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Abstract 42 

Land use effects are considered among the main stressors on freshwater biodiversity, with up 43 

to 80% of land in Europe under intensive use. Here, we address the impact of arable and 44 

urban landscapes on taxon richness, Shannon-Wiener diversity, taxon rareness and taxonomic 45 

distinctness of eleven organism groups encompassing vertebrates, invertebrates and plants, 46 

occurring in five freshwater ecosystem types across Europe: rivers, floodplains, lakes, ponds 47 

and groundwater. In addition, nine geo-climatic descriptors (e.g. latitude, longitude, 48 

precipitation) were used to disentangle land use effects from those of natural drivers of 49 

biodiversity. Using a variance partitioning scheme based on boosted regression trees and 50 

generalised linear regression modelling, we sought: i) to partition the unique, shared and 51 

unexplained variation in the metrics explained by both groups of descriptor variables, ii) to 52 

quantify the contribution of each descriptor variable to biodiversity variation in the most 53 

parsimonious regression model and iii) to identify interactions of land use and natural 54 

descriptors. The variation in biodiversity uniquely described by land use was consistently low 55 

across both ecosystem types and organism groups. In contrast, geo-climatic descriptors 56 

uniquely, and jointly with land use, explained significantly more variance in all 39 57 

biodiversity metrics tested. Regression models revealed significant interactions between geo-58 

climatic descriptors and land use for a third of the models, with interactions accounting for up 59 

to 17% of the model’s deviance. However, no consistent patterns were observed related to the 60 

type of biodiversity metric and organism group considered. Subdividing data according to the 61 

strongest geo-climatic gradient in each dataset aimed to reduce the strength of natural 62 

descriptors relative to land use. Although data sub-setting can highlight land use effects on 63 

freshwater biodiversity, sub-setting our data often failed to produce stronger land use effects. 64 

There was no increase in spatial congruence in the subsets, suggesting that the observed land 65 

use effects were not dependent upon the spatial extent of the subsets. Our results confirm 66 

significant joint effects of, and interactions between, land use and natural environmental 67 
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descriptors on freshwater biodiversity, across ecosystem types and organism groups. This has 68 

implications for biodiversity monitoring. First, the combined analysis of anthropogenic and 69 

natural descriptors is a prerequisite for the analysis of human threats to biodiversity. Second, 70 

geo-climatically, but not necessarily geographically more homogeneous datasets can help 71 

unmask the role of anthropogenic descriptors. And third, whole community-based 72 

biodiversity metrics (including taxon richness) are not ideal indicators of anthropogenic 73 

effects on biodiversity at broad scales. 74 
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1. Introduction 79 

Although freshwaters cover only 1% of the earth’s surface, almost 10% of the world’s species 80 

live in freshwater ecosystems (Loh & Wackernagel, 2004). Freshwater biodiversity is 81 

declining faster than marine and terrestrial biodiversity (Dudgeon et al., 2006), most likely 82 

because human life and many human activities rely on fresh water. This results in high 83 

population densities, intense land and water uses and modification and pollution hotspots in 84 

the vicinity of freshwater bodies. Consequently, human impacts on freshwater biodiversity are 85 

numerous and wide-ranging. Dudgeon et al. (2006) identify five major stressors of 86 

biodiversity which affect different freshwater ecosystem types to varying degrees: i) water 87 

overexploitation; ii) water pollution; iii) flow modification; iv) habitat degradation; and v) 88 

invasive species. While rivers are more affected by physical alterations (e.g. dams, 89 

impoundments, disconnection from the floodplain), lentic waters are more susceptible to 90 

nutrient enrichment (Wetzel et al., 2001; Schindler, 2006), with increasing adverse effects on 91 

lentic biota under climate change (Jeppesen et al., 2010; 2012).  92 

Numerous stressors are linked to land use, which therefore is considered a composite (or 93 

proxy) stressor. Intensive agriculture, in particular, affects both lotic and lentic biodiversity 94 

through flow modification, pollution by fine sediment and pesticide fluxes (Allan, 2004; Feld, 95 

2013), habitat degradation and eutrophication (Jeppesen et al., 2000). Urbanisation represents 96 

another intensive land use, with strong effects on freshwater biodiversity, resulting in 97 

“consistent declines in the richness of algal, invertebrate, and fish communities“ (Paul & 98 

Meyer, 2001). In Europe, a very high proportion (up to 80%) of the land is intensively used 99 

for settlements, infrastructure and production systems (including agriculture and intense 100 

forestry: http://www.eea.europa.eu/themes/landuse/intro; accessed on 11 June 2015) and 101 

aquatic biodiversity is probably impoverished accordingly. Because of this cocktail of 102 

stressors, freshwater ecosystems and their biodiversity are currently among the most 103 

http://www.eea.europa.eu/themes/landuse/intro
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threatened on the planet, prompting scientists and politicians to develop strategies to sustain 104 

and improve biodiversity functioning and ecosystem service provisioning. 105 

Anthropogenic stress intensity and thus its influence on biodiversity differs regionally, 106 

impacting large-scale biodiversity patterns, originally shaped by natural drivers. These natural 107 

drivers are considered in macro-ecological and other broad-scale studies highlighting the role 108 

of i) energy/climate (e.g. Mittelbach et al., 2007; Pearson & Boyero, 2009; Heino, 2011), ii) 109 

area/habitat heterogeneity (e.g. Vinson & Hawkins, 1998; Oberdorff et al., 2011) and iii) 110 

history (e.g. Leprieur et al., 2011; Vinson & Hawkins, 2003). The influence that energy and 111 

climate have on biodiversity are primarily driven by temperature, precipitation and evapo-112 

transpiration, all of which influence ecosystem energy supply and thus control or support 113 

biophysical processes operating within the system (Wright, 1983; Hawkins et al., 2003; Evans 114 

et al., 2005; Mittelbach et al., 2007; Field et al., 2009). However, temperature and evapo-115 

transpiration vary with altitude, and more importantly, freshwater biodiversity is also found to 116 

increase with altitude (see Vinson and Hawkins, 1998 for a review on benthic invertebrates). 117 

This suggests temperature is unlikely to be the main co-variate of the energy/climate driver in 118 

freshwater ecosystems, and in more general terms, the role of energy/climate differs between 119 

terrestrial and aquatic systems (Field et al., 2009). 120 

Area/habitat heterogeneity refers to the size and heterogeneity (habitat diversity) of an area 121 

under consideration, with the assumption that larger and more heterogeneous areas exhibit 122 

higher biodiversity (sensu MacArthur & Wilson, 1963; Guégan et al., 1998; Davies et al., 123 

2007). Lastly, historical events (i.e. previous and often long-term events dating back for 124 

centuries or even millennia) may continue to shape contemporary biodiversity patterns 125 

(Mittelbach et al., 2007; Leprieur et al., 2011; Tisseul et al., 2012). The expansion of 126 

Pleistocene glaciers and their subsequent contraction followed by recolonisation, for example, 127 

are considered a key factor in explaining much of the variation in the distribution of 128 
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contemporary biodiversity across Europe (Reyjol et al., 2007; Araujo et al., 2008; Baselga et 129 

al., 2012), with formerly glaciated regions (e.g. Scandinavia) generally exhibiting less 130 

diversity than non-glaciated regions (e.g. Mediterranean peninsula).  Over more recent 131 

timescales land use practices dating back decades may continue to shape contemporary 132 

biodiversity even if land use has subsequently changed or been abandoned (Harding et al., 133 

1998). 134 

Both the natural drivers of freshwater biodiversity and multiple stressors resulting from 135 

human land and water uses have been addressed in many studies (see Stendera et al., 2012 for 136 

a recent summary of 368 papers), although few have considered these in an integrated way. 137 

Studies that investigate the combined effects of natural and anthropogenic descriptors are 138 

rare, but are necessary to address metacommunity aspects in ecosystem assessment studies 139 

(Heino 2013). Furthermore, Stendera et al. (2012) found that the majority of studies on 140 

natural drivers were rather broad-scale (continental and global), whereas studies on 141 

anthropogenic stressors tend to focus on much finer (regional and local) spatial scales. The 142 

spatial resolution (grain size) also often differs, with the catchment ‘grain’ prominent in 143 

broad-scale studies, but single sites within one or several catchments foremost in fine-scale 144 

studies. The mechanisms driving biodiversity, however, are likely to vary with spatial grain 145 

(local ecosystem vs. catchment) and extent (Field et al. 2009, Heino 2011). Few studies 146 

addressed the impacts of both natural drivers and anthropogenic stressors on freshwater 147 

biodiversity (Irz et al., 2007; Argillier et al., 2013; Brucet et al., 2013) and there remains a 148 

limited understanding of the synergies between both groups of descriptors.  149 

In this study, we developed a stepwise analysis to determine the independent, overlapping and 150 

interacting effects of land use and geo-climatic variables (hereafter referred to as descriptors) 151 

on the European biodiversity patterns of eleven organism groups in five lotic and lentic 152 

ecosystem types (rivers, lakes, floodplains, ponds and groundwater). We used a machine-153 
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learning technique to partition the variance and to quantify the independent and overlapping 154 

effects of both descriptor groups in each ecosystem. In line with previous studies at 155 

continental scale (e.g. Brucet et al., 2013), we hypothesised a strong influence of natural 156 

descriptors on biodiversity (e.g. latitude, mean annual temperature), but a much weaker role 157 

of agricultural and urban land uses. As land use, however, is not independent of, for example, 158 

altitude (i.e. slope), temperature and precipitation, we expected strong joint effects. This was 159 

analysed by variance partitioning, and further tested by means of significant interaction terms 160 

between single land use and geo-climatic descriptor variables in regression modelling. To 161 

decrease the effect of the most influential geo-climatic descriptor in the regression models, we 162 

generated subsets of the data and quantified the proportion of variance attributable to land use 163 

separately for each subset. This procedure was driven by the hypothesis that geo-climatically 164 

more homogeneous data (with shorter natural gradients) would reveal a stronger influence of 165 

land use on biodiversity. In order to account for the response of different aspects of 166 

biodiversity, we compared the results of four widely used biodiversity metrics: taxon 167 

richness, Shannon-Wiener diversity, taxon rareness and taxonomic distinctness (Clarke and 168 

Warwick 1998). The first two metrics quantify the number and equal distribution of species 169 

within a community and thus represent very basic concepts of diversity, i.e. richness and 170 

equity. The latter two metrics add the aspects of relative rareness of taxa and their 171 

phylogenetic relationships to each other within a community. We hypothesised that taxa are 172 

not equally sensitive to human impact and that in particular those taxa become rare in stressed 173 

systems that respond already to low stress levels, i.e. sensitive taxa. Sensitive and insensitive 174 

(tolerant) taxa, however, are not equally distributed among taxonomic families, orders and 175 

higher taxonomic units. Following Warwick and Clarke (1995), we thus anticipated stressed 176 

systems to remain in an early successional stage, with guilds of closely related insensitive 177 

taxa and thus with a low taxonomic distinctness compared to unstressed systems.  178 
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This is the first study to quantify and disentangle the response of different biodiversity aspects 179 

to natural and human-induced environmental descriptors, across five lotic and lentic 180 

freshwater ecosystems and eleven organism groups, and applying the same analytical 181 

approach.  182 

2. Material and Methods 183 

2.1 Anthropogenic descriptors 184 

For all but groundwater ecosystems we used CORINE land cover data (European 185 

Environmental Agency; http://www.eea.europa.eu/publications/COR0-landcover) to calculate 186 

the proportion of arable and urbanised land within a catchment or the area directly 187 

surrounding a site (Table 1). The area considered differed between ecosystem types and was 188 

selected to match the scale of biological sampling. The CORINE land cover data are based on 189 

satellite imagery (Landsat 7, 25 x 25 m pixels), cover most countries in Europe (geometric 190 

accuracy: 100 m) and encompass land cover types with a minimum area of 25 ha. We used 191 

the land cover classes 'arable land' and 'urban land' (hereafter referred to as land use), which 192 

aggregate the CORINE level 3 types '2.1.1 Non-irrigated arable land' as 'arable land' and the 193 

level 2 types '1.1 Urban fabric' and '1.2 Industrial, commercial and transport units' as 'urban 194 

land'. We focused on these two land use types, because they are known to strongly affect 195 

aquatic biodiversity via numerous individual stressors (Paul & Meyer, 2001; Allan, 2004; 196 

Feld, 2013). For groundwater systems, we used the GlobCover land cover data 197 

(http://due.esrin.esa.int/globcover/) due to its comprehensive coverage of Eastern Europe. 198 

'GlobCover Land Cover v2' is a global land cover map at a resolution of 10 arc seconds (or 199 

300 m at the equator) and corresponds well with the CORINE land cover classification. 200 

Arable and urban land uses were projected onto an ETRS-Lambert Azimuthal Equal Area 201 

grid covering Europe with a cell (grid) size of 100 x 100 km (EDIT geoplatform). The same 202 

grid was applied to generate the land use data for lakes using the CORINE land cover data. 203 

http://www.eea.europa.eu/publications/COR0-landcover
http://due.esrin.esa.int/globcover/
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Proportions of different land use types were obtained by clipping the land use maps (either 204 

CORINE or GlobCover) with a layer containing the polygonal information from the targeted 205 

areas (Table 1) within a geographic information system (ESRI ArcGIS 10, Redlands, CA). 206 

2.2 Geo-climatic descriptors  207 

We used nine natural environmental descriptor variables covering geographical and climatic 208 

aspects (hereafter summarised as geo-climatic descriptors, Supplementary Table S1). We did 209 

not separate geographical and climatic variables in our analysis as the objective was to 210 

compare the strength of natural vs. anthropogenic descriptors. Furthermore, geographical and 211 

climatic variables tend to be strongly correlated at the spatial scale of the data employed in 212 

this study (e.g. mean annual air temperature, latitude and altitude). Latitude, longitude, 213 

altitude and catchment size were derived from digital maps using ArcGIS 10. Latitude and 214 

longitude were included as proxy geographical variables representing other potential natural 215 

drivers of biodiversity, such as historical climate and glaciation (Hortal et al., 2011; Stendera 216 

et al., 2012), but were excluded from the analysis if they were collinear with any of the other 217 

environmental descriptors (compare Supplementary Table S1). Altitude was included to 218 

account for the role of topography in shaping diversity patterns (e.g. Davies et al., 2006). 219 

Lake surface area was derived from the WISER lake database (Moe et al., 2013). Mean 220 

annual air temperature and annual precipitation were abstracted from the WorldClim database 221 

version 1.4 (Hijmans et al., 2005). WorldClim summarises measured data at weather stations 222 

between 1950 and 2000 as monthly mean values, interpolated by a thin-plate smoothing 223 

spline algorithm to fit a raster grid (grid size: 30 arc seconds, approximately 1 km at the 224 

equator). Mean annual air temperature was averaged from long-term yearly means, whereas a 225 

yearly mean was averaged from monthly means throughout a year. Annual precipitation was 226 

based on the sum of long-term monthly mean precipitation values. Actual and potential 227 
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evapo-transpiration (AET, PET) were derived from the CGIAR-CSI Global-PET database 228 

(for details, see Zomer et al., 2008; http://www.cgiar-csi.org). 229 

2.3 Biodiversity data 230 

2.3.1 Rivers 231 

Site-specific river data were derived from the WISER river database (Moe et al., 2013), 232 

encompassing taxa lists of fish, macroinvertebrate and macrophyte communities and 233 

proportional catchment land use for up to 1,221 sites across Central Europe (Central/Western 234 

Mountains and Central/Western Plains ecoregions of France, Germany and Austria; Illies, 235 

1978). Macroinvertebrate data were available for all sites, fish data for 590 sites and 236 

macrophyte data for 651 sites. The taxa lists originate from national monitoring surveys and 237 

followed the national monitoring standards defined for field sampling methodology and 238 

sample processing (see Dahm et al., 2012 and Feld, 2013 for details). If multiple samples 239 

were available for the same site, we used only the most recent data, with spring samples 240 

preferred  (March–May) as this is the most appropriate season for sampling small and mid-241 

sized wadable streams <500 km2 catchment area (>85% of all river sites). 242 

Prior to the calculation of biodiversity metrics, the raw taxa lists obtained from the WISER 243 

river database were manually adjusted to eliminate researcher-dependent bias, for example, 244 

caused by different taxonomic determination levels for macroinvertebrates (e.g. Oligochaeta, 245 

Diptera). Species-level identification was achieved for fish and macrophytes, while genus 246 

level was used for macroinvertebrates, as this is the standard determination level in France 247 

(see Table 1 for the overall taxon richness in the river data).  248 

2.3.2 Lakes 249 

Lake-specific phytoplankton taxa lists from 836 lakes (surface area >0.5 km2, reservoirs 250 

excluded) in 20 European countries were derived from the WISER lake database (Moe et al., 251 

2013). The lakes are distributed among three major European regions: i) the Mediterranean 252 

http://www.cgiar-csi.org/
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region (145 lakes in Cyprus, Italy, Spain, Portugal and Romania), ii) the Central/Baltic region 253 

(373 lakes in Belgium, Germany, Estonia, France, Hungary, Lithuania, Latvia, the 254 

Netherlands and Poland) and iii) the Northern region (318 lakes in Denmark, Finland, Ireland, 255 

Norway, Sweden and the United Kingdom).  256 

Lake taxa lists (overall taxon richness given in Table 1) originate from national monitoring 257 

data and international research projects (Moe et al., 2013). We used samples taken between 258 

2004 and 2010 to maximise the temporal comparability of samples and selected only the most 259 

recent data within this period, if multiple year samples were available for a lake. Further, we 260 

used a single lake sample encompassing data from all sampling points within the same water 261 

body and/or different sampling periods within a year, which were combined by averaging to 262 

create a mean abundance for each lake. Prior to the calculation of biodiversity metrics, taxa 263 

records from each country were harmonised for nomenclature (Phillips et al., 2013).  264 

2.3.3 Ponds 265 

We defined ponds as shallow lentic water bodies with surface area less than five hectares 266 

(0.05 km2) (De Meester et al., 2005). Pond taxa lists were obtained from 32 peer-reviewed 267 

publications indexed in the Web of Science and generated for amphibians, macroinvertebrates 268 

(Gastropoda, Odonata and Coleoptera only) and macrophytes (for overall taxon richness see 269 

Table 1). Data were also collated from Homes, Hering & Reich (1999), Nagorskaya et al. 270 

(2002), Sobkowiak (2003), Oertli et al. (2005), Sayer et al. (2012), Böhmer (2012), Moe et al. 271 

(2013), the European Pond Conservation Network (Unversity of Sevilla, ES; unpubl.), N.J. 272 

Willby (University of Stirling, UK; unpubl.) and B.A. Lukács (Hungarian Academy of 273 

Sciences, HU; unpubl.). All data were sampled focussing on representative biological 274 

inventories within the scope of biodiversity-studies (e.g. Oertli et al., 2005). Amphibia were 275 

generally surveyed in spring to obtain a full list of species occurring in the pond. Gastropoda 276 

and Coleoptera were sampled during summer, employing stratified sampling of all dominant 277 
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habitats using a hand-net. Adult stages were recorded for Odonates, usually merging the 278 

sampling efforts of at least two occasions in early and late summer. Macrophyte records were 279 

generally obtained during the summer season from transects covering representative pond-280 

habitats. 281 

Amphibian species data were recorded at 148 ponds in seven European countries (Belgium, 282 

France, Germany, Italy, Poland, Spain, Switzerland). Macroinvertebrate taxa lists were 283 

collated using 189 samples from 176 ponds in eleven countries (Czech Republic, Estonia, 284 

France, Germany, Ireland, Italy, Poland, Spain, Sweden, Switzerland, United Kingdom). 285 

Macrophyte species records comprised 601 samples at 392 ponds in seven countries 286 

(Belgium, Germany, Hungary, Poland, Sweden, Switzerland, United Kingdom). We 287 

considered only species classified as ‘hygrophytes’, ‘helophytes’ and ‘hydrophytes’ with 288 

Ellenberg’s moisture values ≥ 7 and stoneworts (Ellenberg et al., 1992).  289 

Species level was achieved for amphibia, the majority of macroinvertebrates and most 290 

macrophyte taxa (except for Chara sp. and Callitriche sp.). We generated presence/absence 291 

data only from the pond taxa lists, because abundance data were not available in all studies. 292 

2.3.4 Floodplains 293 

The floodplain taxa lists were derived from the peer-reviewed literature of European datasets 294 

on ground beetles, molluscs and higher plants (floodplain vegetation) in riverine wetland 295 

ecosystems (overall taxon richness given in Table 1). We reviewed relevant publications 296 

between 1990 and 2012 using the Web of Science. This resulted in 78 publications useful to 297 

generate the three taxa lists (total number of sample sites: 565): 132 sites for ground beetles, 298 

81 sites for molluscs and 352 sites for floodplain vegetation. The sites are located in 21 299 

countries and on 51 river floodplains across Europe, with the majority of sites located in 300 

Central Europe: Poland: 99 sites, Germany: 98, France: 81, Belgium: 42, Switzerland: 29, the 301 

Netherlands: 25, Czech Republic: 7 and Denmark: 6.  302 
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Standardisation of species abundances among studies was impossible due to the use of 303 

different sampling methods. To minimise the bias in sampling effort, we omitted studies with 304 

an extremely short or long field sampling period and those with strongly skewed or otherwise 305 

inconsistent data. 306 

2.3.5 Groundwater 307 

Site-specific groundwater data were derived from the European groundwater crustacean 308 

dataset recently published by Zagmajster et al. (2014). It covers the whole of Europe, except 309 

Russia, and contains a total of 21,700 occurrence data, which collectively represent 12 orders 310 

and 1,570 species and subspecies of obligate groundwater Crustacea. Occurrence data are 311 

restricted to species that complete their entire life cycle exclusively in groundwater, but they 312 

are from a variety of habitats in karst and porous aquifers and the hyporheic zone of streams. 313 

They were projected in ETRS -Lambert Equal Area onto a grid system containing 494 cells of 314 

100 x 100 km. This spatial resolution ensured that the species richness pattern of groundwater 315 

crustaceans was not biased by variable sampling effort among cells (see Zagmajster et al., 316 

2014). 317 

2.4 Calculation of biodiversity metrics 318 

Biodiversity has many facets and, amongst others, encompasses compositional (structural), 319 

functional (trait) and phylogenetic aspects of assemblages. Given the mixture of binary 320 

(presence/absence) and continuous (abundance) data, we restricted the set of biodiversity 321 

metrics used here to total species richness, species rareness and taxonomic distinctness (i.e. a 322 

proxy for phylogenetic diversity). With abundance data, we also calculated Shannon-Wiener 323 

diversity (hereafter referred to as Shannon diversity). Species richness and Shannon diversity 324 

are among the most commonly-used indicators of aquatic biodiversity in Europe (see Birk et 325 

al., 2012 for a recent review of monitoring methodology) and basically account for two 326 

structural characteristics of a community: the number and the equal distribution of its 327 
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members. Low diversity may be linked to environmental impacts, for example, intensive land 328 

use or other sources of habitat deterioration, which can act as landscape filters on species and 329 

communities (Poff, 1997). Yet, the general utility of such community-based diversity metrics 330 

as indicators of environmental deterioration has been subject to criticism, because it neglects 331 

species identity. Species composition may change along habitat deterioration gradients, with 332 

largely constant values for richness and Shannon diversity (Feld et al., 2013). We, therefore, 333 

introduced taxon rareness (similar to the index of endemicity proposed by Crisp et al., 2001 334 

and Linder, 2001), which describes the sum of relative frequencies of all taxa encountered at a 335 

site or within an area (grid) in relation to the overall number of sites or areas (grids) where the 336 

individual taxa have been observed. Hence, the index provides a measure of the summed 337 

relative frequencies of ‘endemic’ (or rare) taxa within a community, based on the overall 338 

frequency of the taxa in the entire dataset. Taxon rareness does not account for taxon identity 339 

either, but weights rare taxa, which are believed to respond very sensitively to any kind of 340 

habitat deterioration and hence are among the first to disappear under enhanced 341 

environmental stress. We included taxonomic distinctness in this study to address the 342 

phylogenetic connections of the taxa within a community. Community members representing 343 

many different families, orders and classes along a Linnéan phylogenetic tree are 344 

phylogenetically less related to each other, i.e. they are taxonomically distinct. For example, 345 

three species of the same genus are taxonomically less distinct than three species of different 346 

genera, orders or higher taxonomic entities, which is why taxonomic distinctness is also 347 

referred to as phylogenetic diversity. The index of taxonomic distinctness proposed by Clarke 348 

& Warwick (1998, 1999) calculates the mean taxonomic dissimilarity of any pair of taxa 349 

within a community along the Linnéan phylogenetic tree (i.e. species, genus, family, order, 350 

class and phylum). The index is applicable to binary taxa lists and adds a unique aspect of 351 

biodiversity, covered neither by taxon richness nor by taxon evenness (Heino et al. 2005; 352 

Gallardo et al., 2011; Feld et al., 2013). 353 
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2.5 Data analysis 354 

We applied a stepwise analytical protocol for the multivariate analysis using Boosted 355 

Regression Tree analysis (BRT) and Generalised Linear Modelling (GLM). Both methods 356 

complement each other and address specific aspects of the analytical approach. BRT was used 357 

to partition the variation in the biodiversity metrics explained by geo-climatic and land use 358 

descriptors as it is capable of handling collinear data of different numerical scales in the same 359 

analysis. It was thus possible to undertake comparable variation partitioning for each of the 360 

combination of eleven organism groups and up to four diversity metrics. Following the results 361 

of BRT (see below), GLM was used to identify the most parsimonious model for each 362 

biodiversity metric, i.e. the model with the least number of significant predictors, including 363 

significant interaction terms. Hence, GLM allowed us to analyse the role and significance of 364 

each descriptor, and its interaction with others, in more detail. 365 

2.5.1 STEP 1 366 

Individual BRTs were run for each possible combination of organism group and biodiversity 367 

metric using all geo-climatic and land use descriptors (full model) to compare the effects of 368 

both descriptor groups. BRT constitutes a machine-learning method that combines classical 369 

regression (decision) tree analysis with boosting (Elith, Leathwick & Hastie, 2008). Decision 370 

trees are intuitive and easy to visualise, but very sensitive to changes in the environmental 371 

descriptor variables. Because of the hierarchical structure of descriptors, any change in a 372 

higher-level descriptor implies changes to connected descriptors located at lower hierarchical 373 

levels in a decision tree. With BRT, boosting aims to improve the predictive performance of a 374 

regression tree model by adding subsequent regression trees to the residuals of a former 375 

model. Hence, it is possible to identify the model with the maximum deviation explained by 376 

the descriptor variables.  377 
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The major advantages of BRT over classical regression modelling are its capacity to i) 378 

analyse binary, ordinal and continuous descriptor variables, ii) accommodate collinear data, 379 

iii) handle non-linear descriptors with missing values and iv) identify interactions between 380 

descriptors (Elith et al., 2008).  381 

The full BRT models allowed us to identify the contribution of each individual descriptor to 382 

the overall variance explained in a biodiversity metric as well as the pairwise interactions 383 

between descriptors. Partial Dependence Plots (PDP) enabled the identification of the 384 

response patterns of biodiversity metrics along environmental descriptor gradients (Cutler et 385 

al., 2007). PDPs helped identify potential thresholds along the geo-climatic gradients at which 386 

a biodiversity metric value either sharply increased or decreased (Clapcott et al., 2012; Feld, 387 

2013a). Such thresholds may mark natural split points in the data, for example, geographical 388 

splits at a specific latitude, longitude or altitude, which then imply the presence of spatial 389 

patterns in the targeted biodiversity metric. We subsequently used these split points for the 390 

strongest geo-climatic descriptor in each BRT to divide each dataset (i.e. ecosystem 391 

type/organism group/biodiversity metric) into two subsets (step 3).  392 

In addition to the full BRT models, we applied an additive partial regression scheme 393 

(Legendre & Legendre, 1998, p. 531) to decompose the explained variation of the biodiversity 394 

metrics into four fractions: i) pure geo-climatic, ii) pure land use, iii) shared geo-climatic/land 395 

use and iv) unexplained. The shared fraction (iii) represents the variation that may be 396 

attributed to geo-climatic and land use descriptors together and is obtained additively in 397 

partial regression. As such, it is inherently different from interaction terms (multiplicative 398 

relations) as introduced into the GLM (step 2). Differences in the variance explained were 399 

tested for significance using a Wilcoxon signed rank test for paired samples.  400 

2.5.2 STEP 2 401 
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GLM was applied individually to each combination of eleven organism groups and three 402 

biodiversity metrics (Shannon diversity excluded), and a set of geo-climatic and land use 403 

descriptors that excluded highly collinear variables, defined as those with a variance inflation 404 

factor >8 (Zuur, Ieno & Smith, 2007). We choose GLM for this step because of its flexibility 405 

in identifying the most parsimonious model (i.e. the best trade-off between model fit and 406 

complexity), including interactions between anthropogenic and geo-climatic descriptors. 407 

Adjusted goodness of fit (R2) and Akaike Information Criterion (AIC) were used as GLM 408 

quality indicators. The order of entry of each descriptor variable into a GLM model was based 409 

on the individual explanatory strength of the variable as identified in step 1 using BRT (i.e. 410 

the strongest descriptor was selected first, followed by the second strongest, and so on). This 411 

procedure ensured a standardised and hence comparable analytical procedure for GLM 412 

models for all ecosystems.  413 

We used Poisson regression for species richness and Gaussian regression for 414 

rareness/endemicity and taxonomic distinctness. If overdispersion was detected in Poisson 415 

regression, we used negative binomial distribution functions in GLM. Rareness and 416 

taxonomic distinctness were logit-transformed to better-fit Gaussian regression (Warton & 417 

Hui, 2011). The GLM model with the highest explained adjusted deviance in combination 418 

with the lowest AIC obtained for each combination of organism group and biodiversity 419 

metric, was selected as the final model. A final model included marginally significant 420 

descriptors (0.05<P<0.1), if the explained deviance and/or AIC notably improved with the 421 

descriptors in the model. 422 

2.5.3 STEP 3 423 

The final analytical step repeated the procedure for step 2, but was applied to the data subsets. 424 

These subsets were defined using the split points of the most influential geo-climatic 425 

descriptor in each analysis. This was derived individually for each metric from the partial 426 
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dependence plots of the BRTs (step 1). If necessary, the split points were slightly adjusted, to 427 

better achieve a balanced sample size from both data subsets. The objective of splitting the 428 

data according to the most influential geo-climatic descriptor was to control for the variance 429 

driven by the respective geo-climatic descriptor and thus to focus more on the role of land 430 

use. 431 

All statistical analyses were run in R 2.15.3 (R Development Core Team, 2013). For BRTs, 432 

we used the packages ‘gbm’ (Ridgeway, 2013) and ‘dismo’ (Hijmans et al., 2013). GLMs 433 

were run with the package ‘MASS’ (Venables & Ripley, 2002). 434 

3. Results 435 

3.1 Comparison of geo-climatic descriptors and land use 436 

Across all ecosystems, eleven organism groups were analysed resulting in 39 separate 437 

biodiversity responses (Figure 1). Together, geo-climatic and land use descriptors explained 438 

between 20 and 93% (mean: 35%, SD: 18.7%) of the total variance in the full BRT models. 439 

On average, the explained variance was much higher for pond and floodplain biodiversity 440 

compared with the values obtained for the river, lake and groundwater models.  441 

Geo-climatic descriptors were significantly more influential than land use for the observed 442 

biodiversity patterns. The variance partitioning scheme (BRT) revealed a consistently low 443 

proportion of variance attributable to pure land use effects for all metrics (Figure 1). 444 

Conversely, pure geo-climatic effects explained significantly more variance (Wilcoxon signed 445 

rank test for paired samples: P<0.001) across all ecosystems and organism groups and this 446 

was more pronounced for river, lake and groundwater organisms and for pond amphibians 447 

and invertebrates. Similarly, land use descriptors alone accounted for less than 3% of the 448 

deviance (variation) in most GLM models (Table 2). Higher values (>10%) were found only 449 

for pond invertebrate and floodplain carabid beetle richness and for river invertebrate and 450 
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pond amphibian taxonomic distinctness. Both urban and agricultural land use performed 451 

similarly in the models and no general pattern was obvious regardless of the biodiversity 452 

metric considered. 453 

The proportion of variance jointly attributable to both descriptor groups was equally high in 454 

many cases and particularly pronounced with the floodplain and pond results (Figure 1). It 455 

accounted for as much as 19–87% of the total variance in the floodplain biodiversity metrics 456 

(ponds: 35–63%). It was also comparatively high for rivers (0.6–41%), but much lower for 457 

lakes and groundwater (<12 and <10%, respectively for all metrics). Nevertheless, the joint 458 

effects of land use and geo-climatic descriptors were significantly higher than the effects of 459 

land use alone. The results suggest that both descriptor groups were intrinsically allied in 460 

many models, which rendered the separation of unique effects difficult.  461 

This, in part, was confirmed by significant interactions of geo-climatic and land use 462 

descriptors, found for roughly a third of 33 GLM models and accounting for up to 17% of 463 

model deviance (Table 3). The highest interactions (>10% explained deviance) were observed 464 

for floodplain carabid beetles and molluscs and for pond amphibians, but the majority of 465 

interaction terms accounted for less than 5% of the deviance in the models. Land use 466 

interactions were strongest with longitude, latitude or annual precipitation, again highlighting 467 

the intrinsic co-dependence between land use and geo-climatic descriptors.  468 

However, the strong shared effects suggested by the variance partitioning scheme (Figure 1) 469 

were not reflected by strong interactions in the GLMs (Table 3). Both were only moderately 470 

positively correlated (Spearman’s : 0.455) (Figure 2).  471 

We did not find a consistent decline in biodiversity in response to increasing land use 472 

intensity (Table 2). More often than not the sign of the relationship was positive, i.e. the 473 

biodiversity metrics increased with increasing percentages of arable and urban areas.  474 

3.2 Controlling the influence of geo-climatic descriptors by data sub-setting  475 
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Latitude or longitude explained a considerable fraction of the variation in many biodiversity 476 

metrics, regardless of the analytical approach applied. For example, in eleven out of 33 BRT 477 

models, either latitude or longitude was the strongest geo-climatic descriptor, followed by 478 

temperature (9 models), altitude (5), river catchment/lake surface area (3) and precipitation 479 

(3) (Table 4). Temperature and precipitation, however, are also linked to latitude and 480 

longitude at the European scale. By splitting the datasets along one of these (mostly) 481 

geographical gradients the intention was to reduce the geographical extent of the derived data 482 

subsets and hence to decrease the role of geo-climatic descriptors relative to the role of land 483 

use in the data subsets.  484 

Our findings are ambiguous and did not reveal a consistent pattern, neither with the 485 

proportion of variance (deviance) explained by individual data subsets nor with the 486 

geographical extent of the subsets. However, data sub-setting can control the analysis of land 487 

use effects on freshwater biodiversity (Figure 3), as exemplified with lake phytoplankton and 488 

pond invertebrate taxonomic distinctness (both split along the temperature gradient) and with 489 

groundwater crustacean richness and rareness/endemicity (split along the evapotranspiration 490 

and temperature gradient, respectively). In these cases, land use explained substantially more 491 

deviance in the biodiversity metrics in both subsets.  492 

In other cases, an increase was achieved in at least one subset, for example, with floodplain 493 

mollusc richness. The subset split at annual precipitation ≤630 mm (Table 4) explained five 494 

times the deviance in the full data and accounted for 50% of the metric’s total deviance in this 495 

subset. Likewise, the respective values doubled with floodplain carabid beetle and mollusc 496 

rareness/endemicity and achieved explained deviances between 40 and nearly 50% for one 497 

data subset (Figure 3, see Table 4 for the respective split points).  498 

All but one of these data subsets were obtained by splits along gradients of actual or potential 499 

evapo-transpiration, mean annual air temperature or altitude (Table 4). It appears the changes 500 
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observed in the deviance explained by land use (including interaction terms) when analysing 501 

the data subsets were largely independent of the changes in the geographical (i.e. longitudinal 502 

and latitudinal) extent within the subsets (Figure 4). Thus, although subsetting often also lead 503 

to a decrease in the geographical extent of the subsets, the latitudinal or longitudinal splits of 504 

the full data did not result in significant increases (or decreases) in the deviance explained by 505 

the GLM models.  506 

3.3 Comparison of organism groups and biodiversity metrics 507 

In general, we were not able to detect strong consistent metric-driven differences across 508 

ecosystems or organism groups. At ecosystem level, the high proportion of shared variance in 509 

pond and floodplain diversity metrics was striking (mean ± SD, ponds and floodplains: 54.5 ± 510 

19%, rivers, lakes and groundwater: 11.6 ± 10.4%). 511 

On average, variance partitioning (BRT) explained most of the deviance in taxon richness 512 

across all ecosystems and organism groups, followed by taxon rareness/endemicity and 513 

taxonomic distinctness (significant only for richness vs. taxonomic distinctness). With 514 

taxonomic distinctness, on average, 50% of the deviance remained unexplained. However, 515 

with river invertebrates, pond amphibia and groundwater crustaceans taxonomic distinctness 516 

performed comparatively well in the GLM models, especially in one of the data subsets 517 

(Figure 3). 518 

4. Discussion 519 

This study presents biodiversity response patterns for different biodiversity metrics across 520 

various taxa groups in aquatic and semi-aquatic ecosystem types. Given the broad European 521 

scale of our study, we were required to use taxonomic data originating from national and 522 

regional monitoring programmes. Where possible, these data were supplemented by data from 523 

the scientific literature, adding another source of variability to the biological data. Although 524 
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there are limitations with the use of such data, particularly for biodiversity analysis, the 525 

results we present show consistent response patterns. Therefore we are confident that the data 526 

quality underlying our study was sufficient to draw the conclusions depicted below. 527 

 528 

4.1 Natural and anthropogenic land use effects on freshwater biodiversity 529 

Human land use, in particular urbanisation and intensified agriculture, are widely recognised 530 

as major threats to freshwater biodiversity worldwide (MEA, 2005; Dudgeon et al., 2006; 531 

Vörösmarty et al., 2010) and have been found to significantly impact the integrity of 532 

freshwater systems (e.g. Allan, 2004; Feld et al., 2011; Feld, 2013; Friberg 2014). Our 533 

findings do not confirm this, but reveal a notably consistent pattern in terms of the weak 534 

response of biodiversity to land use at the continental scale. The variance partitioning scheme 535 

quantifies the role of land use in comparison to the natural descriptors of biodiversity and 536 

reveals a low proportion of variation in biodiversity purely attributable to land use. Natural 537 

geo-climatic descriptors are much better correlates of diversity, suggesting that both land uses 538 

are less influential compared to the geo-climatic gradients at broad scales (Davies et al., 539 

2006). Among the natural descriptors considered, mean annual temperature, annual 540 

precipitation, longitude, latitude and altitude form the most influential gradients in our data, 541 

as confirmed by the split point analysis in BRT. This supports the assertion that energy and 542 

climate are important in shaping diversity, as found by other studies (e.g. Davies et al., 2007; 543 

Mittelbach et al., 2007; Field et al., 2009), which will be highlighted further below.  544 

The consistently strong shared effects of land use and geo-climatic descriptors (shared effects 545 

were significantly higher than the pure land use effects) reveal agricultural and urban land 546 

uses to be closely linked to geo-climatic conditions. Effects of both descriptor groups could 547 

not be fully disentangled, which implies their consideration in tandem in macro-ecological 548 

studies. In a similar study, Brucet et al. (2013) regressed fish diversity metrics in 1,632 549 
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European lakes against a selection of anthropogenic stressor variables and natural 550 

(geographic) descriptors. They concluded that ‘geographical factors dominate over 551 

anthropogenic pressures’. Although our results support this assertion, further specification is 552 

required: geo-climatic factors not only dominate, but act in concert with land use. Hence, 553 

broad-scale studies on environmental correlates of biodiversity must not overlook the shared 554 

effects of natural and anthropogenic descriptors, which are consistently highlighted across 555 

eleven organism groups and five ecosystem types in our study. This consistency in our 556 

results, across aquatic and semi-aquatic ecosystems as well as across invertebrate and 557 

vertebrate taxa groups is striking. 558 

Although we were not able to further disentangle the shared effects, we found both shared 559 

effects and interactions to be moderately positively correlated with each other. This suggests 560 

interactions can explain strong shared effects, but not in all cases. Further investigation using 561 

the spatial distribution of biodiversity (i.e. the potential spatial pattern) in Geographic 562 

Weighted Regression may help locate regions where the shared effect of land use and geo-563 

climatic factors are particularly strong (Gouveia et al., 2013) and thus help further disentangle 564 

this linkage. 565 

4.2 Is data sub-setting the solution? 566 

The dominant role of geo-climatic descriptors (altitude, latitude and longitude) over human 567 

impact at broad spatial scales suggests that human impact gradients are relatively short at such 568 

broad scales (Davies et al., 2006, Field et al., 2009). We, therefore, split our data along the 569 

major geo-climatic descriptor gradients and hypothesised that this data sub-setting would 570 

enhance land use effects on biodiversity. Our results do not support the hypothesis, but reveal 571 

rather inconsistent patterns, with both increasing as well as decreasing effects of land use 572 

following data sub-setting. More often than not, at least one subset performed weaker than the 573 

full data. This lets us conclude land use gradients remained comparatively short (i.e. weak) 574 
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also in the data subsets, although both land uses continued to span almost the entire possible 575 

gradients (rivers: arable: 0 – >97% and artificial: 0 – >86% coverage) after sub-setting. Only 576 

groundwater crustacean richness and rareness/endemicity showed increasing land use effects 577 

in both subsets. We should note that these findings were also not linked to the different buffer 578 

scales spanning several km for ponds up to 10,000 km2 for groundwater and lake sites.  579 

From this, we may conclude that the geographical extents of the regional subsets are still too 580 

large to detect land use effects on biodiversity in our data. For example, the geographical split 581 

of the river dataset at 51 °N and 6 °E results in a north-south expansion of 900 km in subset 1 582 

(450 km, respectively for subset 2) and in a west-east expansion of 750 km (700 km, 583 

respectively). However, our results imply that climatic gradients (temperature, precipitation) 584 

influence freshwater biodiversity to a greater extent than geographical gradients (latitude, 585 

longitude), thus indicating that climatic factors may dominate even at regional scales. This 586 

again highlights a prevailing role of energy in shaping concurrent freshwater biodiversity 587 

(Field et al., 2009; Tisseuil et al., 2013; Bailly et al., 2014) and explains the tendency for a 588 

pronounced increase of effects of land use in at least one subset, when the split was along 589 

climatic gradients. Hence, data sub-setting should aim to produce climatically more 590 

homogeneous data in order to be able to analyse the human impact of land use on freshwater 591 

biodiversity at the broad scale.  592 

4.3 The general response of freshwater biodiversity to land use 593 

A comparative analysis of measures of alpha diversity across ecosystems and organism 594 

groups inevitably comes with potential methodological constraints. First, as much of our data 595 

originate from national water quality monitoring schemes, field sampling methodologies 596 

rarely fit a comprehensive biodiversity assessment. River samples, for example, often cover 597 

only one season and only a limited area at a site (e.g. Feld et al., 2013). Second, due to limited 598 

determination capabilities, biodiversity may be difficult to estimate at the species level. Lake 599 
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phytoplankton, for example, covers a huge number of species, many of which usually present 600 

in very low abundance (Carstensen et al., 2005; Uusitalo et al., 2013). Third, in particular 601 

phytoplankton richness is strongly linked to sampling and counting methodology (Carstensen 602 

et al., 2005), while the determination is often restricted by the use of light microscopy of 603 

preserved samples in routine monitoring schemes (Ojaveer et al., 2010). These constraints 604 

may influence our results and in part may limit the detection of stronger land use patterns. 605 

Nevertheless, we believe that the concordance of patterns across ecosystems and organism 606 

groups are striking and support the analytical approach followed in our study. 607 

There is considerable evidence that urban (reviewed by Paul & Meyer, 2001) and agricultural 608 

(reviewed by Allan, 2004, see also Feld et al., 2013) land uses adversely affect the 609 

biodiversity and integrity of lotic ecosystems. Likewise, pond macrophyte and invertebrate 610 

richness are known to be negatively impacted by agriculture (Declerck et al., 2006; Della 611 

Bella & Laura, 2009) and pond amphibian and macrophyte richness by urbanisation (Akasaka 612 

et al., 2010; Hartel et al., 2010). Similar adverse effects of human land use on freshwater 613 

biodiversity are reported for lakes (Sala et al., 2000; Hoffmann & Dodson, 2005; Brucet et 614 

al., 2013) and obligate groundwater fauna (Malard et al., 1996). We thus anticipated 615 

pronounced negative effects of land use on freshwater biodiversity in this study. 616 

Although we often found such negative effects, we also detected positive correlations 617 

between the biodiversity metrics and coverage of both land use types. This was irrespective of 618 

ecosystem type and organism group and has rarely been reported for aquatic ecosystems (but 619 

see Hoffmann & Dodson, 2005). Due to the lack of nutrient data, we are not able to test the 620 

response pattern along a more specific productivity gradient (Jeppesen et al., 2000; Leibold, 621 

1999). For both land use gradients, a unimodal response pattern, as evidenced by the study of 622 

Hoffman & Dodson (2005) for lake zooplankton, was not evident in our data.  623 
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Species richness was, on average, the best performing metric in this study in terms of 624 

response, followed by rareness/endemicity, while taxonomic distinctness was poorly 625 

explained by the environmental descriptors in our analyses. Hence, our results partly support 626 

the assumption that rare (and presumably sensitive) taxa respond to land use at the broad 627 

scale, while taxonomic distinctness was a weak indicator of land use at this scale. It follows 628 

that the taxonomic composition of communities changed along the land use gradients, while 629 

the taxonomic relatedness of the community members remained relatively stable. This seems 630 

contradictory to Feld et al. (2013) and related studies cited therein, but again could be 631 

explained by the strong shared effects of climatic drivers of biodiversity and land use in our 632 

broad-scale datasets. Seemingly, these not only drive freshwater species richness, but also 633 

determine human land use patterns. Most likely, this applies to forms of intensive agriculture 634 

(e.g. row-crops like maize), which are particularly dependant on suitable temperature and 635 

precipitation regimes. Again this highlights the importance of broad-scale energy gradients in 636 

macro-ecology (Hawkins et al., 2003; Field et al., 2009).  637 

5. Conclusions 638 

This study posits three major conclusions, with strong implications for future research on 639 

freshwater biodiversity and its response to anthropogenic stressors at broad spatial scales: 640 

1. At the European scale, natural geo-climatic descriptors, namely temperature, precipitation, 641 

longitude and latitude, largely drive freshwater biodiversity. The same geo-climatic 642 

descriptors are also strong determinants of human land use patterns, for example, of 643 

agriculture and urbanisation. This results in considerable shared effects between natural and 644 

human impact variables, which cannot be fully disentangled. Macro-ecological studies on 645 

the effect of land use on biodiversity thus need to analyse both groups of descriptors 646 

together. Simply using latitude and longitude as proxies of temperature and precipitation 647 
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thereby is not sufficient and more sophisticated spatial analytical methods are required (e.g. 648 

Sharma et al. 2011). 649 

2. Compared to land use (and probably also other human impacts), geo-climatic descriptors 650 

form strong gradients in broad-scale datasets. Geo-climatically more homogeneous datasets 651 

(i.e. subsets with less variation among natural explanatory variables) can help overcome the 652 

dominance of natural gradients and may also provide stronger models explaining more 653 

variance in the biological response variable. Sub-setting, however, does not translate to 654 

simple geographical splits, for example into several regional subsets. Rather, sub-setting 655 

should aim to cut (i.e. subdivide) the main geo-climatic gradient(s). Our study suggests a 656 

split according to temperature and precipitation for several organism groups and freshwater 657 

ecosystems.  658 

3. Whole community-based biodiversity metrics, such as species richness and Shannon 659 

diversity reveal contrasting responses to land use (and other anthropogenic stressor 660 

gradients), likely to be caused by strong interactions with natural geo-climatic descriptors. 661 

Measures of relative taxon rareness/endemicity and taxonomic distinctness (i.e. 662 

phylogenetic diversity) did not perform better than measures of taxon richness and equal 663 

distribution at the broad scale. Further studies should concentrate on the presence and 664 

detection of species turnover along gradients of human impact. Also, measures that include 665 

species identity might help detect human impact on freshwater biodiversity at the European 666 

scale. 667 
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Tables 

 

Table 1: Main characteristics of the land use and biological data. 

 Land use data 
source 

Area [km2] Shape of area Organism groups  
(No. of sites) 

No. of taxa 
(determination 

level) 

Rivers CORINE 2006 variable 
(entire 
catchment 
upstream 
of a site) 

irregular Fish (590) 
Invertebrates (1,221) 
Macrophytes (651) 

66 (species) 
564 (genus) 
234 (species) 

Floodplains CORINE 2006 78.5 km2 circle around 
site (radius = 5 
km) 

Carabidae (132) 
Mollusca (81) 
Vegetation (352) 

301 (species) 
185 (species) 
1,205 (species) 

Ponds CORINE 2006 4.9 km2 circle around 
pond (radius = 
125 m) 

Amphibia (148) 
Invertebrates (189) 
Macrophytes (392) 

34 (species) 
416 (species, 
genus) 
320 (species) 

Lakes CORINE 2006 10,000 km2 100 x 100 km 
grid 

Phytoplankton (836) 970 (species, 
genus) 

Groundwater GlobCover 10,000 km2 100 x 100 km 
grid 

Crustacea (21,700 
entries for 494 grid 
cells) 

1,570 (species) 
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Table 2: Matrix of strength and direction of biodiversity metrics in response to urban and 

agricultural land use across all ecosystem types and organism groups. Response strengths and 

direction ('+': positive, '–': negative relationship) are according to the highest deviance 

explained by land use (without interaction terms) in the GLM models using the complete 

datasets: >|10%| = +++/– – – ; >|5%| = ++/– –; >|3%| = +/–; ≤|3%| = O. 

 

 Richness Rareness/endemicit
y 

Taxonomic 
distinctness 

Ecosystem Organism 
group 

Urban Arable Urban Arable Urban Arable 

Rivers Fishes O + O ++ O O 

Rivers Invertebrates O – O O ++ +++ 

Rivers Macrophytes – – O O – – O O 

Lakes Phytoplankton O O O O O O 

Ponds Amphibia O + O O +++ – – 

Ponds Coleoptera/Od
onata/Gastropo
da 

O +++ ++ O O O 

Ponds Macrophytes O ++ O ++ – O 

Floodplains Carabidae – – – – – ++ – O O 

Floodplains Mollusca O + O O O – – 

Floodplains Macrophytes – – O O O O O 

Groundwater Crustacea + O O O O – – 
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Table 3: Percent deviance explained by significant interaction terms including land use in the 

GLM models based on the complete datasets. If more than one interaction was significant, the 

total deviance explained by all interactions is provided. Geo-climatic descriptor(s) interacting 

with land use are listed in brackets; area = catchment size; lat = latitude; lon = longitude; ppt 

= annual precipitation; temp= mean annual air temperature; pet = potential evapo-

transpiration; hab = habitat diversity.  

 

 Richness Rareness/endemicit
y 

Taxonomic 
distinctness 

Ecosystem Organism 
group 

Urban Arable Urban Arable Urban Arable 

Rivers Fishes  1.4 
(area) 

    

Rivers Invertebrates       

Rivers Macrophytes    1.5 (lat)   

Lakes Phytoplankton       

Ponds Amphibia 14.4 
(lon) 

  3.1 (lon) 11.3 
(lon) 

 

Ponds Coleoptera/Od
onata/Gastropo
da 

  5.1 (lat, 
ppt, 

temp) 

6.6 (lat) 2.7 (ppt)  

Ponds Macrophytes 1.8 (ppt) 2.3 (lat, 
ppt) 

3.7 (pet)   1.2 (lat) 

Floodplains Carabidae  11.1 
(ppt) 

9.5 (ppt)    
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 Richness Rareness/endemicit
y 

Taxonomic 
distinctness 

Ecosystem Organism 
group 

Urban Arable Urban Arable Urban Arable 

Floodplains Mollusca 4.1 (lon)  17 (ppt)    

Floodplains Macrophytes    3.7 
(temp) 

 1.9 (lon) 

Groundwater Crustacea 1 (hab)      
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Table 4: Split points used to generate two data subsets for each combination of ecosystem 

type, organism group and biodiversity metric. Split points were identified using the partial 

dependence plots provided by the Boosted Regression Tree models, but were modified in 

order to achieve a more balanced sample size in both subsets. For clarity, subset 1 always 

encompasses the samples ≤ split point and subset 2 the samples > the split point. See text for 

details. 

Ecosystem Metric Strongest 
geo-climatic 
descriptor 
variable 

Split point Sample size 
subset 1 

Sample size 
subset 2 

Rivers Fish richness Catchment 
size 

500 km2 516 74 

Rivers Fish rareness Catchment 
size 

500 km2 516 74 

Rivers Fish 
taxonomic 
distinctness 

Catchment 
size 

500 km2 516 74 

Rivers Invertebrate 
richness 

Latitude 51° N 639 582 

Rivers Invertebrate 
rareness 

Latitude 51° N 639 582 

Rivers Invertebrate 
taxonomic 
distinctness 

Latitude 51° N 639 582 

Rivers Macrophyte 
richness 

Longitude 6° E 96 555 

Rivers Macrophyte 
rareness 

Latitude 51° N 292 359 

Rivers Macrophyte 
taxonomic 
distinctness 

Latitude 51° N 191 303 

Lakes Phytoplankton 
richness 

Mean annual 
air 
temperature 

6 °C 192 644 

Lakes Phytoplankton 
rareness 

Mean annual 
air 
temperature 

7.7 °C 315 521 

Lakes Phytoplankton 
taxonomic 
distinctness 

Mean annual 
air 
temperature 

9.3 °C 655 181 

Ponds Amphibia 
richness 

Mean annual 
air 
temperature 

8.8 °C 110 38 
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Ecosystem Metric Strongest 
geo-climatic 
descriptor 
variable 

Split point Sample size 
subset 1 

Sample size 
subset 2 

Ponds Amphibia 
rareness 

Ecoregion 4 (yes/no) alpine: 84 non-alpine: 64 

Ponds Amphibia 
taxonomic 
distinctness 

Mean annual 
air 
temperature 

8.9 °C 89 35 

Ponds Coleoptera/Od
onata/Gastrop
oda richness 

Annual 
precipitation 

992 mm 119 58 

Ponds Coleoptera/Od
onata/Gastrop
oda rareness 

Latitude 48 °N 109 62 

Ponds Coleoptera/Od
onata/Gastrop
oda taxonomic 
distinctness 

Mean annual 
air 
temperature 

8.8 °C 53 124 

Ponds Macrophyte 
richness 

Latitude 49 °N 338 263 

Ponds Macrophyte 
rareness 

Latitude 49 °N 338 263 

Ponds Macrophyte 
taxonomic 
distinctness 

Annual 
precipitation 

839 mm 238 327 

Floodplains Carabidae 
richness 

Annual mean 
air 
temperature 

9.9 °C 62 70 

Floodplains Carabidae 
rareness 

Altitude 37 m a.s.l. 62 70 

Floodplains Carabidae 
taxonomic 
distinctness 

Altitude 55 m a.s.l. 76 55 

Floodplains Mollusca 
richness 

Annual 
precipitation 

630 mm 51 30 

Floodplains Mollusca 
rareness 

Longitude 16.5 °E 32 47 

Floodplains Mollusca 
taxonomic 
distinctness 

Longitude 12.3 °E 32 47 
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Ecosystem Metric Strongest 
geo-climatic 
descriptor 
variable 

Split point Sample size 
subset 1 

Sample size 
subset 2 

Floodplains Macrophyte 
richness 

Annual mean 
air 
temperature 

9.9 °C 170 182 

Floodplains Macrophyte 
rareness 

Altitude 49 m a.s.l. 150 202 

Floodplains Macrophyte 
taxonomic 
distinctness 

Altitude 19 m a.s.l. 124 198 

Groundwater Crustacea 
richness 

Evapotranspir
ation (AET) 

600 mm 406 120 

Groundwater Crustacea 
endemicity 

Mean annual 
air 
temperature 

10.9 °C 134 256 

Groundwater Crustacea 
taxonomic 
distinctness 

Altitude 462 m a.s.l. 217 121 
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Figure captions 

 

Figure 1: Variance partitioning scheme using four biodiversity metrics and eleven organism 

groups sampled in five ecosystem types. Each plot displays the pure and shared proportions of 

variance explained and unexplained by land use and geo-climatic variables in the Boosted 

Regression Tree analyses. NA = Shannon diversity cannot be computed with 

presence/absence data.  

 

Figure 2: Percent deviance explained by significant interaction terms in GLM against percent 

variance explained by shared effects (BRT). A GAM smoother was overlaid the scatter plot to 

highlight the relationship of both variables. 

 

Figure 3: Proportion of deviance explained by land use and interactions with land use in the 

GLM models using three biodiversity metrics calculated for eleven organism groups. Each 

model run was repeated using the full dataset (filled symbol) and two data subsets (empty 

symbols). Data subsets were generated separately for each biodiversity metric and based on 

the split points identified by Boosted Regression Tree analysis for the strongest geo-climatic 

environmental descriptor variable in each model.  

 

Figure 4: Changes in the proportion of deviance explained by land use (GLM models, 

absolute values) against percent range of latitude and longitude covered by data subsets 1 and 

2 in comparison to the range of the full dataset. High percent values on the x-axis indicate a 

higher resemblance of latitude and longitude gradients to those of the full dataset. For the 

definition of subsets 1 and 2, see Table 4.  
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Supplementary Material 

 

Table S1: Non-collinear geo-climatic variables used as descriptors in the Boosted Regression 

Trees and Generalised Linear Modelling.  

Descriptors Lakes Rivers Ponds Wetlands/ 
floodplains 

Groundwater 

Longitude (°E) x x x x x 

Latitude (°N)  x    

Altitude (m a.s.l.) x  x x x 

Mean annual 
temperature (°C) 

x x x x x 

Annual precipitation 
(mm) 

x x x x x 

Catchment size (km2)  x    

Actual evapo-
transpiration (mm) 

    x 

Potential evapo-
transpiration (mm) 

  x   

Surface area (km2) x     

 

 


