
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=rrme20

Download by: [University of London] Date: 28 July 2016, At: 05:35

Research in Mathematics Education

ISSN: 1479-4802 (Print) 1754-0178 (Online) Journal homepage: http://www.tandfonline.com/loi/rrme20

To what extent are students expected to
participate in specialised mathematical discourse?
Change over time in school mathematics in
England

Candia Morgan & Sarah Tang

To cite this article: Candia Morgan & Sarah Tang (2016) To what extent are students
expected to participate in specialised mathematical discourse? Change over time in
school mathematics in England, Research in Mathematics Education, 18:2, 142-164, DOI:
10.1080/14794802.2016.1174145

To link to this article:  http://dx.doi.org/10.1080/14794802.2016.1174145

© 2016 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 06 Jul 2016.

Submit your article to this journal 

Article views: 53

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=rrme20
http://www.tandfonline.com/loi/rrme20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/14794802.2016.1174145
http://dx.doi.org/10.1080/14794802.2016.1174145
http://www.tandfonline.com/action/authorSubmission?journalCode=rrme20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=rrme20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/14794802.2016.1174145
http://www.tandfonline.com/doi/mlt/10.1080/14794802.2016.1174145
http://crossmark.crossref.org/dialog/?doi=10.1080/14794802.2016.1174145&domain=pdf&date_stamp=2016-07-06
http://crossmark.crossref.org/dialog/?doi=10.1080/14794802.2016.1174145&domain=pdf&date_stamp=2016-07-06


To what extent are students expected to participate in
specialised mathematical discourse? Change over time in
school mathematics in England
Candia Morgan and Sarah Tang

Department of Curriculum Pedagogy and Assessment, University College London Institute of Education,
London, UK

ABSTRACT
From a discursive perspective, differences in the language in which
mathematics questions are posed change the nature of the
mathematics with which students are expected to engage. The
project The Evolution of the Discourse of School Mathematics
(EDSM) analysed the discourse of mathematics examination
papers set in the UK between 1980 and 2011. In this article we
address the issue of how students over this period have been
expected to engage with the specialised discourse of school
mathematics. We explain our analytic methods and present some
outcomes of the analysis. We identify changes in engagement
with algebraic manipulation, proving, relating mathematics to
non-mathematical contexts and making connections between
specialised mathematical objects. These changes are discussed in
the light of public and policy domain debates about ‘standards’ of
examinations.
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Introduction

Politicians, university mathematicians and the media in many countries are prone to make
pronouncements about changes in the quality of school mathematics. These claims are
often based on anecdotal evidence or upon the basis of uncritical or flawed interpretation
of changes in success rates in national examinations or rankings in international surveys
such as the Programme for International Student Assessment (PISA). It is, however,
notoriously difficult to make comparisons over time of the quality of student experience
and learning as curricula, forms of pedagogy and the assessment instruments themselves
have all changed, while the students themselves and the classrooms in which they have
learnt are no longer available for us to study. The project The Evolution of the Discourse
of School Mathematics (EDSM) has sought to investigate change in school mathematics in
England over the last three decades of curriculum and assessment reforms, developing a
methodology that uses high-stakes public examinations taken by students at the end of
compulsory schooling as a window onto school mathematics. These examinations are
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taken to represent the nature of the mathematics that school students are expected to par-
ticipate in. The assumption that examinations provide us with a valid window onto stu-
dents’ curricular experience is justified by the strong influence that such high-stakes
examinations are known to have on the classroom implementation of curriculum (Broad-
foot, 1996). In this article we will present some of the findings of the EDSM project, focus-
ing on changes in the ways in which examinations set at different times have expected
students to engage with specialised mathematical forms of discourse. The first year of
examinations included in our study is 1980; the ‘Ordinary Level’ examinations in this
year have been taken as a base line immediately before the publication of the Cockcroft
report (DES, 1982) and the subsequent reforms to the curriculum and assessment in
England that resulted in the introduction of the General Certificate of Secondary Edu-
cation (GCSE) examinations in 1988. Other years were chosen in order to attempt to
capture the effects of changes in policy and practice during the period. Details and expla-
nation of our data set, including the reasons for selecting eight specific years from 1980 to
2011, are given in Morgan and Sfard (this issue).

Mathematics in general and school mathematics in particular are specialised practices
with ways of communicating, including ways of reasoning, that are distinctive. It is thus
possible to speak of mathematical discourse as the forms of communication used in math-
ematical practices. In the EDSM project, we have adopted a discursive perspective estab-
lished by Sfard (2008) that identifies doing mathematics with participating in
mathematical discourse. Learning mathematics is conceptualised as learning to communi-
cate in ways that are recognisably mathematical. By studying the forms of discourse in
high stakes examinations taken at the end of compulsory schooling, we thus gain
insight into the nature of the participation in mathematical practices that is expected of
school students. A fuller discussion of the theoretical foundations of the project is given
in Morgan and Sfard (this issue).

This discursive perspective is opposed to that found in most research related to the
language of examinations, which tends to conceive of language as an obstacle or barrier
that prevents some students from accessing the mathematics. For example, researchers
have attempted to identify how the presence of various linguistic and other textual features
affect the difficulty of mathematics test questions. The features studied have included:
specialised vocabulary and complex grammatical structure (Abedi & Lord, 2001; Barbu
& Beal, 2010; Shaftel, Belton-Kocher, Glasnapp, & Poggio, 2006); use of passive verb
forms and impersonal presentation of problems (Abedi & Lord, 2001); item structure
(Fisher-Hoch, Hughes, & Bramley, 1997); interactions between vocabulary, context and
cultural aspects (Pollitt, Marriott, & Ahmed, 2000); spatial lay-out of questions (Crisp
& Sweiry, 2003). Such research and the use made of it by the examination boards in
designing examination questions tends to be based on the assumption that simplifying
the language makes it easier for students to access a question but leaves the mathematics
essentially unchanged, although studies investigating performance of second language
learners and students with learning difficulties suggest that the assumption that simplify-
ing the language improves access is not universally valid. For example, Shaftel et al. (2006)
report that these groups are not disproportionately affected by the presence of linguistic
features such as passive voice in mathematics tests. While accepting that simplifying the
language (or changing it in other ways) may make a question more accessible, we reject
the dualism that separates mathematics and language. The notion that some linguistic
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difficulties can be removed because they are ‘construct-irrelevant’ is flawed. Instead we
argue that, however carefully linguistic changes are made by those designing examination
questions, changing the language inherently changes the nature of the mathematics that
the student is expected to engage with. The aim of our analysis is not, therefore, to deter-
mine whether examinations have changed in difficulty (either linguistic or mathematical)
but to understand how the practice of school mathematics itself may have changed.

Sfard (2008) characterises mathematical discourse as comprising four aspects: vocabu-
lary and syntax; visual mediators; routines; endorsed narratives. We have taken these four
aspects as a starting point for structuring our scheme for analysing the nature of the math-
ematics in examination papers. In this article we present a part of the analysis, focusing in
particular on the extent to which the examinations make use of specialised school math-
ematical discourse as opposed to colloquial or everyday discourse. In the next section we
define the components of specialisation included in this analysis and outline the analytical
tools used and the overall approach to analysis. We then present some of the results of the
analysis, addressing the question of whether expectations about student participation in
specialised school mathematical discourse have changed over the period of our study
and, if so, in what ways. Finally, we discuss the implications of these results and consider
how they contribute to debates about changing standards in school mathematics.

Method of analysis

According to social semiotics, the way in which language and other modes of communi-
cation is used functions to construe our experience of the world. This construal is what
Halliday (1978) terms the ideational metafunction of language. A fundamental way in
which the ideational metafunction is realised in the lexicogrammar1 of texts is through
the system of transitivity, that is, through the processes and the actors (both human and
non-human) in those processes (Halliday, 1985). By investigating the nature of the processes
included in a school mathematics text and the objects and/or people that are actors in those
processes we may construct a picture of how that text construes the nature of mathematics:
What are the objects of mathematics? What activities are considered to be mathematical?
In what ways may humans be actors in mathematical activities? (Morgan, 2006).

Our investigation of the lexicogrammar of the discourse of mathematics examinations
focuses on the extent to which the objects and processes present in examination texts are
specialised objects and processes, defined and used in ways distinctive to school math-
ematical practices, hence construing school mathematics as a specialised practice. Conver-
sely, we also consider the extent of extra-mathematical content in the form of non-
mathematical contextualisation of examination questions.

A further significant characteristic of specialised mathematical discourse is objectifi-
cation. Objectification is described by Sfard (2008) as a process by which speaking about
our experience creates metaphorical objects (such as conception or learning disability or
function) that then appear to have an independent existence akin to that of material
objects. Sfard identifies two components of the objectification of mathematical dis-
course: reification, a term that refers to the movement from speaking about processes
to speaking about objects, and alienation, the presentation of phenomena as if they
occur independent of human action. Within the EDSM project we have considered
alienation to contribute to the construal of the origin of mathematical knowledge
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(addressing the place of human beings in mathematical activity). This characteristic is
therefore included in a different section of the analytic scheme, discussed in Morgan
(this issue). In this article, our analysis of objectification includes attention only to
the reification component. We have identified instances of reification as specialised
words that encapsulate processes into an object. One way in which reification occurs
is through use of nominalisation, identified by Halliday (1993) as a phenomenon
used extensively in scientific discourse. Nominalisation is a ‘grammatical metaphor’
by which a process word is transformed into an object word. For example, the active
process reflect is reframed as the object reflection. Additionally, Sfard (2008) points
out that many specialised mathematical objects, such as function, sequence and even
number words, also contribute to the reification of mathematical discourse.

Table 1 shows the part of the analytic scheme developed in the EDSM project that was
used to investigate these aspects of specialised mathematical discourse in the examination
papers. We will discuss these properties of specialised mathematical lexicogrammar
further in the following sections of this article, together with some of the results of the
analysis. The extract in Table 1 illustrates the structure of the complete scheme: for
each discourse property, one or more subsidiary research question is posed to guide the
analysis and textual indicators are identified that enable us to identify instances of the
property in the examination texts. (See Morgan and Sfard in this issue for the complete
analytic scheme.)

Codes were developed for each of the textual indicators. For example, considering the
property of specialisation at the level of vocabulary, nouns and verbs within each exam-
ination paper were allocated to one of the codes School Mathematics (SM) or Non-
School Mathematics (NSM). At the levels of sentence and question, an additional code
Mixed was introduced to account for longer pieces of text that incorporated both special-
ised and non-mathematical aspects. The definitions of these codes are elaborated in the
next section. The depth of engagement with the non-mathematical context at the level

Table 1. Extract of the EDSM analytic scheme: specialisation and objectification.
Property of the
discourse Subsidiary research questions Textual indicators

Specialisation To what extent is specialised vocabulary used? . lexical items used in accordance with
mathematical definitions or in ways distinctive
to school mathematics, considered at the level
of:
○ vocabulary
○ sentence
○ text unit (question)

. extra-mathematical context
○ depth of engagement with context

Reification of the
discourse

To what extent does the discourse speak of
properties of objects and relations between
them rather than of processes?

. nominalisation: use of a ‘grammatical
metaphor,’ converting a process (verb, e.g.
rotate) into an object (noun, e.g. rotation)

. the use of specialised mathematical nouns such
as function, sequence which encapsulate
processes into an object
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of question was then additionally coded as deep, mundane or ritual (see section 4 for defi-
nition of these terms). The coding tree for specialisation of the discourse was thus as
shown in Figure 1.

Initially, one of the authors coded the full data set. A sub-sample was then coded
independently by the second author. Inter-rater reliability was not computed because
discrepancies were discussed and resolved, resulting in redefinition of some codes in
order to tighten the descriptions; review and recoding of the data set was then done
by the two authors in consultation with one another. Using NVivo, we were able to
interrogate the data, both obtaining quantitative summaries (e.g. How many specialised
SM nouns occurred in the examinations in each year?) and extracting sub-sets allocated
to particular codes (e.g. the set of all verbs coded as specialised to School Mathematics).
In the next section, we discuss the definition and application of the coding at the level
of vocabulary, then present some of the results of the analysis.

Specialised vocabulary

The use of specialised vocabulary is probably the most obvious characteristic of mathemat-
ical discourse. While we have argued that over-emphasis on vocabulary results in an impo-
verished view of mathematical discourse (Morgan, 2005), nevertheless the use of
specialised vocabulary is an essential component of specialised mathematical activity.
When an object or a process is named, that object or process becomes available for our
mathematical thinking. The first measure of specialisation of the language is thus taken
to be the objects and processes present in the text, coded at the level of vocabulary as
specialised to the discourse of school mathematics or non-specialised. A word is coded
as specialised to the discourse of school mathematics (SM) if:

(a) it has a mathematical definition and is used in accordance with that definition; for
example, in the statement The centre of the hexagon is O, the terms centre and
hexagon are both coded as SM.
or

Figure 1. Coding tree for specialisation.
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(b) it is widely used in mathematics classrooms and learning materials and is located in a
segment of text distinctive to school mathematics; for example, the process find in the
text segment find the value of… is coded as SM.

Symbolic expressions for objects (e.g. algebraic expressions, equations and names for
geometric objects such as O in the example given in a) above) were also coded as SM.
An equation may be considered either as a single object or as a complete sentence in its
own right. We have chosen to consider all equations only as objects for the purposes of
this part of the analysis. Other objects and processes were coded as non-specialised
(NSM). Non-specialised vocabulary mainly included terms used in colloquial or everyday
ways, generally found in questions involving non-mathematical contexts. For example, a
question on statistics started with the sentence:

The table gives some information about the delays, in minutes, of 80 flights. (Edexcel GCSE
Mathematics (Linear), Paper 3 Higher Tier, June 2010, question 22)

In this sentence the objects delays and flights were coded as NSM, while table, information
and minutes were coded as SM. Clearly in this example each of the object words coded as
SM may also occur in everyday discourse. However, we would argue that the way they are
used in the context of this examination question is distinctive to school mathematics. In
particular, there is an expectation that students will make use of these objects to perform
mathematical actions: extracting numerical information from the table and calculating
with it, giving answers in minutes.

In a small number of questions there were also words from other specialised discourses.
For example, a question involving calculating upper and lower bounds started:

The voltage V of an electronic circuit is given by the formula V = I R where I is the current in
amps and R is the resistance in ohms. (Edexcel GCSE Mathematics (Linear), Paper 4 Higher
Tier, June 2010, question 26)

In this question, the words voltage, circuit, current, resistance and ohm may be considered
part of a specialised scientific discourse but they are not part of school mathematics dis-
course and knowledge of them is not essential to successful engagement with the question.
Although not part of everyday discourse, for the purposes of this study we have coded
these scientific terms as non-specialised (NSM).

Although we used NVivo to support the coding and interrogation of the data, the
process of coding was done almost entirely manually as in many cases decisions about
whether a particular word may be considered specialised or non-specialised can only be
made within the context of its use. For example, the object line is considered specialised
in the following text:

The line passes through the point (2,4).

but not here:
John passed the finish line in 12.2 seconds.

Specialised words do not stand by themselves but may be incorporated into sentences and
into whole questions that may be characterised as specialised school mathematical or
mixed, involving both specialised and non-specialised discursive features. There are also
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sentences that are entirely non-specialised, containing no specialised vocabulary. In this
section, we present some results of the analysis of specialisation at the level of vocabulary.
In section 4 we look at the extent of specialisation at the level of whole questions.

The charts in Figure 2 show the extent of specialisation of the vocabulary in the exam-
ination papers for each year in our data set. They are based on a simple categorisation of
objects (nouns and nominal groups) and of processes (verbs) as specialised to school
mathematics (SM) or non-specialised (NSM). The specialised objects also included
those given in symbolic mode such as variable names, algebraic expressions and equations.
The earliest examinations in our data set, sat in 1980 before the major reform of the exam-
ination system, stand out with a higher proportion of SM vocabulary: 63% of objects and
55% of processes. Apart from this pre-reform year, the proportions show relatively little
variation with specialised vocabulary comprising between 44% and 53% of the objects
and between 39% and 45% of the processes. The results of a two-tailed Z-test, shown in
Table 2, were used to compare the proportions of specialised objects and processes in
1980 to those in each other year. The proportions of both specialised objects and special-
ised processes in 1980 were significantly greater than in each of the other years (p < 0.01 in
every case). The year with the lowest proportion of specialised vocabulary (both objects
and processes) was 1991, the first year in our data set after the full implementation of

Figure 2. Proportions of specialised school mathematics and non-specialised objects and processes: (a)
Proportions of object words specialised to school mathematics and non-specialised objects; (b) Pro-
portions of process words specialised to school mathematics and non-specialised processes.
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the National Curriculum and GCSE examination system. The Z-test results in Table 2
confirm that the proportion of specialised objects in 1991 was significantly lower than
1980, 1987, 1999 and 2004 (p < 0.01 in each case). Other comparisons were not significant
at the 1% level.

In order to understand better what changes may have taken place in the nature of
specialised school mathematics discourse, a more detailed comparison of the nature of
the specialised vocabulary was conducted for a sub-set of three years taken from the
data set: 1980 (pre-reform and most highly specialised), 1991 (least specialised) and
2011 (the most recent year in our data set). Lists of specialised objects and specialised pro-
cesses for each of these years were extracted from the database. We consider each of these
in more detail.

Specialised objects

The list of objects was first separated into those presented in purely symbolic form (includ-
ing algebraic variables, expressions and equations and geometric objects named by labelled
vertices) and those presented as words. The object words were then examined to identify
distinct ‘school mathematics’ object words, some of which were modified in several ways
(e.g. acute angle, right angle, angle of depression have all been included in the single distinct
category angle).

As may be seen in Table 3, examination papers in 1991 contained a lower proportion
of objects in symbolic form as well as having a lower proportion of specialised school
mathematics objects as a whole compared to the other years. It might be thought that
this indicated a lower expectation of student engagement in specialised mathematical
discourse in this year. Indeed, the analysis of specialisation at the level of whole ques-
tions tends to support this conclusion, as a very high proportion of questions in 1991
were set in a non-mathematical context (see Figure 6 and the discussion of contextua-
lised questions in section 4). However, it is also notable that students taking the exam-
ination in 1991 were expected to engage with a wider variety of mathematical objects. As
may be seen in the final row of Table 3, the number of distinct specialised objects in
1991 exceeded the totals in each of 1980 and 2011 by more than 20%. In interpreting
these figures, it is important to take into account the different length and structure of

Table 2. Proportions of specialised vocabulary – objects and processes.
1980 1987 1991 1995 1999 2004 2010 2011

proportion of specialised objects 0.63 0.51 0.44 0.47 0.53 0.52 0.48 0.48
Z-score comparing each year to 1980 … 5.48 8.43 7.58 4.35 4.71 6.40 6.54
Z-score comparing each year to 1991 -8.43 -3.52 … -1.39 -4.31 -3.93 -1.88 -1.73
proportion of specialised processes 0.55 0.45 0.39 0.39 0.43 0.43 0.40 0.39
Z-score comparing each year to 1980 … 2.76 4.15 4.40 2.99 3.04 3.90 4.05

Table 3. Specialised objects – symbolic and verbal.
1980 1991 2011

All SM objects (% of all objects) 553 (63%) 570 (44%) 507 (48%)
Objects in symbols (% of SM objects) 246 (44.5%) 179 (31.4%) 193 (38%)
Distinct SM non-symbolic object words (rate per question) 115 (3.19) 143 (3.11) 118 (1.30)
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examination papers. Although the time allowed for each examination has remained
relatively constant, more recent papers contain many more separate questions. In
2011, the number of distinct specialised objects per question was considerably lower
than in the other two years considered here. Although the extent of distinct specialised
objects that students were expected to deal with was similar in 1980 and in 2011, the
density of such objects within individual questions (the number of distinct specialised
objects per question) was lower, meaning that students were required to coordinate
fewer distinct objects in order to engage with the question. The consequences of such
lower density of specialised vocabulary are discussed in section 5 in the context of
the analysis of objectification.

Of the distinct SM object words found in 1980, 1991 and 2011, only 41 were found in
all three years. In each year, approximately 20% of the distinct objects were found only in
that year. Of course, examinations inevitably contain only a sample of the content of the
curriculum so we would expect there to be some variation in the specialised vocabulary.
It is, however, clear that the variation between the two extreme dates also represents a
change in the emphasis of the curriculum. Of those 39 objects found in 1980 but not
in 2011, 17 were related to geometry (base, bisector, chord, corner, diagonal, elevation,
hexagon, mid-point, pentagon, plan, point, rhombus, segment, six-pointed star, tangent,
vertex) and two were related to statistics (bar chart, pie chart), while of the 35 objects
found in 2011 but not in 1980, just two were related to geometry (polygon, prism) and
13 to statistics (class, distribution, histogram, interval, key, mean, median, mode, plots,
probability, questionnaire, sample, survey). This is consistent with the inclusion of Hand-
ling Data in the National Curriculum from 1988 (DES/WO, 1988), which greatly
increased the emphasis on statistics. Although the revised version of the National Cur-
riculum introduced in 2000 (DfEE, 1999) attempted to reinstate some of the Euclidian
geometry content omitted from earlier versions, it appears that this has not resulted
in a return to the same level of expectation of student engagement with the specialised
discourse of geometry.

Figure 6. Degree of contextualisation (all questions).
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Specialised processes

The lists of specialised processes in each of the three years were also compared. These
included processes involving manipulation of mathematical objects (e.g. calculate, sim-
plify, rotate) and processes involved in mathematical problem-solving, reasoning and
communication (e.g. explain, prove, describe). The numbers of distinct specialised pro-
cesses were very similar across the three years: 31 distinct words in 1980 and 30 in each
of 1991 and 2011. In all three years, the majority of these words are imperatives, instruct-
ing students to carry out mathematical processes. A notable exception is the process give.
Apart from a small number of instances of imperatives in which students are instructed to
‘give’ an answer, this verb was mainly found in the non-finite forms given that… , given by
… , and giving… , used as a form of connective between mathematical statements. This
usage was found extensively in the examination papers from 1980 (23 instances) and
1991 (11 instances), but only in three instances in 2011. The almost complete eradication
of the use of give as a connective is consistent with a more general simplification of the
complexity of the syntax of more recent examination papers. Although some forms of
complexity are typical of mathematical discourse, the section of the EDSM analytic
scheme dealing with specialisation focuses only on vocabulary. Syntactic and logical com-
plexity are included in a separate section of the analytic scheme; some preliminary results
were reported in Morgan, Tang, and Sfard (2011).

Across the three years considered here, 15 SM processes were found in all three years:
calculate, construct, describe, estimate, express, factorise, find, give, make, represent, show,
simplify, solve, take, work out. The frequencies of the most common of these are shown
in Table 4.

Although instructions such as find or work out do not specify the specialised nature of
the mathematical processes expected, we have included them in this analysis because their
use is characteristic of school mathematics discourse and the mark schemes for the exam-
inations indicate that they are expected to prompt specialised mathematical activity by stu-
dents. For example, of the four marks allocated for the question shown in Figure 3, one
was given for demonstrating use of the calculation 1–(0.2 + 0.1 + 0.5) ‘or equivalent’ for
part (a) and another for showing the calculation 800 × 0.2 for part (b) (Edexcel, Mark
Scheme, June 2011, GCSE Mathematics (1380), Paper 4H).

It is interesting to note the emergence of work out by 2011 as the dominant instruction
to students, taking over much of the functions of calculate and find, more commonly used
in the earlier years. Figure 4 shows how these instructions have varied across all the years
in the data set.

Table 4. Frequency of the most common school mathematics processes found in 1980, 1991 and 2011.
1980 1991 2011

Calculate 30 55 12
Find 31 36 14
Show 10 7 7
Simplify 5 1 8
Give 23 19 3
Prove 8 1 1
Solve 3 6 13
Work out 1 1 30
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Work out seems to indicate a less specialised discourse than calculate, which specifies a
particular kind of mathematical activity. Yet it is simultaneously more directive than find
in that it indicates that some “work” needs to be done. Indeed, a common hint we have
heard teachers give when preparing students in GCSE examination techniques is that
the instruction to “find” means that you can just write down the answer, whereas, if
instructed to “work out”, you need to show the steps in your working. A tendency to
be more directive is apparent in the higher occurrence of simplify and solve in 2011. All
years included some explicit instructions to perform algebraic manipulations, though
sometimes using instructions such as “calculate the value of x” or simply “find x”,

Figure 3. Edexcel GCSE Mathematics (Linear) – 1380, June 2011, Paper 4 Higher Tier, question 1.

Figure 4. Variation in instructions to students to calculate, find or work out.
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rather than “solve”. The examination papers set in 2011 included 18 questions involving
such explicit instructions, sometimes with several separate explicit tasks within a single
question. The examinations in 1980 and 1991 included only seven and eight such ques-
tions respectively but also included several questions that implicitly expected students
to perform algebraic manipulations in the course of finding the required answer. An
example of such an implicit expectation to use algebraic manipulation is shown in
Figure 5.

An increase in the explicitness of instructions to use specific mathematical methods
may contribute to reduction in student participation in independent decision-making.

One important change in the frequency of specialised mathematical processes is the
almost complete disappearance of prove, with only one instance of this process in each
of the years 1991 and 2011. The decrease of prove is in part, but by no means completely,
mitigated by some uses of show. Show is used in several ways in the examination papers,
two of which (show that and show how), involve a request for justification of a solution,
either a solution offered within the examination question itself (e.g. “Show that OP

��
is par-

allel to the vector a + b”) or a solution demanded of the student (e.g. “Show how you
decide”).

Investigation of the occurrence of prove and these uses of show across all the years in
our data set, shown in Table 5, suggests that there has been a change in the nature of the
specialised mathematical discourse of examinations and increasing distance between what
is expected of school students at the end of compulsory schooling and this crucial com-
ponent of the practice of mathematicians. There is a large discontinuity between 1980,
when there were 0.44 occurrences of prove or show that/how per question, and the later
years, when the rate ranged from 0.03 to 0.16. Moreover, apart from a slight anomaly
in 2004, Table 5 suggests a further downward trend in both the absolute number of occur-
rences and the rate of occurrence per question.

Although we have argued that asking students to ‘show that’ or to ‘show how you
decide’ is close to a request to ‘prove’, as show is more widely used in non-mathematical
discourse, it may function to allow students more scope to provide a range of mathemat-
ical or non-mathematical justifications (which may or may not be considered legitimate
answers in the examination context). This discursive openness or ambiguity was demon-
strated by some student responses in a later phase of the EDSM project when students
were given a test containing questions involving a variety of discursive characteristics.
One question asked students to calculate the volume of a cylindrical glass, state whether
it would hold the contents of a ½ litre bottle of water, then “Show how you decide”.
Several students drew on non-mathematical discourses to explain their decision. For
example, one used informal “remembering” of everyday experience, writing:

Figure 5. Implicit expectation of algebraic manipulation. University of London GCE Ordinary Level
Mathematics Syllabus B Paper 2, June 1980.
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The volume of the glass and size is big enough for ½ a litre of water to fit in. Worked it out by
using my ruler to work out how big the glass would actually be and then remembering the
size of ½ litre bottles and 1 litre cartons and comparing it. (student Y8/114)

In this case, the student’s response would certainly not have been considered acceptable,
although, from reading the examiners’ report following the original examination, the level
of reasoning demanded by the assessment criteria does not appear very sophisticated:

To gain the mark in part (b) candidates needed to state both “1⁄2 litre = 500” (ml or cm3) and
give the conclusion “No”. (OCR, 2011)

The difference between the discourse in 1980 and that since 1987 must be seen in the light
of the different student populations expected to take these examinations. The ‘O’ level
examination in 1980 examined a syllabus designed specifically for the highest attaining
students and it seems likely that those not deemed capable of attempting this examination
experienced a curriculum discourse that contained less emphasis on proving. The 1987
examinations included in our data set were a ‘joint’ syllabus, intended for students with
a wider range of attainment, and from 1988 all students followed a common GCSE sylla-
bus, albeit examined at different levels. The target population for all the examinations in
our data set included the highest attaining group so we can conclude that, at least for this
group, the expectation that they should engage in a discourse of proving decreased with
the change to a unified syllabus and appears to have continued to decrease since then.

Summary: specialisation at the level of vocabulary

The quantitative analysis suggests that the vocabulary found in the earliest examination
papers in our data set, taken from before the major developments in curriculum and exam-
inations following the Cockcroft report, was more highly specialised, as well as involving a
slightly higher proportion of symbolic objects. The examination papers from 1991 show a
distinctly smaller proportion of specialised vocabulary and this is associatedwith a highpro-
portion of contextualised questions. Differences in proportions of specialised vocabulary
across the years of the rest of the data set were small, showing no overall trend. When we
look more closely at the data, however, it suggests changes in the ways that students
appear to be expected to engage in mathematical discourse. In particular, there seem to
be changes in how students are directed to engage in algebraic manipulation as well as a
downward trend in the extent to which students are expected to engage in proving.

Contextualisation: specialisation at the level of whole questions

Some of the examination questions involved only specialised (SM) objects and processes.
These questions were coded as abstract. However, many of the examination questions in

Table 5. Occurrence of prove and show that/show how.
1980 1987 1991 1995 1999 2004 2010 2011

prove 8 0 1 4 2 7 0 1
show that/how 8 6 5 4 2 5 3 2
total 16 6 6 8 4 12 3 3
occurrences per question of prove and show that/how 0.44 0.11 0.13 0.09 0.06 0.16 0.03 0.03
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all years involve some kind of non-mathematical context. This is a widespread characteristic
of much of school mathematics in England, especially since the reforms of the late 1980s; the
National Curriculum emphasises the utility of mathematics and the need for students to
learn to apply mathematics. The curricular emphasis on application of mathematics in
context is clearly represented in the examinations studied in the EDSM project, although
contextualisation has been demonstrated to cause problems with the validity of assessment
(Cooper & Dunne, 2000). While some questions appear to demand mathematical modelling
of a novel situation, others suggest more routine application of familiar techniques to fam-
iliar situations. We consider the relationship between the mathematics and the context to be
a further aspect of the degree of specialisation, so developed a categorisation to enable us to
characterise the nature of contextualisation and to investigate it across the years of our study.

The categorisation is based on that used by Nyabanyaba (2002), though the specific
definitions of the categories and their application have been adapted. At the lowest
level, we identify what Nyabanyaba calls ritual context. Questions coded as ritual are
those which follow a pattern widely used in textbooks and other resource materials,
often as part of a repetitive exercise for practicing a particular skill.2 Many traditional
word problems are of this type, for example:

60% of the members of a youth club are girls. There are 12 boys in the youth club.
How many members are there in the youth club altogether? (OCR GCSE Mathematics Syl-
labus A, Paper 3 Higher Tier, June 2010, question 4)

A student who is well prepared for the examination will have done many questions with
similar structures (including, in particular, comparisons of numbers of boys and girls in a
group) and is likely to recognise the mathematics demanded and pick out the relevant
quantities and operations without any need to consider the reality of the context.

Questions coded as mundane are those which, while containing some element that is
unlikely to be familiar to students from repetitive exercises, nevertheless require
minimal engagement with the context in order to work out what mathematics needs to
be done. This category is wide, including: questions which give some novel contextual
information and then state explicitly the mathematics that needs to be applied to this
information; questions that are posed entirely in non-mathematical terms but involve a
familiar context that can be modelled in a straightforward way with a familiar routine
mathematical procedure; and questions that may on the surface resemble ritual word pro-
blems but demand some engagement with the context in order to give a ‘reasonable’
answer. The following example includes a non-routine context but states explicitly the
mathematical techniques required:

Martin won the 400 metre race in the school sports with a time of 1 minute. The distance was
correct to the nearest centimetre. The time was correct to the nearest tenth of a second.

(a) Work out the upper bound and the lower bound ofMartin’s speed in km/h. Give your
answers correct to 5 significant figures.

Upper bound… … … … … … … … … … … … … km/h
Lower bound… … … … … … … … … … … … … . km/h

(b) Write down an appropriate value for Martin’s speed in km/h. Explain your answer.
(Edexcel GCSE Mathematics Syllabus A, Paper 6 Higher Tier, June 2004, question 20)

Questions coded as deep demand more extensive engagement with the context in order
to determine how specialised mathematical discourse should be used. This may be because
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the context itself is unfamiliar, because the area of mathematics students are expected to
use is not routinely applied to similar contexts in school mathematics, or because the
student is expected to make a non-routine judgement about how the results of mathemat-
ical computation relate to the context, for example:

David is investigating weekly earnings. The earnings in pounds at one company are listed
below.
60 60 60 65 70 70 75
80 80 90 90 100 120 130
130 145 145 150 300 410 650
(a) David does not know which one of the mode, mean or median he should use to rep-

resent the employees’ earnings.
State which you would use, giving your reasons for rejecting the other two.
(b) Find the inter-quartile range and state why this is a better measurement than the range

to represent the spread of earnings at this company. (OCR GCSEMathematics Syllabus
A, Paper 5 Higher Tier, June 1999, question 8)

The application of the categories is clearly dependent on the researchers’ knowledge
and judgements about the usual curriculum experience of students taking these examin-
ations. The two authors have extensive experience of school mathematics practices and
learning resources in England, supporting our judgements of the likely familiarity of con-
texts and question types. As described in Section 2 above, the coding process included dis-
cussion and resolution of any discrepancies between our initial judgements leading to
tighter definition of the categories. The reliance of the definition of these categories on
knowledge of a particular curricular context means that it remains likely that other
researchers with different experiences of the curriculum would allocate questions to the
categories in slightly different ways. Moreover, similar questions, appearing in texts orig-
inating in different educational systems are likely to be coded differently, depending on the
common content of curriculum resources in those systems. Nevertheless, we are confident
that our analysis has sufficient validity to highlight variation in the nature of contextuali-
sation of examination questions over time. The proportions of questions coded in each
category are shown in Figure 6.

The first point to note is that the proportion of context-free ‘abstract’ questions fell
substantially between 1980 (64%) and 1987 (36%) (two-tailed Z-score = 2.5718, p =
0.0102) but has since recovered to approximately the 1980 level (between 60% and
64% in 2004, 2010 and 2011). While the initial drop was an immediate consequence
of the curricular emphasis on utility described above, the resurgence of abstract ques-
tions can be explained as a response to concern expressed by university mathematicians
and others about students’ lack of skills in algebraic manipulation (e.g. London Math-
ematical Society, 1995). A report by the School Curriculum and Assessment Authority
following the examination in 1995 called for increased emphasis on algebra in GCSE
examinations (SCAA, 1996). As seen in the discussion of explicit processes above, this
call has been followed by the inclusion of non-contextualised questions instructing stu-
dents to solve equations or simplify algebraic expressions.

Considering just the questions involving contextualisation, Figure 7 shows the pro-
portions of each degree of contextualisation within these questions. The proportion of
contextualised questions involving ‘deep’ context has remained consistently low through-
out the period, varying between 15% and 23%. The proportion of contextualised questions
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in which the context is categorised as ritual, however, rose substantially in the most recent
years of the data set from just 8% in 1980 to 42% and 39% in 2010 and 2011 respectively.
Thus in 2010 and 2011, not only had the proportion of completely specialised context-free
questions almost returned to the pre-GCSE level of 1980 but the degree of depth to which
students were expected to engage with context had fallen far below that expected in earlier
years. The curricular rhetoric about the importance of use of mathematics was not
reflected in the discourse of these examinations. More recent changes in examination spe-
cifications since the end of the EDSM study, in particular the emphasis on ‘functional
mathematics’ (which “requires learners to use mathematics in ways that make them effec-
tive and involved as citizens, to operate confidently in life and to convey their ideas and
opinions clearly in a wide range of contexts.” QCA, 2007, p. 19) may have reversed this
trend, though the discontinuity between official rhetoric and practice seen within our
data set suggests that such change cannot be taken for granted.

Objectification

As discussed in section 2 above, an important characteristic of specialised mathematical
discourse is the fact that it is highly objectified. In particular, many mathematical
objects are reifications of processes, formed either by grammatical metaphors (transform-
ing process words into object words) or by coining specialised words to refer to the reified
objects. The specialised objects identified by the process described in section 3 were further
examined and, where relevant, coded as reifications. Figure 8 shows the number of such
objects found in each year.

As was the case with specialised objects generally (see section 3), the number of distinct
reified objects has not varied enormously, though there was a slightly higher number
found in the 1990s than in either earlier or later years. It may thus be concluded that stu-
dents are expected to be able to engage with a broadly similar variety of such reified math-
ematical objects. However, it is worth noting that the number of questions in each
examination paper has increased substantially over the years. Figure 9 shows a decreasing

Figure 7. Degree of contextualisation (contextualised questions only).
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trend in the mean number of specialised reified objects per question and in the mean
number of distinct specialised reified objects per question.

Of course, the examinations in the earlier years comprised fewer questions but had
similar duration to those in more recent years. They thus expected students to spend
more time on a single question. It may not, therefore, be surprising that they should be
expected to engage with a greater variety of specialised objects in general and reified
objects in particular within the scope of a single question. In Figures 10 and 11, questions
from 1980 and 2011 are shown, addressing similar topics. Even though the 1980 question
is divided into shorter sub-questions, these sub-questions are related and there is an expec-
tation that the student should be able to make use of and form relations between the reified
objects: graph, function, equation and root as well as the objects f (x) and g(x), given in
symbolic mode. (Symbols used for objects such as functions and equations may also be
considered to be reifications but have not been coded as such in our analysis so far.)
The 2011 question involves only graph and equation together with two objects in
symbols. The process of solution is construed purely as a process solve rather than as invol-
ving the reified object root. Clearly, both questions involve objectified discourse. The
number of specialised reified objects in the 1980 question is not disproportionately
higher, given the number of marks allocated (12 marks compared to 4 marks for the
2011 question). However, we would argue that the intensity of the objectification is

Figure 8. Specialised reified objects.

Figure 9. Density of specialised reified objects per question.
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higher in the 1980 question, given the need to make more connections between specialised
reified objects (a possible 4C2 = 6 connections between graph, function, equation and root,
compared to just 1 connection between graph and equation).

Conclusion

The outcomes of the analysis that we have reported in this article illustrate the complexity
of the issue we have sought to address. Specialised mathematical discourse is a multi-
faceted phenomenon and it is difficult to formulate a simple answer to the question of
how its presence in school mathematics examinations has changed over the three
decades covered by our study. Rather than attempt to summarise our findings once
again, in this section we reflect first on methodological issues raised by the work reported
here and then on how the EDSM study of specialised discourse addresses two of the key
concerns raised in the public and policy domains during the period in relation to the ‘stan-
dards’ of examinations.

Figure 10. University of London, GCE Examination Ordinary Level, Mathematics Syllabus B (361), Paper
2, June 1980.

Figure 11. OCR GCSE Mathematics Syllabus A, Paper 4 (Higher Tier), June 2011.
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Methodological reflection

This article has taken the specialised nature of the discourse of school mathematics as its
focus, contrasting specialisation of vocabulary and of whole questions with everyday dis-
course and non-mathematical contexts and investigating the degree of objectification. We
have discussed just this one section of the EDSM analytic scheme, defining its terms and
illustrating the results of its application. In the course of doing so, however, it has been
necessary to draw on other parts of the analytic scheme in order to interpret the findings.
For example, in order to make sense of changes in the occurrence and use of the school
mathematical process give, discussed in section 3.2, it has been necessary to consider
how its use contributes to the syntactic and logical complexity of questions. Similarly,
interpretation of changes in the intensity of objectification (section 5), demanding that
students make more connections between specialised reified objects, needed to draw on
findings related to the length and structuring of examination questions.

It is perhaps inevitable that we have needed to consider a wider range of textual charac-
teristics in order to form interpretations of an analysis undertaken at the level of vocabu-
lary. Words (and symbolic expressions and graphical objects) do not stand alone, but are
integrated into sentences, questions, and whole examination papers. It is only by consid-
ering the place of a word within its immediate and wider contexts that we can seek to
understand its place within school mathematics discourse. Nevertheless, by focusing
initially on words in isolation, our analytic scheme has enabled us to handle a large
amount of textual data and to achieve a quantitative overview of variation in expectations
about student engagement with specialised vocabulary. Such an overview – of vocabulary
and of other specific linguistic features identified within our analytic scheme – was an
important step towards achieving our objective of addressing the question of how the dis-
course of examinations has changed over time. For example, the results of the analysis of
vocabulary allow us to report that examinations from 1987 to 2011 have demanded gen-
erally similar levels of engagement with specialised vocabulary, though these are markedly
lower than the pre-reform examinations of 1980.

However, supplementing the initial quantitative approach with more detailed analyses
and consideration of longer segments of text has enabled subtler insights into how the dis-
course has changed. For example, extracting the specialised process words and looking at
the distribution of specific processes brought to our attention differences in the ways that
students were instructed to perform algebraic manipulations. This led us to return to the
original examination papers in order to scrutinise the place of algebraic manipulation
more deeply. Looking in a qualitative way at all the questions involving algebraic manipu-
lation allowed us to see that recent examinations have made their expectations about use of
algebra more explicit. Again, this finding relates to another part of the analytic scheme,
contributing to our understanding of how opportunities for students to make autonomous
decisions about their mathematical activity have varied through the years.

The interconnectedness of our analytic categories and the movement between quanti-
tative and qualitative approaches present a challenge for us in communicating outcomes of
our study and for our readers in making sense of the methods and reported findings. We
hope that the current article presents a coherent narrative about specialisation and refer
our readers to other articles in this Special Issue for further details of the full analytic
scheme and the application of other parts of it.
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Engaging with the ‘standards’ discourse

Finally, we reflect on how the findings we have reported here address issues raised in the
public and policy discourse of ‘standards’. As mentioned earlier, concern was expressed
in the mid-1990s by, among others, university mathematicians (London Mathematical
Society, 1995) about a supposed decline in algebraic manipulative skills. This seems to
have resulted in a subsequent increase in completely abstract questions in the examinations.
However, our analysis suggests that recent expectations about student engagement with
algebra are nevertheless different from those in pre-GCSE days. In particular, the role
played by purely symbolic objects has changed: the specialised discourse still involves a
smaller proportion of objects in symbolic form than in the 1980s and there is increased
explicitness about the nature of the algebraic manipulation required. This suggests that,
although the amount of manipulation may have returned to close to 1980s levels, students
tend to be asked to perform specific manipulations in isolation, rather than to make use of
algebra in the course of solving a problem. While university mathematicians will find that
the examinations have addressed their concern about students’ manipulation skills, they
may still be disappointed by students’ participation in mathematical discourse that involves
use of algebra.

A second concern has related to the extent to which students are expected to engage in
independent problem-solving. The use of structured questions was raised as an issue by
the regulatory bodies at least as early as 1996 (SCAA, 1996). The number of questions
set in each examination paper has increased over the time period, although the time allo-
cated to the examinations as a whole has not changed substantially. Moreover, longer
questions have tended to be broken into steps. This affects the extent to which students
are expected to engage independently, an issue dealt with elsewhere in the EDSM
project. There are, however, other aspects of mathematical thinking that are associated
with problem-solving. In particular, we might expect that, when problems are divided
into shorter steps, there may be fewer opportunities to engage in some forms of reasoning.
From the data presented in this article, it appears that the expectation that students should
engage in proving has decreased substantially. At the same time, the disappearance of the
use of given that and a general reduction in use of logical connectives have changed the
nature of the logical reasoning expected.

By 2009 examination boards were required to include some ‘longer and unstructured’
questions (QCA, 2009). The examinations in the most recent years of our data set (2010
and 2011) involve more problems that have not been broken into steps, demonstrating
the response by the examination boards to concerns about lack of independent problem
solving. However, this does not appear to have reversed the changes in expectations
about reasoning. The reduction in the rate of specialised reified objects per question
may also be a consequence of shorter questions, although again this trend has continued
in 2010 and 2011 in spite of the inclusion of more unstructured questions. As suggested
above, mathematical discourse that includes a higher density of such objects provides
more opportunities for students to make connections between specialised objects and
more expectation that they should be able to do so.

A theme emerging from this discussion is that responses by the examination boards to
public debates and pressure from policymakers have effects that are not necessarily those
that are intended or desired. The increase in algebraic manipulation desired by university
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mathematicians has made manipulation an end in itself rather than a tool for problem-
solving. The return to unstructured questions may have introduced more opportunities
for students to make independent decisions but it has not been accompanied by increased
expectations that students should engage in proving or making mathematical connections.
Similarly, the rhetoric about the importance of being able to use mathematics in real world
contexts, by 2011, seemed only to have resulted in an increase in the shallowest level of
engagement with context.

A possible explanation for this apparent mismatch between intention and practice is
the continuing wish to make mathematics examinations accessible to the widest possible
population of students. As we identified in section 1, previous research on the language of
mathematics examinations has tended to focus on factors that affect the difficulty of items,
as measured by success in achieving the required answers, and the examination boards
have systematically attempted to avoid forms of language that they consider to
‘obscure’ the mathematics. Some of the textual characteristics that we have identified as
tending to decrease are among those likely to be considered linguistically challenging,
including:

. complex grammatical constructions such as given that… ;

. density of specialised reified objects;

. extensive contextual information.

If consideration of the effects of language focuses primarily on difficulty, then avoiding
these characteristics is likely to enable more students to access ‘the mathematics’. From a
discursive perspective, however, we have argued that such linguistic changes actually alter
the nature of the mathematics with which students are expected to engage. We would cer-
tainly not wish to dispute the political desire to enable students to gain access to success in
high-stakes examinations. However, we hope that the EDSM analysis of the changing
nature of school mathematics discourse can help those responsible for writing examin-
ation papers and for developing the curriculum and assessment system understand
better how changes to the language of examinations affect the possibilities for student
engagement in mathematical discourse.

Notes

1. The term lexicogrammar is used in systemic functional linguistics, indicating the continuity
between lexis and grammar.

2. Note that this use of the term ritual is different from that used in Sfard’s discursive approach
to refer to a particular type of routine (Sfard, 2008).
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