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Abstract 23 

With the surge of interest in understanding the evolution of environments and ecosystems on 24 

the early Earth, many proxies are being applied to ancient sedimentary rocks. The isotope 25 

composition of nitrogen recorded in sedimentary rocks (
15

Nsed) is one of these proxies. 26 

Nitrogen isotopes are now routinely used as a tracer of the global and regional marine N-27 

biogeochemical cycle during the Cenozoic and are increasingly being applied to the ancient 28 

rock record, including the Precambrian. The objectives of this review are (i) to articulate 29 

guidelines for using 
15

Nsed as a proxy for the past marine global N-biogeochemical cycle 30 

with an emphasis on the Precambrian and (ii) to develop a broad framework for interpreting 31 

the Precambrian 
15

Nsed record. Based on the isotopic pattern displayed by the present day N-32 

biogeochemical cycle, significant 
15

Nsed spatial variability is expected for most of the ocean 33 

redox structures envisaged for the Precambrian. Furthermore, fundamentally different N-34 

cycling processes may give rise to only subtly different 
15

Nsed signatures, which themselves 35 

may be masked or accentuated by post-depositional processes. Consequently, 
15

Nsed profiles 36 

from individual basins alone are insufficient for inferring behavior of the global nitrogen 37 

cycle. Rather, 
15

Nsed distributions based on data from multiple basins are essential. 38 

Furthermore, in order to interpret 
15

Nsed data from Precambrian sedimentary rocks with more 39 

confidence, several avenues of focused research are required. The effects of diagenesis and 40 

metamorphism and their manifestation in the 
15

N compositions of both bulk and kerogen 41 

records need to be better understood. Much more data are required in order to apply statistical 42 

approaches to interpreting 
15

Nsed variability within given geological time intervals. Finally, 43 

numerical modeling of the 
15

Nsed distributions expected from different redox scenarios 44 

envisaged for the Precambrian environment is necessary to establish a predictive template for 45 

interpreting the ancient nitrogen isotope record. In spite of the intrinsic complexity of the 46 
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
15

Nsed proxy and the great deal of work still required to realize its full potential, the available 47 

Precambrian 
15

Nsed record shows several intuitive features within the context of the inferred 48 

evolution of the marine N-biogeochemical cycle. The 
15

Nsed distributions are roughly similar 49 

in shape and amplitude to that of the present ocean, with a change in mode from +1 to +3‰ at 50 

ca. 2.7 Ga and transient excursions to 
15

N-enriched values at 2.7 and 1.9 Ga. Fundamental 51 

shifts in global marine N-cycling, perhaps related to stepwise oxygenation of the surface 52 

environment, are inferred, highlighting the potential of nitrogen isotopes to reveal clues about 53 

the evolution of early Earth.  54 

 55 

1. Introduction 56 

 57 

Characterizing the evolution of the marine nitrogen biogeochemical cycle through time and 58 

identifying its driving factors is critical to fully understanding the evolution of the Earth’s 59 

surface environments for at least two interconnected reasons. First, nitrogen (N) is present in 60 

the ocean mostly as the bioavailable species nitrate (NO3
-
), nitrite (NO2

-
), ammonium (NH4

+
) 61 

and dissolved organic nitrogen (DON). Because N is one of the major constituents of life 62 

(with C/N ratio between 4 and 10 for the oceanic phytoplankton), these bioavailable species 63 

exert a strong control on primary productivity, and hence on the biogeochemical C cycle (e.g., 64 

Tyrell, 1999; Falkoswki, 1997; Gruber and Galloway, 2008; Canfield et al., 2010). Second, N 65 

is also present in Earth’s atmosphere, mostly as di-nitrogen (N2), which is by far the most 66 

abundant gas in the atmosphere (78.06% by volume today), but also in trace amounts as N2O, 67 

NH3 and other NOx species, whose abundances are in part controlled by the marine N-68 

biogeochemical cycle. Both the N2 partial pressure and the abundance of these trace 69 
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greenhouse gas species in the atmosphere influence the global climate linking it to the N-70 

cycle (Buik, 2007; Goldblatt et al., 2009; Roberson et al., 2011; Thunell and Kepple, 2004). 71 

An obvious approach to reconstructing the evolution of the marine N-biogeochemical cycle, 72 

and hence its role in shaping ancient surface environments, is to interrogate the isotope 73 

composition of N preserved in sedimentary rocks (
15

Nsed). As for any geochemical tracer, the 74 

ability to extract meaningful paleoenvironmental information from N isotopes requires several 75 

conditions be met. First, reliable (precise and reproducible) 
15

Nsed measurements are 76 

necessary. Second, post-depositional processes must not have significantly modified 
15

Nsed 77 

values. Finally, and perhaps most challengingly, 
15

Nsed values must be related to processes in 78 

the biogeochemical nitrogen cycle.  79 

In the last 50 years, major progress has been made in understanding controls on N isotope 80 

signatures of nitrate, particulate organic matter, surface sediments (e.g. Somes et al., 2010; 81 

Tesdal et al., 2013; Thunell et al., 2004) and early diagenetic processes (e.g. Robinson et al., 82 

2012) in modern environments. Although many uncertainties remain, these studies have 83 

yielded several guidelines to the interpretation of N isotopes in modern sediments: (i) in 84 

anoxic basins and continental platforms, 
15

N of primary producers is transmitted to the 85 

sediment, (ii) the 
15

N value of primary producers typically reflects the 
15

N of assimilated N, 86 

and (iii) the speciation and 
15

N values of bio-available N in the surface ocean mostly depend 87 

on the dominant processes in the N cycle in the ocean (and hence on ocean redox structure). 88 

Available data indicate that 
15

Nsed signatures are faithful proxies for biogeochemical 89 

processes in the marine realm at least in the recent past (e.g. Galbraith et al., 2008). 90 


15
N analyses of ancient sedimentary rocks began in earnest in the 1980’s (e.g. Hayes et al., 91 

1983; Zang, 1988). In the case of Precambrian rocks, the field developed slowly for the 92 

subsequent 30 years mostly due to the technical difficulty of making measurements in N-poor 93 



 5 

samples. Two other issues have also historically impeded the application of N isotopes to the 94 

Precambrian: uncertainties about the preservation of a primary 
15

N signal in often 95 

metamorphosed samples and limited understanding of how the modern N cycle and its 96 

isotopic transcription into sedimentary organic matter can be applied to interpreting 97 

Precambrian datasets. However, recent technical advances have opened the door to rapid and 98 

reliable analysis of minute quantities of N, sometimes coupled with simultaneous analyses of 99 

organic carbon (e.g. Polissar et al., 2008). Application of the proxy has thus accelerated in the 100 

past five years. Numerous N isotopes studies in Precambrian sedimentary rocks have been 101 

performed with two broad objectives: (i) reconstructing the N-biogeochemical cycle and its 102 

relations to water column redox structure of Precambrian marine environments (e.g. Papineau 103 

et al., 2009; Busigny et al., 2013; Stüeken et al., 2013; Ader et al., 2014) and (ii) documenting 104 

the Precambrian evolution and radiation of organisms performing the main metabolic 105 

pathways of the N cycle, such as NH4
+
 oxidation (Thomazo et al., 2011), denitrification 106 

(Beaumont and Robert, 1999; Garvin et al., 2009; Godfrey and Falkowski, 2009) and N2-107 

fixation (Stüeken et al., 2015a). 108 

The application of N isotope systematics is bound to increase with a surge in interest in the 109 

coevolution of Precambrian environments and life, which is driving multi-proxy approaches 110 

to extract increasingly nuanced information about ancient nutrient cycling and metabolic 111 

pathways. In light of significant recent progress, it is timely to revisit and fortify the 112 

underpinnings of the nitrogen isotope interpretational framework as applied to the 113 

Precambrian. To this end, rather than reviewing how 
15

Nsed data have been interpreted in 114 

terms of the Precambrian marine N-biogeochemical cycle (e.g., Pinti and Hashizume, 2011; 115 

Thomazo et al., 2009; Thomazo and Papineau, 2013), our objectives are (i) to evaluate our 116 

confidence in applying the N isotope system to very old rocks and (ii) to identify future 117 
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directions of research to progress the application of the N isotope system to unraveling 118 

Precambrian environments and biogeochemical processes.  119 

We have subdivided this paper into six sections. The first four sections are dedicated to 120 

reviewing the main conditions required to extract meaningful information from N isotopes 121 

and to discuss their applicability to the Precambrian (Fig. 1): (i) That analytically reliable 122 


15

Nsed measurements can be made; (ii) That absence of post-depositional modification of 123 


15

N value of surface sediments after deposition can be demonstrated or inferred; (iii) That 124 


15

N values of surface sediments can be assumed to be systematically related to the 125 

composition of primary producers; and (iv) That 
15

N values of primary producers reflect 126 

speciation and isotope composition of the N assimilated in the photic zone. The fifth section 127 

explores the extent to which different possible modes of global marine N-cycling should 128 

translate into distinct and recognizable 
15

N signatures based on conceptual models of N-129 

cycling in oceans with different redox structure. The last section uses an updated compilation 130 

of published Precambrian 
15

Nsed data as a platform to identify and interpret the main features 131 

of the Precambrian N isotope record. 132 

 133 

2. 
15

N measurements of Precambrian sedimentary rocks 134 

 135 

Precambrian sedimentary rocks commonly contain little total N due to their typically low 136 

organic matter content and their long and often complex post-depositional history, 137 

(supplementary Table 1 and references therein). These low N-contents present an analytical 138 

challenge, which until recently strongly limited the acquisition of N isotope data. Isotopic 139 

measurements on Precambrian rocks are mostly bulk analyses (
15

Nbulk), in which the 140 
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measured N includes both organically bound N and nitrogen incorporated in minerals, 141 

typically in the form of NH4
+
 bound within clays and other silicate minerals. But N isotopes 142 

have also been measured in kerogens (
15

Nker), graphite, mineral separates (
15

NNH4) and fluid 143 

inclusions (
15

NN2). All measurements are made on gaseous N2 via gas-source isotope-ratio 144 

mass spectrometry (IRMS), but several methods and apparatuses have been used to oxidize 145 

organic-N and/or silicate bound NH4
+
 from ancient sedimentary rocks into N2 gas, which can 146 

then be measured by IRMS.  147 

In the classical method, N2 is produced offline from the sample material through sealed-tube 148 

(Dumas) combustion, purified in a vacuum line, and introduced via dual-inlet into a dynamic-149 

vacuum IRMS. This method is the most precise as it yields errors of less than ±0.3‰ (2), 150 

but it can only be performed for N2 quantities higher than 2 mole, limiting its use to samples 151 

containing more than 200 ppm N (for sealed tubes loaded with 200 mg of sample) (e.g. Ader 152 

et al., 2014). The first 
15

N data for Precambrian rocks were acquired on kerogen extracts by 153 

this technique (Hayes et al., 1983; Beaumont and Robert, 1999), albeit with a much poorer 154 

precision than the 0.3‰ (2), that can be achieved by modern techniques.   155 

In the static method, N2 is produced by either off-line sealed-tube combustion or on-line step 156 

heating and then purified in an ultra-high vacuum line with direct introduction into a static-157 

vacuum IRMS (e.g., Sano and Pillinger 1990; Wright et al., 1998; Boyd et al., 1993; Busigny 158 

et al., 2005). This approach allows 
15

N analyses on samples containing only a few ppm N. 159 

Only a handful of laboratories have produced 
15

N data using this technique. The Open 160 

University (e.g., Sephton et al., 2003), CRPG in Nancy (France) (e.g. Marty et al., 2013) and 161 

Osaka University (Japan) (e.g., Pinti et al., 2001; 2007; 2009) have employed an on-line step 162 

heating system. IPGP (France) has used both an on-line step heating system (e.g. Ader et al., 163 

2006) and sealed tube combustion (e.g., Thomazo et al., 2011; Busigny et al., 2013; Ader et 164 
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al., 2014). Results obtained at IPGP on bulk and kerogen samples with more than 100 ppm N 165 

using sealed tube combustion (and static mass spectrometry) are identical within error to 166 

those obtained on the same samples using the classic method (Ader et al., 2006; Ader et al., 167 

2014). In contrast, at IPGP the on-line step heating method was shown to yield non-168 

reproducible and lower N contents and N isotope composition for kerogens and bulk 169 

sediments (Ader et al., 2006). Using these static methods, it was demonstrated that for N 170 

contents below 100 ppm, it is essential to remove all sources of N-contamination during the 171 

sample preparation protocol. This can be achieved by sample degassing under vacuum at 172 

temperatures of at least 120°C to remove adsorbed atmospheric N2 followed by a sample pre-173 

combustion step to remove other types of contamination. This method is preferred for analysis 174 

of very low-N rocks (down to 1 ppm) but seems to be less precise, with an error of ± 0.5‰ 175 

(2) (Busigny et al., 2005; Ader et al., 2006; Thomazo et al., 2011).  176 

The coupling of automatic combustion and purification via an elemental analyzer to an IRMS 177 

via continuous flow (hereafter referred to as the CF-EA-IRMS method) is the most widely 178 

used technique for 
15

N measurements. However, its application to Precambrian rocks where 179 

N contents are usually low has long presented a challenge. The precision of this method is 180 

usually ±0.25‰ (1) for sediment samples with a N content > 700 ppm (Bahlmann et al., 181 

2010), but reproducibility drops off dramatically at lower N concentrations, requiring 182 

additional precautions such as correcting for blanks and ensuring complete sample 183 

combustion in order to avoid CO isobaric interferences (Beaumont et al., 1994). Bräuer and 184 

Hahne (2005), Papineau et al. (2009), Cremonese et al. (2014) and Stüeken et al. (2015a) 185 

described potential pitfalls and sources of error that may arise in analyzing N isotope ratios by 186 

CF-EA-IRMS. Yet, because this method is widely accessible and significantly less time-187 

consuming than the traditional method, most recent Precambrian 
15

N data has been acquired 188 
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by this method. The quality of results and validation of the technique should nonetheless 189 

always be fully discussed.  190 

Two new methods have recently been designed for analyses of samples with very low N 191 

content, and these may greatly increase the number of laboratories capable of measuring N 192 

isotope ratios in Precambrian rocks: the Nano-EA-IRMS (Polissar et al., 2008), which is an 193 

adaptation of the CF-EA-IRMS for smaller samples (but for which blank issues remain), and 194 

the combination of sealed-tube combustion with continuous flow IRMS (Bebout et al., 2007; 195 

Stüeken et al., 2015b), which dramatically improves blank control. Using the latter method, 196 

Stüeken et al. (2015) reproduced the same range of 
15

N values on samples from the ca. 2.7 197 

Ga Tumbiana Formation (Pilbara craton, Australia) as previously obtained by the static 198 

method by Thomazo et al. (2011).  199 

It is likely that in the future, in situ methods for 
15

N measurement in Precambrian rocks 200 

using SIMS types instruments will become increasingly available. These instruments are 201 

currently used for 
15

N measurements when variations on the order of several tens of per mil 202 

are expected (i.e. extraterrestrial samples and biologic samples of 
15

N-tracer experiments; 203 

Hoppe et al., 2013; Füri and Marty, 2015). To date, their poor reproducibility (>10‰) and 204 

lack of adequate N-isotope standards have precluded useful applications to Precambrian 205 

samples. Likewise, most in situ analyses of N concentrations in Precambrian organic matter 206 

have been done by NanoSIMS, but results have been semi-quantitative (Oehler et al., 2010; 207 

Wacey et al., 2013; 2014; 2015), or quantitative with poor reproducibility (around 20%; 208 

Oehler et al., 2006; 2009; Papineau et al., 2010; Alleon et al., 2015). This is because 209 

isotopically homogeneous standards of kerogen and graphitic carbon have seldom been tested 210 

and are not widely available. However, we expect this technique to evolve quickly; a recent 211 

preliminary report shows that in-situ 
15

N measurements on Precambrian microfossils by 212 
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NanoSIMS are promising and could yield a precision of ±2‰ (Delarue et al., 2015 213 

Goldschmidt abstract). 214 

   The lack of internationally recognized rock and mineral standards for nitrogen isotopes is a 215 

major shortcoming in the application of N isotopes to ancient sedimentary rocks. Internal 216 

standards are most commonly calibrated against IAEA-N1 and –N2 ammonium sulphate 217 

standards and used for the particular applications in each laboratory. Dennen et al. (2006) 218 

established two petroleum source rock reference materials (SDO-1, a Devonian Ohio Shale 219 

and SGR-1, an Eocene Green River Shale) and a modern marine sediment reference material 220 

(PACS-2) as a set of reference materials useful for analysis of 
13

C, 
15

N, C and N in organic 221 

material in sedimentary rocks. Compared to most Precambrian sedimentary rocks, these rocks 222 

have very high TOC and bulk N contents, from 3 to 24% and 0.27 to 0.81%, respectively, and 223 

their organic matter is immature so that most their N should belong to kerogen. In 224 

Precambrian rocks, organic mater is highly mature and bulk N content is usually very low 225 

(from 1 to 1000 ppm), whereas N distribution between kerogen and silicate is highly variable 226 

and poorly constrained. Hence, the development of a more suitable suite of rock standards, 227 

together with series of organic and inorganic N-isotope standards, would improve the 228 

reliability of data measured on ancient rocks.  229 

 230 

3. Post-depositional modifications of surface sediment 
15

N 231 

 232 

In thermally immature sedimentary rocks, N is mostly present as organic-N and fixed-NH4
+
, 233 

the latter of which substitutes for K
+
 in phyllosilicates (Müller, 1977; Freudenthal et al., 234 

2001). The partitioning between these two species depends mainly on the post-depositional 235 
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history of the sediment. In this paper, the term post-depositional is used to indicate the sum of 236 

the processes affecting sediments following earliest diagenesis, defined here as that which 237 

occurs in the water column and in the recently deposited sediments that are in diffusional 238 

contact with seawater. Post-depositional processes can be subdivided into three main 239 

episodes: long-term early diagenesis (driven mostly by microbial activity in sediment isolated 240 

from seawater), burial diagenesis (driven mostly by abiotic processes induced by compaction 241 

and temperature increase) and metamorphism (including metasomatism; i.e. fluid-rock 242 

exchange driven by circulation of external fluids). Our knowledge of the reactions affecting N 243 

speciation and its isotopic expression are summarized below for each of these three post-244 

depositional stages. 245 

 246 

3.1. Long-term early diagenesis 247 

During long-term early diagenesis, a component of the sedimentary organic matter is 248 

microbially remineralized, which liberates N as NH4
+
, N2, N2O, NO2

-
, or NO3

-
, depending on 249 

O2 concentration in porewaters. In most platform sediments today, porewaters become anoxic 250 

within a few tens of centimeters below the sediment-water interface such that NH4
+
 released 251 

by degradation of organic matter below the redoxcline is either oxidized to NO2
-
, NO3

-
 or N2 252 

and/or fixed into clay minerals. Up to 60% of sedimentary N can be bound as NH4
+
 in clays 253 

(Kemp and Mudrochova, 1972; Muller, 1977). In spite of a degree of mineralization and 254 

variable NH4
+
 fixation in clays, the isotopic composition of the bulk sediment (

15
Nbulk) 255 

remains fairly constant with depth in most sediments studied to date (Freudenthal et al., 2001; 256 

Prokopenko et al., 2006a,b,c; Khozu et al., 2011; Yamaguchi et al., 2010). Hence, in most 257 

studied modern sediments, the redistribution of N from the kerogen to the fluid (and possibly 258 

to clay minerals) has only small effects on the bulk N isotope budget of the sediments, 259 
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indicating that neither organic mineralization nor NH4
+
 fixation in clay minerals significantly 260 

fractionates N isotopes.  261 

However, in the case of sediments deposited in the oxygen minimum zones (OMZ’s) of the 262 

Eastern Subtropical North Pacific region, 
15

NNH4 values in the porewaters of the upper 4 m 263 

of sediments increase upward from values of +12‰ at depth to +20‰ near the sediment-264 

water interface (Prokopenko et al., 2006a). This pattern is explained by the fact that some 265 

microorganisms in the sediment actively transport NO3
- 

from the dysoxic to anoxic waters 266 

overlying the sediment into the first tens of centimeters of anoxic, NH4
+
-rich sediments 267 

(Prokopenko et al., 2013). NO3
- 

is then reduced to NO2
-
, which is then consumed during 268 

anaerobic anammox reactions that oxidize NH4
+
 to produce N2 (Kuypers et al., 2005). The 269 

anammox reactions strongly enrich the residual NH4
+
 in 

15
N (Brunner et al., 2013). Although 270 

the 
15

N-enriched NH4
+
 does not seem to have been fixed in clay minerals in proportions high 271 

enough to change the bulk sediment 
15

N in this instance, this may not always be the case. In 272 

particular, certain intervals of the Proterozoic must have been favorable for such diagenetic 273 

15
N enrichment. Until recently most models for the evolution of Proterozoic seawater redox 274 

suggested anoxic deepwaters, in which case this process would be unimportant, because no 275 

NO3
-
 would be available at depth in the water column. However, recent trace metal data 276 

suggest that anoxic waters may have covered only 30–70% of the seafloor (Partin et al., 2013; 277 

Reinhard et al., 2013). Whereas this estimate still represents an impressive extent of anoxic 278 

seafloor surface compared to a few percent today, it nonetheless implies that the remaining 279 

seafloor must have been bathed in dysoxic to oxic waters, in which NO3
-
 could have been 280 

generated and accumulated. Because of the absence of bioturbation, the sediment might 281 

nonetheless be anoxic immediately below the sediment-water interface. This configuration 282 

would be similar to that of the surface sediments presently intersected by OMZs, surface 283 

sediments being anoxic and overlain by nitrate-bearing waters, and would have multiplied the 284 
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locations where biologically active transport of NO3
-
 by bacteria from the water column into 285 

surface sediment may have occurred, fuelling anammox and hence possibly increasing 286 


15

Nsed. Coupling the 
15

N analyses of the kerogen extract to that of the bulk sample might 287 

thus be useful for identifying such environments in the Precambrian. Provided that neither 288 


15

NNH4 nor 
15

Norg have been altered by later post-depositional processes, and that 
15

NNH4 is 289 

not influenced by a contribution from detrital clay minerals, 
15

Nker could be used to infer the 290 

nature of N biogeochemical cycling in the water column, while 
15

Nbulk > 
15

Nker would 291 

suggest NO3
-
 bearing dysoxic to anoxic bottom waters.  292 

 293 

3.2. Burial diagenesis 294 

With increasing burial depth, bacterial activity decreases and thermal maturation (including 295 

organic matter oxidation by ferric iron, such as in banded iron formations) becomes the main 296 

mechanism by which sedimentary organic matter is altered. Based on a limited number of 297 

studies, thermal maturation of organic matter during burial diagenesis does not significantly 298 

modify the C/N ratio and N isotopic composition of either bulk sediments or kerogens 299 

(Boudou et al., 1984; Macko and Quick, 1985; Rigby and Batts, 1986; Williams et al., 1995; 300 

Whiticar, 1996; Rivera et al., 2015). The isotopic composition of NH4
+
 (

15
NNH4), as 301 

measured in clay minerals, remains relatively close to both 
15

Norg and 
15

Nbulk (±2‰; 302 

Williams et al., 1995; Mingram et al., 2005). This similarity suggests that NH4
+
 generated 303 

from the organic matter is captured by clay minerals in a closed system. If part of the NH4
+
 304 

migrates out of the system, then neither migration nor fixation in the mineral phase impart a 305 

significant isotope fractionation. It is thus reasonable to assume that burial diagenesis does not 306 

modify the bulk rock and kerogen N isotope compositions.  307 

3.3. Metamorphism 308 
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With the onset of very low-grade (anchizonal) metamorphism, the progressive conversion of 309 

kerogen to graphite is accompanied by a significant loss of N (referred to as thermal 310 

denitrogenation) resulting in a dramatic increase in the C⁄N of bulk carbonaceous matter 311 

(Volkova and Bogdanova, 1989; Daniels and Altaner, 1990, 1993; Boudou et al., 2008). 312 

Studies performed on kerogens from coal series showed that 
15

Norg does not vary by more 313 

than 1‰ from the anthracite (anchimetamorphism) to the semi-graphite stages (lower 314 

greenschist facies), in spite of an increase in C⁄N from ~50 to ~1000 (Ader et al., 1998, 2006; 315 

Schimmelmann et al., 2009). This conservative isotopic behavior suggests that the residual 316 

organic matter retains its initial 
15

Norg value in spite of low grade thermal denitrogenation 317 

and that N is released from the organic matter without isotopic fractionation, most probably as 318 

NH4
+
 (Ader et al., 2006; Boudou et al., 2008). However, because this conservative isotopic 319 

behavior of 
15

Norg during low-grade metamorphism has only been documented in studies of 320 

coal series characterized by unusually high organic matter content (>50%), which has 321 

different proportions of nitrogen functional groups than marine kerogens, it is not clear the 322 

pattern holds for typical marine shales.  323 

Denitrogenation is likely not the only process that influences the N content of kerogen during 324 

burial metamorphism. Schimmelmann and Lis (2010) observed reaction of NH4
+
 with 325 

kerogen during experiments involving hydrous pyrolysis and long-term hydrous heating. 326 

Although the isotopic effect associated with these interactions is unknown, it raises the 327 

possibility that interaction of kerogen with NH4
+
, derived either internally by denitrogenation 328 

or externally from circulating fluids, might alter the nitrogen isotope compositions of the 329 

kerogen.  Nitrogen enrichments in the aureoles of dike intrusions have been attributed to such 330 

processes, but have not shown significant changes in 
15

Norg (Schimmelmann et al., 2009; 331 

Meyers and Simoneit, 1999). Nonetheless, given the limited scope of previous studies, it 332 
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remains possible that hydrous reactions may alter 
15

Norg during burial diagenesis and 333 

metamorphism.  334 

The fate of NH4
+
 released by thermal denitrogenation of organic matter depends strongly on 335 

the rock mineralogy and metamorphic conditions (e.g., Bebout and Fogel 1992; Moine et al., 336 

1994; Busigny et al., 2003; Mingram et al., 2005; Plessen et al., 2010). Together, these factors 337 

control the pH and temperature conditions, which in turn determine the NH4
+
/ NH3 338 

equilibrium (Li et al., 2012). These conditions, along with the presence of specific minerals 339 

(probably oxides) and the local oxygen fugacity, also influence the conversion of NH4
+
/NH3 340 

to N2 (Moine et al., 1994; Li et al., 2009; Mikhail and Sverjensky, 2014). Hence, NH4
+ 341 

released by organic matter can either escape the system as N2, NH3, or even NH4
+
 in 342 

migrating fluids, or it can be retained via substitution for K
+
 in K-bearing minerals (Juster et 343 

al., 1987; Daniels and Altaner, 1990, 1993; Sucha et al., 1994; Mingram et al., 2005). Fixed-344 

NH4
+
 in K-bearing minerals can later be partly devolatilized with increasing metamorphism, 345 

generating isotopically lighter N2 or NH3, which may migrate out of the rock, decreasing bulk 346 

rock N concentrations and increasing 
15

Nbulk values (e.g., Svensen et al., 2008; Mingram et 347 

al., 2005; Mingram and Brauer, 2001; Bebout and Fogel, 1992; Bebout et al., 1999). The 348 

result of devolatilization is that nitrogen isotope compositions will follow a Rayleigh 349 

distillation trend with the net isotopic effect increasing with metamorphic grade. Isotopic 350 

enrichments of about 1–2‰ have been documented for greenschist facies, with increases of 351 

3–4‰ for amphibolite facies, and up to 6–10‰ for upper amphibolite conditions (Bebout and 352 

Fogel, 1992; Bebout et al., 1999; Boyd and Philippot, 1998; Jia, 2006; Mingram et al., 2005; 353 

Mingram and Brauer, 2001; Pitcairn et al., 2005; Yui et al., 2009; Plessen et al., 2010; 354 

Haendel et al., 1986). Therefore, significantly fractionated 
15

Nbulk values in metasedimentary 355 

rocks can be produced by the cumulative effects of prograde metamorphism. However, a 356 

number of cases have also been reported for which devolatilization is minimal and 
15

Nbulk 357 
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are hardly modified even for metamorphic grades reaching eclogite or granulite facies 358 

(Busigny et al., 2003; Palya et al., 2011). Finally, it is also possible for metamorphic rocks to 359 

acquire N if exposed to external fluids rich in NH3 or NH4
+
. This process has been little 360 

studied, except in the case of ore mineralization for which it has been shown that fixed-NH4
+
 361 

contents increased due to fluid migration (e.g., Sterne et al., 1982; Jia and Kerrich, 1999, 362 

2000; Glashmacher et al., 2003; Svensen et al., 2008). It seems likely that this process is 363 

common in metamorphic rocks, but it has yet to be geochemically and petrographically 364 

documented.  365 

 366 

3.4. Challenges in identifying post-depositional modifications of 15
Nsed in Precambrian 367 

sedimentary rocks  368 

Because Precambrian sedimentary rocks have undergone a complex post-depositional history, 369 

including some degree of metamorphic alteration, doubts often remain as to the integrity of 370 

both 
15

NNH4 preserved in the mineral phase and 
15

Norg preserved in kerogen. Consequently, 371 

the significance of 
15

Nbulk signatures should always be questioned. Several strategies are 372 

employed to identify metamorphic and metasomatic effects on 
15

NNH4. For example, an 373 

inverse correlation between 
15

Nbulk and N content is a strong indicator of metamorphic 374 

devolatilization (e.g., Svensen et al., 2008; Mingram et al., 2005; Mingram and Brauer, 2001; 375 

Bebout and Fogel, 1992). However, the opposite is not necessarily true, such that the absence 376 

of an inverse relationship does not verify that devolatilization did not occur. Correlations 377 

between 
15

Nbulk and trace elements sensitive to fluid-rock exchange (such as large ion 378 

lithophile elements) may also indicate N loss (Busigny et al., 2003; Busigny and Bebout, 379 

2013) or gain due to fluid-rock exchange with NH4
+
-bearing external fluids (e.g., Svensen et 380 

al., 2008; Jia and Kerrich 2004b; Kerrich et al., 2006). Finally, assuming that 
15

Norg and 381 
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
15

Nbulk should not evolve identically during post-depositional alteration processes, a close 382 

match between these two values implies that they have not been significantly altered. 383 

Consequently, in spite of the laborious extractions of kerogen using concentrated HF required 384 

to measure 
15

Nker, many recent 
15

N studies on Precambrian sedimentary rocks have reported 385 

both kerogen and bulk N isotope compositions (Godfrey and Falkovski, 2009; Godfrey et al., 386 

2013; Kump et al., 2011; Stüeken et al., 2015a,b). The results from these studies show 387 

moderately higher 
15

N values in bulk rocks compared to kerogens, with offsets generally 388 

lower than 4‰, but reaching up to 13‰ in metasomatized rocks (Godfrey et al., 2013) (Fig. 389 

2). Based on present state of knowledge, these offsets cannot be unambiguously ascribed to 390 

metamorphic devolatilisation.  Several alternate hypotheses outlined below should be tested in 391 

the future.  392 

One potential source of offset in kerogen isotopic values is contamination during HF 393 

extraction. An example of contamination was identified by mass balance in the case of 394 

kerogens extracted from semi-graphites (Ader et al., 2006). The contaminant was not 395 

unambiguously identified, but the formation of insoluble NH4-bearing fluoride precipitates 396 

during HF dissolution was a probable cause, with the NH4
+
 originating from the dissolved 397 

silicate phase, from dissolution of atmospheric NH3/NH4
+
 into the HF-solution during the 398 

kerogen extraction procedure, or from trapping of atmospheric NH3/NH4
+ 

by fluoride salts 399 

during kerogen storage. In the case of low TOC Precambrian rocks, the proportion of fluoride 400 

versus kerogen would be very high, maximizing the likelihood that even a small amount of 401 

contamination would yield significant isotopic effects. As discussed by Yamaguchi (2002) 402 

and Stüeken et al. (2015), contamination of this sort may explain the several per mil 403 

variability of some Precambrian 
15

Norg values (e.g. Beaumont and Robert, 1999) both within 404 

and between kerogen extractions. A protocol for identifying contaminated kerogens from N-405 

poor rocks must therefore be applied (see for example van Zuilen et al., 2005).  406 
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
15

Norg may also evolve during post depositional processes. The observation that 
15

Norg does 407 

not change with increasing metamorphism of coals (Ader et al., 2006) may not translate to 408 

Precambrian sedimentary rocks. The nature of organic matter in Precambrian sedimentary is 409 

variable, but in general it comprises only a minor component of the rock, and its structure and 410 

reactivity is presumably distinct from coals. It may thus evolve differently during thermal 411 

maturation, in particular because the mechanisms of thermal denitrogenation and their isotope 412 

effects may be strongly influenced by lithology. Finally, kerogen may have reacted with NH4
+
 413 

originating either from its own denitrogenation or from external fluids, modifying its 
15

Norg 414 

signature. This explanation could account for results obtained by Godfrey et al. (2013) where 415 


15

Norg values from metasomatized Proterozoic rocks are up to 8‰ lighter than values from 416 

unmetasomatized rocks from the same basin. Interestingly, in metasomatized rocks, 
15

Nbulk is 417 

only about 4‰ heavier than in the unmetasomatized samples, which suggests that fixed NH4 418 

may have been less severely perturbed than kerogen by metasomatism.  419 

Another possible source of offset between bulk and kerogen is inheritance from an early 420 

diagenetic increase of porewater 
15

NNH4+ in anoxic surface sediments lying below 421 

oxygenated waters that experienced anammox (Prokopenko et al., 2006a; 2013). In this case, 422 

higher 
15

Nbulk than 
15

Nker would imply an early diagenetic environment influenced by nitrate 423 

diffusion into anoxic pore waters, provided that neither 
15

Norg nor 
15

NNH4 are altered by later 424 

post-depositional processes. A final potential offset is a contribution to the bulk signature 425 

from a detrital silicate phase containing ammoniated minerals (i.e. illite) with a distinct N-426 

isotope signature (e.g. Schubert and Calvert, 2001). In this case, the 
15

Nbulk-
15

Nker offset 427 

could be either positive or negative.  428 

Given the potential implications of the differences between 
15

Nbulk and 
15

Norg for 429 

reconstructing Precambrian environments, more focused studies on the effects of 430 
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metasomatism, metamorphism, initial lithology and type of organic matter on 
15

Nbulk, 431 


15

NNH4+ and 
15

Norg are required to determine controlling mechanisms on N isotopic 432 

distributions in variably altered rocks. 433 

 434 

4. Transmission of the 
15

N signal from primary producers to surface sediments: earliest 435 

diagenesis isotope effects  436 

 437 

Most N in modern sediments originates from sinking particulate organic matter, sometimes 438 

with a lesser contribution from detrital clay minerals. Since this particulate organic matter is 439 

ultimately derived from primary productivity in the photic zone, δ
15

Nsed should reflect the 440 

initial primary producers provided that isotope modifications accompanying biodegradation in 441 

water column and surface sediment can be estimated or are negligible. Two broad patterns of 442 

N-isotopic behavior during earliest diagenesis have been identified. The nature of these 443 

patterns depends mainly on O2 exposure time, a parameter that integrates water column 444 

oxygenation, the duration of particle sinking (a function of water depth and particle size), and 445 

the sealing efficiency (driven by sedimentation rates) that influence the residence time of 446 

organic matter at the sediment-water interface.  447 

Sedimentary organic matter that has experienced long O2 exposure times—i.e. when 448 

deposited below a deep water column, under low sedimentation rates, or at high O2 449 

concentration (all of which characterize modern deep sea sediments)—is commonly enriched 450 

in 
15
N by +3 to +5‰ compared to surface particulate organic matter (Robinson et al., 2012; 451 

Altabet et al., 1999; Sachs and Repeta, 1999; Brummer et al., 2002; Nakanishi and Minagawa, 452 

2003; Gaye et al., 2009; Möbius et al., 2010; Möbius et al., 2011; Prahl et al., 2003). This 453 
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15
N-enrichment is consistent with an increase up to 3‰ in sedimentary 

15
N observed in a 454 

laboratory experiment conducted in oxic conditions (Lehmann et al., 2002) and in reoxidized 455 

sapropels and turbidites (Cowie et al., 1998; Prahl et al., 2003; Moodley et al., 2005; Möbius 456 

et al., 2010). The causes and detailed mechanisms of this isotopic alteration are still under 457 

investigation, but its magnitude was shown to correlate with the extent of amino acid 458 

degradation under oxidizing conditions (Gaye et al., 2009; Möbius et al., 2010; Möbius et al., 459 

2011), suggesting that the most labile constituents of primary organic matter are relatively 460 

15
N-depleted.  461 

Organic matter having experienced minimal O2 exposure time, i.e. when deposited in shallow 462 

marine environments, under high sedimentation rates (e.g. in deltas), and/or in O2-depleted 463 

waters, has similar or slightly lower 
15
N values (within <1‰) than surface water particles 464 

(Altabet et al., 1999; Pride et al., 1999; Emmer and Thunell, 2000; Lehmann et al., 2002; 465 

Kienast et al., 2002; Thunell and Kepple, 2004; Möbius et al., 2010; Chen et al., 2008). This 466 

conformity between the 
15

N values of primary producers and sedimentary organic matter is 467 

confirmed by 
15

N analyses of total N and chlorins N (degradation products of chlorophyll) in 468 

sediments deposited in stratified waters of the eastern Mediterranean during the Quaternary. 469 

These data show that 
15

Nsed values reflect the isotopic composition of N used by biomass 470 

without significant alteration (Sachs and Repeta, 1999; Higgins et al., 2010). This scenario is 471 

compatible with the observation of a slight (< 1‰) decrease in 
15

N of suspended particles 472 

and/or surface sediment in anoxic water bodies (Libes and Deuser, 1988; Fry et al., 1991; 473 

Velinsky et al., 1991; Voss et al., 1997) and with results of laboratory experiments conducted 474 

under anoxic conditions (Lehmann et al., 2002). The slight decrease in 
15

N is usually 475 

interpreted as resulting from the addition of chemoautotrophic bacterial biomass depleted in 476 

15
N by NH4

+
 assimilation (Fry et al., 1991; Velinsky et al., 1991; Coban-Yildiz et al., 2006; 477 

Chen et al., 2008; Voss et al., 1997), chemoautotrophic fixation of 
15

N-depleted N2 478 
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(Fuchsman et al., 2008), and/or chemoautotrophic fixation of 
15

N-depleted N2O released by 479 

denitrification at the transition from suboxic to anoxic waters (Westley et al., 2006). 480 

 481 

Most extant Precambrian sedimentary rocks were deposited in platform settings rather than in 482 

the deep oceans, most commonly in water columns deficient in O2 compared to the present-483 

day ocean (e.g. Holland, 2006; Lyons et al., 2014). It is thus generally assumed that early 484 

diagenesis has not significantly modified primary δ
15
N signature and that δ

15
Nsed mostly 485 

records the isotopic composition of primary producers. However, whereas the modern marine 486 

N cycle has complex trophic chains dominated by eukaryotic primary productivity and 487 

strongly influenced by the ballasting of particulate organic carbon, Precambrian ecosystems 488 

would have been simpler, primary production being dominated by cyanobacteria that 489 

produced slowly sinking organic particles (Logan et al., 1995; Lenton et al., 2014; Butterfield, 490 

2015). Given the susceptibility of N isotope signatures to alteration of primary organic matter 491 

in the water column and during early diagenesis and the role of ocean redox, the modern 492 

ocean is an imperfect analogue for Precambrian ecosystems. In this respect, it will be 493 

necessary to develop trophic chain models appropriate for Precambrian microbial ecosystems 494 

in order to fully exploit and interpret δ
15

Nsed in the ancient record.  495 

 496 

5. Isotopic fingerprints of primary producers in the modern ocean  497 

 498 

The N isotope composition of primary producers at a given time and location depends on the 499 

isotope composition of their available N sources (mostly NH4
+
, NO3

-
, dissolved organic 500 

nitrogen (DON) and N2) and on the isotope fractionation associated with N-assimilation 501 

pathways: ammonium assimilation, nitrate assimilation and N2-fixation, respectively (Fig. 3). 502 
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We review below the current state of knowledge on how the availability and isotope 503 

composition of N-sources in the photic zone is linked to the behavior of the modern N cycle. 504 

Ammonium is released during remineralization of organic matter with minimal isotope 505 

fractionation (Prokopenko et al., 2006b,c; Möbius, 2013). In the oxic surface waters of the 506 

modern ocean, any NH4
+ 

released by breakdown of organic matter is immediately and 507 

typically quantitatively nitrified via sequential oxidation to NO2
-
 and NO3

-
, in most cases 508 

erasing any isotope fractionation associated with nitrification. In rare cases where the 509 

oxidation is incomplete, the residual NH4
+
 is enriched in 

15
N (e.g., Granger et al., 2011), 510 

owing to the first oxidation step to nitrite (NO2
-
), which involves a large fractionation (εNO2–511 

NH4 ∼ −41‰ to −13‰; Casciotti et al., 2003; Mariotti et al., 1981; Santoro and Casciotti, 512 

2011). The isotopic fractionation associated with NH4
+
 assimilation favors the incorporation 513 

of 
14
N and can be large (εorg-NH4 ∼ -10‰ to −27‰, Pennock et al., 1996; Hoch et al., 1992; Vo 514 

et al., 2013), but it decreases strongly with NH4
+
 availability, and no fractionation is 515 

expressed when it is entirely consumed. Hence, although nitrification and ammonium 516 

assimilation may strongly fractionate N isotopes, these fractionations are rarely expressed in 517 

modern photic zones where the recycled N is quantitatively re-assimilated into biomass.  518 

Nitrate in the euphotic zone is produced by nitrification of remineralized NH4
+
 and supplied 519 

by continental runoff and upwelling. Its assimilation entails fractionation with εorg–NO3 520 

between 0 and −10‰ in NO3
-
-limited and NO3

-
-replete conditions, respectively (Fogel and 521 

Cifuentes 1993; Pennock et al., 1996; Bauersachs et al., 2009). Nitrate is generally a limiting 522 

nutrient and hence nearly fully utilized in surface waters such that little to no isotope 523 

fractionation is expressed, except in some locations where other nutrients (usually PO4
3-

 or 524 

Fe) limit the primary productivity (Altabet and François, 1994; Altabet, 2001; Schubert and 525 

Calvert, 2001; Somes et al., 2010). 526 
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The distribution and fate of DON in the modern ocean, in particular its possible assimilation 527 

by primary producers, remain poorly constrained (Bronk et al., 2007; Letscher et al., 2013). 528 

However, nitrogen isotope composition of DON is usually close to that of the particulate 529 

organic matter (e.g. Knapp and Sigmann, 2005), suggesting that the processes governing its 530 

fate, including its assimilation by primary producers, do not impart a strong nitrogen isotope 531 

fractionation. 532 

Some autotrophs can also fix molecular N2 into organic matter (N2-fixation). These 533 

diazotrophs are mainly cyanobacteria, and they generally (but not exclusively) fix N2 when 534 

bioavailable N (i.e. NH4
+
 and NO3

-
)
 
is the limiting nutrient in the surface ocean, provided that 535 

PO4
3-

, Fe and possibly other nutrients are not limiting (Sohm et al., 2011). For instance, in 536 

regions of high PO4
3-

 availability (e.g., upwelling zone), NO3
-
 is depleted and primary 537 

producers compensate by fixing N2. The dominant nitrogenase enzyme in the modern ocean 538 

uses Mo as a cofactor and accomplishes N2 assimilation with minimal fractionation (εorg–N2 ≈ 539 

−3 to +1‰; Hoering and Ford, 1960; Delwiche and Steyn, 1970; Minagawa and Wada, 1986; 540 

Macko et al., 1987; Carpenter et al., 1997; Zerkle et al., 2008; Bauersachs et al., 2009; Zhang 541 

et al., 2014). N2 fixation using V- and Fe-only nitrogenases can induce greater N isotope 542 

fractionation (εorg–N2 ≈ −7 to -3‰; Zhang et al., 2014), but these are seldom active in the 543 

modern environment. Consequently, in the modern surface ocean, N2 fixation contributes N 544 

with an isotopic composition close to that of the atmosphere (0‰) to the bioavailable N pool.  545 

Given these sources of bioavailable N, 
15

N of primary producers reflects the isotope balance 546 

of the assimilated N sources: NH4
+
, NO3

-
 and possibly DON recycled from organic matter in 547 

the euphotic zone, upwelled NO3
-
 (and possibly DON), and biological N2 fixation. Integrated 548 

over the long time period typical of sediment accumulation, δ
15

Nsed will thus reflect mainly 549 

the relative proportions and isotope balance of deep-water NO3
-
 supplied to the euphotic zone 550 

and biological N2 fixation (e.g., Galbraith et al., 2008; Sigmann et al., 2009; Somes et al., 551 
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2010; Altabet et al., 2002). The amount and isotope composition of upwelled NO3
-
 is strongly 552 

controlled by redox conditions in the water column and sediments. Under dysoxic to anoxic 553 

conditions, NO3
-
 is converted into gaseous species (N2O and/or N2) by an incompletely 554 

understood combination of metabolic pathways that includes heterotrophic denitrification and 555 

anammox, nitrification, NO3
-
 reduction, chemolithotrophic sulfide-dependent denitrification 556 

(Lam et al., 2009; Lam and Kuypers, 2011; Lavik et al., 2009; Dalsgaard et al., 2012; De 557 

Brabandere et al., 2013), and likely other metabolisms yet to be identified. This loss of 558 

bioavailable N occurs in OMZs as well as in water column and sedimentary redox fronts 559 

where the anaerobic condition required for anammox and denitrification and the aerobic 560 

condition for nitrification are satisfied. In present day OMZs, NO3
-
 loss is not quantitative and 561 

the isotope fractionation is similar to that determined experimentally for heterotrophic 562 

denitrification (εNO3–N2 ∼ +15 to +30‰; Granger et al., 2008; Mariotti et al., 1981), leading to 563 

pronounced 
15

N-enrichment of the residual nitrate (Cline and Caplan, 1975; Brandes et al., 564 

1998; Voss et al., 2001). In redox fronts the isotope fractionation can be lower (εNO3–N2 ∼ 565 

+10‰; εNH4+–N2 ∼ +11‰; Wenk et al., 2014). When the redox front is located in the 566 

sediments, NO3
- 
consumption often proceeds to completion so that the isotope enrichment is 567 

only weakly expressed (Kessler et al., 2014; Lehmann et al., 2004 and 2007). If most N loss 568 

in the ocean occurs in the upper sediment column, the isotopic composition of the residual 569 

NO3
-
 only marginally increases, whereas if most of it occurs in OMZs, the isotope 570 

composition of the residual NO3
-
 increases markedly. Redox conditions in the upper sediment 571 

column and the water column thus tightly control both the N loss and the isotope composition 572 

of the residual NO3
- 
pool that is ultimately returned to the surface waters (Brandes and Devol, 573 

2002). In turn, loss of bioavailable N indirectly controls N2-fixation, within the limits imposed 574 

by the availability of other nutrients, specifically PO4
3-

, Fe, and Mo (Ganeshram et al., 2002; 575 
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Karl et al., 2002; Deutch et al., 2007; Glass et al., 2010; Straub et al., 2013; Moore et al., 576 

2013).  577 

Due to the spatial variability in the parameters regulating NO3
- 

losses and N2-fixation—578 

dependent mainly on ocean circulation patterns, redox conditions in deep and intermediate 579 

waters and the depth of the redoxcline in sediments—strong regional and lateral variations in 580 

the δ
15

N of nitrate, primary producers, and hence sinking organic matter are expected. The 581 

heterogeneous nature of 
15

N in the modern marine nitrate reservoir
 
and in surface sediments 582 

captures this range of variation, with a mode at 5–6‰, a small negative tail approaching 1‰ 583 

and a large positive tail to +15‰ corresponding to OMZs (Somes et al., 2010; Tesdal et al., 584 

2013).  585 

One of the key parameters in interpreting N isotope compositions in ancient sediments is the 586 

isotope composition of atmospheric N2. Although this has been a matter of debate in the past 587 

(Jia and Kerrich, 2004a; Kerrich et al., 2006), we consider here that it has remained close to 588 

0‰ for at least the past 3.5 Ga, on the basis that 
15

N data obtained on N2 from fluid 589 

inclusions in sedimentary cherts spanning most of Earth history are close to 0‰ (±2 to 3‰, 590 

Sano and Pillinger, 1990; Nishizawa et al., 2007; Marty et al., 2013). Consequently, we 591 

assume in the following discussion that changes in 
15

Nsed can be interpreted in terms of 592 

modifications of the ocean N cycle, which controls the abundances of NO3
-
, NO2

-
, and NH4

+
 593 

and their N isotope compositions.  594 

The Precambrian N cycle must have evolved through different stages presumably much 595 

different from the present-day N cycle. Two likely causes for differences in the N cycle were 596 

the balance of available nutrients (Anbar and knoll 2002; Saito et al., 2003: Glass et al., 2009) 597 

and the population of organisms exploiting key N metabolic pathways. Much recent attention 598 

has been focused on the timing of evolution of diazotrophic lineages (e.g. Stüeken et al., 599 
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2015a; Sanchez-Barcaldo et al., 2014; Zhang et al., 2014), which should have a very strong 600 

impact on the marine N cycle because N2 fixation is by far the dominant source of new 601 

bioavailable N in the modern ocean (e.g., Fennel et al., 2005; Canfield et al., 2010). In the 602 

absence of N2 fixation, not only must other N sources with distinct isotope compositions be 603 

considered (e.g. Stüeken et al., 2015a), but also losses of bioavailable N must have been less 604 

important quantitatively (e.g. Fennel et al., 2005; Canfield et al., 2010; Thomazo and 605 

Papineau, 2013). Along the same lines, based on a marked increase in the range of 
15

Nker 606 

values in Precambrian sedimentary cherts at the Great Oxidation Event (GOE), Beaumont and 607 

Robert (1999) suggested that the oxidative N cycle became dominant ca. 2.2 Ga. The timing 608 

of this divergence has been progressively pushed back with the acquisition of new data and is 609 

now 2.7 Ga (e.g., Garvin et al., 2005; Thomazo et al., 2011). However, even if such 610 

biogeochemical innovations were unambiguously identified in the sedimentary record, it 611 

would remain a formidable challenge to discriminate between an innovation in the behavior 612 

of the global N cycle and a local environmental signal. 613 

It is also possible that the isotope fractionations associated with N metabolic pathways have 614 

changed over Earth’s history. Zhang et al. (2014) recently presented an example of the 615 

potential evolution of the N isotope phenotype and its consequences on the interpretation of 616 


15

Nsed. In their experimental study, they found that N2-fixation, when performed by 617 

nitrogenase using V or Fe as cofactors, instead of the more common Mo cofactor, entails a 618 

significantly different fractionation: εorg–N2 ≈ -7 to -3‰ versus εorg–N2 ≈ -3 to +1‰, 619 

respectively. Because Mo may have been scarce during periods of atmospheric and/or oceanic 620 

anoxia, this significantly different isotopic expression for N2-fixation opens the door to 621 

alternative explanations for anomalously low 
15

Nsed signatures. For example, the typical 622 


15

Nsed values of -2 to -4‰ in Cretaceous OAE-2 black shales may reflect a shift to V and Fe 623 

nitrogenase-dominated diazotrophy due to Mo-limited ocean anoxia (Zhang et al., 2014) 624 
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rather than widespread NH4
+ 

availability and assimilation in the surface ocean (cf. Junium et 625 

al., 2007; Higgins et al., 2012).  626 

Finally, because the availability and isotope composition of NO3
-
, and NH4

+
 in the euphotic 627 

zone depends strongly on the complex network of redox dependent metabolic pathways by 628 

which N flows between reservoirs, the mixing and redox structure of the oceans are bound to 629 

exert a strong control on both globally integrated and local 
15

Nsed signatures. Emerging 630 

models of atmospheric and ocean evolution through Earth’s history suggest that Precambrian 631 

oceans passed through a series of stable redox stages during progressive oxygenation of the 632 

atmosphere (e.g. Holland, 2006; Poulton and Canfield, 2011; Lyons et al., 2014). Presumably, 633 

N, like C, S, P, Fe, and other biogeochemically important elements, would have cycled 634 

differently during each of these stages, with a manifestation in the 
15

Nsed record (e.g. 635 

Canfield et al., 2010; Anbar and Knoll, 2002; Saito et al., 2003; Glass et al., 2009; Godfrey 636 

and Glass, 2011). 637 

 638 

6. Conceptual scenarios for the redox structure, nitrogen cycle and 
15

Nsed distribution 639 

of Precambrian oceans 640 

 641 

Having evaluated the extent to which the 
15

N of primary producers reflects the mass and 642 

isotope balance of the N sources utilized by phytoplankton, the next step is to question 643 

whether the speciation and isotope composition of the N source are likely to be affected by 644 

changes in the N-biogeochemical cycle. Many different scenarios for N sources can be 645 

envisaged given the combination of the different redox structures proposed for the 646 

Precambrian ocean, in particular if unidirectional changes in N cycling due to evolution of the 647 
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main lineages operating key metabolic pathways of the N cycle are taken into account. Rather 648 

than evaluate all possible scenarios (which is beyond the scope of this review), we have 649 

chosen to focus on a few conceptual scenarios for 
15

Nsed patterns in non-actualistic 650 

Precambrian oceans. These different cases are constructed based on three main assumptions: 651 

1) the major metabolic pathways involving N had evolved even if they were not necessarily 652 

operational due to environmental controls on the availability of their N-substrate; 2) the 653 

fractionation factors associated with these metabolisms were the same as the ones known 654 

today; and 3) the isotope effects associated with short-term early diagenesis (i.e. N transfer 655 

from primary producers to the sediment) were also similar to those occurring in the modern 656 

ocean. 657 

 658 

6.1. Dominantly oxic oceans: analogy with the modern ocean  659 

 660 

The present day ocean (Fig. 4a) is our best example to understand controls on the 661 

bioavailable sources and isotope compositions of N in a fully oxygenated global ocean. 662 

Although this scenario is widely thought to be mostly a Phanerozoic phenomenon, an 663 

increasing number of studies propose that at least low dissolved O2 levels may have existed 664 

outside of expanded OMZs and restricted basins since the GOE (e.g. Partin et al., 2013; 665 

Reinhard et al., 2013; Ader et al., 2014; Sperling et al., 2014) (Fig. 4b). In this case, anoxia 666 

may have been restricted to below the sediment-water interface in a significant portion of the 667 

oceans, with an oxycline probably very close to or at the water-sediment interface. One of the 668 

key arguments for this idea is that it is very unlikely that physical stratification of the ocean 669 

could be maintained for long period of times, such that even at modest pO2, the oceans should 670 

be oxygenated at depth given a reasonably low nutrient availability (Canfield, 1998). Due to 671 
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the spatial variability in parameters regulating NO3
- 
losses and N2-fixation in such an ocean—672 

dependent mainly on ocean circulation patterns, redox conditions in deep and intermediate 673 

waters and the redoxcline depth in the upper sediment—the mode of the δ
15

Nsed distribution 674 

should be representative of the degree of ocean oxygenation (e.g. Quan and Falkowski, 2009). 675 

For example, strongly oxygenated oceans should experience limited NO3
- 
loss and hence little 676 

15
N-enrichment, resulting in a δ

15
Nsed mode close to 0‰. There is no known example of this 677 

scenario in modern oceans, but it has been proposed by Algeo et al. (2014) for the early 678 

Paleozoic and Mezozoic. With more prevalent water column deoxygenation but non-679 

quantitative NO3
- 
loss in OMZs, the mode in δ

15
Nsed should increase, as in the present day 680 

ocean, which has a modal value of +6‰ (Tesdal et al., 2013; Fig. 5a). When the oxygen 681 

concentration in the ocean is sufficiently low for NO3
- 
loss to approach completion in sulfidic 682 

OMZs, and/or to limit nitrification of organic matter, the δ
15

Nsed mode should decrease again, 683 

reflecting the increasing input of atmospheric N2 by N2-fixers (Boyle et al., 2013).  684 

 685 

6.2. Redox-stratified oceans 686 

 687 

A redox-stratified ocean with oxic surface waters and anoxic deep waters is the most common 688 

scenario envisaged for Proterozoic oceans (e.g. Lyons et al., 2014). An ocean with this 689 

structure may have prevailed between ca. 2.4 Ga, which marks the onset of the GOE when the 690 

atmosphere and the surface ocean became oxygenated, and the ca. 0.7–0.5 Ga Neoproterozoic 691 

oxidation event (NOE), when the deep ocean is suspected to have become oxygenated (see 692 

review in Och and Shields-Zhou, 2012; Lyons et al., 2014). A similar redox structure is also 693 

suspected to have been common in restricted and semi-restricted basins during the 694 
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Phanerozoic as manifested in Ocean Anoxic Events (OAEs) and Mediterranean sapropels 695 

(e.g. Meyers, 2006; Jenkyns, 2010; Tribovillard et al., 2013).  696 

Several present-day redox-stratified systems can be used as analogues for establishing a 697 

conceptual model of the N-cycle for this redox scenario, such as the well-studied Black Sea, 698 

the Cariaco Basin (Venezuela), and Lake Lugano (Italy). These systems present a permanent 699 

redox transition zone separating oxic surface waters from anoxic deep waters (Fig. 4c). As in 700 

the modern ocean, only part of the primary productivity is supported by the assimilation of 701 

NH4
+ 

and NO3
-
 recycled within the photic zone. Organic matter export to the deep waters and 702 

sediments removes N from the photic zone, which needs to be compensated by other N 703 

sources in order for the primary productivity to be maintained. Remineralization generates 704 

NO3
-
 above the redox transition zone and NH4

+ 
below. Nitrate is depleted by assimilation in 705 

the euphotic zone. It can accumulate at depth, but only down to the redox transition zone. 706 

Within the redox transition zone both NO3
-
 (diffusing from above) and NH4

+ 
(diffusing from 707 

below) are quantitatively converted to N2 or N2O by coupled nitrification, heterotrophic 708 

denitrification and anammox (Fuchsman et al., 2008; Konovalov et al., 2008; Meckler et al., 709 

2007; Thunell et al., 2004; Wenk et al., 2013). The net result of these processes in this 710 

environment is extensive loss of bioavailable N (especially NO3
-
 and NH4

+
). If bioavailable N 711 

recharge of surface waters is limited to diffusion from slightly deeper waters or by occasional 712 

storm induced water column mixing (Fig. 4c), severe bioavailable N limitation develops. If 713 

other nutrients are in sufficient supply, bioavailable N deficiency is then compensated by N2-714 

fixation, which drives surface water 
15

NNO3- toward 0‰ (Quan and Falkowski, 2009). This 715 

scenario has been invoked to account for 
15

Nsed stratigraphic variations in the Black Sea 716 

sediments (Junium et al., 2007; Fulton et al., 2012; Quan et al., 2013) and for 
15

Nsed values in 717 

Mediterranean sapropels and sedimentary rocks deposited during ocean anoxic events (OAEs; 718 

Fig. 5c). It has also been invoked to predict that 
15

Nsed values close to 0‰ should 719 
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characterize the Proterozoic ocean (Anbar and Knoll, 2002). However, closed or semi-closed 720 

systems (such as the Black Sea) are not ideal analogues for Precambrian redox-stratified 721 

oceans in the sense that their stratification is physically maintained preventing water exchange 722 

between surface and deep waters, rather than dynamically maintained by low pO2 or high 723 

organic export.  724 

In a conceptual case of dynamically maintained redox stratification in a convecting ocean 725 

with downwelling and upwelling currents, the situation would be more complex than in 726 

physically stratified systems. The depth of the redoxcline would be expected to vary 727 

regionally, and NH4
+
 from anoxic deep waters may locally escape quantitative conversion to 728 

N2 or N2O in the redox transition zone, for example in upwelling zones (Fig. 4d). 
15

N-729 

enriched NH4
+
 could then reach the photic zone, where it would be concurrently assimilated 730 

and converted to NO3
-
 (then also assimilated), yielding positive δ

15
Nsed signatures (Fig. 4d). 731 

This process has been proposed to explain positive δ
15

N values in the late Paleoproterozoic 732 

Animikie (Godfrey et al., 2013) and Aravalli (Papineau et al., 2009) basins.  733 

In a more extreme scenario with a shallow redox transition zone (Fig. 4e), NH4
+
-rich anoxic 734 

water may even reach the surface in upwelling zones (Kump et al., 2005). The large isotope 735 

fractionation associated with NH4
+
 assimilation in NH4

+
-replete conditions could then 736 

produce primary biomass depleted in 
15

N, leading to negative δ
15

Nsed signatures, as previously 737 

proposed for values as low as −4‰ during OAE2 (Junium et al., 2007; Higgins et al., 2012; 738 

Ruvacalba Baroni et al., 2015) and as low as -4.7‰ in the Paleoproterozoic Aravalli 739 

Supergroup (Papineau et al. 2009).  740 

In summary, in upwelling zones of a redox-stratified ocean, highly variable δ
15

Nsed values 741 

may be expected. This scenario would still involve near quantitative bioavailable N-loss in 742 

ocean regions where the redoxcline is undisturbed. The resulting NO3
-
 limitation would need 743 
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to be compensated by N2-fixation, driving δ
15

Nsed signatures towards 0‰ or below. In this 744 

conceptual model, the δ
15

Nsed distribution should show a mode between -5 and 0‰, 745 

depending mainly on the type of nitrogenase involved (cf. Zhang et al., 2014), but with tails 746 

towards more negative and more positive values corresponding to upwelling zones. In the 747 

Aravalli Supergroup, shallow-water carbonates and stromatolitic phosphorites have low 748 


15

Nsed values, close to 0‰, whereas deeper water black shales have a large range of 
15

Nsed, 749 

between -4.7 and +26.7‰ (Papineau et al., 2009; 2013; 2016). This large range has been 750 

interpreted to result from a relatively shallow redoxcline (caused by high primary productivity 751 

fueled by phosphate availability) where strong variations in the relative rates of NH4
+
 752 

assimilation and N-loss occurred (Papineau et al., 2009). The 
15

Nsed record from the 753 

Mesoproterozoic Belt Supergroup, with values close to -1‰ in the deeper part of the basin 754 

and close to 5‰ along the margins, is also compatible with such a scenario (Stüeken, 2013). 755 

 756 

6.3. Fully anoxic oceans 757 

 758 

Essentially fully anoxic oceans (Fig. 4f) may have prevailed before the evolution of oxygenic 759 

photosynthesis and endured throughout the Archean due to rapid consumption of locally 760 

produced O2 in the surface ocean, which prevented O2 accumulation in the environment to 761 

levels that would sustain nitrification (see review in Lyons et al., 2014). After the advent of 762 

N2-fixation, bioavailable N would have been mainly sourced to the ocean by N2-fixation and 763 

subsequent NH4
+ 

generation by degradation of organic matter. While the known metabolic 764 

pathways oxidizing NH4
+ 

all require free O2 either directly or indirectly (even anammox 765 

depends on NO2
-
 which requires free O2; see review in Canfield et al., 2010), NH4

+ 
was likely 766 

stable in the oceans prior to the advent of oxygenic photosynthesis. Together with dissolved 767 



 33 

organic N, it would have been the dominant species of bioavailable N. If the pH of the ocean 768 

was high enough (~9) to stabilize NH3
 
in equilibrium with NH4

+
, the former may have 769 

degassed to the atmosphere. Provided that the residence time of NH3 in the atmosphere 770 

allowed it to accumulate in significant proportions, this would have enriched residual NH4
+ 771 

(and in turn sedimentary N) in 
15

N due to the large fractionation between aqueous NH4
+
 and 772 

NH3 (Li et al., 2012).  Such a high pH is unlikely for the Precambrian oceans (Grotzinger and 773 

Kasting, 1993), but this mechanism has been proposed to explain the high 
15

Nsed found in 774 

2.7–2.6 Ga lacustrine sediments (Stüeken et al., 2015b). In the case of neutral or acidic 775 

oceans, N sinks would be limited to assimilation followed by organic matter burial. In most 776 

regions, NH4
+ 

assimilation was probably complete preventing the expression of its isotope 777 

fractionation. It is only in upwelling regions that an excess of upwelled NH4
+
 might 778 

theoretically allow the isotope fractionation associated with NH4
+ 

assimilation to be expressed 779 

both in the biomass of primary producers and in the residual NH4
+
. In this case, primary 780 

organic matter could thus be 
15

N-depleted where NH4
+ 

upwelling reached the euphotic zone, 781 

and 
15

N-enriched downstream of the upwelling zone due to Rayleigh fractionation of the 782 

residual NH4
+
 pool. In the absence of N sinks other than sedimentation, the mode of the 783 

δ
15

Nsed distribution should be close to that of N2-fixation, which could range between -7 and 784 

0‰, depending of the type of metal cofactor for the nitrogenase enzyme (Zhang et al., 2014). 785 

The overall δ
15

Nsed distribution could have both negative and positive tails corresponding to 786 

upwelling zones. However, this scenario where no NH4
+
 oxidation occurs has not been 787 

observed in the modern ocean, nor has evidence for it operating in the past been 788 

demonstrated. Furthermore, this process may be unrealistic if it shown that NH4
+
 may serve as 789 

an electron donor for anoxygenic photosynthesis, in which case NH4
+
 oxidation may occur in 790 

the absence of oxidants. Although it was predicted long ago that inorganic N compounds 791 
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could serve as electron donors for anoxygenic photosynthesis (Olson, 1970; Broda, 1977), 792 

only recently has such a photosynthetic pathway been documented (Griffin et al., 2007).  793 

Organisms capable of using NO2
-
 as the electron donor during photosynthesis are now 794 

suspected to be widespread in the modern environment (Schott et al., 2010), and it is possible 795 

that the same holds true for NH4
+ 

(Teske et al., 1994). In this case, the 
15

Nsed distribution of 796 

fully anoxic oceans before the advent of oxygenic photosynthesis should be similar to the 797 

distributions afterwards, when minute concentrations of O2 in seawater would have resulted in 798 

the oxidation of NH4
+ 

to NO2
-
 and/or N2O (Lam and Kuyper, 2011; Mandermack et al., 2009). 799 

In turn, NO2
-
 would be quantitatively removed from the system by reduction with NH4

+ 
either 800 

as N2O or as N2 by anammox bacteria.  801 

Because NH4
+ 

oxidation strongly fractionates N isotopes (Mandermack et al., 2009 and 802 

references therein), a whole range of 
15

N enrichments would be produced in NH4
+ 803 

sedimentary organic matter in which some NH4
+ 

was assimilated, depending on the extent of 804 

NH4
+ 

oxidation (Fig. 4f). In this scenario, because of the loss of 
14

N-enriched nitrogen, it 805 

would be predicted that the 
15

Nsed distribution should present a more prominent positive tail 806 

than when no NH4
+ 
oxidation occurs, with a mode possibly slightly higher than 0‰, 807 

depending on the relative importance of N-loss processes (Fig. 4f). The closest modern 808 

analogue available for this scenario is Lake Kinneret (also referred to as the Sea of Galilee in 809 

the Middle East). During overturning events, NH4
+ 

accumulated in the anoxic bottom waters 810 

of Lake Kinneret is mixed into the oxygenated surface waters where it is completely oxidized 811 

and assimilated, producing a transient increase in N isotope compositions of both residual 812 

NH4
+
 and surface particulates, with 

15
N values reaching +30‰ and +25‰ respectively 813 

(Hadas et al., 2009).  814 

 815 



 35 

6.4. Utility of the 15
Nsed proxy in identifying modes of N-cycling 816 

 817 

The present attempt to predict the shape of the 
15

Nsed distribution for several redox scenarios 818 

is admittedly simplistic and likely does not capture all the potentially important sources of 819 

isotopic variability and complexity. One of the logical next step is to construct spatially 820 

resolved ocean circulation models that integrate the redox and the N biogeochemistry together 821 

with its N isotope systematics to develop more quantitative predictions of 
15

Nsed distributions 822 

in different scenarios and at variable spatial scales. This could be started by adding N isotopes 823 

to existing models integrating the ocean geometry and mixing dynamics together with the 824 

kinetic of metabolic pathways operating the N-cycle, such as those of Al Azhar et al., (2014) 825 

and Boyle et al. (2013).  Nonetheless, the present qualitative review yields several broad 826 

conclusions.  827 

(i) Extrapolating results from a single basin to the global N cycle is difficult due to the 828 

intrinsic complexity and heterogeneity of the N cycle. Conversely, 
15

Nsed data may be highly 829 

useful in reconstructing both temporal and spatial changes of the N-cycle at the regional scale, 830 

as demonstrated by many recent studies (Papineau et al., 2009; 2013; 2016; Godfrey et al., 831 

2013; Stüeken, 2013), 832 

(ii) In order to produce a robust assessment of the global N cycle during specific intervals of 833 

the Precambrian, 
15

Nsed data should be obtained from widely distributed locations and varied 834 

depositional environments.  835 

(iii) 
15

Nsed distributions alone may be insufficient to discriminate between broadly defined 836 

scenarios of N biogeochemical cycling at both basin and global scales. Acquiring independent 837 
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environmental and specifically redox constraints (e.g. from trace element abundances) is thus 838 

essential for a rigorous interpretation of 
15

Nsed distributions in the Precambrian.  839 

 840 

7. Secular evolution in Precambrian 
15

N signatures 841 

 842 

The Precambrian 
15

Nsed database has grown steadily over the last ten years and several 843 

papers have recently reported secular variations in 
15

Nsed for parts or all of the Precambrian 844 

(Papineau et al., 2005; Thomazo et al., 2009, 2011; Thomazo and Papineau, 2013; Ader et al., 845 

2014; Stüeken et al., 2015a,b). Here, we have merged and updated previous compilations into 846 

a single database (see supplementary material). In Figure 6, 
15

Nbulk and 
15

Nker data are 847 

plotted as a function of time. The 
15

Nsed temporal resolution displays several gaps, for 848 

instance between 3.2 and 3.0 Ga and 2.4 and 2.2 Ga (i.e. during the GOE), and poor coverage 849 

between 1.8 and 0.68 Ga. The spatial resolution is also quite poor, most time intervals being 850 

represented by data from only one location (supplementary Table). It is thus inevitable that as 851 

new data are acquired, some of the features in Figure 6 will change. Due to the importance of 852 

the shapes and modes of 
15

Nsed distributions in the interpretation of N-isotope data, we also 853 

present 
15

Nsed distributions for the entire Precambrian (Fig. 5d) and for four time intervals 854 

for which data are relatively abundant: 680–540 Ma, 2.2–1.8 Ga, 2.8–2.4 Ga and 3.8–2.8 Ga 855 

(Fig. 5e-h). The time intervals 2.4-2.2 Ga and 1.8-0.68 Ga are omitted due to lack of data and 856 

poor temporal resolution, respectively.  857 

At this stage, given the heterogeneity of the data set, simple data distributions are presented 858 

with no attempt to obtain an equal representation of the studied basins and successions. 859 

Certain extensively studied sedimentary successions inevitably dominate some distributions, 860 
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as is the case of the Doushantuo Formation in the Yangtze Gorge Area (South China), which 861 

strongly dominates the 680–540 Ma interval. Also, no attempt has been made to filter data 862 

that may not be representative of normal marine conditions. This might have eliminated many 863 

earlier Archean samples, most of them being cherts of possible hydrothermal origin (Pinti and 864 

Hashizume, 2001) as well as samples possibly representing Late Archean alkaline lake 865 

successions (Stüeken et al., 2015b). As more data are acquired for marine successions from 866 

multiple cratons, more meaningful representations of 
15

N variability in the ocean will emerge 867 

and the large-scale patterns will surely be revised. 868 

Because the present dataset does not offer sufficient spatial coverage or temporal resolution to 869 

obtain meaningful distributions, in principle it would be premature at this stage to try to 870 

interpret secular variations of the 
15

Nsed distributions in terms of the global marine N-cycle. 871 

Nevertheless, we assume in the following discussion that the data is statistically sufficient to 872 

identify major features of the Precambrian 
15

Nsed record and make preliminary 873 

interpretations. The aim of the following discussion is both to illustrate the potential of this 874 

proxy for unraveling changes in the N-cycle and to motivate further data collection to refine 875 

models for the evolution of the N-biogeochemical cycle through time. 876 

 877 

Main features of the Precambrian 15
Nsed record 878 

 879 

With the exception of two episodes characterized by highly positive 
15

Nsed values (at ca. 2.7 880 

and 1.9 Ga), most Precambrian 
15

Nsed data are between -2 and +10‰, with the vast majority 881 

clustered more tightly between 0 and +8‰ (Fig. 5d and Fig. 6). This range is intermediate 882 

between that of modern ocean surface sediments (Tesdal et al., 2013) and Phanerozoic 883 
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sediments (Algeo et al., 2014) (Fig. 5a and b). It is worth noting here that for a given time 884 

interval, the most positive 
15

Nsed values usually are found in bulk samples having 885 

experienced metamorphism in excess of greenschist facies, whereas the most negative
15

Nsed 886 

values are often found in kerogens.  887 

The most striking feature observed in Figure 6 is the extremely positive values at ca. 2.7 and 888 

1.9 Ga. At 2.7 Ga, these high 
15

Nsed values are observed in several basins, with values up to 889 

+50‰ in bulk samples and kerogens affected by greenschist facies metamorphism only  890 

(supplementary Table, Beaumont and Robert, 1999; Jia and Kerrich, 2004b; Kerrich et al., 891 

2006; Thomazo et al., 2011; Stüeken et al., 2015b). At ca. 1.9 Ga, 
15

Nsed values are typically 892 

between +10 and +20‰, also reach as high as +27‰. To date, such positive values have been 893 

observed in only a few localities associated with unusual stromatolitic phosphorite in the 894 

Aravalli Supergroup, northwestern India, and the most positive values are found in bulk 895 

samples having experienced metamorphic conditions higher than greenschist facies (Papineau 896 

et al., 2009).  897 

Subtle evolution with time of the mode of 
15

Nsed distribution is also evident (Fig. 5e to h). 898 

The 3.8–2.8 Ga interval has the lowest mode (≈ +2‰), with a tight distribution specifically 899 

after 3.3 Ga (between -4 and +5‰). The 2.8-2.4 Ga interval has a slightly higher mode (≈ 900 

+3‰) and the 2.2–1.8 Ga interval an even higher 
15

Nsed mode (≈ +5‰). The 680–540 Ma 901 

interval presents a mode of ~ +3‰ and a relatively tight 
15

Nsed distribution (between -2 and 902 

+10‰). Overall, these modes fall between that of the modern ocean and OAE 
15

Nsed 903 

distributions. 904 

 905 

Effects of post-depositional processes on patterns of 15
N variations with time 906 
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 907 

As discussed in section 3, detailed petrological and geochemical characterization is still 908 

lacking for many samples, such that potential metamorphic effects on 
15

Nsed and 
15

Nker 909 

remain uncertain, even in samples having undergone only greenschist facies metamorphism.  910 

Although it is unlikely that the extreme 
15

N-enriched signatures at 2.7 Ga can be explained by 911 

metamorphism (they are identified in several basins and recorded in both kerogen and bulk 912 

analyses of samples; Stüeken et al., 2015b), the
15

Nsed distributions presented here, and in 913 

particular their mode, may still have been affected to some extent by metamorphism. At least 914 

two observations lend support to this possibility: samples having been metamorphosed 915 

beyond greenschist facies tend to show comparably high 
15

Nsed for a given time interval (Fig. 916 

6), and 
15

Nsed distributions have a 
15

Nbulk mode higher than that of their 917 

corresponding
15

Nker and 
15

Nker distributions (Fig. 5). It is thus critical to better characterize 918 

metamorphic grades of analyzed samples in order to better evaluate the potential impact of 919 

metamorphism on 
15

Nsed values.  920 

Another important feature in Figure 6 is that the most negative 
15

N values for a given age are 921 

mostly recorded by kerogen, consistent with the observation that 
15

Nker is typically equal to 922 

or lower than 
15

Nbulk when both are measured on the same sample (Fig. 2). As discussed in 923 

section 3.4, this difference may reflect metamorphic effects on 
15

Nbulk and/or 
15

Nker, but it 924 

could also have been acquired at the time of deposition due to a contribution of NH4-bearing 925 

detrital clay minerals or to early diagenetic processes in the water column and surface 926 

sediments. Contributions from detrital clay minerals were likely minimal to nil in the 927 

Precambrian when terrestrial biomass was small or nonexistent, severely limiting available 928 

nitrogen during the pedogenesis. As for early diagenesis, it is unclear which of 
15

Nbulk 929 

and
15

Nker should be used as the best proxy for the N-biogeochemical cycle because paired 930 
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
15

Nbulk, 
15

Nker and/or 
15

NNH4+ have only seldom been investigated in modern sediments 931 

(e.g. Peters et al., 1978; Prokopenko et al. 2006a,b,c) or ancient sedimentary rocks 932 

(Yamaguchi, 2002; Williams et al., 2005; Higgins et al., 2012; Bauersachs et al., 2009). 933 

Solving this issue is thus of utmost importance. A promising approach that has been 934 

investigated for more than 15 years is the use of the N isotope composition of chlorin 935 

(
15

Nchlorin), a biomarker for primary producers (e.g., Sachs et al., 1999; Beaumont et al., 936 

2000; Higgins et al., 2011). However uncertainties remain about the potential offset between 937 


15

Nchlorin and primary producers of past ecosystems (Tyler et al., 2010; Junium et al., 2014) 938 

and it is doubtful that it will be possible to extract chlorin from Precambrian samples. 939 

Nonetheless, a comparison between 
15

Nchlorin, 
15

Nbulk and/or
15

Nker in various modern 940 

environments may help to better understand how and when water column and surface 941 

sediments early-diagenetic processes modify 
15

Nbulk and/or
15

Nker (Sachs and Repeta, 1999; 942 

Higgins et al., 2010; Junium et al., 2015). Another promising avenue is to link Raman spectral 943 

signature of organic matter to metamorphic grades (Beyssac et al., 2002) as well as X-ray 944 

spectroscopy techniques, which can be used to characterize the crystallinity and nitrogen 945 

functional groups of organic matter (Papineau et al., 2016). Such analyses of organic matter 946 

can be done in situ and quantitatively calibrated against other methods like NanoSIMS 947 

(Alleon et al., 2015), which will eventually allow for precise in situ 
15

N analyses. 948 

 949 

Effects of changes in the N-biogeochemical cycle on 15
N distributions with time 950 

 951 

Assuming the 
15

N signature was not significantly affected by post-depositional processes 952 

and can be used to trace changes in the N-biogeochemical cycle, two types of effects could be 953 
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responsible for modifications in the 
15

Nsed distributions: (i) biological innovations, whereby 954 

new metabolic pathways become operational and (ii) changes of the ocean redox structure, 955 

which controls the activity of metabolic pathways allowing them to become ecologically 956 

dominant. The 
15

Nsed distribution predicted for the conceptual redox scenarios envisaged in 957 

the section 6 showed that although differences might be expected in the mode and in 958 

amplitudes of positive and negative tails, these differences should be subtle. This prediction is 959 

corroborated by the large amplitude of 
15

N variation for each time interval (Fig. 5 and 6) 960 

relative to the small variations in the 
15

N mode with time (Fig. 6). Hence changes in the N 961 

cycle, if any, are recorded in small modifications of the distribution mode and shape.  962 

Assuming that the variation in 
15

Nsed distribution between time intervals is representative, 963 

then the lowest mode (+1‰) is found for the 3.5–2.8 Ga time interval when the oceans were 964 

probably fully anoxic with minimal N-loss via fractionating oxidative pathways (Fig. 4f). The 965 


15

Nsed signature would thus reflect mostly N2-fixation (Beaumont and Robert, 1999; Stüeken 966 

et al., 2015a). The mode increases to +3‰ in the 2.8–2.4 Ga time interval is consistent with 967 

the idea that oxygenic photosynthesis had started to produce O2, allowing N-loss reactions to 968 

proceed (even if O2 was not significantly accumulating in the environment) (Busigny et al., 969 

2013; Garvin et al., 2009; Godfrey et al., 2009) (Fig. 4f). The extremely positive 
15

Nsed 970 

values at ca. 2.7 Ga could correspond to the transition between these two stages and represent 971 

the oxidative distillation of the NH4
+
 reservoir (Thomazo et al., 2011). Unfortunately, a gap of 972 

data in the 2.4–2.2 Ga time interval precludes identification of possible changes in N cycling 973 

associated with the GOE. Another increase in the 
15
N mode to +5‰ in the 2.2–1.8 Ga 974 

interval may reflect the oxygenation of the atmosphere, surface waters and most probably a 975 

significant part of deep waters (e.g., Partin et al., 2013; Reinhard et al., 2013), leading to an 976 

increase in the surface of redox transitions zones where N-losses occur (Fig. 4b, d or e). In 977 
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this scenario the highly positive 
15

Nsed recorded in one location at ca. 1.9 Ga would 978 

correspond to localized distillation of the NH4
+
 reservoir either by oxidation or assimilation in 979 

places where the chemocline impinged on the euphotic zone (Papineau et al., 2009). Although 980 

the period following 1.8 Ga is too poorly documented to present a statistically relevant 
15

Nsed 981 

distribution, the available data do not show any identifiable change in the range of 
15

Nsed 982 

between the 2.2–1.8 Ga interval and the 0.68-0.54 Ga interval (Fig. 6).  983 

The 
15

Nsed record is thus at least broadly consistent with and reflective of the redox evolution 984 

widely envisaged for the Precambrian oceans (e.g. Lyons et al., 2014). However, 
15

Nsed 985 

variations may also be compatible with other redox or paleo-environmental scenarios. For 986 

example, the positive 
15

Nsed excursions at 2.7 Ga has alternatively been interpreted as a 987 

record of N isotope fractionation induced by NH3 degassing from alkaline lakes (Stüeken et 988 

al., 2015b). As another example, the data that dominate the 3.5–2.8 Ga time interval are 989 

dominated by cherts, which may be hydrothermal in origin and not representative of normal 990 

marine conditions (Pinti and Hashizume, 2001). Hence, although the available 
15

Nsed data are 991 

tantalizing and appear consistent with models for Precambrian oxygenation, more work is 992 

required before we can confidently apply them to reconstructing ancient changes in the 993 

marine N-biogeochemical cycle. 994 

 995 

8. Conclusions and Perspectives 996 

 997 

Although making reliable measurements of 
15

Nsed in rocks with low N content remains 998 

difficult, a series of recent analytical developments have made these analyses more accessible. 999 

Consequently, population of the 
15

Nsed database for the Precambrian has accelerated over the 1000 
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last 10 years. This trend should begin to fill in the 
15

Nsed record, which is sparse for several 1001 

notable time periods, and in particular the 2.4–2.2 Ga interval, which corresponds largely to 1002 

the GOE, and the 1.8–0.68 Ga interval, roughly corresponding to the so-called “boring 1003 

billion.” In addition, given that the N biogeochemical cycle at the scale of the entire ocean can 1004 

only be realistically captured by investigating a range of depositional environments from 1005 

multiple basins, the present dataset is still too limited to be confidently extrapolated to the 1006 

global ocean even in intervals with abundant data. 
15

Nsed data are often available only from a 1007 

single or limited number of basins for each time interval, such that 
15

Nsed distributions do not 1008 

yet provide a statistically robust record of the spatial 
15

Nsed variations in the ocean. In order 1009 

to capture a synoptic view of the global N-cycle with time, data from multiple coeval 1010 

sedimentary sequences are necessary, and the available data set should be carefully screened 1011 

for samples not representative of the marine environment. 1012 

The potential modifications of both 
15

Nker and 
15

Nbulk during post-depositional processes, as 1013 

well as their often significant and unexplained differences, are persistent concerns and 1014 

understanding their origin is essential. Reducing these concerns requires more studies with 1015 

paired 
15

Nker and 
15

Nbulk and/or 
15

Nchlorin data for comparison and evaluation of post-1016 

depositional modification of nitrogen isotope signatures. Studied sites should be chosen both 1017 

in well characterized and varied modern environments and in ancient sedimentary settings for 1018 

which detailed characterization of depositional environments (in particular their redox 1019 

chemistry) and post-depositional modifications are available.  1020 

Because of the complexity of the parameters controlling 
15

Nsed spatial variability, numerical 1021 

modeling may help predict 
15

Nsed distributions more reliably for various ocean redox 1022 

structures and/or evolutionary scenarios (e.g. Ruvalcaba Baroni et al., 2015). This advance 1023 

will require the addition of N isotopes to models integrating the ocean dynamics with the 1024 
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kinetics of metabolic pathways regulating the N-cycle, such as has been attempted by Boyle 1025 

et al. (2013) and Al Azhar et al. (2014). These new models will have to be verified in modern 1026 

lakes or restricted basins that may serve as analogues for Precambrian oceans. 1027 

In spite of these remaining uncertainties, the 
15

Nsed frequency histograms established here 1028 

are compatible with current hypothesis for the Precambrian evolution of ocean redox. Much 1029 

work remains to develop the 
15

Nsed proxy and refine its application to the ancient 1030 

biogeochemical cycle of N, but the proxy nevertheless shows great promise and is certain to 1031 

enjoy increasing use in studies of past environments.  1032 
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Figure 1: Succession of conditions and assumptions needed to interpret 
15

Nsed measurements 1705 

in Precambrian sedimentary rocks in terms of N biogeochemical cycle.  1706 

 1707 

Figure 2: 
15

Nker as a function of 
15

Nbulk for samples for which paired data are available. 1708 

Zaonega Fm. (Kump et al., 2011); Campbellrand-Malmani platform (Godfrey et al., 2009); 1709 

Animikie Bain shelf (Godfrey et al., 2013); Soanesville group and Witwatersand Supergroup 1710 

(Stüeken et al., 2015a); Tumbiana and Kylena Fms. (Stüeken et al., 2015b); see also the data 1711 

compilation in the supplementary material. 1712 

 1713 

Figure 3: Schematic diagram of the principal biogeochemical processes driving the modern N 1714 

cycle adapted from Thomazo et al. (2011). Nitrogen isotope fractionations (reactant- product ~ 1715 

reactant - product) are from the compilations of Cascioti et al. (2009) and Sigman et al. (2009), 1716 

updated with later publications (Zerkle et al., 2008; Bruner et al., 2013; Mobius, 2013; Zhang 1717 

et al., 2014). 1718 

 1719 

Figure 4: Simplified representation of the N biogeochemical cycle in putative Precambrian 1720 

ocean redox structures and of their expected N isotope signature in marine sediments. The red 1721 

color indicates anoxic waters, the blue color oxygenated waters. εap ≈ 0‰ indicates cases 1722 

where the reaction is complete so that the apparent isotope fractionation (εap) is close to nil. 1723 

(a) Modern-like oxic ocean scenario: denitrification does not reach completion (NO3
- 

is not 1724 

quantitatively reduced) in the core of nitrogenous OMZs and O2 penetrates into surface 1725 

sediments except where the seafloor intersects an OMZ. (b) Oxic ocean scenario where NO3
- 1726 

is quantitatively lost in the core of euxinic OMZs and O2 rarely penetrates surface sediments. 1727 
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(c) Physically and redox-stratified ocean scenario: within the redox transition zone downward 1728 

diffusing NO3
-
 and upward diffusing NH4

+ 
are quantitatively converted to N2/N2O so that 1729 

hardly any bioavailable-N is supplied to surface waters. (d) Convecting redox-stratified ocean 1730 

scenario with a relatively deep redox transition zone: NO3
- 

and NH4
+ 

are quantitatively 1731 

converted to N2/N2O at the redox transition zone, except at upwelling locations where NH4
+ 1732 

upwelled in the oxygenated surface waters is concurrently oxidized to NO3
- 
and N2/N2O. (e) 1733 

Convecting redox-stratified ocean scenario with a shallow redox transition zone: in upwelling 1734 

zones anoxic waters reach the surface allowing NH4
+ 

to be assimilated and possibly oxidized 1735 

to N2 and N2O. (f) Convecting fully-anoxic ocean scenario: NH4
+ 

is assimilated and possibly 1736 

oxidized to N2 and N2O. Modified and completed after Ader et al. (2014). 1737 

 1738 

Figure 5: Histograms for: (a) 
15

Nbulk frequency for modern sediments (after Tesdal et al., 1739 

2013); (b) median 
15

Nsed value of Phanerozoic sedimentary units (median 
15

Nsed are from 1740 

Algeo et al., 2014) (c) 
15

Nsed values for OAEs (references in Ader et al., 2014); 
15

Nbulk and 1741 


15

Nker value for (d) the Precambrian and for the time intervals (e) 680 to 540 Ma (f) 2.2 to 1742 

1.8 Ga (g) 2.8 to 2.4 Ga and (h) 3.8 to 2.8 Ga. 1743 

 1744 

Figure 6: Sedimentary 
15

Nbulk and 
15

Nker data plotted versus time. Data and their references 1745 

are provided in the supplementary material. GOE stands for the Great Oxidation Event. 1746 
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