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Abstract 

Partial oxidation of methanol to formaldehyde on silver catalyst represents an important industrial process 

due to the versatility of formaldehyde as an intermediate in chemical synthesis. The development of 

kinetic models is essential for a quantitative description of the concentration of the chemical species 

involved in the process as well as for process design and optimisation purposes. However, the 

development and identification of reliable kinetic models is strictly related to the execution of informative 

experiments, allowing for the elucidation of the complex reaction pathways involved in the oxidation 

process and providing a precise estimation of the kinetic parameters for each model proposed in the study. 

In this paper a model-based design of experiments (MBDoE) approach is used for planning optimally 

informative experiments for the development of kinetic models of methanol oxidation on silver catalyst. 

Experiments are carried out in microreactor platforms where better reaction temperature control, 

accelerated heat and mass transfer and enhanced mixing of reactants can be achieved.  
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1. Background 

The partial oxidation of methanol to formaldehyde on silver catalyst represents an important industrial 

reaction due to the versatile role of formaldehyde as an intermediate in chemical synthesis. Throughout 

the years numerous research efforts have been devoted into this reaction system to understand the 

catalytic behavior of silver and the possible reaction mechanisms occurring at the surface [1,2]. A 

microkinetic model of methanol oxidation on silver, based on a Langmuir-Hinshelwood mechanism, has 

been recently proposed
 
[3]. The model successfully explains both surface science experiments and kinetic 

experiments at industrial conditions applying physically realistic parameters. However, a simplification of 

the original model was required in order to be applied for reactor engineering purposes
 
[4], given the high 

number of kinetic parameters and the complexity of the rate expressions. The accurate quantitative 

description of the concentration of the chemical species involved in the process is related to the 

availability of i) a reliable kinetic mechanism, defining the mathematical structure of the kinetic model; 

ii) the precise estimation of the set of kinetic parameters for the model. Model-based design of 

experiments (MBDoE) techniques can be used for discriminating among possible rival kinetic 

mechanisms [5] and/or for improving parameter estimation precision [6], avoiding non-informative 

regions of the experimental design space. The model identification problem is treated as an optimal 

control problem where the best operating conditions in terms of manipulated inputs and sampling 

scheduling are detected also taking into account limitations (constraints) on the experimental facilities.  

In this study, MBDoE techniques are used for the identification of kinetic models of methanol oxidation 

on silver providing: i) a discrimination of candidate kinetic models from experimental data; ii) a 

quantitative approach for ranking of the experiments based on the evaluation of Fisher information matrix 

(FIM), underlining the most informative experimental conditions to be used in the experimentation. The 

methanol oxidation reaction is carried out in a microstructured reactor fabricated in silicon by etching and 

where Ag catalyst was deposited by sputtering
 
[7]. Microfluidic devices represent the ideal platforms for 

the identification of kinetic models [8], allowing for a better temperature control, accelerating heat and 
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mass transfer and ensuring an excellent mixing of the reactants. Furthermore, they enable online 

measurement acquisition and easy control of the process for a quick and stable generation of process data 

to be used for model development. 

2. Methods 

2.1 Reaction mechanisms  

In the identification study the simplified model proposed by Andreasen
 
[4] was used as a reference model 

(Model 1) and two additional simplified kinetic models of increasing level of complexity (Model 2, 

Model 3) were considered. The set of reactions involved in the proposed models are shown in Table 1. 

According to Model 1, reactions (1) and (2) constitute the base (global) mechanism. Model 2 includes 

(1,2) and the combustion reactions for both CH3OH and CH2O as given by reactions (3) and (4) 

respectively. Model 3 includes the combustion reactions (3,4) for CH3OH and CH2O (like Model 2) but 

the global methanol oxidation reaction (1) used in Model 1 and 2 was split into a dehydrogenation step 

(5) and a selective oxidation step (6) assuming a power-law model for the kinetic expressions.  

Table 1  Set of reactions involved in the proposed kinetic models. 

Reactions Model 1 Model 2 Model 3 

 CH3OH + 1/4O2 = CH2O + 1/2H2 + 1/2H2O     (1)   √ √ - 

CH2O + 1/2O2 = H2 + CO2                                                  (2) √ √ √ 

CH3OH + 3/2O2 = 2H2O+ CO2                                        (3) - √ √ 

CH2O + O2 = H2O + CO2                                                      (4) - √ √ 

CH3OH = CH2O + H2                                                              (5) - - √ 

CH3OH + 1/2O2 = CH2O + H2O                         (6) - - √ 

H2 + 1/2O2 = H2O                                                (7) √ √ √ 

Number of kinetic parameters (Nθ) 6 10 12 

Hydrogen oxidation reaction (7) has also been included in each reaction mechanism. Although this 

reaction is known to occur only at higher temperatures [8], it has been primarily considered to represent 

the low hydrogen concentrations observed in the experiments. The reaction rate expressions for reactions 

(1,2) are the one proposed in [4], while power law kinetic expressions have been used for the other 

reactions involved in the proposed mechanisms.   

2.2 Optimal design of experiments: mathematical formulation 

The microstructured reactor was modelled in the gPROMS environment [9] as a plug flow reactor (PFR):  
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where ci is the species concentration, rj and νij are the reaction rate and the stoichiometric coefficient of 

the i-th species in the j-th reaction respectively, while τ is the residence time. Equations (8), together with 

the reaction rate expressions, represent a system of partial differential equations (PDEs) which can be 

written in the general form as:  

     0,,,, zzz θuxxf                 zz xgy ˆ                                                                                    (9,10)    

with the set of boundary (initial) conditions x(0) = x0, where x(z) and )(zx are the Nx-dimensional vectors 

of space-dependant state variables (here the concentrations ci) and spatial derivatives respectively, u are 

the manipulated (input) variables (of dimensions Nu), θ is the Nθ-dimensional set of unknown model 

parameters to be estimated, and z is the axial coordinate. The symbol ^ is used to indicate the estimate of 

a variable (or of a set of variables): thus, y(z) is the vector of measured values of the outputs, while ŷ is 



the vector of the corresponding values estimated by the model. MBDoE techniques aim at decreasing the 

model parameter uncertainty region predicted by model as the solution of the optimisation problem: 
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subject to (9,10) and to a nφ-dimensional set of constraints on design variables, usually expressed as: 

u
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with lower (superscript l) and upper (superscript u) bounds on the elements of , defining the design 

space D (i.e. the operating range of experimental decision variables). The design optimisation (11) is 

carried out by acting on the nφ-dimensional experiment design vector φ: 

    T0, tuy                                                                       (13) 

which includes the Ny-dimensional set of initial conditions y0 on the measured variables and the 

manipulated inputs u (which may be also approximated by discrete piecewise constant or piecewise linear 

functions in the spatial domain). In (11) Vθ and Hθ are the variance-covariance matrix of model 

parameters and the Fisher information matrix (FIM), respectively, where Hθ is defined by   
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In (14) sij is the ij-th element of the Ny×Ny inverse matrix of measurements error and
0

θH  is the prior 

information matrix, taking into account the preliminary statistical information about the parametric 

system before the Nexp trials are carried out. According to (11), the experiment is designed so as to 

minimise a measurement function ψ of Vθ. The particular form of the measurement function represents 

the design criterion selected in order to maximise the expected information content of the experiment as 

predicted by the model. The most common design criteria are the so-called alphabetical ones, i.e. A-, D-, 

E-optimal criteria (minimising the trace, the determinant and the maximum eigenvalue of Vθ  respectively 

[10]), or they are based on singular values decomposition [11].  

2.3 Ranking of experiments based on information evaluation 

In order to evaluate the relative amount of information which can be obtained for the estimation of the M-

th model parameters from the i-th experiment the following RFI (Relative Fisher Information) index can 

be computed: 
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where M

iH is the FIM related to the i-th experiment for the M-th competitive model evaluated from (14) 

and M
H is the global information obtained from the Nexp experiments for the identification of the M-th 

model according to a norm || . ||. In this study, the Frobenius norm has been used as a suitable matrix 

norm. The utility of (15) is that it allows for a ranking of the available (already executed) experiments, 

underlining the most informative regions of the design space D to be exploited for model identification. A 

generalised A-optimal design can be defined as  
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The interesting feature of (16) is that it allows for the simultaneous maximisation of the information 

content of a number of experiments for a set of NM candidate models.  

2.4 Available experimental data set and model discrimination 

In this case study the elements of the design vector φ (13) which can be optimised by MBDoE are:  



1. Composition of reactants in terms of molar fractions: methanol (0.07-0.16), oxygen (0.03-0.10) and 

water (0.02-0.22) modelled as initial conditions y0;    

2. Temperature T (725 K < T < 825 K) modelled as manipulated input u;  

3. Pressure P (159000-165000 Pa) modelled as manipulated input u;  

4. Flowrate F (25-27 mL/min) modelled as manipulated input u.  

The ranges of operability shown in parenthesis in the above represent the currently investigated design 

space D, where P and F have been basically kept constant during the trials. Concentration measurements 

are available as molar fractions of CH3OH, O2, CH2O, H2, H2O and CO2 at the inlet and outlet of the 

reactor and they are assumed to be corrupted by Gaussian noise with zero mean and a standard deviation 

of 1% on the reading. Preliminary data from Nexp= 21 experiments from the microreactor system were 

available in order to discriminate among the rival models (Model 1, Model 2 and Model 3) where the 

effect of temperature (T) and feed composition (CH3OH, O2 and H2O molar fraction y
0
) on final products 

(CH3OH, O2, H2O, CH2O, H2, CO2) was investigated:  

1. Experiments E1-5: T varied from 725 to 826 K (y
CH3OH

=0.10, y
O2

=0.04, y
H2O

=0.07); 

2. Experiments E6-9: T varied from 725 to 826 K (y
CH3OH

=0.15, y
O2

=0.06, y
H2O

=0.11); 

3. Experiments E10-21: T kept at 733 K, variable y
CH3OH

 (range 0.07-0.14, E10 to E14), y
O2

 (range 0.03-

0.10, E15 to E17) and y
H2O

 (range 0.02-0.21, E18 to E21). 

In all these performed experiments He was used as an inert, the volumetric flow rate was kept at F = 26.5 

mL/min and the pressure at P = 1.6 atm. The reaction channel length containing the catalyst was 12.5 mm 

long and 0.12 mm high.  

Model discrimination was carried out from experimental data by assessing the lack-of-fit for each 

proposed model in terms of χ
2
 obtained after parameter estimation is carried out. The Akaike information 

criterion (AIC) in the form  

2ln22AIC   N            (17) 

was also used to investigate the trade-off between fitting capability (χ
2
) and model complexity in terms of 

number of model parameters (Nθ). 

Results and discussion 

Results after model discrimination are shown in Table 2. Model 3 is the one providing the most 

satisfactory results when using the lack-of-fit criteria, underlined by the lower χ
2
. However, it also 

represents the most complex model in terms of number of model parameters, as clearly indicated by the 

relatively high AIC value, which tends to promote the use of Model 1 (the simplest model).  

Table 2 Results from model discrimination for Model 1, 2 and 3. 

Model  χ
2
 Nθ AIC 

Model 1 9762 6 -6.4 

Model 2 7721 10 2.1 

Model 3 6874 12 6.3 

 

However, the superiority of Model 3 becomes apparent from the results shown in Figure 1, where molar 

fraction profiles predicted by the models are shown as a function of temperature. Model 1 (solid line) is 

ineffective on representing oxygen (Figure 1a) but also formaldehyde and CO2 concentrations (Figure 1b) 

in a reliable way, while methanol profiles are always represented in a satisfactory way by all the proposed 

models. Interestingly, the representation of both oxygen and methanol concentration as a function of the 

investigated temperature was significantly improved by including the combustion reactions in the model 

formulation (Model 2 and 3) as compared to the original model formulation (Model 1). Furthermore, it is 

clear that a better representation of both CO2 and CH2O can be realised if competitive dehydrogenation 

and selective oxidation steps are included (Model 3). The possible explanation is that Model 3 in this case 

provides a better approximation of the complex kinetic mechanism occurring at the catalyst surface, 

where methoxide is formed as an intermediate
 
[1].  
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(a)                        (b)    

Figure 1. Relative performance of candidate kinetic models after model identification in terms of molar fractions. (a) CH3OH, O2 

molar fractions; (b) CH2O, CO2 molar fractions. The experimental points are indicated by symbols including error bars.     
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(b)                                                                                                (c) 

Figure 2. Ranking of experiments in terms of RFI. (a) Preliminary experiments: ranking of information for Model 1, 2 and 3. (b) 

D-optimally designed experiments (green spheres), MBDoE optimally designed experiment (blue sphere) and preliminary 

experiments (red spheres) in terms of y0 (T = 800K). Experiments with low information are indicated by black spheres, 

experiments with high information are indicated by green stars. The optimally designed experiment is indicated by the blue 

sphere. (c) Ranking of experiments designed by DoE and MBDoE.   

The availability of the models thus identified from the experimental data allows the definition of the best 

experimental conditions to be used in order to estimate the model parameters with the greatest precision. 

An example is given in Figure 2a, where relative Fisher Information (RFI) is evaluated for a ranking of 

the preliminary experiments (E1-E21). Each proposed model shows a different response in terms of RFI 

to a change in experimental conditions. In particular:    



1. an increment in temperature would be beneficial for Model 2, but would be unhelpful for the 

estimation of Model 1 and Model 3 kinetic parameters;  

2. an increment on oxygen concentration is beneficial for the identification of all the proposed models;  

3. an increase in methanol concentration is beneficial for the identification of Model 2 and 3, while a 

maximum in the information level is realised for Model 1;   

4. an increment in water concentration increase the information for Model 1 and 2, while does not really 

affect Model 3 information.    

A screening of the design space D allows to identify the most significant experimental regions to be 

investigated for the identification of a given model. In Figure 2b the preliminary design (E1-E21) points 

are indicated by red spheres and compared to points generated by a D-optimal design  (DoE, green/black 

spheres and green stars) and by a model-based design of experiments (MBDoE, blue sphere). DoE is 

based on a quadratic regression model, while MBDoE is based on the proposed detailed kinetic models as 

a result of the optimisation (16). Figure 2c shows the most informative experimental regions, identified 

by the highest values of RFI. The optimal experimental settings dictated by MBDoE are: 

 T = 800 K, P = 165000 Pa, F = 26 mL/min;  

 methanol, oxygen and water initial molar fractions:  T22.010.016.00 y .   

Highly informative experiments are always characterised by high CH3OH, O2 and H2O concentrations 

(blue sphere and green stars in Figure 2b), while experiments at low methanol concentration in the feed 

should always be avoided (black spheres), as they would provide a very limited amount of information. 

Conclusions 

A discrimination of simplified kinetic models of methanol oxidation on silver has been carried out, 

underlining a better representation of experimental results when dehydrogenation and a selective 

oxidation step are included in the model formulation, paving the way to new (possible) model 

formulations. Furthermore, a new model-based design of experiments (MBDoE) methodology has been 

proposed and applied for a ranking of the available experiments showing the best experimental conditions 

to be used for a precise estimation of the set of kinetic parameters of the proposed candidate models.  

List of abbreviations used  

AIC = Akaike Information Criterion   

FIM = Fisher Information Matrix 

MBDoE = Model-based Design of Experiments 

PFR = Plug Flow Reactor 

RFI = Relative Fisher Information 
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