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6Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, UK
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SUMMARY

The default mode network (DMN) is a commonly
observed resting-state network (RSN) that includes
medial temporal, parietal, and prefrontal regions
involved in episodic memory [1–3]. The behavioral
relevance of endogenous DMN activity remains
elusive, despite an emerging literature correlating
resting fMRI fluctuations with memory performance
[4, 5]—particularly in DMN regions [6–8]. Mechanistic
support for the DMN’s role in memory consolidation
might come from investigation of large deflections
(sharp-waves) in the hippocampal local field poten-
tial that co-occur with high-frequency (>80 Hz) oscil-
lations called ripples—both during sleep [9, 10]
and awake deliberative periods [11–13]. Ripples are
ideally suited for memory consolidation [14, 15],
since the reactivation of hippocampal place cell en-
sembles occurs during ripples [16–19]. Moreover,
the number of ripples after learning predicts subse-
quent memory performance in rodents [20–22] and
humans [23], whereas electrical stimulation of the
hippocampus after learning interferes with memory
consolidation [24–26]. A recent study in macaques
showed diffuse fMRI neocortical activation and
subcortical deactivation specifically after ripples
[27]. Yet it is unclear whether ripples and other hippo-
campal neural events influence endogenous fluctua-
tions in specific RSNs—like the DMN—unitarily.
Here, we examine fMRI datasets from anesthetized
monkeys with simultaneous hippocampal electro-
physiology recordings, where we observe a dramatic
increase in the DMN fMRI signal following ripples, but
not following other hippocampal electrophysiolog-
ical events. Crucially, we find increases in ongoing
DMN activity after ripples, but not in other RSNs.
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Our results relate endogenous DMN fluctuations to
hippocampal ripples, thereby linking network-level
resting fMRI fluctuations with behaviorally relevant
circuit-level neural dynamics.

RESULTS

We present novel analyses conducted on fMRI datasets from

two anesthetized macaques used in a prior study by Logothetis

and colleagues [27], where we ascertained whether there were

changes at the level of whole-brain resting-state networks

(RSNs) after hippocampal hpsigma (8–22 Hz), gamma (25–

75 Hz), or ripple (80–180 Hz) events. We implemented a recently

developed technique that uses spatial independent component

analysis (ICA) to define correlated fMRI signal fluctuations

measured across multiple scan experiments/sessions and sub-

jects into component brain networks [28, 29]. Analyzing 25

fMRI sessions each lasting 10 min in both subjects, we isolated

the macaque equivalent of the default mode network (DMN) and

compared it to the most robustly observed RSN across sessions

and monkeys in our data, the ventral somatomotor network.

First, we investigated whether there were positive DMN blood-

oxygen-level-dependent (BOLD) signal responses after hippo-

campal ripples and whether these responses also occurred after

the onset of hippocampal hpsigma and gamma events. Second,

we investigated whether these three different hippocampal

events also co-occurred with BOLD signal fluctuations in the

ventral somatomotor network, a RSN not implicated in hippo-

campal-dependent memory consolidation. Consequently, we

could determine whether RSN responses were network- and

neural-event specific.

We first used spatial ICA on fMRI experiments/sessions from

two monkeys to define RSNs of brain areas showing correlated

fMRI activity. After performing a cluster analysis to establish

the topological correspondence of RSNs across sessions and

monkeys, we isolated the DMN and ventral somatomotor

network (Figure 1; see Figure S1 for remaining RSNs). fMRI inde-

pendent component (IC) time courses for the DMN and ventral
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Figure 1. Default Mode and Ventral Soma-

tomotor Resting-State Networks

(A) Group-level fixed-effects image of default

mode network (DMN; left) and ventral somato-

motor network (VSN; right) in two rhesusmonkeys.

Networks are shown at slices most representative

of the correlation pattern on which network iden-

tification was based. Images were statistically

thresholded at Z > 2 and overlaid on a composite

structural from the UWRMAC-DTI271 atlas space.

See Figure S1 for other resting-state independent

components (ICs) present in both monkeys.

(B) DMN time course for a representative 10 min

session in monkey 1 (top plot) and monkey 2

(bottom plot), where red dots below represent the

onset of hippocampal ripple events. Representa-

tive sessions were chosen based on closeness to

mean IC rank out of all present ICs for a given

session (monkey 1: mean = 4.04, displayed = 3;

monkey 2: mean = 6.64, displayed = 7) and ripple

amount (monkey 1: mean = 68.8, displayed = 69;

monkey 2: mean = 41.2, displayed = 39).
somatomotor network were then aligned to the onset of

hpsigma (monkey 1: nevents = 1117; monkey 2: nevents = 887),

gamma (monkey 1: nevents = 823; monkey 2: nevents = 917), and

ripple (monkey 1: nevents = 1720; monkey 2: nevents = 911) events,

and their averages were convolved with a hemodynamic

response function (HRF). These average event-related BOLD

signals were subsequently used as regressors in a standard

event-related fMRI design. We report statistics for each monkey

across sessions. To determine whether the HRF accurately

captured the BOLD response to each event, we also plotted

the evoked BOLD response for both RSNs without any fitting.

Effect of Neural Events on RSNs
Monkey 1

Using a 2 3 3 within-session repeated-measures ANOVA for

network by neural event, we found a significant interaction

(F(2,23) = 11.9, p < 0.001; Figure 2A). We also found a main

effect for neural event (F(2,23) = 14.9, p < 0.001) but not

network (F(1,24) = 0.210, p = 0.651). This interaction was driven

by positive DMN BOLD responses after ripples (t(24) = 5.26,

p < 0.001). Paired t tests revealed that there were significantly

higher DMN activations after ripples compared to hpsigma

(t(24) = 5.99, p < 0.001) or gamma (t(24) = 2.50, p = 0.020) events.

Additionally, there was significantly higher DMN versus ventral

somatomotor network activity (t(24) = 3.62, p = 0.001) after

ripples.
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For the other neural events, we found a

significant decrease in DMN activity

(t(24) = �3.55, p = 0.002) after hpsigma

events. DMN activity after gamma events

was significantly lower for hpsigma

versus gamma events (t(24) = �2.45,

p = 0.022). DMN activity was also signifi-

cantly lower (t(24) = �3.05, p = 0.006)

compared to ventral somatomotor activ-

ity after hpsigma events. Otherwise, we

observed no significant differences be-
tween events for ventral somatomotor network activity. Further-

more, there were no other significant changes versus baseline in

either network for the other neural events. See Table 1 for a com-

plete listing of one-sample t values for DMN and ventral somato-

motor network activity after hpsigma, gamma, and ripple events

and Table S1 for DMN correlations with left and right hippocam-

pus after ripples.

Monkey 2

Using a 2 3 3 within-session repeated-measures ANOVA for

network by neural event, we found a significant interaction

(F(2,18) = 36.2, p < 0.001; Figure 2B).We also found amain effect

for both neural event (F(2,18) = 14.3, p < 0.001) and network

(F(1,19) = 59.1, p < 0.001). Once again, this effect was related

to DMN increases after ripple events (t(21) = 9.41, p < 0.001).

In follow-up paired t tests, there was significantly higher DMN

activity after ripples compared to hpsigma (t(21) = 6.48, p <

0.001) or gamma (t(20) = 7.42, p < 0.001) events. Additionally,

there was significantly higher DMN versus ventral somatomotor

network activity after ripples (t(21) = 11.6, p < 0.001).

Converse to monkey 1, there was a significant increase in

DMN activity after hpsigma events (t(21) = 3.25, p = 0.004).

DMN activity after hpsigma events was significantly higher

(t(20) = 2.26, p = 0.035) than after gamma events and higher

(t(21) = 3.86, p = 0.001) than ventral somatomotor activity after

hpsigma events. Additionally, there was a significant decrease

in ventral somatomotor activity after the onset of ripple events
91, March 7, 2016 ª2016 The Authors 687
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Figure 2. Influence of Hippocampal Neural Events on DMN and VSN

(A) Beta values for each network and neural event for monkey 1 (mean ± SEM).

There were significantly higher DMN activations after ripples compared to

hpsigma (t(24) = 5.99, p < 0.001) or gamma (t(24) = 2.50, p = 0.020) events.

Additionally, there was significantly higher DMN versus VSN activity (t(24) =

3.62, p = 0.001) after ripples. There was also a significant decrease in DMN

activity (t(24) =�3.55, p = 0.002) after hpsigma events, also when compared to

gamma events (t(24) = �2.45, p = 0.022). DMN activity was also significantly

lower (t(24) =�3.05, p = 0.006) compared to VSN activity after hpsigma events.

(B) Beta values for each network and neural event for monkey 2 (mean ± SEM).

There was significantly higher DMN activity after ripples compared to hpsigma

(t(21) = 6.48, p < 0.001) or gamma (t(20) = 7.42, p < 0.001) events. Additionally,

there was significantly higher DMN versus VSN activity after ripples (t(21) =

11.6, p < 0.001). Converse to monkey 1, there was a significant increase in

DMN activity after hpsigma events (t(21) = 3.25, p = 0.004), which was

significantly higher (t(20) = 2.26, p = 0.035) than after DMN gamma events and

also higher (t(21) = 3.86, p = 0.001) than VSN activity after hpsigma events.

There was a significant decrease in ventral somatomotor activity after the

onset of ripple events (t(24) = �3.06, p = 0.006).

See Figure S2 for mean plots averaged across both monkeys, along with plots

showing effect of ripples on other neocortical RSNs.

Table 1. t Values of RSN BOLD Signal Changes after Each Neural

Event

Hpsigma Gamma Ripple

Monkey 1

Default �3.55* 0.614 5.66**

Somatomotor 0.561 0.049 1.22

Monkey 2

Default 3.25* 0.172 9.41**

Somatomotor �1.86 1.43 �3.06*

*p % 0.01; **p % 0.001.
(t(24) = �3.06, p = 0.006), but not after any other events (see

Table 1 for a complete listing of t values for both the response

of both networks to each event and Table S1 for DMN correla-

tions with left and right hippocampus after ripples). Lastly, there

was significantly lower ventral somatomotor network activity af-

ter ripples than after gamma events (t(23) = 3.04, p = 0.006), while

there was a trend (t(23) = 2.07, p = 0.050) for higher ventral soma-

tomotor activity for gamma versus hpsigma events. See Fig-

ure S2A of the aforementioned effects averaged across both

monkeys. To add further specificity to our findings, we investi-

gated three other neocortical RSNs with ICs that were less

robust than the DMN and VSN but still observable in more than
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half of the datasets in both monkeys: the primary visual, occipi-

totemporal, and frontoparietal networks (Figure S2B). Notably,

we observed only negligible BOLD changes after ripples in these

three RSNs across both monkeys (Figure S2B).

Temporal Profile of Effect of Neural Events on RSNs
To confirm that the HRF also reflected the actual BOLD response

profile in each network, we plotted the evoked BOLD response

(10 s before until 10 s after event onset) averaged across ses-

sions in both monkeys for the DMN and ventral somatomotor

network by each event type (Figures 3 and S3).

Monkey 1

We observed a rise in the DMN BOLD signal immediately

following the onset of hippocampal ripple events peaking 8 s af-

ter onset (Figure 3A). The effect of DMNBOLD signal changes af-

ter hpsigma events appeared to be anti-correlated with the DMN

ripple effect, while therewas no significant change in DMNBOLD

signal around gamma events or ventral somatomotor network

signals around any neural events in the hippocampus.

Monkey 2

We also observed a rise in the DMN BOLD signal immediately

following the onset of hippocampal ripple events peaking at

6 s after onset, although the DMN signal was always above the

baseline, i.e., above the mean BOLD signal intensity in the ses-

sion (Figure 3B). DMN BOLD signal changes around hpsigma

events peaked more rapidly around hpsigma event onset than

the DMN changes after ripples. Additionally, there was no signif-

icant change in the DMN BOLD signal around gamma events.

There was also a slight decrease in the ventral somatomotor

network BOLD signal peaking around 8 s after ripple event on-

sets, but there were no other changes in the ventral somatomo-

tor network BOLD signal around any hpsigma or gamma events

in the hippocampus.

DISCUSSION

We observed a significant increase in the DMN BOLD signal

following hippocampal ripples, but not following other neuro-

physiological events in the hippocampus. Furthermore, we did

not find similar BOLD increases in a prominent ventral somato-

motor network after ripples in both monkeys.

We present the first evidence, to our knowledge, of BOLD

signal increases in an ongoing RSN related to hippocampal rip-

ples. These findings are in line with a previous study [27] showing

greater neocortical activations, including in regions that are part

of the DMN. Crucially, these DMN changes were not observed in
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Figure 3. Time Course of Hippocampal Neural Events in DMN

and VSN

(A) Evoked response values (signal amplitude presented in arbitrary units) for

each network and neural event for monkey 1 starting from 5 TRs (10 s) prior to

event onset until 5 TRs after event onset (mean across datasets ± SEM).

(B) Evoked response values for each network and neural event for monkey 2.

See Figure S3 for time courses averaged across both monkeys.
other prominent neocortical monkey RSNs, suggesting that

correlated endogenous fluctuations in DMN regions play a

privileged role in the well-known communication between the

hippocampus and neocortex [3, 14, 15]. These findings are not

mutually exclusive with results presented by Logothetis and

colleagues [27], where voxels throughout the neocortex are acti-

vated after ripples, i.e., a fraction of voxels are transiently acti-

vated within many different neocortical regions. However, at

the network level, we observe that ripples are selectively influ-

encing endogenous RSN fluctuations that are already correlated

across different neocortical regions (see Figure 1B), i.e., modu-

lating all voxels within the DMN unitarily, but not all voxels within

other RSNs.

Our results help connect seemingly disparate hypotheses

about the behavioral relevance of RSNs and recent findings

related to hippocampal ripples. Specifically, previous hypothe-

ses posit that RSNs might reflect the past history of prior task

activation and then potentially recapitulate this activation history

in order to code information prospectively [2, 30]. These hypoth-

eses align well with recent findings from rodent hippocampal re-

cordings of ripples showing offline ‘‘preplay’’ of hippocampal

place cell ensembles of locations or trajectories that had not

yet been visited [31, 32]. Consequently, our data provide prelim-

inary support that hippocampal ripples might help the DMN

simulate the outcomes of prospective choices by replaying rele-

vant memories.

The DMN we isolate with our analyses, including retrosplenial

cortex, posterior cingulate, bilateral posterior medial temporal

lobe (MTL), and caudal temporal parietal occipital cortex

(TPOC), resembles the DMN found in previous anesthetized
Cu
and awakemonkey resting-state fMRI studies [28, 33]. Themon-

key DMN corresponds well with the MTL sub-network of the hu-

man DMN [34, 35]. However, one region missing in our DMN

component when compared to humans is a large ventral medial

prefrontal cortex (vmPFC) cluster, which is potentially the result

of increased susceptibility artifacts.

We observed opposing or inverted responses in the DMN after

hpsigma events between the two monkeys. Possible explana-

tions for this result are that it represents normal neurophysiolog-

ical variability or is a potential side effect of the anesthetic,

remifentanil. However, the side-effect explanation is unlikely,

since remifentanil is known to have only a negligible effect on

neurovascular coupling [36, 37] and only mildly affects the time

course and magnitude of neural and vascular responses

[38–40]. Further evidence against the side-effect explanation

comes from a recent study [41] that found no significant differ-

ence between the hippocampal theta rhythm of the anesthetized

monkeys analyzed here and the unanesthetized monkey pre-

sented in [27].

Future studies that manipulate ripples with concurrent mea-

surements at the level of whole-brain networks can move

beyond our correlational results to better explore how ripples

might directly modulate endogenous DMN fluctuations. One

promising mechanism for how ripples could influence the DMN

relates to the high amplitude of hippocampal sharp-waves (an

order of magnitude larger than the amplitude of the other neural

events), which co-occur with ripples, making them more likely to

propagate from the hippocampus [27, 41]. Furthermore, dense

hippocampal projections to the retrosplenial and posterior

cingulate cortices, regions at the core of the DMN, have been

found in rodents [42], macaques [43], and humans [44]. Taken

together, these findings suggest that the DMN should be a pri-

mary target for propagating activity generated by hippocampal

sharp-wave ripples. Neural mass models [45, 46], used with

structural connectivity measurements, are ideally suited to theo-

retically capture the interplay between circuit-level dynamics in

the hippocampus and ongoing neocortical BOLD fluctuations.

These models could allow researchers to determine whether

there are specific types of RSN BOLD signal changes due to hip-

pocampal ripples versus unrelated spontaneous changes.

Our findings are a first step toward capturing the interplay be-

tween local neural events in the hippocampus and large-scale

RSN dynamics. Notably, the DMN includes neocortical regions

important for imagination and episodic memory, allowing for

the possibility that hippocampal ripples replay past experience

and help the DMN explore potential outcomes of upcoming de-

cisions [2]. Using neural-event-triggered fMRI measurements

before and after behavioral training, future studies can poten-

tially characterize how learning modulates neural activity at

both DMN and hippocampal circuit levels [3, 46].

EXPERIMENTAL PROCEDURES

Overview

All datasets analyzed were from experiments conducted on two monkeys

(E and I) originally published in [27]. All surgical and experimental procedures

were approved by the local authorities (Regierungspräsidium, Tübingen Re-

ferat 35, Veterinärwesen) and were in full compliance with the guidelines of

the European Community (EUVD 86/609/EEC) for the care and use of labora-

tory animals. Experiments were carried out in two male rhesus monkeys
rrent Biology 26, 686–691, March 7, 2016 ª2016 The Authors 689



(Macaca mulatta). Neural responses in hippocampal CA1 during resting-state

experiments were collected in 50 fMRI experiments/sessions (25 for each

monkey) that lasted 10 min each. For details on surgical procedures, see

[27]. See Supplemental Experimental Procedures for details on detection of

hippocampal ripples and other neural events, maintenance of anesthesia,

MRI acquisition, and fMRI preprocessing/statistical analyses.

Resting-State Network Analysis

Spatial ICA, a technique that extracts maximally independent patterns of

coherent fMRI activity [47], was applied to each single dataset by means

of the GIFT toolbox (http://icatb.sourceforge.net). The estimation of the num-

ber of independent components (ICs) was performed using the minimum

description length criterion [47]. After reduction of dimensionality by means

of principal-component analysis (accounting for at least 99.9% explained

variance), ICs were retrieved by means of the FastICA algorithm, with a defla-

tion approach and hyperbolic tangent (tanh) nonlinearity [48]. Each fMRI IC

consisted of a waveform and a spatial map: the waveform corresponded

to the time course of the specific pattern, whereas the associated spatial

map expressed the intensity of activity across voxels. To display voxels

contributing most strongly to a particular IC and allow intersubject compari-

son, we scaled the intensity values in each map to Z scores. To extend the

ICA analysis from single to multiple datasets, we used the self-organizing

group ICA (sogICA) method [48] to sort the ICs extracted from different

fMRI datasets and subsequently average them to generate a single IC data-

set. SogICA was applied according to a two-stage procedure: first to IC data-

sets from the same subject for the creation of a representative single-subject

IC dataset (within-subject analysis), and then to single-subject IC datasets for

the creation of a group-level IC dataset (across-subject analysis). For each

sogICA procedure, the IC clusters with relative consistencies % 50% or

that were spatially correlated at r > 0.20 with white matter or CSF patterns

(as available in SPM5.0) were excluded from further analyses. The IC clusters

obtained at the second level of sogICA were classified as resting-state net-

works (RSNs).

We performed hierarchical cluster analysis on the entire set of monkey

RSNs in common space [49]. To characterize the clustering, we used the

spatial correlation as a similarity metric and used the average linkage function.

After the creation of the dendrogram, we selected the cutoff value for the

graph yielding the maximum number of clusters in both monkeys. This re-

sulted in the definition of single- or two-element clusters. To characterize

the reliability of each cluster, we grouped the spatial correlations between

the RSNs inside the cluster (intracluster correlations) and those between the

RSNs of the cluster and all other RSNs (extracluster correlations). We statis-

tically compared intracluster and extracluster correlations by means of the

Mann-Whitney test, thus obtaining a quantitative measure of the cluster reli-

ability. We present RSNs in each subject by averaging the signals across

the voxels of the network map (threshold at Z > 2). In monkey 1, both the

ventral somatomotor and DMN components were present in all 25 datasets.

In monkey 2, the ventral somatomotor network component was present in

all 25 datasets, while the DMN component was present in 22 datasets. In

monkey 2, one dataset did not have any occurrence of gamma events; other-

wise there were occurrences of each neural event in every session. Conse-

quently, there were 25 ventral somatomotor and DMN datasets analyzed

with monkey 1 and 24 ventral somatomotor and 21 DMN datasets analyzed

with monkey 2.
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