operationally, the & operation on measures can be understood as follows:
given measures µ and ν, to compute the measure µ & ν, we sample µ and ν
independently to get two subsets of H, then take their union. The probability
of an event A ∈ B is the probability that this union is in A.

Formally, given µ, ν ∈ M, let µ× ν be the product measure on the product
space 2H × 2H . The union operation

⋃
: 2H × 2H → 2H is continuous and

therefore measurable, so we can define

(µ & ν)(A) , (µ× ν)({(a, b) | a ∪ b ∈ A}). (5.1)

11



Intuitively, this is the probability that the union a∪b of two independent samples
taken with respect to µ and ν lies in A. The & operation enjoys a number of
useful properties, as captured by the following lemma:

Lemma 1.

(i) & is associative and commutative.

(ii) & is linear in both arguments.

(iii) (δa & µ)(A) = µ({b | a ∪ b ∈ A}).

(iv) δa & δb = δa∪b.

(v) δ∅ is a two-sided identity for &.

(vi) µ & µ = µ iff µ = δa for some a ∈ 2H .

There is also an infinitary version of & that works on finite or countable multisets
of measures, but we will not need it in our development.

5.4 ProbNetKAT Semantics

Now we are ready to define the semantics of ProbNetKAT itself. Every Prob-
NetKAT term p will denote a Markov kernel

[[p]] : 2H × B → R
which can be curried variously as

[[p]] : 2H → B → R [[p]] : B → 2H → R.

Intuitively, the term p, given an input a ∈ 2H , produces an output according to
the distribution [[p]](a). We can think of running the program p with input a as a
probabilistic experiment, and the value [[p]](a,A) ∈ R is the probability that the
outcome of the experiment lies in A ∈ B. The measure [[p]](a) is not necessarily
discrete (§6.3): its total weight is always 1, although the probability of any given
singleton may be 0.

The semantics of the atomic operations are defined as follows for a ∈ 2H :

[[x← n]](a) = δ{π[n/x] :σ |π :σ∈a}

[[x = n]](a) = δ{π :σ |π :σ∈a, π(x)=n}

[[dup]](a) = δ{π :π :σ |π :σ∈a}

[[skip]](a) = δa

[[drop]](a) = δ∅

Note that if no elements of a satisfy the test x = n, the result is δ∅, which is
the Dirac measure on the emptyset, not the constant 0 measure.

These are all deterministic terms, and as such, they correspond to measurable
functions f : 2H → 2H . In each of these cases, the function f is completely
determined by its action on singletons, and indeed by its action on the head
packet of the unique element of each of those singletons.

12



The semantics of the remaining ProbNetKAT terms, except for Kleene star,
is defined as follows:

[[p & q]](a) = [[p]](a) & [[q]](a)

[[p ; q]](a) = [[q]]([[p]](a))

[[p ⊕r q]](a) = r[[p]](a) + (1− r)[[q]](a)

Note that the semantics of composition requires us to extend [[q]] to allow mea-
sures as inputs. This is done by integration as described in §3:

[[q]](µ) , λA.
∫
a∈2H

[[q]](a,A) · µ(da), for µ a measure on 2H .

It is not surprising that this extension is needed: in NetKAT, the semantics
is similarly extended to sets of histories to define the semantics of sequential
composition. Both phenomena are consequences of sequential composition taking
place in the Kleisli category of the powerset and Giry monads respectively.

5.5 Semantics of Iteration

To complete the semantics, we must define the semantics of the Kleene star
operator. This turns out to be quite challenging, because the usual definition of
star as a sum of powers does not work with ProbNetKAT. Instead, we define
an infinite stochastic process and show that it satisfies the essential fixpoint
equation that Kleene star is expected to obey (Theorem 1).

Consider the following infinite stochastic process. Starting with c0 ∈ 2H ,
create a sequence c0, c1, c2, . . . inductively. After n steps, say we have constructed
c0, . . . , cn. Let cn+1 be the outcome obtained by sampling 2H according to the
distribution [[p]](cn). Continue this process forever to get an infinite sequence
c0, c1, c2, . . . ∈ (2H)ω. Take the union of the resulting sequence

⋃
n cn and ask

whether it is in A. The probability of this event is taken to be [[p∗]](c0, A).
This intuitive operational definition can be justified denotationally. However,
the formal development is quite technical and depends on an application of the
Kolmogorov extension theorem—see the full version of this paper [13].

The next theorem shows that the iteration operator satisfies a natural fix-
point equation. In fact, this property was the original motivation behind the
operational definition we just gave. It can be used to describe the iterated pro-
cessing performed by a network (§8), and to define the semantics of loops (§5.6).

Theorem 1. [[p∗]] = [[skip & pp∗]].

Proof. To determine the probability [[p∗]](c0, A), we sample [[p]](c0) to get an
outcome c1, then run the protocol [[p∗]] on c1 to obtain a set c, then ask whether
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c0 ∪ c ∈ A. Thus

[[p∗]](c0, A) =

∫
c1

[[p]](c0, dc1) · [[p∗]](c1, {c | c0 ∪ c ∈ A})

= [[p∗]]([[p]](c0))({c | c0 ∪ c ∈ A})
= (δc0 & [[p∗]]([[p]](c0)))(A) by Lemma 1(iii)

= ([[skip]](c0) & [[pp∗]](c0))(A)

= [[skip & pp∗]](c0, A). �

Note that unlike KAT and NetKAT, [[p∗]] is not the same as the infinite sum of
powers [[&n p

n]]. The latter fails to capture the sequential nature of iteration in
the presence of probabilistic choice.

5.6 Guards

ProbNetKAT’s guards generalize tests, which are predicates defined by their
behavior on the head packet in a history, to predicates over the entire history.
A guard is an element g ∈ 2H used as a deterministic program with semantics

[[g]](a) , δa∩g.

A test x = n is a special case in which g = {π :τ | π(x) = n}. Note that unlike
other ProbNetKAT atomic programs, guards are not necessarily determined by
their action on the head packet. By Lemma 1, guards extend to measures:

[[g]](µ) = λA.µ({a | a ∩ g ∈ A}).
With this construct, we can define encodings of conditionals and while loops:

if b then p else q = bp & bq while b do p = (bp)∗b.

Importantly, unlike treatments involving subprobability measures found in pre-
vious work [26, 40], the output here is always a probability measure, even if the
program does not halt. For example, the output of the program while true do
skip is the Dirac measure δ∅.

6 Properties

Having defined the semantics of ProbNetKAT in terms of Markov kernels, we
now develop some essential properties that provide further evidence in support
of our semantics.

– We prove that ProbNetKAT is a conservative extension of NetKAT—i.e.,
every deterministic ProbNetKAT program behaves like the corresponding
NetKAT program.

– We present some additional properties enjoyed by ProbNetKAT programs.
– We show that ProbNetKAT programs can generate continuous measures

from discrete inputs, which shows that our use of Markov kernels is truly
necessary and that no semantics based on discrete measures would suffice.

– Finally, we present a tempting alternative “uncorrelated” semantics and
show that it is inadequate for defining the semantics of ProbNetKAT.

14



6.1 Conservativity of the Extension

Although ProbNetKAT extends NetKAT with new probabilistic operators, the
addition of these operators does not affect the behavior of purely deterministic
programs. We will prove that this property is indeed true of our semantics—i.e.,
ProbNetKAT is a conservative extension of NetKAT.

First, we show that programs that do not use choice are deterministic:

Lemma 2. All syntactically deterministic ProbNetKAT programs p (those with-
out an occurrence of ⊕r) are (semantically) deterministic. That is, for any
a ∈ 2H , the distribution [[p]](a) is a point mass.

Next we show that the semantics agree on deterministic programs. Let [[·]]N
and [[·]]P denote the semantic maps for NetKAT and ProbNetKAT respectively.

Theorem 2. For deterministic programs, ProbNetKAT semantics and NetKAT
semantics agree in the following sense. For a ∈ 2H , define [[p]]N(a) =

⋃
τ∈a[[p]]N(τ).

Then for any a, b ∈ 2H we have [[p]]N(a) = b if and only if [[p]]P(a) = δb.

Using the fact that the NetKAT axioms are sound and complete [1, Theo-
rems 1 and 2], we immediately obtain the following corollary:

Corollary 1. The NetKAT axioms are sound and complete for deterministic
ProbNetKAT programs.

Besides providing further evidence that our probabilistic semantics captures the
intended behavior, these theorems also have a pragmatic benefit: they allow us
to use NetKAT to reason about deterministic terms in ProbNetKAT programs.

6.2 Further Properties

Next, we identify several natural equations that are satisfied by ProbNetKAT
programs. The first two equations show that drop is a left and right unit for the
parallel composition operator &:

[[p & drop]] = [[p]] = [[drop & p]]

This equation makes intuitive sense as deterministically dropping all inputs
should have no affect when composed in parallel with any other program. The
next equation states that ⊕r is idempotent:

[[p⊕r p]] = [[p]]

Again, this equation makes sense intuitively as randomly choosing between p
and itself is the same as simply executing p. The next few equations show that
parallel composition is associative and commutative:

[[(p & q) & s]] = [[p & (q & s)]]

[[p & q]] = [[q & p]]

The next equation shows that the arguments to random choice can be exchanged,
provided the bias is complemented:

[[p⊕r q]] = [[q ⊕1−r p]]
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The final equation describes how to reassociate expressions involving random
choice with explicit biases:

[[
(
p⊕ a

a+b
q
)
⊕ a+b

a+b+c
s]] = [[p ⊕ a

a+b+c

(
q ⊕ b

b+c
s
)

]]

Next we develop some additional properties involving deterministic programs.

Lemma 3. Let p be deterministic with [[p]](a) = δf(a). The function f : 2H →
2H is measurable, and for any measure µ, we have [[p]](µ) = µ ◦ f−1.

As we have seen in Lemma 1(vi), & is not idempotent except in the deter-
ministic case. Neither does sequential composition distribute over & in general.
However, if the term being distributed is deterministic, then the property holds:

Lemma 4. If p is deterministic, then

[[p(q & r)]] = [[pq & pr]] [[(q & r)p]] = [[qp & rp]].

Neither equation holds unconditionally.

Finally, consider the program skip ⊕r dup. This program does nothing with
probability r and duplicates the head packet with probability 1 − r, where r ∈
[0, 1). We can show that independent of r, the value of the iterated program on
any single packet π is the point mass

[[(skip⊕r dup)∗]](π) = δ{πn|n≥1}. (6.1)

Note that the equation in the statement of Theorem 1 does not determine
[[p∗]] uniquely. For example, it can be shown that a probability measure µ is a
solution of [[skip∗]](π) = [[skip & skip ; skip∗]](π) if and only if µ(Bπ) = 1.
That is, π appears in the output set of [[skip∗]](π) with probability 1.

6.3 A Continuous Measure

Without the Kleene star operator or dup, a ProbNetKAT program can generate
only a discrete measure. This raises the question of whether it is possible to
generate a continuous measure at all, even in the presence of ∗ and dup. This
question is important, because with only discrete measures, we would have no
need for measure theory or integrals and the semantics would be significantly
simpler. It turns out that the answer to this question is yes, it is possible to
generate a continuous measure, therefore discrete measures do not suffice.

To see why, let π0 and π1 be distinct packets and let p be the program
that changes the current packet to either π0 or π1 with equal probability. Then
consider the program, p ; (dup ; p)∗. Operationally, it first sets the input packet
to either 0 or 1 with equal probability, then repeats the following steps forever:

(i) output the current packet,

(ii) duplicate the current packet, and

(iii) set the new current packet to π0 or π1 with equal probability.
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This procedure produces outcomes a with exactly one packet history of every
length and linearly ordered by the suffix relation. Thus each possible outcome a
corresponds to a complete path in an infinite binary tree. Moreover, the proba-
bility that a history τ is generated is 2−|τ |, thus any particular set is generated
with probability 0, because the probability that a set is generated cannot be
greater than the probability that any one of its elements is generated.

Theorem 3. Let µ be the measure [[p ; (dup ; p)∗]](0).

(i) For τ ∈ H, the probability that τ is a member of the output set is 2−|τ |.
(ii) Two packet histories of the same length are generated with probability 0.
(iii) µ({a}) = 0 for all a ∈ 2H , thus µ is a continuous measure.

For the proof, see the full version of this paper [13].
In fact, the measure µ is the uniform measure on the subspace of 2H consisting

of all sets that contain exactly one history of each length and are linearly ordered
by the suffix relation. This subspace is homeomorphic to the Cantor space.

6.4 Uncorrelated Semantics

It is tempting to consider a weaker uncorrelated semantics

[p] : 2H → [0, 1]H

in which [p](a)(τ) gives the probability that τ is contained in the output set on
input a. Indeed, this semantics can be obtained from the standard ProbNetKAT
semantics as follows:

[p](a)(τ) , [[p]](a)(Bτ ).

However, although it is simpler in that it does not require continuous measures,
one loses correlation between packets. Worse, it is not compositional, as the
following example shows. Let π0, π1 be two packets and consider the programs
π0!⊕ π1! and (π0! & π1!)⊕ drop, where π! is the program that sets the current
packet to π. Both programs have the same uncorrelated meaning:

[π0!⊕ π1!](a)(π) = [(π0! & π1!)⊕ drop](a)(π) = 1
2

for π ∈ {π0, π1} and a 6= ∅ and 0 otherwise. But their standard meanings differ:

[[π0!⊕ π1!]](a) = 1
2δ{π0} + 1

2δ{π1}

[[(π0! & π1!)⊕ drop]](a) = 1
2δ{π0,π1} + 1

2δ∅,

Moreover, composing on the right with π0! yields δ{π0} and 1
2δ{π0} + 1

2δ∅, re-
spectively, which have different uncorrelated meanings as well. Thus we have no
choice but to reject the uncorrelated semantics as a viable alternative.

7 Approximation

Approximation in the context of bisimulation of Markov processes has been
studied by many authors [8–10, 30, 40, 41]. In this section we identify a suitable
notion of approximation for the iterates of a loop and show that every program
is arbitrarily closely approximated by a loop-free program.
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7.1 Weak Convergence of p(m) to p∗

In §5.5, we defined [[p∗]] operationally in terms of an infinite process. To get
[[p∗]](c0, A), we compute an infinite sequence c0, c1, . . . where in the nth step we
sample cn to get cn+1. Then we take the union of the cn and ask whether it is in
A. We proved that the resulting kernel exists and satisfies [[p∗]] = [[skip & p ; p∗]].

Now let c0, c1, . . . , cm−1 be the outcome of the first m steps of this process,
and let [[p(m)]](c0, A) be the probability that

⋃m−1
n=0 cn ∈ A. This gives an ap-

proximation to [[p∗]](c0, A). Formally, define

p(0) = skip p(n+1) = skip & p ; p(n).

Note that p(n) is not pn, nor is it p0 & · · · & pn.
The appropriate notion of convergence is weak convergence. A sequence of

measures µn converge weakly to a measure µ if for all bounded continuous real-
valued functions f , the expected values of f with respect to the measures µn
converge to the expected value of f with respect to µ.

Theorem 4. The measures [[p(m)]](c) converge weakly to [[p∗]](c).

7.2 Approximation by ∗-Free Programs

We have observed that ∗-free programs only generate finite discrete distributions
on finite inputs. In this section we show that every program is weakly approx-
imated to arbitrary precision by ∗-free programs. The approximating programs
are obtained by replacing each p∗ with p(m) for sufficiently large m.

This explains why we see only finite discrete distributions in most appli-
cations. In most cases, we start with finite sets and iterate only finitely many
times. For instance, this will happen whenever there is a bound on the num-
ber of occurrences of dup in any string generated by the program as a regular
expression. So although the formal semantics requires continuous distributions
and integration, in many real-world scenarios we can get away with only finite
discrete distributions.

Theorem 5. For every ProbNetKAT program p, there is a sequence of ∗-free
programs that converge weakly to p.

The proof uses Theorem 4 and the fact that all program constructors are con-
tinuous with respect to weak convergence.

8 Applications

In this section, we demonstrate the expressiveness of ProbNetKAT’s probabilistic
operators and power of its semantics by presenting three case studies drawn from
scenarios that commonly arise in real-world networks. Specifically, we show how
ProbNetKAT can be used to model and analyze expected delivery in the presence
of failures, expected congestion with randomized routing schemes, and expected
convergence with gossip protocols. To the best of our knowledge, ProbNetKAT
is the first high-level SDN language that adequately handles these and other
examples involving probabilistic behavior.
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Fig. 4. Topologies used in case studies: (a) fault tolerance, (b) load balancing, and (c)
gossip protocols.

8.1 Fault Tolerance

Failures are a fact of life in real-world networks. Devices and links fail due to
factors ranging from software and hardware bugs to interference from the envi-
ronment such as loss of power or cables being severed. A recent empirical study
of data center networks by Gill et al. [14] found that failures occur frequently
and can cause issues ranging from degraded performance to service disruptions.
Hence, it it important for network operators to be able to understand the impact
of failures—e.g., they may elect to use routing schemes that divide traffic over
many diverse paths in order to minimize the impact of any given failure.

We can encode failures in ProbNetKAT using random choice and drop: the
idiom p ⊕d drop encodes a program that succeeds and executes p with proba-
bility d, or fails and executes drop with probability 1− d. Note that since drop

produces no packets, it accurately models a device or link that has crashed. We
can then compute the probability that traffic will be delivered under an arbitrary
forwarding scheme.

As a concrete example, consider the topology depicted in Figure 4 (a), with
four switches connected in a diamond. Suppose that we wish to forward traffic
from S1 to S4 and we know that the link between S1 and S2 fails with 10%
probability (for simplicity, in this example, we will assume that the switches and
all other links are reliable). What is the probability that a packet that originates
at S1 will be successfully delivered to S4, as desired?

Obviously the answer to this question depends on the configuration of the
network—using different forwarding paths will lead to different outcomes! To
investigate this question, we will encode the overall behavior of the network
using several terms: a term p that encodes the local forwarding behavior of the
switches; a term t that encodes the forwarding behavior of the network topology;
and a term e that encodes the network egresses.
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The standard way to model a link ` is as the sequential composition of terms
that (i) test the location (i.e., switch and port) at one end of the link; (ii)
duplicate the head packet, and (iii) update the location to the other end of the
link. However, because we are only concerned with end-to-end packet delivery in
this example, we can safely elide the dup term. Hence, using the idiom discussed
above, we would model a link ` that fails with probability 1 − d as ` ⊕d drop.
Hence, since there is a 10% probability of failure of the link S1 → S2, we encode
the topology t as follows:

t ,(sw = S1; pt = 2; ((sw ← S2; pt ← 1)⊕.9 drop))

& (sw = S1; pt = 3; sw ← S3; pt ← 1)

& (sw = S2; pt = 4; sw ← S4; pt ← 2)

& (sw = S3; pt = 4; sw ← S4; pt ← 3).

Here, we adopt the convention that each port is named according to the identifier
of the switch it connects to—e.g., port 1 on switch S2 connects to switch S1.

Next, we define the local forwarding policy p that encodes the behavior on
switches. Suppose that we forward traffic from S1 to S4 via S2. Then p would
be defined as follows: p , (sw = S1; pt ← 2) & (sw = S2; pt ← 4) Finally, the
egress predicate e is simply: e , sw = S4

The complete network program is then (p; t)∗; e. That is, the network alter-
nates between forwarding on switches and topology, iterating these steps until
the packet is either dropped or exits the network.

Using our semantics for ProbNetKAT, we can evaluate this program on a
packet starting at S1: unsurprisingly, we obtain a distribution in which there is
a 90% chance that the packet is delivered to S4 and a 10% chance it is dropped.

Going a step further, we can model a more fault-tolerant forwarding scheme
that divides traffic across multiple paths to reduce the impact of any single
failure. The following program p′ divides traffic evenly between S2 and S3:

p′ ,(sw = S1; (pt ← 2⊕ pt ← 3)) & (sw = S2; pt ← 4) & (sw = S3; pt ← 4)

As expected, evaluating this policy on a packet starting at S1 gives us a 95%
chance that the packet is delivered to S4 and only a 5% chance that it is dropped.
The positive effect with respect to failures has also been observed in previous
work on randomized routing [55].

8.2 Load Balancing

In many networks, operators must balance demands for traffic while optimizing
for various criteria such as minimizing the maximum amount of congestion on
any given link. An attractive approach to these traffic engineering problems
is to use routing schemes based on randomization: the operator computes a
collection of paths that utilize the full capacity of the network and then maps
incoming traffic flows onto those paths randomly. By spreading traffic over a
diverse set of paths, such schemes ensure that (in expectation) the traffic will
closely approximate the optimal solution, even though they only require a static
set of paths in the core of the network.
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Valiant load balancing (VLB) [51] is a classic randomized routing scheme that
provides low expected congestion for any feasible demands in a full mesh. VLB
forwards packets using a simple two-phase strategy: in the first phase, the ingress
switch forwards the packet to a randomly selected neighbor, without considering
the the packet’s ultimate destination; in the second phase, the neighbor forwards
the packet to the egress switch that is connected to the destination.

As an example, consider the four-node mesh topology shown in Figure 4(b).
When a packet destined for a host connected to S3 arrives at S1, the switch will
first pick one of S2, S3, or S4 as the intermediate hop. Suppose it picks S4. When
S4 receives the packet, it forwards the packet directly to S3, which will in turn
forward it along to the destination host.

We assume that each switch has ports named 1, 2, 3, 4, that port i on switch
i connects to the outside world, and that all other ports j connect to switch
j. We can write a ProbNetKAT program for this load balancing scheme by
splitting it into two parts, one for each phase of routing. VLB often requires
that traffic be tagged in each phase so that switches know when to forward
it randomly or deterministically, but in this example, we can use topological
information to distinguish the phases. Packets coming in from the outside (port i
on switch i) are forwarded randomly, and packets on internal ports are forwarded
deterministically.

We model the initial (random) phase with a term p1:

p1 ,
4

&
k=1

(sw = k; pt = k;
⊕
j 6=k

pt ← j).

Here we tacitly use an n-ary version of ⊕ that chooses each each summand with
equal probability.

Similarly, we can model the second (deterministic) phase with a term p2:

p2 ,

(
4

&
k=1

(sw = k; pt 6= k)

)
;

(
4

&
k=1

(dst = k; pt ← k)

)
Note that the guards sw = k; pt 6= k restrict to second-phase packets. The overall
switch term p is simply p1 & p2.

The topology term t is encoded with dup terms to record the paths, as de-
scribed in §8.1.

The power of VLB is its ability to route nr/2 load in a network with n
switches and internal links with capacity r. In our example, n = 4 and r is 1
packet, so we can route 2 packets of random traffic with no expected congestion.
We can model this demand with a term d that generates two packets with random
origins and random destinations (writing πi,j,k! for a sequence of assignments
setting the switch to i, the port to j, and the identifier to k):

d , (

4⊕
k=1

(πk,k,0!) &

4⊕
k=1

(πk,k,1!)); (

4⊕
k=1

dst← k)

The full network program to analyze is then d; (p; t)∗; p. We can use similar
techniques as in the congestion example from §2 to reason about congestion.
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We first define a random variable to extract the information we care about. Let
Xmax be a random variable equal to the maximum number of packets traversing
a single internal link. Then, using the semantics, we calculate that the expected
value of Xmax is 1 packet—i.e., there is no congestion.

8.3 Gossip Protocols

Gossip (or epidemic) protocols are randomized algorithms that are often used
to efficiently disseminate information in large-scale distributed systems [7]. An
attractive feature of gossip protocols and other epidemic algorithms is that they
are able to rapidly converge to a consistent global state while only requiring
bounded worst-case communication. Operationally, a gossip protocol proceeds
in loosely synchronized rounds: in each round, every node communicates with
a randomly selected peer and the nodes update their state using information
shared during the exchange. For example, in a basic anti-entropy protocol, a
“rumor” is injected into the system at a single node and spreads from node to
node through pair-wise communication. In practice, such protocols can rapidly
disseminate information in well-connected graphs with high probability.

We can use ProbNetKAT to model the convergence of gossip protocols. We
introduce a single packet to model the “rumor” being gossiped by the system:
when a node receives the packet, it randomly selects one of its neighbors to infect
(by sending it the packet), and also sends a copy back to itself to maintain the
infection. In gossip terminology, this would be characterized as a “push” protocol
since information propagates from the node that initiates the communication to
the recipient rather than the other way around.

Rounds E[Xinfected]

0 1.00
1 2.00
2 3.33
3 4.86
4 6.25
5 7.17
6 7.66

Fig. 5. Gossip results.

We can make sure the nodes do not send out more
than one infection packet per round by using a single
incoming port (port 0) on each switch and exploiting
ProbNetKAT’s set semantics: because infection pack-
ets are identical modulo location, multiple infection
packets arriving at the same port are identified.

To simplify the ProbNetKAT program, we assume
that the network topology is a hypercube, as shown in
Figure 4 (c). The program for gossiping on a hyper-
cube is highly uniform—assuming that switches are
numbered in binary, we can randomly select a neigh-
bor by flipping a single bit.

The fragment of the switch program p for switch 000 is as follows:

sw = 000; ((pt ← 001⊕ pt ← 010⊕ pt ← 100) & pt ← 0).

The overall forwarding policy can be obtained by combining analogous fragments
for the other switches using parallel composition.

Encoding the topology of the hypercube as t, we can then analyze (p; t)∗ and
calculate the expected number of infected nodes after a given number of rounds
Xinfected using the ProbNetKAT semantics. The results for the first few rounds
are shown in Fig. 5.
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9 Related Work

Work related to ProbNetKAT can be divided into two categories: (i) models
and semantics for probabilistic programs and (i) domain-specific frameworks for
specifying and reasoning about network programs. This section summarizes the
most relevant pieces of prior work in each of these categories.

9.1 Probabilistic Programming

Computational models and logics for probabilistic programming have been ex-
tensively studied for many years. Denotational and operational semantics for
probabilistic while programs were first studied by Kozen [25]. Early logical sys-
tems for reasoning about probabilistic programs were proposed in a sequence of
separate papers by Saheb-Djahromi, Ramshaw, and Kozen [46, 43, 26]. There are
also numerous recent efforts [38, 28, 30, 16, 17]. Our semantics for ProbNetKAT
builds on the foundation developed in these papers and extends it to the new
domain of network programming.

Probabilistic programming in the context of artificial intelligence has also
been extensively studied in recent years [45, 2, 15]. However, the goals of this
line of work are different than ours in that it focuses on Bayesian inference.

Probabilistic automata in several forms have been a popular model going
back to the early work of Paz [42], as well as many other recent efforts [47, 48,
33]. Probabilistic automata are a suitable operational model for probabilistic
programs and play a crucial role in the development of decision procedures for
bisimulation equivalence, logics to reason about behavior, in the synthesis of
probabilistic programs, and in model checking procedures [31, 8, 4, 21, 29]. In the
present paper, we do not touch upon any of these issues so the connections to
probabilistic automata theory are thin. However, we expect they will play an
important role in our future work—see below.

Denotational models combining probability and nondeterminism have been
proposed in papers by several authors [20, 34, 52, 50], and general models for la-
beled Markov processes, primarily based on Markov kernels, have been studied
extensively [40, 41, 10]. Because ProbNetKAT does not have nondeterminism, we
have not encountered the extra challenges arising in the combination of nonde-
terministic and probabilistic behavior.

All the above mentioned systems provide semantics and logical formalisms
for specifying and reasoning about state-transition systems involving probabilis-
tic choice. A crucial difference between our work and these efforts is in that
our model is not really a state-transition model in the usual sense, but rather a
packet-filtering model that filters, modifies, and forwards packets. Expressions
denote functions that consume sets of packet histories as input and produce prob-
ability distributions of sets of packet histories as output. As demonstrated by
our example applications, this view is appropriate for modeling the functionality
of packet-switching networks. It has its own peculiarities and is different enough
from standard state-based computation that previous semantic models in the
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literature do not immediately apply. Nevertheless, we have drawn much inspi-
ration from the literature and exploited many similarities to provide a powerful
formalism for modeling probabilistic behavior in packet-switching networks.

9.2 Network Programming

Recent years have seen an incredible growth of languages and systems for pro-
gramming and reasoning about networks. Network programming languages such
as Frenetic [11], Pyretic [37], Maple [53], NetKAT [1], and FlowLog [39] have
introduced high-level abstractions and semantics that enable programmers to
reason precisely about the behavior of networks. However, as mentioned previ-
ously, all of these language are based on deterministic packet-processing func-
tions, and do not handle probabilistic traffic models or forwarding policies. Of
all these frameworks, NetKAT is the most closely related as ProbNetKAT builds
directly on its features.

In addition to programming languages, a number of network verification tools
have been developed, including Header Space Analysis [22], VeriFlow [23], the
NetKAT verifier [12], and Libra [54]. Similar to the network programming lan-
guages described above, these tools only model deterministic networks and verify
deterministic properties.

Network calculus is a general framework for analyzing network behavior using
tools from queuing theory [6]. It models the low-level behavior of network devices
in significant detail, including features such as traffic arrival rates, switch prop-
agation delays, and the behaviors of components like buffers and queues. This
enables reasoning about quantitative properties such as latency, bandwidth, con-
gestion, etc. Past work on network calculus can be divided into two branches:
deterministic [32] and stochastic [19]. Like ProbNetKAT, the stochastic branch
of network calculus provides tools for reasoning about the probabilistic behavior,
especially in the presence of statistical multiplexing. However, network calculus
is generally known to be difficult to use, since it can require the use of exter-
nal facts from queuing theory to establish many desired results. In contrast,
ProbNetKAT is a self-contained, language-based framework that offers general
programming constructs and a complete denotational semantics.

10 Conclusion

Previous work [1, 12] has described NetKAT, a language and logic for speci-
fying and reasoning about the behavior of packet-switching networks. In this
paper we have introduced ProbNetKAT, a conservative extension of NetKAT
with constructs for reasoning about the probabilistic behavior of such networks.
To our knowledge, this is the first language-based framework for specifying and
verifying probabilistic network behavior. We have developed a formal seman-
tics for ProbNetKAT based on Markov kernels and shown that the extension is
conservative over NetKAT. We have also determined the appropriate notion of
approximation and have shown that every ProbNetKAT program is arbitrarily
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closely approximated by loop-free programs. Finally, we have presented several
case studies that illustrate the use of ProbNetKAT on real-world examples.

Our examples have used the semantic definitions directly in the calculation
of distributions, fault tolerance, load balancing, and a probabilistic gossip proto-
col. Although we have exploited several general properties of our system in these
arguments, we have made no attempt to assemble them into a formal deductive
system or decision procedure as was done previously for NetKAT [1, 12]. These
questions remain topics for future investigation. We are hopeful that the coal-
gebraic perspective developed in [12] will be instrumental in obtaining a sound
and complete axiomatization and a practical decision procedure for equivalence
of ProbNetKAT expressions.

As a more practical next step, we would like to augment the existing NetKAT
compiler [49] with tools for handling the probabilistic constructs of ProbNetKAT
along with a formal proof of correctness. Features such as OpenFlow [35] “group
tables” support for simple forms of randomization and emerging platforms such
as P4 [3] offer additional flexibility. Hence, there already exist machine plat-
forms that could serve as a compilation target for (restricted fragments of)
ProbNetKAT.

Another interesting topic is whether we can learn ProbNetKAT programs
from partial traces of a system, enabling active learning of running network
policies. This is interesting for many applications. We are particularly inter-
ested in applications involving security and multiple administrative domains.
For example, learning algorithms might be useful for detecting compromised
nodes in a network. Alternatively, a network operator might use information
from traceroute to learn a model that provides partial information about the
paths from their own network to another autonomous system on the Internet.
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