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Abstract

Electrical Impedance Tomography (EIT) is a medical imaging technology with the
potential to locate focal epilepsy, monitor patients with traumatic brain injury and
diagnose stroke. EIT usually images conductivity changes in time or in frequency
of the applied current and measured voltages. While it is nowadays clinically used
for monitoring lung ventilation, its application in head imaging is complicated by
the geometry of the head, containing tissues with strongly varying conductivities.
The aim of this thesis is to provide a novel framework for EIT head imaging by
addressing the requirements for higher modelling accuracy throughout the imaging
process. An introduction to EIT, its applications for head imaging and the two
main components of EIT image reconstructions is given in chapter 2. A procedure
for generating more accurate head models is presented in chapter 3 and is used
to evaluate, whether subject speci�c head models are required for EIT imaging.
To speed up simulations of current �ow through the head and the computation
of the Jacobian matrix required for image reconstructions, a fast parallel forward
solver is implemented and validated in chapter 4. Stability of time-di�erence image
reconstructions with respect to electrode modelling errors is addressed in chapter 5,
followed by an evaluation of modelling error impacts on multi-frequency imaging
in chapter 6. The �ndings of chapters 5 and 6 are �nally combined in chapter 7 to
recover electrode positions in multi-frequency stroke imaging, thereby reducing
image artefacts and making stroke diagnosis with EIT feasible.
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Chapter 1

Overview

1.1 Introduction

Electrical Impedance Tomography (EIT) is a non-invasive imaging modality in which the three
dimensional conductivity distribution in an object is imaged. It is actively used in industrial
settings and a broad range of medical EIT applications are envisaged. Fundamentally, EIT
measures the electrical properties of tissues in the body by applying Ohm’s law in a de�ned
series of measurements. Small, imperceptible currents are injected into the body in di�erent
directions and the resulting electrical potentials are measured on the surface. Even though
the name suggests that tomographic images are obtained, this is not precisely true. While the
x-rays in Computed Tomography (CT) pass through the body in straight lines, the current in
EIT spreads through the whole body. As a result, all measurements contain information about
the conductivity throughout the imaged body and have to be considered as a whole, in order to
produce an image. This makes EIT a very interesting �eld for mathematicians, since the quality
of acquired images depends strongly on the modelling of the experimental setup and on the
used image reconstruction algorithm.

EIT will never compete with imaging techniques like CT or magnetic resonance imaging
(MRI) in terms of image quality. The spatial resolution is limited due to the incomplete electrode
covering of the body surface and experimental error dependence of the reconstruction methods.
However, EIT has a very high temporal resolution and the required equipment is small, portable
and relatively inexpensive. These bene�ts have lead to a wide interest in clinical research,
resulting in successful applications for the monitoring of lung ventilation (Frerichs, 2000) and
gastric emptying (Brown, 2003). The EIT group of University College London focuses on
applications of EIT to detect brain pathology and neural activity (Holder and Tidswell, 2004).

A typical EIT system consists of three main components: a current source applying an
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alternating current, a voltmeter measuring the resulting voltages and a switching network, to
connect the current source and voltmeter to di�erent electrode pairs. Data collection is then
guided by the current and measurement protocols, which de�ne the consecutive electrode pairs
used for injection and measurement. EIT imaging can be categorised into three modalities.
In absolute imaging, a conductivity distribution explaining the measurements is computed
directly from data collected at one point in time. Time-di�erence imaging is agnostic to the
absolute conductivity distribution, and aims to reconstruct changes in conductivity between
two measurements at di�erent times. Frequency-di�erence (or multi-frequency) imaging uses
measurements at di�erent modulation frequencies to di�erentiate biological tissues on the basis
of their characteristic conductivity spectra.

The image reconstruction relies on a good knowledge of the current path through the body,
the modelling of which is called the forward problem. The forward problem is commonly solved
with the �nite element method (FEM), in which the body is modelled as the combination (called
mesh) of many small elements with piecewise static conductivities. The current �ow and resulting
electric potential can be computed with FEM, by formulating the partial di�erential equation
given by Maxwell’s equations on this discrete mesh. However, the modelling never perfectly
matches reality and discrepancies of real and modelled body geometry, tissue conductivities,
electrode placement, size, shape and contact impedance all include additional noise to the
inherent instrumentation noise. The three categories of EIT imaging mentioned in the previous
paragraph rely on an accurate forward model to a di�erent extent. While the resulting voltages
in the body are linearly dependent on the applied current (modelled in the forward problem),
their dependence on the conductivity is non-linear (inverted in the inverse problem).

The mathematical problem of the conductivity image reconstruction (the inverse problem) in
EIT was �rst formulated by Calderón (2006) in 1980, and was proven to be unique if the whole
boundary is known. In practice this is not the case, since current is applied and voltages are
measured through a discrete set of electrodes. Furthermore, the inverse problem is severely
ill-posed, meaning that small measurement or modelling errors can lead to large artefacts in the
reconstructed image. As a consequence, the actual problem is unstable and not unique, and prior
information has to be considered in order to reconstruct meaningful images.

These mentioned di�culties explain, why satisfactory absolute images have only been
achieved in controlled measurement situations on simple geometries. As soon as the modelling
does not accurately re�ect the measurement, strong artefacts appear in the reconstructed image.
In realistic EIT applications, the inverse problem is commonly solved by linearising it around the
forward model (with the Jacobian matrix). Small and localised changes can then be recovered
with time-di�erence image reconstructions. Taking time-di�erential measurements has the
advantage that most modelling errors are cancelled out, because they are present in both the
reference and the data measurement.

To use EIT for imaging acute stroke (Holder and Tidswell, 2004) or breast cancer (Zou and
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Guo, 2003), a baseline image of the healthy patient is not available, and frequency-di�erence
measurements have been proposed to overcome this issue (Brown et al., 1995). For homogeneous
backgrounds, frequency-di�erence images can be reconstructed similarly to time-di�erence
by linearising the inverse problem. For more realistic applications, non-linear reconstruction
algorithms are required. In terms of dependence on model accuracy, these non-linear frequency-
di�erence algorithms occupy the middle ground between time-di�erence and absolute imaging.

1.2 Purpose

The purpose of the work in this thesis is to improve the mathematical and algorithmic methods
in head EIT. The goal is to provide a framework for accurate modelling and stable image
reconstruction in both time-di�erence and frequency-di�erence imaging, with a focus on the
detection of stroke during monitoring of traumatic brain injury patients and the imaging of acute
ischaemic and haemorrhagic stroke. The connection of the forward and the inverse problem is
studied, and improvements on the former are implemented to increase performance of the latter.
The main contributions to the �eld are the following:

1. The proposal of a novel method for creating accurate head meshes and the analysis,
whether subject speci�c head meshes are required for time-di�erence stroke imaging.

2. The implementation of a fast, parallel forward solver, to improve the speed and the memory
requirement of boundary voltage and Jacobian matrix computations.

3. The study of voltage errors introduced by inaccurate modelling of electrode parameters and
subsequent correction for electrode movement artefacts in time-di�erence and absolute
imaging on the human head in simulation and experiments.

4. The comparison of modelling errors commonly occurring in non-linear multi-frequency
imaging and iterative recovery of inaccurately modelled electrode positions on the human
head.

1.3 Statement of Originality

Electrical Impedance Tomography is a very interdisciplinary �eld, as re�ected in the presence of
computer scientists, engineers, mathematicians, medical doctors, neuroscientists and physicists
in the UCL EIT group. Therefore, most EIT research is collaborative and mine is no exception.
Any problem I faced during the PhD studies, could immediately be discussed with an expert
in the respective �eld, and consequently this thesis contains contributions of most current and
former group members.
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My supervisors Dr. Timo Betcke and Prof. David Holder, as well as co-authors on the
publications listed in the next section — Dr. James Avery, Dr. Kirill Aristovich, Dr. Emma Malone
—, have helped me with study design, presentation, language and structuring of the thesis.

The meshing procedure used in chapter 3 was originally devised by Dr. Kirill Aristovich
for generating rat brain models, and was adapted by me for human head segmentations and to
re�ne elements near the electrodes. One of the four CT and MRI segmentations used in this
chapter was done by Mayo Faulkner under my supervision.

The work presented in chapter 4 would not have been possible without the support of Prof.
Andreas Dedner, who has helped me throughout the implementation of Peits with advice based
on his in-depth knowledge of the Dune-Fem package. The image of neural activity measured
on a rat brain and the convergence study on the rat brain mesh were provided by Dr. Kirill
Aristovich.

The 3D printed head tank used for the experimental validation in chapter 5, was designed
and printed by Dr. James Avery, who also instructed me on how to use the KHU Mark 2.5 system
for the tank experiments. The absolute images shown in this chapter were reconstructed by Dr.
Emma Malone, based on my implementation of the electrode movement correction.

The feasibility study on multi-frequency stroke imaging in chapter 6 was jointly designed
and written with Dr. Emma Malone. All forward simulations, image reconstructions and image
quality measures were computed by me. For the image reconstructions I used an adapted
implementation of Emma’s fraction reconstruction algorithm.

All work on the correction of electrode modelling in MFEIT in chapter 7 was done by myself.
The used code was adapted from the implementation of the fraction reconstruction algorithm
by Dr. Emma Malone.

1.4 List of Publications

The work presented in this thesis has been published or accepted for publication in the following
peer-reviewed journal papers:

Chapter 3 M. Jehl, K. Aristovich, M. Faulkner, D. Holder. ‘Are patient speci�c meshes required

for EIT head imaging?’, Physiological Measurement, accepted for publication, January 2016

Chapter 4 M. Jehl, A. Dedner, T. Betcke, K. Aristovich, R. Klöfkorn, D. Holder. ‘A fast parallel

solver for the forward problem in Electrical Impedance Tomography’, IEEE Transactions on
Biomedical Engineering, 62(1), 126-137, January 2015, doi:10.1109/TBME.2014.2342280

Chapter 5 M. Jehl, J. Avery, E. Malone, D. Holder, T. Betcke. ‘Correcting electrode modelling

errors in EIT on realistic 3D head models’, Physiological Measurement, 36(12), 2423-2442,
October 2015, doi:10.1088/0967-3334/36/12/2423

4

http://dx.doi.org/10.1109/TBME.2014.2342280
http://dx.doi.org/10.1088/0967-3334/36/12/2423


1. Overview

Chapter 6 E. Malone, M. Jehl, S. Arridge, T. Betcke, D. Holder. ‘Stroke type di�erentiation using

EIT: evaluation of feasibility in a realistic head model’, Physiological Measurement, 35(6),
1051-1066, May 2014, doi:10.1088/0967-3334/35/6/1051

Chapter 7 M. Jehl, D. Holder. ‘Correction of electrode modelling in multi-frequency EIT imaging’,
Physiological Measurement, accepted for publication, January 2016
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Chapter 2

Literature Review

2.1 Electrical Impedance Tomography

2.1.1 Bioimpedance

Re
Ri

Cm

(a)

Im(Z)

Re(Z)

ω
Z

ω=0ω=
ReRe||Ri

(b)

Figure 2.1: The cell modelled as an electronic circuit - (a) A single cell can be modelled as a circuit of the extracellular
resistance in parallel with the intracellular resistance and the capacitance of the cell membrane. (b) The frequency dependant
complex impedance can be visualised in a Cole-Cole plot.

The impedance Z of a biological tissue characterises the electrical properties of this tissue
when a current or a voltage is applied (Holder, 2004). The resistance R is a measure of the extent
to which charge transport is opposed whereas the capacitance C describes the ability of the
tissue to store electrical charges. Biological tissues conduct current through ion di�usion in
the highly conductive extracellular and intracellular spaces. The lipid cell membrane can be
modelled as a capacitance, a cell as a simple parallel circuit (�gure 2.1a) and its impedance is
thus

Z(ω) =
ReRi + Re

jωCm

Re +Ri + 1
jωCm

. (2.1)
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At low frequencies the cell membrane Cm is fully charged most of the time and thus most of the
current �ows through the extracellular space

lim
ω→0

Z(ω) = Re, (2.2)

while at high frequencies the capacitance is uncharged and the current can also �ow through
the cell

lim
ω→∞

Z(ω) =
ReRi
Re +Ri

. (2.3)

At intermediate frequencies the impedance has an imaginary component due to the in�uence
of the capacitance. However, this phase shift is rarely used in EIT measurements because it is
prone to noise from the instrumentation (stray capacitance, Saulnier, 2004). The real component
can be calculated as

R(ω) = ReZ =
ReRi(Re +Ri) + Re

ω2C2
m

(Re +Ri)2 + 1
ω2C2

m

. (2.4)

The characteristics of similar dielectrics have been studied extensively by Cole and Cole (1941)
and this cell model is thus often mentioned alongside their research and the frequency response
of the impedance shown in Cole-Cole plots (�gure 2.1b). At a large scale, this simple cell model
roughly explains the di�erences in observed tissue resistances. Dense tissues, such as fat, have
a high resistance, while bodily �uids have a low resistance. The resistance increases with the
length l and decreases with the cross-section A of the current path, and depends on the tissue
speci�c resistivity ρ,

R = ρ
l

A
. (2.5)

The inverse of the resistivity is the conductivity σ given in S m−1, which is the value generally
reconstructed in EIT.

2.1.2 Measurements

Ohm’s law V = Z · I already suggests which components constitute an EIT system (�gure 2.2a)

• I - A precise current source is required to drive an alternating current with an amplitude
which is limited by medical safety regulations.

• V - A voltmeter to measure the resulting in-phase surface potentials when current I is
applied.

• Z - In order to image the impedance distribution within an object, voltages are measured
for a set of independent current injections. Thus, an array of electrodes and a switching
network is required.
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(a) (b)

Figure 2.2: EIT systemand experimental setup - (a)The UCL Mk 2.5 system containing one current source, one voltmeter
and a switching network (McEwan et al., 2006). (b) A classical EIT experiment, with a cylindrical saline tank and equispaced
electrodes around the boundary.

The �rst EIT system was the She�eld Mk 1 (Brown and Seagar, 1987), which applied a �xed
50 kHz current through adjacent pairs of 16 cylindrically arranged electrodes (similarly to the
32 electrodes in �gure 2.2b). Voltages were also measured between adjacent electrodes. Since
the She�eld Mk 1, many other EIT systems have been developed to apply current and measure
voltages at multiple frequencies or through multiple electrodes simultaneously, however there is
always a trade-o� between the versatility and speed, and the precision of the measurements.
Theoretically, it is also possible to apply voltage and measure the resulting currents. This is
rarely done, because the accurate measurement of currents is di�cult (Saulnier, 2004).

Both main components of an EIT system introduce noise into measurements (Frangi et
al., 2002). The current source has to be optimised for a certain load. Since the load in EIT is
not accurately known, current divider e�ects introduce proportional (dependent on the signal
size) noise into measurements (Boone and Holder, 1996a). The noise from the voltmeter is
mainly due to thermal noise and is signal-independent (i.e. additive noise). Another source of
uncertainty in EIT measurements is the interface between the electrodes and the skin. Because
of electrochemical e�ects when electronic current in the system is transformed to ionic current
in the body, a voltage drop is observed, which can di�er signi�cantly from one electrode to
another (Boone and Holder, 1996b). If voltages were measured on the electrodes injecting current,
the voltage drop caused by the contact impedance would introduce a large, unknown error.
Therefore, EIT voltage measurements are usually restricted to electrodes not involved in current
injection, so-called four electrode measurements.

Increasing the current amplitude leads to a better signal-to-noise ratio. However, the current
which may be injected into a patient is limited by the IEC 60601 medical safety regulations (IEC,
2005). For recordings up to 1 kHz, the root mean square limit is 100 µA and above, the current is
limited to f · 100 µA where f is the frequency in kHz.
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2.1.3 Protocols

A very important part of EIT measurements is the protocol. A current pattern is a single current
injection through either a pair of electrodes or multiple electrodes. The current protocol is a set
of independent current patterns, thus it has M − 1 lines when M electrodes are used. Single
measurements are always done on a pair of electrodes and the set of independent measurements
performed for each applied current pattern is called the measurement protocol. The full protocol

is the combination of the current protocol and the measurement protocol and de�nes the order
in which single measurements are taken.

The choice of current patterns greatly in�uences the sensitivity of the measurements to
perturbations in di�erent locations. The adjacent protocol used in the She�eld Mark 1 system
has a very low sensitivity in the centre of the body since most of the current passes along the
surface. Polar current injection through opposite electrodes improves the sensitivity in the
centre, but reduces the number of independent current injections to M/2 when the electrodes
are arranged geometrically around a cylindrical tank (which is still the standard test object
in EIT). Thus, a ‘just o�’ opposite current protocol has been suggested for these ‘quasi 2D’
applications with symmetrical electrode arrangement (Adler et al., 2011).

On the human head, which — unlike the thorax — is badly approximated by a cylinder,
electrodes are commonly placed according to the so-called EEG 10-20 or EEG 10-10 positions
(�gure 2.3a), which are the standard in the electroencephalography community (Jurcak et al.,
2007). Polar injections are even more important in head EIT, because the highly conductive
scalp on top of the highly resistive skull result in adjacent injections being shunted through
the scalp and not actually passing through the object of interest, the brain. A full protocol
for 32 electrodes placed according to an extended EEG 10-20 system (�gure 2.3b), was devised
empirically by �nding polar or near-polar electrodes for injections, and adjacent electrodes were
used for measurements (Gibson, 2000). For systems with hard-wired measurement electrode
combinations this EEG31 protocol could not be used, and alternative protocols were investigated
(Fabrizi et al., 2009).

The interest of using multiple electrode current injections was born from the idea of analyti-
cally deriving the optimal current patterns. Isaacson (1986) de�ned the distinguishability in EIT
as the L2-norm of the boundary voltage changes caused by a change in conductivity σ2 − σ1.
Using the distinguishability as the quality measure of an EIT measurement, the best current
patterns are the eigenvectors corresponding to the largest eigenvalues of the di�erence of the
Neumann-to-Dirichlet (NtD) or Current-to-Voltage maps for the two conductivity distributions
σ1 and σ2. On a �nite element mesh with continuous Neumann boundary conditions the NtD
map is simply the sti�ness matrix weighted by the conductivity of the elements. For M discrete
electrodes the NtD map can be computed with M − 1 forward solutions using the complete
electrode model boundary conditions. For cylindrical or spherical geometry the optimal current
patterns are trigonometric patterns with low spatial frequencies being most sensitive to conduc-
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(a) (b)

Figure 2.3: Electrode placement on the human head - (a) EEG 10-10 electrode positioning system with EEG 10-20
positions in black (Oostenveld and Praamstra, 2001). (b) Extended EEG 10-20 system, for even coverage of the head surface
with 32 electrodes (Gibson, 2000).

tivity changes far from the boundary (�gure 2.4) and high frequencies more sensitive to changes
near the boundary (�gure 2.5).

Figure 2.4: Optimal current patterns for central stroke - The optimal continuous current density patterns on the surface
of the head were computed as the eigenvectors corresponding to the largest eigenvalues of the di�erences of the NtD maps
with and without stroke.

However, there are two reasons why trigonometric patterns might still be a bad choice.
The �rst reason is the formulation of the medical safety regulations IEC 60601 (Dybdahl, 2009),
the interpretation of which is debated, but most likely limits the sum of all applied currents
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Figure 2.5: Optimal current patterns for lateral stroke - The optimal current patterns for a lateral stroke have a high
spatial frequency close to the stroke location.

(Lionheart et al., 2001). Trigonometric patterns are only optimal, if the power or the 2-norm
of the applied current were limited. If, however, the sum of all applied currents is limited,
then pairwise injection results in a better distinguishability. If the maximum injected current
to a single electrode were limited, the so-called Walsh patterns would be best (Eyüboǧlu and
Pilkington, 1993). The second reason why parallel injection might result in worse images than
pairwise injections, is that the electrodes used for voltage measurements are simultaneously
used to inject current. Two electrode measurements are more sensitive to errors in electrode
contact impedances than the commonly used four electrode measurements (Kolehmainen et al.,
1997). To reduce these errors, contact impedances can be treated as unknowns and reconstructed
together with the conductivities, in order to reduce the deterioration of image quality (Heikkinen
et al., 2002). Methods for keeping the electrode contact impedance low include skin abrasion
and applying conductive gels between electrodes and skin (McAdams et al., 1996).

2.1.4 Imaging Modalities

EIT image reconstruction methods can be categorised into three groups, absolute imaging, time-
and frequency-di�erence. All methods rely on a computer model (the mesh) of the object under
examination, which is used to simulate the expected electric potential distributions (the forward

solutions) for the injected current patterns. In absolute imaging these simulated voltages are
directly compared to the measured experimental voltages, and the model is iteratively adjusted
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to reduce the di�erences between simulation and experiment. Time- and frequency di�erence
data can either be reconstructed with linear algorithms (fast and stable), when the conductivity
changes are small and localised, or iteratively, when this linearity assumption is invalid. For
all reconstruction methods, the Jacobian (or sensitivity) matrix is required, which is computed
based on the forward solutions. The Jacobian relates changes in conductivity to changes in
measured voltages by linearising the computer model and informs the imaging algorithms of
the search direction. The closer the mesh used for its computation is to the reality, the better are
the resulting images.

Absolute Imaging

The most straightforward way to create an image from EIT measurements is to map the measured
voltages directly to a conductivity distribution within the measured object (Vauhkonen et al.,
1999). Absolute (or static) imaging is the most versatile imaging modality in EIT, since images
can be produced at any point in time without the need for reference measurements. However,
as was shown for instance by Kolehmainen et al. (1997), absolute imaging results in very noisy
images if the model does not accurately match the reality. Because the inverse problem in EIT is
non-linear and severely ill-posed, already small errors in the modelling lead to large artefacts in
the reconstructed image. For these reasons, no satisfactory images have so far been produced
with absolute imaging from clinical data or tank experiments with non-trivial geometry. To
suppress image errors caused by modelling inaccuracies and systematic instrumentation noise,
di�erence measurements are commonly used.

Time-Di�erence

Time-di�erence (TD) imaging compares the measured voltages at time t (the data measurement)
to a baseline (or reference) measurement obtained at time t0 and aims to explain the voltage
di�erence by a conductivity change between these time points. Now, the mesh is only used
to compute the relationship of conductivity changes to voltage changes (the Jacobian), but
not the reference measurement. Therefore, large parts of the time-independent modelling and
instrumentation errors are cancelled and the reconstructions are more stable. A small, localised
change in conductivity δσ between the two time points can be linearly reconstructed by inverting
the Jacobian matrix J in some way:

δσ = J−1(vt − vt0). (2.6)

Since TD requires a baseline measurement, its applications are limited to imaging physiolog-
ical changes over a short period with a known starting time. However, EIT has the potential to
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image conditions such as stroke or cancer which cannot be monitored during their build-up, but
only after they occurred.

Frequency-Di�erence

Multi-frequency EIT (MFEIT), or EIT spectroscopy (EITS), relies on the observation that the
impedances of di�erent tissues have di�erent frequency spectra and enable ‘one shot’ imaging
without the drawbacks absolute imaging has. By measuring with di�erent frequencies simul-
taneously or in rapid sequence, spectral data are obtained and can be reconstructed. Simple

(Brown et al., 1995) and weighted (Seo et al., 2008; Jun et al., 2009) frequency-di�erence (FD) are
the most basic reconstruction methods, where analogous to TD one measurement is taken as a
baseline and a measurement at a di�erent frequency is reconstructed by inverting the Jacobian
matrix. However, linear FD can only reconstruct anomalies in a homogeneous background and
its applications are thus very limited. More advanced, non-linear FD algorithms are required
to enable MFEIT in realistic applications. Two such algorithms have recently been published.
The fraction reconstruction algorithm (Malone et al., 2014) reconstructs tissue volume fractions
instead of conductivities, thereby allowing the simultaneous use of measurements at multiple
frequencies, provided that the conductivity spectra of the tissues are known. Uncertainty in the
knowledge of the tissue spectra was incorporated in the reconstruction-classi�cation algorithm
(Malone et al., 2015), at the cost of having to optimise a second regularisation parameter.

2.1.5 Experiments

EIT applications and algorithms can be tested in three di�erent environments. Simulation studies

are useful to evaluate the feasibility of an application and the correct performance of a recon-
struction algorithm, because they are fast, easy and the modelling errors and instrumentation
noise can be controlled. In simulation studies, the experimental voltages are simulated on a �nite
element mesh, measurement noise is added to the voltages, and then they are reconstructed into
images.

One step closer to real applications are tank (or phantom) experiments. A tank experiment is
less controlled than a simulation study, but since the geometry is well known and the perturbation
can be controlled accurately, reconstructions are generally reliable. A standard EIT tank is a
cylindrical tank with electrodes in a circle around the boundary (�gure 2.2b), which is usually
�lled with saline with controlled conductivity to represent the human thorax (Saulnier et al.,
2001). Perturbations are placed into the cylinder, voltages are collected and images reconstructed
with 2D or 3D reconstruction algorithms. For FD applications, the saline has been �lled with
carrot pieces, to achieve a background conductivity that changes with frequency (Packham et
al., 2012). For head EIT, cylindrical tanks are not very useful, and several head shaped tanks
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have been proposed. A tank modelled around the shape of a real skull (�gure 2.6a, Tidswell et
al., 2001a) was used successfully to reconstruct TD images, even though the simulated voltages
were signi�cantly di�erent to the experimental ones (Avery, 2015). The di�culty of �tting a
computer model to a tank was recently addressed by starting with the model, and 3D printing
the tank according to this model (�gure 2.6b, Avery, 2015). The conductivity of the skull was
adapted to recent literature (Tang et al., 2008) by printing holes in the skull, that — once it was
immersed in saline — gave it the desired conductivity values.

(a) (b)

Figure 2.6: Head shaped tanks - (a) Head shaped tank with real skull (Tidswell et al., 2001a) and (b) 3D printed head
shaped tank and skull (Avery, 2015).

The most challenging EIT experiments are human studies. Measurement errors are larger
due to movement of the patient, high contact impedances between electrode and skin, unknown
geometry and tissue conductivity values. Furthermore, the quality of the reconstructed images
normally cannot easily be validated, since the exact conductivities or conductivity changes are
not known. Consequently, the so far only established clinical application of EIT is the monitoring
of lung ventilation, where the signal is very large (Frerichs, 2000; Gong et al., 2015).

2.1.6 Traumatic Brain Injury

Traumatic brain injury (TBI) is caused by sudden external forces to the head, and is most
common in children and adolescents (NICE, 2014). It is a leading cause of death and disability
worldwide, with 50 thousand deaths, 235 thousand hospitalisations and over a million emergency
department visits in the United States alone (Langlois et al., 2006). Only around 5% of TBI patients
present symptoms strong enough to be at risk of fatal acute intracranial complications (NICE,
2014). These patients are identi�ed using the Glasgow Coma Scale and undergo a CT scan.
Some patients with normal CT scans develop delayed onset haematoma in or around the brain
(intracerebral haemorrhage and epidural haematoma, rarely subdural haematoma) up to a week
after the initial trauma (Matsuda et al., 2008). Furthermore, patients who underwent surgery
after the initial CT scan, can develop secondary bleedings (Xu et al., 2010).
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Tissue Conductivity (S m−1)

White matter 0.15

Grey matter 0.3

Cerebrospinal �uid 1.79

Blood 0.7

Skull 0.018

Scalp 0.44

Table 2.1: Typical head tissue conductivities - Tissue conduc-
tivities at ∼10 kHz compiled from literature by Horesh (2006).

Since it is not feasible to perform CT
scans at regular intervals, EIT monitoring
was proposed for patients at risk of develop-
ing delayed onset or secondary haematoma
(Murphy et al., 1987; Xu et al., 2010). In re-
cent feasibility studies on piglets with scalp
electrodes, injected arterial blood was re-
producibly detected (Dai et al., 2010; Man-
waring et al., 2013). Human in vivo im-
ages were obtained during the standard
twist-drill drainage treatment of subdural
haematoma (Dai et al., 2013). However, Dai
et al. (2013) did not image blood, but instead
the in�ux and successive drainage of irrigating �uid (5% dextrose in water), which has a �ve
times higher contrast when compared to healthy brain.

In EIT, conductivity changes caused by haemorrhage are usually modelled by replacing
the conductivity of healthy brain with the conductivity of blood. This results in a conductivity
increase of ∼180% for intracerebral haemorrhages, as calculated from standard tissue conduc-
tivities (table 2.1). In the case of subdural haematoma, blood mixes with cerebrospinal �uid
and the increased �uid volume compresses the brain. A localised compression of the brain is
also observed for epidural haematoma. Consequently, intracranial haemorrhages can take very
di�erent shapes which have a di�erent impact on the head conductivity and have to be modelled
accordingly.

2.1.7 Acute Stroke

Stroke is the third most common cause of death and the leading cause of adult disability in the
UK (Power, 2004). Haemorrhagic stroke is caused by a bleeding in the brain and requires surgery
for treatment. Ischaemic stroke is caused by an interruption of blood �ow due to an embolism.
Recombinant tissue plasminogen activator (rt-PA), a thrombolytic drug which dissolves the
occlusion of the blocked blood vessel, has been approved in the UK in 2003 for treatment within 3
hours of the onset of an ischaemia. Moderate improvements for treatment with rt-PA have been
observed up to 4.5 hours after the ischaemia (Stemer and Lyden, 2010). Before administration of
the drug, the type of stroke has to be con�rmed with a CT scan, since rt-PA can cause additional
damage and even death in the case of a haemorrhage. Since 80% of all strokes are ischaemic, a
quick identi�cation can save many patients. However, due to the current necessity of patient
transport to the nearest hospital and subsequent CT scan, only 2.5% to 6% of acute ischaemic
stroke patients receive thrombolytic treatment within the required 3 hours (Power, 2004; Saver
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et al., 2013), with expedited examination protocols around 13% (Sattin et al., 2006). Electrical
Impedance Tomography could enable earlier stroke diagnosis and treatment in the ambulance
or emergency unit, while the patient is being transported to a hospital or waiting for a CT scan
(Holder and Tidswell, 2004). EIT will never compete with CT in terms of image quality, but its
low cost and portability make it feasible to equip all ambulances with an EIT system.
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Figure 2.7: Conductivity spectra of stroke and healthy brain - The di�erent slopes of healthy and ischaemic brain
tissue and blood might enable stroke type di�erentiation with MFEIT. This �gure is adapted from Horesh (2006).

The lack of oxygen during an ischaemia causes the cells to swell due to energy failure,
leading to an overall lower conductivity in the a�ected area. In the case of a haemorrhage,
the abundance of blood increases the conductivity. The conductivity spectra for the di�erent
tissues in a healthy head and during stroke have been collected from literature by Horesh (2006)
and show, that there is a signi�cant di�erence between normal brain tissue, ischaemic brain
tissue and blood (Fig. 2.7). The largest di�erence is at low frequencies, which has recently been
con�rmed by in vivo measurements (Dowrick et al., 2015). Dowrick et al. (2015) found, however,
that the change of healthy brain was larger than that of ischaemic brain, and that the di�erence
in change was ∼10% below 250 Hz. Since the conductivity of the scalp at low frequencies is less
than half compared to frequencies above 1 kHz (�gure 6.1a), the amount of current shunted
around the brain is lower at these frequencies. Feasibility studies have shown that MFEIT has
the potential to di�erentiate between ischaemic and haemorrhagic stroke (Horesh et al., 2005;
Packham et al., 2012).

Since stroke patients have generally not had EIT measurements of their head done before
the stroke occurs, time-di�erence image reconstruction is not possible. Weighted frequency-
di�erence is also not a viable option, since the background does not consist of a homogeneous
tissue and the conductivity change over frequency can consequently not be described with
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a linear model. Therefore, non-linear multi-frequency algorithms have to be used for stroke
imaging (Malone et al., 2014).

The same application is envisaged for portable microwave imaging systems (Persson et al.,
2014), which have an easy penetration of the skull. Microwave imaging relies on a similar ill-posed
inverse problem than EIT and is consequently more stable for time-di�erence measurements than
for absolute imaging (Scapaticci et al., 2014). Frequency-di�erence measurements are uncommon
in microwave imaging, because the useful bandwidth in brain imaging applications is narrow
(Scapaticci et al., 2012). The technique has been shown to work in phantom experiments with
modelled strokes near the surface (Mohammed et al., 2014), but in vivo measurements are very
noisy (Persson et al., 2014). Consequently, machine learning approaches are investigated as an
alternative to imaging (Persson et al., 2014).

2.1.8 Other Head EIT Applications

Epilepsy

Epilepsy is a common neurological condition taking various forms, making characterisation
di�cult. Broadly, it can be categorised into generalised seizures, which engage networks spread
over both hemispheres, and focal seizures, which are limited to one hemisphere and sometimes
discretely localised (Berg et al., 2010). Focal seizures consistently start propagating from one
location, while generalised seizure onset di�ers from one seizure to another. In focal epilepsy
patients which are resistant to treatment with anti-epileptic drugs, resective surgery, in which
the origin of the seizures is removed, is an established treatment (Schramm and Clusmann, 2008).
However, surgery is only performed if the focus is accurately localised, surgically accessible
and mostly redundant for brain function. The localisation of the origin of focal seizures is done
with video-EEG monitoring, sometimes with intracranial EEG electrodes or depth electrodes
(Rosenow and Lüders, 2001). EIT has been suggested for improving the depth localisation, which
is relatively poor in EEG (Fabrizi et al., 2006). Since EIT can use the same electrodes than EEG, no
additional preparatory or surgical procedures would be required. Conductivity changes during
epilepsy are commonly attributed to a shrinkage of extracellular space due to cell swelling, and
are in the order of percents (Holder and Tidswell, 2004). Recently, epileptic seizures have been
successfully imaged in vivo in rat experiments (Vongerichten et al., 2016).

Fast Neural Activity

Imaging neural activity is of great interest to neuroscience, but methods are so far limited.
fMRI can create images of the entire brain, but instead of detecting neuronal depolarisation and
spiking directly, it shows the related changes in blood �ow over seconds (Heeger and Ress, 2002).
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Microelectrodes are invasive and currently cover a few cubic millimetres, while optical methods
such as two-photon microscopy are limited to small volumes below a cubic millimetre (Aristovich
et al., 2016). EIT has the potential to image the impedance decrease caused by the opening of
ion channels during neuronal depolarisation (Holder, 1987). The magnitude of changes was
modelled using cable theory (Liston et al., 2012) and the predicted changes in the order of 0.1%
were validated in the rat cortex in vivo (Aristovich et al., 2016). Theoretically, with EIT it should
be possible to image activity based conductivity changes throughout the brain with a resolution
below half a millimetre (Aristovich et al., 2016).

2.2 Forward Problem

The forward problem in EIT is to compute the resulting electric potential on a domain, when
a current is applied to the boundary of the domain. It is commonly solved by assuming that
the magnetic �eld is negligible, therefore reducing Maxwell’s equations to an elliptic boundary
value problem with Neumann boundary conditions. This type of problem is well-known, and
commonly solved using the �nite element method (FEM). However, the electrode-skin interface
cannot be modelled accurately with simple Neumann boundary conditions. Consequently, a
Robin-type boundary condition called the complete electrode model (CEM) is used as a standard
in EIT. The weak formulation of the elliptic problem with CEM is solved on a discretised model
of the domain, by translating it into a system of linear equations with the Galerkin formulation.
The electric potentials in the domain and on the electrodes are then found by inverting this
system with a preconditioned conjugate gradient algorithm. These forward solutions are directly
required in iterative image reconstruction algorithms, and indirectly for all inverse solutions in
the form of the Jacobian matrix, which is a linearisation of the forward problem.

2.2.1 Maxwell’s Equations

The physics behind EIT are governed by Maxwell’s equations. Let E be the electric �eld, B
the magnetic �eld, ρ the charge density, J the current density, µ the permeability and ε the
permittivity. Then Maxwell’s equations are:

∇ · E =
ρ

ε
(2.7a)

∇ ·B = 0 (2.7b)

∇× E = −∂B
∂t

(2.7c)

∇×B = µJ + µε
∂E

∂t
. (2.7d)
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Taking the divergence of Ampère’s Law (2.7d) and considering that∇ · (∇×B) = 0 gives

∇ · J = −∂ρ
∂t
. (2.8)

This equation states that every change of charge within a domain Ω is accompanied by a �ux
across its closed surface ∂Ω. Since, in EIT, there are no electric sources or drains, the right-
hand side of (2.8) is zero. The current density can be written in terms of the electric �eld
J = γE, where the position dependent complex admittivity γ(x, ω) is given for each position
x ∈ Ω as the sum of the conductivity σ and the permittivity ε multiplied by the frequency ω,
γ(x, ω) = σ(x, ω) + iωε(x, ω).

Because EIT applications usually operate at low frequencies, the change in the magnetic
�eld ∂B

∂t is considered negligible (Lionheart et al., 2004), such that (2.7c) becomes ∇× E = 0

and E = −∇u, where u is the electric potential. Substituting E in (2.8) gives Laplace’s equation

−∇ · (γ∇u) = 0, (2.9)

the foundation of most mathematical EIT models. Soni et al. (2006) found that this quasi-static
approximation of Maxwell’s equations is valid up to approximately 1 MHz. Since, for practical
reasons (Saulnier, 2004), most systems measure only the in-phase voltage, the admittivity is
henceforth replaced with only the conductivity.

2.2.2 Mathematical Formulation of the Complete Electrode Model

Let the body under examination be a bounded domain Ω ⊂ R3 with Lipschitz boundary Γ = ∂Ω.
Then the continuum forward model states that the electric potential distribution u in Ω induced
by the application of the current density j on the boundary Γ solves

−∇ · (σ∇u) = 0 in Ω, (2.10a)

σ
∂u

∂ν
= j on Γ, (2.10b)∫

Γ
udΓ = 0, (2.10c)

where ν is the outward unit normal to Γ and with positive real conductivity σ ∈ L∞(Ω).
This problem is known to have a unique solution u ∈ H1(Ω) for all j ∈ H−1/2(Γ) satisfying∫

Γ j dΓ = 0, which can be indicated by a diamond in the space de�nition H−1/2
� (Γ) (Kohn and

Vogelius, 1985).
In practice, current is applied through a �nite set M ∈ N electrodes (Γm)m=1,...,M , rather

than continuously on Γ. Γm is a non-zero connected open subset of Γ with Lipschitz boundary
that does not overlap with any other electrode, meaning Γm

⋂
Γl = ∅ for m 6= l. The optimal
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model for boundary conditions matching this experimental setup has been incrementally im-
proved by Isaacson et al. around 1990 (for a review and experimental justi�cation see Somersalo
et al., 1992). The commonly used complete electrode model (CEM) accounts for two observed
e�ects, electrodes shunting current due to their high conductivity and a voltage drop at the inter-
face of the electrodes and the skin, which is due to an electrochemical e�ect. The applied current
is constant on each electrode and vanishes on the surface between electrodes Γ \

⋃M
m=1 Γm. It

can thus be represented as a vector (Im)m=1,...,M in RM satisfying the condition
∑M

m=1 Im = 0.
According to the CEM, the voltage potential u then solves

−∇ · (σ∇u) = 0 in Ω (2.11a)∫
Γm

σ
∂u

∂ν
dΓm = Im m = 1, . . . ,M (2.11b)

u+ zmσ
∂u

∂ν
= Um on Γm, m = 1, . . . ,M (2.11c)

σ
∂u

∂ν
= 0 on Γ \

M⋃
m=1

Γm, (2.11d)

where (zm)m=1,...,M ∈ RM is the positive contact impedance, given inΩm2, and (Um)m=1,...,M ∈
RM is the vector of the potentials on the electrodes abiding to the adapted grounding condition
(2.10c),

∑M
m=1 Um = 0. The CEM is proven to have a unique solution u ∈ H1(Ω), which

depends continuously on Im (Somersalo et al., 1992).

2.2.3 Domain Discretisation

The forward problem can be solved analytically on very simple geometries (Isaacson, 1986). In
order to solve it on non-symmetric and complicated realistic domains, the domains need to be
discretised. Several numerical methods exist to solve the forward problem on discretised domains.
The �nite di�erence and �nite volume methods usually require regular grids (Liszka and Orkisz,
1980; Eymard et al., 2000). While these methods are computationally e�cient, the representation
of curved structures is complicated by the regularity requirement (Lionheart et al., 2004). A more
powerful, yet less intuitive, method is the �nite element method (FEM, Brenner and Scott, 1994),
which is the most commonly used in EIT. It does not require any regularity of the discretisation
(the �nite element mesh), and instead of evaluating local derivatives (�nite di�erence) or �uxes
(�nite volume) it solves a weak formulation, which already includes the boundary conditions. As
the number of elements in the mesh increases, the FEM solution approaches the real solution
of the partial di�erential equation. On homogeneous domains, the boundary element method
(BEM) is a viable alternative to FEM (Gençer and Tanzer, 1999). BEM only requires discretised
surfaces and uses an analytical expression of the Green function between surfaces of di�erent
characteristics. For complicated geometries (such as the human head), the presence of many
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di�erent tissues diminishes the computational advantage of BEM over FEM (Lionheart et al.,
2004).
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Figure 2.8: Most common�nite element shapes - 2D �nite elements are usually (a) triangles or (b) quadrilateral elements.
The most common 3D �nite elements are (c) tetrahedra and (d) hexahedra. For linear shape functions, only the vertices
(corners) of the elements are considered as nodes. For quadratic shape functions, additionally the midpoints of the edges
are used as nodes (numbering in brackets). More nodes on the edges and inside the elements are added, as the order of the
shape functions is increased.

The most common �nite elements in 2D are triangles and quadrangles, and in 3D tetrahedra
and hexahedra (�gure 2.8). While it is possible to mix di�erent element shapes in one mesh, it is
not commonly done. Methods for subdividing a domain into a mesh are numerous, but the aim
of all methods is the same: to generate a mesh with non-overlapping elements �lling the whole
domain. Elements should have as few small angles as possible, since this aids accuracy and
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convergence of the forward solutions (Shewchuk, 1997). Current meshing packages use di�erent
meshing strategies. While Netgen uses an advancing front algorithm (Schöberl, 1997), Cgal
(The CGAL Project, 2015) �rst generates a surface Delaunay triangulation at the object surface
and internal structural surfaces (Boissonnat and Oudot, 2005), followed by Delaunay re�nement
of the volumes between surfaces (Shewchuk, 1997). The fundamental principle of Delaunay
triangulation and re�nement is to generate triangles and tetrahedra, that do not contain vertices
in the interior of their circumcircle or circumsphere (Shewchuk, 1997). In 2D, the Delaunay
triangulation can be found by connecting points with neighbouring Voronoi polygons (Ho-Le,
1988).

After the initial meshing, the mesh usually has to be smoothed, in order to remove badly
shaped elements. Cgal for instance includes four di�erent mesh optimisation algorithms, which
iteratively run through the mesh, moving nodes and splitting badly shaped elements. The Lloyd

optimisation minimises a global energy de�ned as the L1-norm of the error when the square
coordinate function x2 is interpolated on the mesh domain. The energy gradient is set to zero
by moving the vertices. Analogously, optimal Delaunay triangulation minimises global energy
by updating the Delaunay triangulation instead of the vertices. Jointly with these two global
optimisation methods, Cgal uses two local optimisers to remove the worst elements (perturb
and exude).

Figure 2.9: Thorax model created from a 2D outline - Based
on a 2D outline of the thorax and lungs segmented from an MRI
scan, this 3D head model was generated with Netgen directly in
Eidors (Grychtol et al., 2012).

Figure 2.10: Head model based

on manual MRI segmentation -
This head model consisting of smooth
curves (called NURBS) was manually
created from MRI datasets (Tizzard et
al., 2005).

For most EIT applications, meshes with relatively simple geometries (e.g. cylinders) are
used, which can be created with Netgen directly in Eidors (Grychtol and Adler, 2013). Three-
dimensional thorax models based on two-dimensional outlines segmented from MRI scans
have been created with the same method (Grychtol et al., 2012). The �rst meshes used for
head EIT were either homogeneous spheres or concentric spheres with di�erent conductivities
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(Bagshaw et al., 2003). Since the observation, that more accurate head models (�gure 2.10;
Tizzard et al., 2005) result in better images (Bagshaw et al., 2003), there was an increased interest
in generating more physiologically realistic head meshes. Vonach et al. (2012) presented a new,
semi-automated work�ow for creating head meshes based on either a CT or MRI scan. In a �rst
step, brain, cerebrospinal �uid (CSF), skull and scalp were segmented from the available scan.
For MRI scans, the open-source software BrainSuite was used for segmentation, while for CT
scans an expectation maximisation algorithm was used to �t prior knowledge of brain, CSF and
scalp shapes into the segmented skull with the registration tool NiftyReg (Modat et al., 2010).
The created segmentations were then meshed as surfaces with the MeshLab software, and a
tetrahedral mesh was generated from the surface meshes with the CUBIT meshing software.
When comparing the thickness of the skull in the resulting meshes (�gure 2.11), it becomes
apparent that CT and MRI scans should be used conjointly to obtain more accurate tissue
representations.

Figure 2.11: Meshes generated from either CT orMRI scan - Meshes created by Vonach et al. (2012) by either morphing
a brain template model into a skull segmented from a CT scan or by estimating the skull shape from an MRI scan.
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2.2.4 Weak Formulation

For the �nite element method, a weak formulation of the problem is required. Multiplying (2.11a)
by any test function v ∈ H1(Ω) and integrating over the whole domain Ω gives

−
∫

Ω
v∇ · (σ∇u) dΩ = 0. (2.12)

Integration by parts leads to

−
∫

Ω
v∇ · (σ∇u) dΩ =

∫
Ω
∇v · (σ∇u) dΩ−

∫
Γ
v(σ

∂u

∂ν
) dΓ, (2.13)

where the outward normal derivative can be replaced with the potential di�erence between the
electrode and the underlying nodes

∫
Γ
v(σ

∂u

∂ν
) dΓ =

M∑
m=1

1

zm

∫
Γm

v(Um − u) dΓm. (2.14)

Applying (2.13) and (2.14) to (2.12) gives

∫
Ω
∇v · (σ∇u) dΩ =

M∑
m=1

1

zm

∫
Γm

v(Um − u) dΓm. (2.15)

This is the weak formulation used in Eidors (Polydorides and Lionheart, 2002). In Dune however,
one has to to �rst calculate the nodal potentials within the mesh, and only after to compute the
electric potential on the electrodes (chapter 4). Replacing Um/zm in (2.15) with the boundary
condition of the CEM

Im = Um
|Γm|
zm
− 1

zm

∫
Γm

udΓm (2.16)

gives the weak formulation used in Peits

∫
Ω
σ∇v · ∇u dΩ +

M∑
m=1

1

zm

∫
Γm

vudΓm −
M∑
m=1

1

zm|Γm|

∫
Γm

v dΓm

∫
Γm

udΓm

=

M∑
m=1

1

|Γm|

∫
Γm

vIm dΓm. (2.17)

Proposition 2.2.1. The system (2.17) is coercive if a ground condition is applied.

Proof. To prove that this system is coercive, and thus uniquely solvable, it has to be shown that
left-hand side (LHS) is positive. Replacing v by u gives

LHS =

∫
Ω
σ∇u ·∇udΩ+

M∑
m=1

1

zm

∫
Γm

u2 dΓm−
M∑
m=1

1

zm|Γm|

∫
Γm

udΓm

∫
Γm

udΓm. (2.18)
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The �rst term cannot be negative, thus it is su�cient to show that the second term is larger than
the third term. By multiplying both with zm, Cauchy-Schwarz gives∫

Γm

u2 dΓm ≥
1

|Γm|

(∫
Γm

udΓm

)2

(2.19)

with u = const. leading to equality. Because a constant u sets the �rst term of the LHS to zero
as well, the system is only positive semi-de�nite. Thus, an additional constraint is required to
make the system uniquely solvable. Setting a ground condition does this.

2.2.5 Galerkin Formulation
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Figure 2.12: Linear and quadratic shape func-

tions - For quadratic shape functions, an additional
node is inserted at the midpoint of each edge.

The approximation to the correct solution ucorr on a
�nite element mesh with V nodes can be written as
u =

∑V
j=1 ujφj , where the set of V basis (or shape)

functions φ is de�ned as follows

φj =

{
1 on the node j
0 on all other nodes.

(2.20)

Therefore, on each element linear shape functions ap-
proximate ucorr linearly from one vertex to another,
while for quadratic shape functions an additional
node is inserted in the midpoint of each edge (�g-
ure 2.12). Taking advantage of this new formulation
for the approximation u (also called trial function) and replacing the test function v with the
basis functions φ, the weak formulation as used in Eidors, (2.15), can be written in Galerkin
form as a set of k = 1, ..., V equations

V∑
j=1

uj

(
σ

∫
Ω
∇φk · ∇φj︸ ︷︷ ︸

AS

+
M∑
m=1

1

zm

∫
Γm

φk · φj︸ ︷︷ ︸
Aii

)
+

M∑
m=1

Um

(
− 1

zm

∫
Γm

φk︸ ︷︷ ︸
Aei

)
= 0. (2.21)

From (2.16) an additional set of m = 1, ...,M equations is obtained, de�ning the electrode
potential in dependence of the underlying nodal potentials, the contact impedance and the input
current:

V∑
j=1

uj

(
− 1

zm

∫
Γm

φj︸ ︷︷ ︸
Aie

)
+ Um

|Γm|
zm︸ ︷︷ ︸
Aee

= Im. (2.22)
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Combining (2.21) with (2.22) the linear system to be solved becomes[
AS + Aii Aei

Aie Aee

][
u

U

]
=

[
0

I

]
, (2.23)

where u is the vector of the nodal potentials uj , U the vector of the electrode potentials Um
and I the current vector. The Galerkin formulation for the Peits implementation (chapter 4) can
be obtained, by proceeding accordingly with the weak formulation (2.17) as the starting point.
In the following section, the resulting system of equations is simply written as Ax = b.

2.2.6 Numerical Algorithms and Preconditioning

The overwhelming majority of linear systems of equations stemming from the �nite element
method are solved with the conjugate gradient (CG) algorithm (very well explained in Shewchuk,
1994), because they are positive-de�nite, square, symmetric, large and sparse. To improve
the convergence of CG on large problems, preconditioning should be used (Shewchuk, 1994).
Preconditioning improves the condition number of the system matrix κ(A) of the system

Ax = b, (2.24)

by �nding a symmetric, positive-de�nite matrix M that approximates A. If M is easier to invert
than A and κ(M−1A)� κ(A), then the system

M−1Ax = M−1b (2.25)

requires less CG iterations to converge than the original problem. The preconditioned CG
method is then given by the algorithm

Algorithm 1 Preconditioned Conjugate Gradient
k = 0, x0 = initial guess
r0 = b−Ax0

d0 = M−1r0

while stopping criterion not ful�lled do

τk =
r>k M−1rk
d>k Adk

xk+1 = xk + τkdk

rk+1 = rk − τkAdk
βk+1 =

r>k+1M
−1rk+1

r>k M
−1rk

dk+1 = M−1rk+1 + βk+1dk

k = k + 1

end while
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where the main di�culty is to �nd a preconditioner which improves the convergence well
enough to make up for the cost of computing M−1rk in each iteration. The aim of such a
preconditioner is to move the eigenvalues as close together as possible. In that sense M = A

would be the perfect preconditioner, but since preconditioning is only considered because A is
di�cult to invert, this is a very bad option.

A preconditioner which is very easy to invert is the Jacobi preconditioner, which is a diagonal
matrix with the diagonal entries of A (i.e. the matrix A is scaled along the coordinate axes
rather than along the eigenvector axes, if M = A were used). Jacobi preconditioning already
improves the speed of CG signi�cantly. There are, however, more e�cient preconditioners.

The Cholesky decomposition is a method to represent A as the product of a lower triangular
matrix L and its transpose A = LL>. (LL>)−1rk is then solved by forward and back sub-
stitution. For sparse systems such as the ones from FEM implementations the full Cholesky
decomposition is rarely used. Instead, an incomplete Cholesky decomposition is used as precon-
ditioner. This is an approximation K similar to L, which can for instance be obtained by the
same algorithm, but instead of storing all entries of L only the ones in the same position as
the non-zero entries of A are stored in K. Cholesky decomposition is generally faster than the
similar LU decomposition.

Multigrid algorithms are very e�ective for solving systems of discretised partial di�erential
equations, and are based on the idea to support the convergence of the full problem by repeatedly
adding a correction of the residual from a coarser version of the same problem. Intuitively this
can be thought of as an iterative global communication of local errors. While high-frequency
components of the residual are corrected on the �ne level, the coarse level corrects for low-
frequency components. This can be done in several hierarchical layers using recursion. Geometric

multigrid (reviewed e.g. in Wesseling and Oosterlee, 2001) constructs several coarse grids based
on the �ne grid. Then the correction terms are computed using discrete systems constructed on
these coarse grids. However, the construction of coarse grids can be di�cult if the �ne grid is
unstructured and the underlying geometry is complicated. For these reasons algebraic multigrid

methods (reviewed in Stüben, 2001) have been developed, which construct the coarser levels
directly from the system matrix. This makes AMG very easy to use, as it can be applied to any
discretised system without having to supply geometric informations. For l = 1, ..., L levels
Al = PT

l−1Al−1Pl−1 with the prolongation matrix Pl−1, a basic multigrid algorithm takes the
following form:
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Algorithm 2 Basic Multigrid Method
Perform some pre-smoothing iterations on Alxl = bl

Restrict the residual to a coarser level: bl+1 = PT
l (bl −Alxl)

if l + 1 = L then

Solve Al+1xl+1 = bl+1 with a direct method
else

Set the initial guess xl+1 = 0

Recursively call the Multigrid Algorithm: xl+1 = MG(xl+1,bl+1)

end if

Prolong xl+1 and add to xl: xl = xl + Plxl+1

Perform some post-smoothing iterations on Alxl = bl

The pre- and post-smoothing iterations are also called relaxation steps. By reducing the tolerance
of the MG algorithm, it can be used as a very e�cient preconditioner for iterative Krylov subspace
methods such as CG. Two fast and parallel implementations of AMG are BoomerAMG from
Hypre (Henson and Yang, 2002) and ML from Trilinos (Tuminaro and Tong, 2000).

2.2.7 Derivation of the Jacobian Matrix

The Jacobian (or sensitivity) matrix, which is required in EIT image reconstructions, linearly
relates a change in conductivity to a change in measured voltages. The entry in the rth row and
the nth column is de�ned as

Jr,n =
∂Vr
∂σn

, (2.26)

where Vr is the rth measured voltage and σn is the conductivity of �nite element n. This
derivation of a �rst order approximation of the Jacobian is adapted from Polydorides and
Lionheart (2002). For a test function v = u, the weak form of the complete electrode model
problem, (2.15), can be written as

∫
Ω
σ|∇u|2 dΩ =

∫
Γ
uσ
∂u

∂ν
dΓ =

M∑
m=1

∫
Γm

(
Um − zmσ

∂u

∂ν

)
σ
∂u

∂ν
dΓm, (2.27)

which gives the power conservation formula, stating that the power input is either consumed in
the domain Ω or on the contact impedance zm:

∫
Ω
σ|∇u|2 dΩ +

M∑
m=1

∫
Γl

zm

(
σ
∂u

∂ν

)2

dΓm =

M∑
m=1

UmIm. (2.28)
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Looking at small perturbations σ → σ + δσ, u→ u+ δu and Um → Um + δUm and ignoring
second-order terms, gives∫

Ω
δσ|∇u|2 dΩ + 2

∫
Ω
σ∇u · ∇δudΩ

+ 2
M∑
m=1

∫
Γm

zm

(
σ
∂u

∂ν

)(
δσ
∂u

∂ν

)
dΓm =

M∑
m=1

ImδUm.

(2.29)

Replacing (
δσ
∂u

∂ν

)
=

1

zm
(δUm − δu) (2.30)

and using the weak formulation (2.27) with v = δu instead of v = u∫
Ω
σ∇u · ∇δudΩ =

∫
Γ
δuσ

∂u

∂ν
dΓ (2.31)

leads to ∫
Ω
δσ|∇u|2 dΩ + 2

∫
Γ
δuσ

∂u

∂ν
dΓ − 2

M∑
m=1

∫
Γm

δuσ
∂u

∂ν
dΓm

+ 2
M∑
m=1

δUm

∫
Γm

σ
∂u

∂ν
dΓm =

M∑
m=1

ImδUm.

(2.32)

The second and third term cancel and the fourth term is simply 2
∑
ImδUm. Consequently, the

total change in power is given as

M∑
m=1

ImδUm = −
∫

Ω
δσ|∇u|2 dΩ. (2.33)

In order to �nd the change in voltage for a speci�c measurement r, the forward problem is solved
once using a unit measurement current Ia between the two measurement electrodes (giving
the adjoint �eld u(Ia) = ua) and once using the actual driving current pattern Id, giving ud.
Applying formula (2.33) to ud + ua and ud − ua and subtracting them from each other gives the
formula for the adjoint �eld approach, which is commonly used to compute the Jacobian:

δVr = δVda = −
∫

Ω
δσ∇ud · ∇ua dΩ. (2.34)

δVr is then the linear approximation of the measured voltage change between the two measure-
ment electrodes for a conductivity change σ → σ + δσ, when current pattern Id is injected
(Polydorides, 2009).
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2.2.8 Electrode Movement Jacobian Matrix

EIT reconstructions are not limited to conductivities, but also characteristics such as electrode
positions, boundary shape and contact impedances can be recovered from EIT measurements
(Lionheart, 1998; Nissinen et al., 2009; Dardé et al., 2013). Equivalently to conductivity recon-
structions, recovery of another parameter relies on a Jacobian matrix describing the impact
a change of the parameter has on the recorded voltages. The �rst approach to computing
the Jacobian with respect to electrode movements was the perturbation technique, where the
boundary nodes of the electrodes were moved in the forward model and the resulting change
in voltages was simulated (Soleimani et al., 2006). Since the perturbation technique is very
ine�cient and movement of nodes is restricted on �ne meshes, a direct formulation of the
electrode movement Jacobian was proposed (Gómez-Laberge and Adler, 2008). The e�ect of
movement of a vertex on the recorded voltages was studied analytically in the formulation of
the discrete EIT forward problem, which resulted in a faster computation of the movement
Jacobian. The approximation error approach is somewhat related to the perturbation technique,
in that a Bayesian reconstruction framework is trained to correct for electrode position errors
by simulating many di�erent electrode positions (Nissinen et al., 2011).

The most fundamental and straightforward way of computing a Jacobian matrix describing
voltage changes due to electrode boundary changes was proposed by Dardé et al. (2012). They
derived an explicit formula for the Fréchet derivative with respect to the electrode boundary,
which can be used to compute the Jacobian matrix with respect to electrode size, position and
shape. The detailed derivation and proof of this electrode boundary Jacobian (EBJ) is given in
their publication and only the parts relevant for the implementation of the EBJ are summarised
here.

Electrode boundary changes can be characterised by C1 vector �elds on the electrode
boundaries ∂E

Bb =
{
v ∈ C1(∂E,Rp)

∣∣ ‖v‖C1(∂E,Rp) < b
}
, (2.35)

where b is a radius larger than zero and p is the dimensionality of the problem, i.e. p = 3 for a
realistic EIT application. For any x ∈ ∂E, Px is de�ned as the orthogonal mapping of the ball
Bb(x) = {z ∈ Rp | ‖z − x‖ < b} onto the boundary Γ of the domain. Using these de�nitions,
a modi�ed boundary of electrode m can be formulated as

∂Evm = {z ∈ Γ | z = Px(x+ v(x)) for some x ∈ ∂Em} , (2.36)

where v ∈ Bb is the vector �eld de�ning the change in electrode boundary (e.g. change in
electrode size, position or shape).

The measurement map including perturbed electrodes can then be considered as the operator

R : (v, Id) −→ Ud(v), Bb × RM� −→ RM , (2.37)
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and its Fréchet derivative with respect to the vector �eld v ful�ls

M∑
m=1

(
R′(v, Id)

)
m
Iam = −

M∑
m=1

1

zm

∫
∂Em

(vτ · n∂Em)(Udm − ud)(Uam − ua) ds, (2.38)

where vτ is the component of v which is tangential to Γ, n∂Em the outward normal of ∂Em
which is tangential to Γ and (ud, Ud) the solution to the unperturbed CEM forward problem
corresponding to the drive current Id ∈ RM� . The adjoint �eld (ua, Ua) is the forward solution
to the unit measurement current Ia ∈ RM� .

It is interesting to note, that the computation of the EBJ resembles the computation of
the conductivity Jacobian (2.34) using the adjoint �eld method, in that the results of ‘drive
current’ and ‘measurement current’ injections are used. Therefore, the calculation of the EBJ
does not require any additional forward simulations to those performed for the calculation of
the traditional Jacobian matrix.

2.2.9 Forward Solvers

Most research groups in EIT currently use the Electrical Impedance Tomography and Di�use
Optical Tomography Reconstruction Software Eidors (Adler and Lionheart, 2006) which is
programmed in Matlab (The MathWorks, US). Eidors provides a set of useful features, such as
2D and 3D forward simulations and an extensive list of reconstruction algorithms, visualisation
functions and more. Horesh et al. (2006) adapted Eidors with di�erent preconditioners and
more e�cient routines, resulting in a version called SuperSolver which is still used in our group
at UCL. For large meshes, however, Matlab su�ers from a lack of e�cient parallel programming
possibilities, which makes the computation of forward solutions a lengthy task. Additionally, the
Matlab implementations are relatively excessive in terms of memory usage, thereby physically
limiting the size of the meshes that can be used.

Borsic et al. (2010) moved the forward and the Jacobian calculations (but not the assembly of
the system matrix) to the sparse parallel direct solver library Pardiso (Schenk, 2015) to surpass
these limitations. They were able to improve the speed for forward simulations about 5.3 fold
compared to Horesh et al. (2006) and used it on meshes with around half a million elements.
Direct solvers require large amounts of memory, which usually limits the possible mesh size.
Furthermore it is shown in chapter 4, that the assembly of a direct solver is much slower
than that of a good preconditioner, resulting in faster execution times for iterative methods,
depending on the number of unique current injection patterns. In particular, algebraic multigrid
preconditioning has been shown to improve the solution time signi�cantly (Soleimani et al.,
2005). GPU based computations have already successfully been applied to the calculation of the
Jacobian matrix (Borsic et al., 2012), where fast access to the memory is paramount.

A di�erent approach to the forward modelling in EIT is to use boundary elements (Gençer
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and Tanzer, 1999), a technique which requires the head to be modelled as enclosed surfaces of
the di�erent tissues with �xed conductivity. This works well for piecewise homogeneous media,
but not for complicated heterogeneous geometries like the human head.

2.3 Inverse Problem

The inverse problem in EIT is to �nd an approximation to the correct conductivity distribution
based on the experimentally acquired current-to-voltage map. It is ill-posed (reviewed e.g. in
Borcea, 2002), which means that small changes in the measurements can lead to large changes in
the reconstructed image. This makes the inverse problem very unstable in the presence of noise.
Furthermore, it has only been proven to have a unique solution for isotropic conductivities
and a full knowledge of the boundary (Sylvester and Uhlmann, 1987; Kohn and Vogelius, 1985).
In practice, the application of current and measurement of voltages are restricted to a �nite
set of electrodes and human tissues are sometimes strongly anisotropic (i.e. their conductivity
depends on the direction of the current). Therefore, it is not possible to precisely reconstruct
the conductivities and instead the aim is to �nd an approximate solution using a stabilised
reconstruction method. The reconstruction is commonly turned into a well-posed problem by
introducing prior information through regularisation. Linear reconstruction methods can be
used for time-di�erence and frequency-di�erence measurements of small, localised changes. For
larger changes and absolute imaging, non-linear algorithms have to be used. This review of
inversion methods draws from course notes of Arridge (2015).

2.3.1 Linear Methods Based on Singular Value Decomposition

Moore-Penrose Inverse

The Jacobian matrix J linearises the forward problem F(σ) = v locally around the estimated
baseline conductivity distribution σ0. A change in conductivity δσ can therefore be linearly
approximated from a measured change in voltages δv by inverting the Jacobian. Since there
are generally more conductivity values to reconstruct than there are measurements, the Moore-
Penrose generalised inverse

δσ = J†δv = (JTJ)−1JT δv (2.39)

is used, which gives the least squares solution

δσ = arg min
δσ

‖Jδσ − δv‖. (2.40)
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As discussed in (Lionheart et al., 2004) this inversion is very unstable, because noise is ampli�ed
proportionally to the condition number κ of the Jacobian matrix, which is de�ned as

κ(J) = ‖J‖ · ‖J−1‖. (2.41)

For the 2-norm this is equivalent to ςmax/ςmin, where ς are the singular values of J. This
condition number is very high for ill-posed problems like the EIT inverse and the Moore-Penrose
inverse can therefore not be used. This characteristic is illustrated by writing the Moore-Penrose
inverse in terms of the singular value decomposition.

Singular Value Decomposition

For any J ∈ Rr×n, the non-negative de�nite Hermitian J>J has a complete set of orthogonal
eigenvectors vi, i = 1, ..., n with corresponding real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0. De�ning
the singular values as ςi =

√
λi, the eigenvectors of the Hermitian matrix JJ> are given by

ui = ς−1
i Jvi. If rank(J) = k < n then the eigenvectors vk+1, . . . ,vn form an orthonormal

basis of null(J) and the eigenvectors u1, . . . ,uk form a basis for range(J). With Σ a diagonal
matrix of the singular values with additional zero columns or rows to make it a r × n matrix ,
U = (u1, . . . ,ur) ∈ Rr×r and V = (v1, . . . ,vn) ∈ Rn×n the singular value decomposition of
J is given as

J = UΣV > and U>JV = Σ. (2.42)

The singular value decomposition (SVD) is expensive to calculate numerically, but once it is
known the Moore-Penrose generalised inverse is easily computed:

J† = V Σ†U>, (2.43)
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Figure 2.13: Singular values and Tikhonov �l-

ter - The blue curve shows the logarithmic decay
of the singular values. The corresponding weight-
ings for the Tikhonov �lter were computed for two
regularisation parameters, λ2 = 10−5 (red) and
λ2 = 10−10 (yellow).

where Σ† is simply Σ> with the inverted singular val-
ues on its diagonal. Therefore, noise containing image
components with small singular values is strongly am-
pli�ed with the Moore-Penrose generalised inverse.

The rate of the decay of the singular values cor-
responds to the ill-posedness of the problem. The
faster the decay, the worse ill-posed the problem. The
truncated SVD method utilises the singular value de-
composition to determine the image components that
can still be reliably reconstructed in the presence of
noise in the data. The singular values are truncated
at an appropriate level in order to stabilise the recon-
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struction, i.e. the dimensions of V , Σ† and U> are reduced. Truncating the singular values is
analogous to a low-pass �lter in signal processing.

Alternatively, in the so-called Tikhonov �ltering, the singular values are gradually dampened
according to a regularisation parameter λ (�gure 2.13). The Tikhonov �lter is de�ned as

0 ≤ qλ(ς2
i ) =

ς2
i

ς2
i + λ2

≤ 1 (2.44)

and applied to the pseudo-inverse in a process also known as spectral �ltering (Chung et al.,
2011) this gives

J†λ =

min(n,r)∑
i=1

qλviu
>
i

ςi
= (J>J + λ2I)−1J>. (2.45)

2.3.2 Linear Methods With Variational Regularisation

In the previous section, two regularisation methods based on the SVD of the Jacobian matrix
were introduced. For a large system it is usually impractical and computationally expensive
to construct the SVD explicitly. Instead, one can formulate the problem as a minimisation of a
variational form. Instead of explicitly solving

δσλ = J†λδv =

min(n,r)∑
i=1

qλviu
>
i

ςi
δv = (J>J + λ2I)−1J>δv, (2.46)

the following optimisation problem can be de�ned

δσλ = arg min
δσ∈Rn

Φ = ‖Jδσ − δv‖2 + λ2 ‖δσ‖2︸ ︷︷ ︸
Ψ(δσ)

 . (2.47)

This problem can then be solved by iterative optimisation algorithms, such as steepest descent
or conjugate gradients (the non-linear versions of which are explained in the next section).

Regularisation Terms

The regularisation term
Ψ(δσ) = ‖δσ‖2 (2.48)

is called zero-order Tikhonov. Tikhonov regularisation can be generalised to any quadratic
functional

Ψ(δσ) = ‖Dpδσ‖2, (2.49)
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where Dp denotes the pth derivative and can be implemented in discrete domains as a �nite
di�erence matrix. p = 1 gives the �rst-order Tikhonov regularisation, which smooths the
solution without dictating it to a mean embedded in the regularisation term. On small recon-
struction meshes, problems with higher order Tikhonov regularisation can also be solved with
direct inversion. For this, the SVD is replaced with a generalised singular value decomposition
(gSVD) of the Jacobian and the regularisation matrix, giving J = UΛX> andDp = VMX>.
Inserting the gSVD into the objective function and solving for the conductivity change gives

δσλ =
(
J>J + λ2Dp>Dp

)−1
J>δv = X

(
Λ>Λ + λ2M>M

)−1
Λ>U>δv. (2.50)

Since Λ and M are both diagonal matrices with a limited number of generalised singular values
(Hansen, 1994), they can easily be inverted.

Another common regularisation term is total variation (TV), which allows step changes in
the solution by applying the 1-norm

Ψ(δσ) = |Dδσ|. (2.51)

TV regularised problems cannot be solved by matrix inversion. Instead, a dual problem is de�ned
in the primal dual interior point method (Lionheart et al., 2004; Borsic and Adler, 2012).

Regularisation Parameter Choice
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Figure 2.14: Characteristic L-curve shape -
When plotting the norm of the regularisation term
against the residual norm in log-log scale, ill-posed
problems often result in a L-shaped curve.

The choice of the regularisation parameter λ is a
trade-o� between noise reduction and the accuracy of
�tting the data. This trade-o� is best illustrated with
the L-curve, which constitutes one of the most com-
monly used methods of choosing the regularisation
parameter (Hansen, 1994). The L-curve is a plot of
the norm Ψ(δσλ) of the regularised solution versus
the residual norm ‖Jδσλ − δv‖. When plotting this
curve in log-log scale it almost always has a sharp
corner (an ‘L’) for ill-posed problems like EIT (�gure
2.14). The regularisation parameter in this corner is
an appropriate choice, and can be found in an auto-
mated way if the corner is pronounced enough. From
the L-curve, it is easily seen how a large regularisation
parameter reduces noise through stronger weighting
of the regularisation. At the same time, a stronger regularisation biases the reconstruction and
consequently increases the residual norm.
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Other methods exist to automate the choice of the regularisation parameter, such as the
discrepancy principle, Miller criterion, generalised cross-validation or unbiased predictive risk

estimation (Arridge, 2015).

2.3.3 Non-Linear Methods

Most non-linear methods involve the iterative search for the global minimum of the objective
function

σλ = arg min
σ∈Rn

[
Φ = ‖F (σ)− v‖2 + λ2Ψ(σ)

]
, (2.52)

where the absolute values σ and v are replaced by changes δσ and δv, if di�erential measure-
ments are reconstructed. In each iteration, a search direction is computed and the algorithm
moves in this direction by a certain distance (step size). With the new value for σ, the forward
problem is re-evaluated and if the functional value is still above a de�ned stopping criterion,
another iteration is performed.

Steepest Descent

The steepest descent method minimises the function Φ(σ) by �nding the steepest descent
direction in each iteration step k, which is the negative gradient−∇Φ at point σk . The gradient
is linearly approximated with the Jacobian matrix Jσk

at this point

∇Φ(σk) = J>σk

(
F (σk)− v

)
+ λ2∇Ψ(σk). (2.53)

and the solution is then updated according to step size τk

σk+1 = σk − τk∇Φ(∆σk). (2.54)

The convergence of the steepest descend method can be very slow for problems with an
anisotropic optimisation surface (Shewchuk, 1994). Therefore the conjugate gradient method is
almost always a better choice.

Conjugate Gradient

The steepest descend method builds a solution by iteratively moving in orthogonal directions,
thereby often moving in the same direction several times. The conjugate gradient method aims
at moving in each direction just once, which is achieved by Gram-Schmidt conjugation of the
residuals, rather than the search directions (Shewchuk, 1997). The Polak-Ribière implementation
of the non-linear CG algorithm is given as follows
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Algorithm 3 Non-linear Conjugate Gradients (Polak-Ribière)
k = 0, σ0 = initial guess
d0 = r0 = −∇Φ(σ0)

while stopping criterion not ful�lled do

τk = arg minτ Φ(σk + τdk)

σk+1 = σk + τkdk

rk+1 = −∇Φ(σk+1)

βk+1 = max

{
r>k+1(rk+1−rk)

r>k rk
, 0

}
dk+1 = rk+1 + βk+1dk

k = k + 1

end while

The advantage of the CG algorithm is a much faster convergence than for steepest descent and
also that the Hessian matrix does not need to be calculated, when compared to Newton methods.
This makes CG computationally and memory e�cient and thus interesting for large systems.

Newton Methods

Since CG only uses the �rst-order derivative, its convergence can be slow. Newton methods try
to �nd the unique minimiser of the quadratic approximation of the objective function

Φ(σk + dk) ≈ Φ(σk) +∇Φ(σk)
>dk +

1

2
d>k∇2Φ(σk)dk, (2.55)

by setting the derivative to zero and therefore

∇2Φ(σk)dk = −∇Φ(σk). (2.56)

The new search direction is thus given by

dk = −
(
∇2Φ(σk)

)−1∇Φ(σk), (2.57)

where the di�culty lies in the computation of the second derivative of the objective function,
the so-called Hessian of Φ. The �rst and second derivatives are given by:

∇Φ(σk) −→ ∇F>(σk) (F(σk)− v) + λ2∇Ψ(σk) (2.58)

∇2Φ(σk) −→ ∇F>(σk)∇F(σk) +∇2F>(σk) (F(σk)− v) + λ2∇2Ψ(σk). (2.59)
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To simplify the computation of the Hessian matrix, the Gauss-Newton method approximates it
by omitting the second derivative of the forward map

∇2Φ(σk) ≈ J>σk
Jσk

+ λ2∇2Ψ(σk). (2.60)

On large meshes the Hessian matrix cannot be held in memory, let alone be inverted. Conse-
quently, Krylov subspace methods such as generalised minimal residuals (GMRes) or CG are
used to solve the system

∇Φ(σk) = −
(
J>σk

Jσk
+ λ2∇2Ψ(σk)

)
dk (2.61)

= J>σk
(Jσk

dk)− λ2∇2Ψ(σk)dk, (2.62)

where the brackets highlight the order of the computations. This way, the Hessian is never
computed explicitly, and only the result of its multiplication with a vector is stored. The
conductivity is then iteratively updated along the computed search direction

σk+1 = σk + τkdk, (2.63)

where the step size τk is either set to one, or chosen according to a line search in the damped

Gauss-Newton method.

Line Search

All non-linear iterative methods pro�t from an accurately chosen step size τk, which can be
found with a line search. In line search methods, there is a trade-o� between the accuracy of the
choice of τk which reduces the functional value substantially, and the time spent to compute this
step size. Many methods exist to perform a line search, but they all contain the same two stages:
in the �rst stage brackets are de�ned to limit the desirable step sizes and in the second stage a
good step size is computed through bisections or interpolation (Nocedal and Wright, 1999).

Brent’s line search method combines the stable bisection methods and the fast interpolation
methods (Brent, 1973). It uses golden section bracketing within an initially de�ned interval
a < τk < b known to contain a local minimum, and �ts a parabola onto the three points. If
the minimum of the parabola is between a and b, it is accepted as a new bound, otherwise the
interval halves between a and b are again divided by the golden ratio. This process is continued
until a prede�ned minimal distance between the brackets is reached.

39



2. Literature Review

Direct Methods

The alternative to non-linear iterative algorithms are direct methods. These have the advantage
that they are faster than iterative methods. Inclusion detection methods search for discontinuities
in the conductivity distribution. Instead of reconstructing the conductivity distribution itself,
they are testing data on their plausibility when applied to a known background conductivity
(which can consist of several tissues). Wherever the data are not plausible, it is assumed that
there is a perturbation. The best known of these inclusion detection methods is the factorisation

method, which has already been used in 3D EIT (Chaulet et al., 2014). Inclusion detection methods
have the disadvantage that no knowledge of the conductivity of the perturbation is gained. They
could, however, be used as preconditioners for other reconstruction algorithm, by indicating the
region of interest.

Another direct method which has been applied to EIT is the D-bar method (Siltanen et
al., 2000). So far it is mainly of interest for mathematicians, as it is practically limited to two-
dimensional applications with simple geometries. Advantages of the D-bar method are that it is
fast, gives an analytic solution rather than a �nite element based approximation and that it �nds
the global minimum.

2.3.4 Multi-Frequency Reconstruction Methods

Since absolute imaging is very unstable with respect to modelling errors, di�erence imaging
is currently seen as the only viable option to obtain reliable EIT images. For some diagnostic
applications it is not possible to obtain reference measurements from before the change occurred
(e.g. stroke, breast cancer). This has prompted researchers to investigate application of currents
with di�erent modulation frequencies. Di�erent tissues have di�erent conductivity spectra and
could theoretically be distinguished based on the knowledge of these spectral informations. This
is still a new �eld and there is a lack of mature reconstruction algorithms.

Simple Frequency-Di�erence

The simple frequency-di�erence (FD) algorithm is based on the assumptions that the background
conductivity does not change over frequency and that the frequency dependence of the contact
impedance and the EIT system can be neglected (e.g. Brown et al., 1995). Then the reconstruction
is done analogous to time-di�erence EIT by inverting the Jacobian matrix Jσω1

computed for
the conductivities at the reference frequency ω1

vω2 − vω1 = Jσω1
(σω2 − σω1) . (2.64)
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This basic approach results in very bad images when the background conductivity changes over
frequency (Packham et al., 2012), which is why the weighted frequency-di�erence algorithm has
been proposed.

Weighted Frequency-Di�erence

The weighted frequency-di�erence (WFD, Seo et al., 2008; Jun et al., 2009) is able to recover small
perturbations with strongly frequency-dependent conductivity in a homogeneous, frequency-
dependent background. Instead of taking the plain voltage di�erences between two frequencies,
the voltages are weighted according to

α =
v>ω2

vω1

v>ω1
vω1

−→ δvWFD = vω2 − αvω1 . (2.65)

In the absence of a perturbation, the conductivity change of the homogeneous background will
be corrected for by α and consequently vWFD = 0. Therefore, the WFD fraction of the voltage
changes consists of changes orthogonal to the homogeneous vω1 , and can be reconstructed with
a linear method. This algorithm has been applied to hemispherical tank data and was shown
to be stable in the presence of modelling errors (Ahn et al., 2011). In cases where the linearity
assumption is invalid, WFD has been shown to produce bad images (Malone et al., 2014; Jang
and Seo, 2015).

Fraction Reconstruction

The fraction reconstruction algorithm was developed for di�use optical tomography and was
recently adapted to multi-frequency reconstruction in EIT (Malone et al., 2014). To enable the
simultaneous use of conductivity measurements at multiple frequencies ωi, i = 1, . . . ,W , the
conductivity of each �nite element n = 1, . . . , N is split into two sets of variables: frequency-
independent volume fractions fnj of all expected tissues tj , j = 1, . . . , T and the conductivity
spectra of these tissues εij . The conductivity of the nth element at frequency ωi is therefore
described by

σn (ωi) =

T∑
j=1

fnj · εij , (2.66)

where 0 ≤ fnj ≤ 1 and
∑T

j=1 fnj = 1. The modi�ed Jacobian matrix at each frequency is
obtained using the chain rule

∂F(σi)

∂f j
=

∂F

∂σi

∂σi
∂f j

=
∂F

∂σi
εij = Jσi · εij = Jij . (2.67)

The objective function to be minimised can then be expressed in terms of the fractions by
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substituting the model for the conductivity (2.66):

Φ(f) =
W∑
i=1

∥∥∥∥∥∥F(
T∑
j=1

f jεij)− vωi

∥∥∥∥∥∥
2

+ λ2Ψ(f), (2.68)

where F is the non-linear function translating conductivities to boundary voltages (the for-
ward map), v the measured voltages and λ the regularisation parameter. Further, f j =

{fnj ; n = 1, . . . , N} ∈ RN×1 and f =
{
f j ; j = 1, . . . , T

}
∈ RN ·T×1. In order to suppress

frequency-independent modelling errors, changes in boundary voltages across frequencies can
be taken instead of absolute data. The resulting objective function is

Φ(f) =

W∑
i=2

∥∥∥∥∥∥F(

T∑
j=1

f jεij)− F(

T∑
j=1

f jε1j)− (vωi − vω1)

∥∥∥∥∥∥
2

+ λ2Ψ(f) (2.69)

with a �rst order Tikhonov regularization term of the form

Ψ(f) =

T∑
j=1

N∑
n=1

∑
l(n)

|fnj − fl(n)j |2, (2.70)

where l(n) runs over all neighbours of the nth element. The constraint
∑T

j=1 fnj = 1 is enforced
by substituting f1 = 1−

∑T
j=2 f j in the objective function.

The minimisation of the objective function (2.69) is performed by alternating steps of gradient
projection and damped Gauss-Newton algorithms. The gradient projection (Nocedal and Wright,
1999) step is used to quickly move to the neighbourhood of the minimum, while considering
the constraints on the fractions. This is done by computing the step sizes along the gradient,
at which one of the fraction values reaches a constraint. The change of the objective function
value along each of the resulting intervals is approximated quadratically using Taylor series.
When the Taylor approximation �nds a minimum on an interval, this so-called Cauchy point f c
is chosen.

The subsequent Gauss-Newton step is only applied to the components that did not reach a
constraint during the gradient projection. The search direction d is calculated by solving

∇2Φ(f c) · d = −∇Φ(f c) (2.71)

using a generalised minimal residual algorithm in order to avoid the explicit calculation of the
Hessian matrix∇2Φ (section 2.3.3). The step width along direction d is determined using the
Brent line-search method (section 2.3.3; Brent, 1973) and the resulting minimum fg is projected
back to the fraction constraints. The point, f c or fg , that gives a smaller function value is
chosen for the next iteration.
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Reconstruction-Classi�cation

The reconstruction-classi�cation algorithm was proposed as an alternative to the fraction
reconstruction method, to address inaccurate knowledge of the conductivity spectra of the tissues
(Malone et al., 2015). It relies on a Bayesian reconstruction framework, assigning probabilities for
each element to be occupied by a speci�c tissue (the reconstruction step). The conductivity of each
element at each frequency is then again drawn from a probability distribution. The reconstruction
step is alternated with a classi�cation step, in which the spectra of all elements are clustered in
a W -dimensional scatter plot, where W is the number of frequencies used. Compared to the
fraction reconstruction algorithm, the reconstruction-classi�cation has two major disadvantages:
the initialisation of the parameters requires prior knowledge of the perturbation location and a
second regularisation parameter has to be set.
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Chapter 3

Creation of Head Models from CT

and MRI Scans

3.1 Overview

3.1.1 Introduction

Imaging in Electrical Impedance Tomography (EIT) relies on an initial model (the forward model)
of the conductivity distribution in the object of interest (here the head). Because of the ill-posed
image reconstruction problem, small measurement noise and forward modelling errors introduce
large artefacts into the images and can make detection of physiological changes impossible. In
static imaging, where no baseline measurement is available, it has been shown that inaccurate
head models have a detrimental e�ect on image quality (chapter 5; Kolehmainen et al., 1997).
Therefore, most EIT applications use time-di�erence (TD) data, based on the observation that
most geometric and system related errors cancel out when a reference measurement is subtracted
from the data measurement (Brown, 2003). TD applications of head EIT include the analysis of
epileptic seizures (Bagshaw et al., 2003) and imaging of cortical activity (Tidswell et al., 2001b),
but the focus of this chapter is the monitoring of patients with traumatic brain injury (TBI) for
secondary bleeding (section 2.1.6; Xu et al., 2010).

The forward problem in EIT (section 2.2) is usually solved with the �nite element method
(FEM), where the continuous domain is approximated with piecewise linear (or quadratic or
even higher-order) elements, which are assigned a �xed conductivity (Lionheart et al., 2004).
Using the applied current as the Neumann boundary condition, the forward problem in EIT can
be solved uniquely on the �nite element mesh, and the solution approaches the real solution, as
the size of the elements is reduced (and consequently the number of elements increases).
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The required resolution of the �nite element mesh, to achieve a prede�ned accuracy of the
forward solutions, can be found with local error estimates on individual elements (Johnson
and MacLeod, 1994; Molinari et al., 2001; Sawicki and Okoniewski, 2010) or by analysing the
convergence of the simulated voltages in dependence to regional element sizes (Aristovich et al.,
2014). The in�uence of mesh discretisation on the inverse problem is more di�cult to assess.
While any in�uence can be excluded when the forward solutions converged, reconstructed
images are generally more a�ected by modelling errors and noise, rather than by the accuracy
of the forward solutions.

3.1.2 Background

It has previously been found that even in TDEIT, a head-shaped �nite element model produces
better images than spherical models (Bagshaw et al., 2003). Based on this �nding, ways have
been investigated to create patient speci�c head models based on either a CT or an MRI scan
of the head (Tizzard et al., 2005; Vonach et al., 2012). However, it has not yet been ascertained
if the di�erences between the geometries of the heads of di�erent subjects introduce enough
errors into reconstructed images to justify the use of patient speci�c head meshes. If not, then
imaging studies of EIT of the adult head could all be undertaken with one anatomically accurate
model of a generic head, which would represent a considerable saving in time and e�ort.

3.1.3 Purpose

The purpose of the work in this chapter was to assess how accurately a human head has to be
modelled to enable EIT monitoring and imaging. The questions to be answered were: 1) How
large are voltage and image errors introduced by using a generic head mesh, as opposed to a
subject speci�c one? 2) Is a subject speci�c head mesh required for the detection of localised
conductivity changes?

These were addressed in computer simulation based on accurate head meshes from MRI and
CT scans of four patients, created using a novel method. Two conductivity perturbations with
di�erent magnitude, haemorrhage and ischaemia, were chosen to test the reconstruction quality.
Boundary voltages and Jacobian matrices were computed on all four meshes, for ischaemia
or haemorrhage at �ve di�erent locations. Time-di�erence images were then reconstructed
from the simulated noisy boundary voltages, using the four di�erent meshes and a coarse,
homogeneous head model. Analysis of the resulting TD image quality showed that even though
the image quality was generally better with the correct mesh, the number of correct perturbation
detections was not higher than with the other head meshes and even the homogeneous mesh.
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3.2 Mesh Creation

The mesh generation pipeline used required a CT scan and an MRI scan of the same head, and
the open source software suites Seg3D (CIBC, 2015), MIPAV (McAuli�e et al., 2001), Cgal (The
CGAL Project, 2015) and MedInria (Toussaint et al., 2007).

3.2.1 Segmentation

Previous head segmentations for Electrical Impedance Tomography were based on either a CT
scan and then morphing a brain into the shape of the skull (Vonach et al., 2012), or on MRI
scans with poor sensitivity to the skull shape (Tizzard et al., 2005; Sadleir et al., 2010; Vonach
et al., 2012). The method proposed by Vonach et al. (2012) did not allow for meshing of white
matter or other tissues apart from brain, cerebrospinal �uid (CSF), skull and scalp. Also, it
required that one tissue completely enclosed the inner one, which is not anatomically correct.
The greatest di�culty in head segmentation for EIT is, however, the accurate modelling of
the skull with respect to the soft tissues. The combination of the conductive scalp and highly
resistive skull underneath means that a signi�cant proportion of the injected current is shunted
around the brain (Abascal et al., 2008). For this reason, CT scans were used in this study for
accurate skull segmentations and MRI scans of the same heads for soft tissue segmentation. The
segmentation was mostly manual and took around two working days per head. In the following,
the approximate procedure is described, with segmented layers printed in italics and Seg3D tools
in capitals (�gure 3.1).

• CT and MRI head scans of the same patient were loaded into Seg3D. The rotational
mismatch was estimated and the MRI scan was then rotated to align with the CT scan
using MIPAV. Once the two scans were aligned, all segmentation work was done manually
in Seg3D. The resolution of the CT and MRI scans was increased to 512x512x512, using
Gaussian interpolation (resample tool). Increasing the number of pixels while smoothing
the images was required to generate smooth surfaces in the resulting �nite element meshes.

• The skull was segmented �rst by thresholding the CT scan at an appropriate intensity
level (around one third of the maximum). The diploë was then found by filling holes in
the skull and then removing the skull from this newly created layer. The modelling of the
diploë included anisotropy into the overall skull conductivity.

• The soft tissues were then extracted from the MRI scan. The �rst soft tissue to be segmented
was thewhite matter, because it had a clearly visible contrast to the surrounding grey matter
and could therefore be accurately found with the threshold tool (between around 40%
and 50% intensity). Areas with similar intensity to the white matter were mostly outside
the skull cavity, and could therefore be removed from the white matter by running remove
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Figure 3.1: The Seg3D workspace after completed CT&MRI segmentation - Screenshot of the Seg3D workspace after
completed segmentation of the CT and MRI scan. To the right are the created tissue layers and to the left the tools used.

with the skull segmentation as the mask, and then �nding connected components on
the white matter.

• Next, the grey matter was found in a similar manner to the white matter. Because the
grey matter MRI intensity (around 30-40%) was similar to tissues in the lower part of the
head, it was generally not possible to disconnect the actual grey matter from the tissues
with similar intensity by simply removing the skull. Therefore, this was done manually
using the paint brush tool to remove the connections between the grey matter and other
tissues, based on physiological atlases. This was the most time-consuming step in the
head segmentation.

• The superior sagittal sinus had a high intensity on the MRI scans (50-70%) and was easily
segmented by thresholding and �nding connected components. It was added to the
diploë layer.

• By thresholding the MRI scan at very low intensity (below 10%), the background was
segmented. At the nose and ears, the air �lled cavities were manually removed (paint
brush) from the background and assigned to a new segmentation layer air. This was done,
in order not to have highly irregular surfaces in the resulting �nite element meshes.

• The cerebrospinal �uid (CSF) and eyes were combined to one layer, and found by threshold-
ing the MRI scan at an intensity level of 10-20% and subsequent subtraction of grey matter,

48



3. Head Models from CT and MRI Scans

white matter, skull and diploë and superior sagittal sinus. Any unassigned gaps between
grey matter and skull were �lled with CSF by iteratively dilating it and removing the
other layers to prevent overlap.

• All unassigned voxels were �nally assigned to a scalp layer, including most of the lower
head, nose and throat. This simpli�cation was deemed acceptable, because these areas
were far from the electrodes and the region of interest (i.e. the brain). The scalp was found
by thresholding the MRI to include all relevant tissues (∼15-70%) and then subtracting
all other segmented layers. dilation and removal of the background ensured that the
scalp covered the surface of the segmented head.

• When all tissue layers were segmented, they were smoothed by running smooth binary
dilate -> erode and overlaps were prevented with boolean remove. To ensure that all
pixels were assigned to a tissue, CSF and scalp were dilated until they �lled the skull and
head, and then had the other layers removed from them.

• In a �nal step, the segmentation was saved in .nrrd format and, using MedInria, translated
into the .inr format required by the mesher.

3.2.2 Meshing

The high quality 3D mesh generator of the computational geometry algorithms library Cgal
(The CGAL Project, 2015) was used to create tetrahedral meshes directly from the joint MRI&CT
segmentation. The default 3D mesh generator of Cgal (written in C++) was adapted, by de�ning
a problem speci�c element sizing �eld. This sizing �eld de�ned the desired �nite element size
throughout the head and was used to re�ne elements near the electrodes and towards the surface
of the head. Speci�cally, all elements within a radius of 10 mm of the centre of an electrode were
required to be 0.5 mm small, while the size of the other elements was assigned linearly from
the surface to the centre of an ellipsoid �tted into the head (2 mm on the surface to 4 mm in the
centre of the head). The e�ect of the mesh re�nement around electrodes can be seen on the left
of the slice taken of one head mesh (�gure 3.2). The resulting meshes contained 3.3-3.5 million
tetrahedral elements and their quality was controlled with the Joe-Liu quality measure (Liu and
Joe, 1994)

q = 12
(3V )

2
3∑

0≤i<j≤3 l
2
ij

, (3.1)

where q is the quality, V the element volume and lij the length of the edge between the ith and
jth element vertex. All meshes had an average quality above 0.89 and not more than 7 elements
with quality below 0.1 (with the worst element having a quality measure of 0.073).
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Figure 3.2: 3D mesh created from the segmentation shown in �gure 3.1 - In this slice of the �nite element mesh it
can be seen, that elements towards the centre of the head are larger than the ones at the surface. Additionally, very �ne
elements at one spot at the back of the head indicate that this slice cuts through an electrode at this location.

mesh 1 mesh 2 mesh 3 mesh 4

length 18.25 18.48 18.20 19.47

width 14.89 15.52 15.19 15.07

height 19.22 20.10 15.88 18.67

Table 3.1: Dimensions of the four di�erent heads used for

meshing - All values are in centimetres.

After the manual location of nasion,
inion and left and right ear tragus, the 32
electrode positions were computed au-
tomatically for each mesh using Matlab
(MATLAB 2014b, The MathWorks, US).
The electrode positions were de�ned ac-
cording to the EEG 10-10 system (Nuwer
et al., 1998) and matched the electrode
assignment of the EasyCap EC40 (Brain
Products GmbH, Germany). The head dimensions were analysed based on the distances between
EEG 10-10 electrode positions Fpz and Oz (length), T7 and T8 (width) and the height was found
as the di�erence between maximum and minimum z dimensions of nodes in the meshes (table
3.1).

3.3 Methods

3.3.1 Voltage Simulation

The conductivities used for the di�erent tissues were 0.15 S m−1 for grey matter, 0.3 S m−1

for white matter, 1.79 S m−1 for CSF, 0.018 S m−1 for skull, 0.7 S m−1 for diploë and sagittal
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sinus, 0.0001 S m−1 for air and 0.44 S m−1 for scalp, as compiled from literature for frequencies
around 10 kHz (Horesh et al., 2006). The current level was 250 µA and contact impedances of
all 32 electrodes were zm = 1 kΩ · |E|, with |E| being the contact area of the electrodes with
diameter 10 mm. The current injection pairs of electrodes were chosen to maximise the distance
between electrodes by �nding their maximum spanning tree. Measurements were made for
each injection on all adjacent electrode pairs not involved in delivering the current, giving a
total of 869 measured voltages from 31 independent current injections. All voltages and the
Jacobian matrix were computed with Peits (chapter 4), resulting in computation times of less
than 11.5 minutes for voltages and Jacobian matrix on each healthy head model with ∼3.4 million
elements, and less than 3.5 minutes for the computation of only the voltages for each simulated
stroke (on 12 processors with 20 MB cache each).

The �ve positions of the simulated perturbations were based on the EEG 10-10 nomenclature
electrode positions. Anterior, central and posterior positions were 25%, 50% and 75% along a
line between Fpz and Oz, respectively. The lateral and superior positions were halfway between
the central position and T8 and Cz, respectively. The simulated strokes had a radius of 1.5 cm
and conductivity 0.7 S m−1 for haemorrhage and 90% of the healthy conductivity for ischaemia
(Horesh, 2006; Dowrick et al., 2015).

Three levels of noise were added to simulated voltages and were chosen to match, in ascending
order, tank experiments (chapter 5), measurements on humans with relatively low noise and
with higher noise (Goren et al., 2015). This noise is referred to as system noise, and accounts
for noise from the instrumentation. The noise levels were ςp = 0.006% proportional noise and
ςa = 1 µV additive noise, ςp = 0.01% & ςa = 2 µV and ςp = 0.02% & ςa = 5 µV, such that

vwith noise = vno noise

(
1 + rand(ςp)

)
+ rand(ςa), (3.2)

where rand(ς) indicates random numbers drawn from a Gaussian distribution with zero mean
and standard deviation ς .

3.3.2 Image Reconstruction

First order Tikhonov regularisation was used to bias the algorithm towards �nding small con-
nected perturbations. All images were created with a standard least-squares minimisation using
generalised singular value decomposition (gSVD). The advantage of using gSVD was, that it
only had to be computed once for each reconstruction mesh and could then be used for all image
reconstruction by simple matrix multiplication (chapter 2.3).

To reduce the computational cost of calculating the gSVD and to prevent the ‘inverse
crime’ (Lionheart et al., 2004), much smaller hexahedral meshes (3-4 thousand elements of
1 cm× 1 cm× 1 cm) were used for the image reconstructions. The Jacobian matrices were
computed on the �ne meshes and then projected onto the geometrically regular cubes of the
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hexahedral mesh. The Laplacian matrices for the �rst order Tikhonov regularisation were
computed on the hexahedral meshes.

For all reconstructed images, the regularisation factor was kept constant for each noise level,
and was λ = 5 · 10−4 for low noise, λ = 1 · 10−3 for medium noise and λ = 2 · 10−3 for high
noise. The value for the lowest noise was chosen manually based on the shape of the L-curve
(Hansen, 1994). As the noise was roughly doubled, the regularisation factor was also doubled to
account for the higher noise level. The colour bars of the images were scaled according to the
largest reconstructed change in the whole mesh. Therefore images of slices sometimes do not
contain the maximum value indicated in the colour bar.

3.3.3 Image Quality Measures

Three metrics were used to objectively evaluate the image errors. They were all 0% in ideal
images. The overall error was expressed as the sum of these three metrics in percent, and image
quality as its reciprocal. Acceptable quality images were empirically found to have image error
< 100% or image quality > 0.01, respectively.

The volume P corresponding to the reconstructed perturbation was identi�ed as the largest
connected cluster of voxels with at least 75% of the maximum absolute change in the image. The
region of interest (ROI) was de�ned as the largest connected cluster of voxels with 50% of the
maximum of the simulated conductivity change. The used error metrics were then

• Location error: ratio between the distance ‖(xP , yP , zP )‖ of the centre of mass of the
reconstructed perturbation P from the actual perturbation location, and the average
dimension of the mesh mean(dx, dy, dz)

‖(xP , yP , zP )‖
mean(dx, dy, dz)

. (3.3)

• ROI contrast: ratio between the average reconstructed change (dσr) outside the region of
interest and the average reconstructed change in the region of interest

|meanΩ\ROI(dσr)|
|meanROI(dσr)|

. (3.4)

• ROI noise: ratio between the absolute changes outside the region of interest and the
absolute changes within the ROI

meanΩ\ROI(|dσr|)
meanROI(|dσr|)

. (3.5)

The overall image quality was then de�ned as the inverse of the sum of the three error measures
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in percent (e.g. the image quality for 10% location error, 5% ROI contrast error and 25% ROI noise
would be 1/(10 + 5 + 25) = 0.025). Exemplary image reconstructions with di�erently assessed
quality illustrate that up to 100% image errors it was possible to detect the stroke visually (�gure
3.3). Between 100-120% some strokes could still be seen, while others could not. If the image
errors were larger than 120%, it was no longer possible to detect strokes. 100% image errors
were therefore de�ned as the limit of stroke detectability. The occurrence of a reconstruction
with more than 120% errors was highlighted in tables 3.2 and 3.3 by colouring the entry red.

(a) (b)

(c) (d)

Figure 3.3: Illustration of image quality measures - (a) haemorrhage with 20% image errors, (b) ischaemia with 61%
image errors, (c) 105% image errors and (d) 108% image errors. Black squares indicate the outline of the simulated stroke,
thresholded at 50% of the maximum conductivity change in the hexahedral mesh.

Voltage errors between two measurements v1 − v2 were assessed with two metrics. The 2-
norm was computed as

(∑
r(v1 − v2)2

r

)1/2 and the average proportional errors as meanr(|v1−
v2|/|v1|), where r = 1, ..., 869 indexes the individual measured voltages.

53



3. Head Models from CT and MRI Scans

3.4 Results

3.4.1 Analysis of the Image Quality

Was the image quality better with the correct mesh?

For reconstruction on the correct mesh, the image quality metric was on average 25% better,
than when di�erent meshes were used for simulation and reconstruction. Sometimes, image
reconstructions on the wrong mesh were better than reconstructions on the correct mesh. The
image quality of reconstructions on the correct mesh was plotted against the average image
quality of reconstructions on the other three head meshes (�gure 3.4). When �ltering out
reconstructions that were unsuccessful in both modalities (i.e. quality below 1/100% = 0.01

for both), then the following ratios of better reconstruction with the correct mesh versus better
reconstruction with the other meshes were obtained: 32:8 at low noise, 22:16 at medium noise
and 20:10 at high noise. An example of a reconstructed image on the correct mesh and the same
reconstruction on a di�erent mesh is shown in �gure 3.5.
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Figure 3.4: Image quality for correct reconstruction mesh vs. di�erent head meshes - Image quality comparison
for reconstructions on correct mesh and on di�erent head meshes. The solid lines are the linear �t of the data points with
the same colour. For low noise, the improved quality using the correct mesh is clearly visible (blue crosses). The di�erence
in image quality between correct mesh and other mesh reconstructions reduces with increasing noise. For each noise level
there are 40 data points, corresponding to four meshes used for simulation, �ve stroke positions and two stroke types.
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(a) (b)

Figure 3.5: Exemplary reconstructions with the correct and a wrong mesh - Example of reconstructions of a haem-
orrhage in the superior position simulated on mesh 1 and reconstructed on (a) mesh 1 and (b) mesh 2. The images were
thresholded at 66% of the maximum reconstructed change.

Were stroke detection rates higher with the correct mesh?

While using the correct mesh for reconstruction increased image quality on average, the total
amount of successful stroke detections was not improved (�gure 3.4). The number of cases
where reconstructions with the correct mesh were successful, while reconstructions with the
wrong meshes were not, was 3 (all at the highest noise level). On the other hand, there were 5
cases where only the reconstructions on the wrong meshes gave an acceptable image quality (2
at the highest noise level, 1 at medium noise and 2 at low noise).

Which factors did stroke detection rates depend on?

In this section, we compare the in�uence of mesh di�erences, stroke position, stroke type and
system noise level on stroke detection rates. The system noise was found to have the strongest
impact on image quality, and mostly a�ected reconstructions of ischaemia.

simulation
mesh 1 mesh 2 mesh 3 mesh 4

reconstruction

mesh 1 9/9/9 10/8/6 10/8/5 10/8/5
mesh 2 8/9/10 9/10/5 10/10/5 9/8/4
mesh 3 10/9/10 10/10/7 10/9/7 10/9/5
mesh 4 10/9/10 10/10/7 10/9/8 10/9/6
h. 100k 10/8/8 10/8/5 10/8/8 9/8/9

Table 3.2: Stroke detection statistics for reconstruction and simulation meshes - Number of successful reconstruc-
tions using di�erent voltage simulation and image reconstruction mesh pairs. The �rst value of each entry corresponds to
small noise on the voltages, the second to medium noise and the last to high noise. The maximum score for each noise
level is 10, which means that all �ve positions and both stroke types were visible in the reconstructed image. 0 − 100%
image error were considered successful and everything above unsuccessful. If all images had an error of less than 120% the
number is black, otherwise red. The last row corresponds to reconstructions on a coarse, homogeneous mesh.
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No clear di�erences were found between the meshes used for voltage simulation and image
reconstruction (table 3.2). The only surprise was, that even at the highest noise level, almost all
reconstructions from voltages simulated on mesh 1 were successful. No explanation was found
for this observation. The least successful reconstructions of haemorrhages were observed for
the posterior position, while the lateral position was the least successful for ischaemia recovery
(table 3.3). The added system noise had a very strong in�uence on the successful reconstructions
of ischaemic strokes. At the medium noise level, 66 out of 80 ischaemias were detected, while
with the highest noise this number dropped to 33 (table 3.3).

0.006% & 1 µV 0.01% & 2 µV 0.02% & 5 µV
posterior 16/16 14/15 13/8
central 16/15 16/15 16/7
anterior 16/14 16/15 16/7
superior 16/14 16/5 16/4
lateral 16/16 16/16 16/7

Table 3.3: Stroke detection statistics for noise levels and positions - Number of successful reconstructions for di�erent
noise levels and stroke positions. The �rst value corresponds to haemorrhage, the second to ischaemia. The maximum score
for each stroke type is 16, which means that all combinations of voltage simulation and image reconstruction meshes resulted
in a good image. 0− 100% image error were considered successful and everything above unsuccessful. If all images had an
error of less than 120% the number is black, otherwise red.

Out of curiosity, time-di�erence reconstructions were also made on a coarse 100 thousand
element head mesh with homogeneous conductivity of 0.3 S m−1 (last row of table 3.2). Surpris-
ingly, most of these reconstructions were still good enough to identify the stroke, suggesting
that TD reconstructions are more stable to geometrical errors than previously thought (Bagshaw
et al., 2003).

3.4.2 Analysis of the Voltage Errors

How large were voltage changes caused by the perturbations?

The average 2-norm of the voltage change caused by haemorrhages was 301 µV (1.3% propor-
tional) and for ischaemias 27 µV (0.1% proportional). These values were obtained by averaging
the changes of the respective stroke types for all �ve positions. The position of the stroke had
only a small in�uence on the signal. The largest changes were caused by posterior strokes, and
were approximately 1.5 times larger than the smallest changes, which were caused by central
strokes.
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How large were voltage errors introduced by wrong meshes?

Baseline voltage di�erences were compared between all four head meshes, and the average for
these six comparisons was computed. The average voltage di�erences were large with 2-norms
between 16 mV–35 mV (59-100% proportional).

Time-di�erence voltage changes were compared between all four head meshes for perturba-
tions simulated in posterior position. The average TD voltage di�erences were 146 µV (0.63%
proportional) for haemorrhage and 13 µV (0.07% proportional) for ischaemia.

How did this compare to the introduced system noise?

The average 2-norm of the added proportional and additive noise was 28 µV (5.6% proportional)
for low noise, 59 µV (11.3% proportional) for medium noise and 148 µV (28.3% proportional)
for the highest used noise level. These values were computed based on the noise added to
the baseline. Consequently, time-di�erence data contained a combination of the noise on the
baseline and equivalent noise on the perturbation voltages.

Comparison of the voltage di�erences

In time-di�erence imaging, the geometrical errors were in the same range as the signal. On the
other hand, the proportional and additive noise added to the simulated voltages was 2-10 times
smaller than the haemorrhagic signal. This means that reconstructions of haemorrhagic strokes
had a ten times better signal to system noise ratio than reconstructions of ischaemic strokes,
while the signal to mesh di�erence ratios were comparable (�gure 3.6).

Successful reconstructions of ischaemic strokes reduced strongly between medium and
high system noise. The 2-norm of the signal was two times smaller than the 2-norm of the
medium noise, suggesting this ratio as a good rule of thumb for estimating feasibility of head
EIT applications. The observed strong dependence of the image quality on system noise masked
the positive e�ect of using the correct head mesh.

3.5 Discussion

3.5.1 Mesh Creation

The created head meshes were anatomically more accurate than previous EIT head models, due
to the use of both CT and MRI scans, instead of just one of the two (Tizzard et al., 2005; Vonach
et al., 2012). The quality of the meshes was further improved by using the established open
source Cgal mesh generator directly on the segmentation, thereby skipping previously required
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Figure 3.6: Image quality dependence on mesh di�erences and system noise - The plot on the left shows the e�ects
of using a generic head mesh for reconstructions. The signal to mesh di�erence ratio was computed as the 2-norm of the
voltage changes caused by the simulated stroke, divided by the 2-norm of the di�erence in time-di�erence voltage changes
on the mesh used for voltage simulation and the mesh used for reconstruction. The plot on the right shows the image
quality with respect to signal to system noise ratio for both types of stroke. For each stroke type there are 240 data points,
corresponding to four meshes used for simulation, four meshes used for reconstruction, �ve stroke positions and three noise
levels. However, the signal to mesh di�erence ratio was in�nite if the same mesh was used for simulation and reconstruction,
which is why only 180 data points for each stroke type are visible on the left plot.

separate steps of enclosed 3D surface generation and meshing (Vonach et al., 2012). Problem
speci�c element sizing �elds were de�ned, in order to reduce element size near the electrodes,
where electric potential gradients were large. Once the manual CT and MRI segmentations were
performed, meshes with variable element sizes could be created by simply varying the Cgal
settings in a text �le.

3.5.2 Impact of Mesh Di�erences

Voltage di�erences between meshes, voltage changes caused by the simulated perturbations
and the degree of added system noise were quanti�ed by the 2-norm. The image quality of the
reconstructions was assessed objectively by prede�ned metrics and a limit of detectability was
set at 100% image errors. From these objective measures, the following answers were found to
the questions posed at the beginning:

1. How large are voltage and image errors introduced by using a generic headmesh,

as opposed to a patient speci�c one? Time-di�erence voltage errors between head
meshes were of the same order than voltage changes caused by the perturbations. The
image quality was on average 25% better, when the reconstructions were made on the
correct mesh. When the added system noise was more than twice as high as the signal,
then the stroke detection rate decreased signi�cantly.
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2. Is a patient speci�c head mesh required for the detection of localised conductiv-

ity changes? While using the correct mesh for reconstructions improved the overall
image quality, stroke detection rates were not improved. In three cases, only the correct
mesh lead to a correct stroke identi�cation, while there were �ve cases, where the recon-
struction on the correct mesh failed and the average image errors on the other meshes
were below 100%.

Finally, it was observed that even a coarse, homogeneous reconstruction mesh resulted in an
acceptable image quality in most cases.

3.5.3 Conclusion

For monitoring, it was found not to be essential to use patient speci�c head meshes for image
reconstructions. The results of this study, however, suggest that the noise on the measured
voltages has to be kept very low to enable reliable detection of small conductivity changes in the
head, such as ischaemia, epileptic seizures or even fast neural activity. Ways in achieving this
may include long averaging, correction for small electrode movements (chapter 5) and reduction
of system errors (Fitzgerald et al., 2002).

An EIT head imaging application in which it is very unlikely to have access to patient speci�c
head meshes, is the di�erentiation of acute ischaemic and haemorrhagic strokes (Holder and
Tidswell, 2004). Since a baseline measurement is not available in this case, time-di�erence (TD)
reconstructions are not available and multi-frequency (MF) methods have to be used (Malone
et al., 2014). Previous results and preliminary work suggest, that MF reconstructions are much
more sensitive to geometrical errors than TD (chapter 6), but more analysis needs to be done to
give a de�nitive answer, whether patient-speci�c meshes are required in MF imaging.

To �nd the optimal �nite element size for head meshes, a convergence analysis (Aristovich
et al., 2014) or local error estimates (Sawicki and Okoniewski, 2010) should be performed.
Indications from unpublished results suggest that the forward solutions converge at human
head mesh sizes above 10 million elements, but a detailed study was not possible at time of
writing due to memory requirements of the Cgal mesher exceeding 24 GB at around 15 million
elements. Preliminary results suggest, that for mesh sizes between 3 and 5 million elements,
the discretisation errors are approximately half as big as the smallest noise level added to the
simulated voltages in this chapter. To solve the forward problem on meshes with a couple
of million elements, new e�cient software is needed to reduce memory requirements and
computation time.
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Chapter 4

A Fast Parallel Solver for the

Forward Problem in EIT (Peits)

4.1 Overview

4.1.1 Introduction

In the previous chapter, the requirement for patient speci�c head meshes for time-di�erence
EIT was studied. To obtain accurate forward solutions, particularly on the human head with its
complicated structure with strongly varying conductivity, �ne meshes had to be used. It was
shown, that time-di�erence (TD) image reconstructions do not necessarily require an accurate
head model, because most modelling errors are cancelled in di�erence measurements. In TD
applications with high precision requirements, it is however desirable to achieve the best possible
image, and therefore use the best mesh available for the Jacobian matrix computation. One of
these applications is the imaging of fast neural activity in the rat cortex (Aristovich et al., 2016).

Where TD imaging is not possible due to the lack of a baseline measurement, multi-frequency
(MF) or absolute image reconstructions are required. MF reconstruction methods have stronger
requirements on the mesh accuracy than TD, as observed in chapter 6. Since absolute imaging
directly images the di�erence between simulated and measured voltages, the mesh precision
requirements are the highest in this modality (chapter 5). MF and absolute reconstruction
algorithms are usually iterative, and therefore require multiple forward simulations and Jacobian
matrix computations.

The main limitations in using �ner meshes are computation time and memory requirements.
Consequently, simulation studies and accurate image reconstructions in EIT depend on fast and
memory e�cient forward solvers.
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4.1.2 Background

A detailed summary of the forward solvers for EIT is given in section 2.2.9. Most research groups
in EIT currently use the Matlab (The MathWorks, US) based Electrical Impedance Tomography
and Di�use Optical Tomography Reconstruction Software Eidors (Adler and Lionheart, 2006).
Horesh et al. (2006) adapted Eidors with di�erent preconditioners and more e�cient routines,
resulting in a version called SuperSolver which is still used in our group at UCL. For large meshes,
however, Matlab su�ers from a lack of e�cient parallel programming possibilities, which makes
the computation of forward solutions a lengthy task. Additionally, the Matlab implementations
are relatively excessive in terms of memory usage, thereby physically limiting the size of the
meshes that can be used.

Previous e�orts to speed up the forward simulations include using the parallel direct solver
library Pardiso (Borsic et al., 2010), calculating the Jacobian matrix on a GPU (Borsic et al., 2012)
and using AMG preconditioning (Soleimani et al., 2005). These all addressed speci�c steps of the
forward modelling, and no complete parallel software package for system assembly, forward
simulations and Jacobian computation has so far been developed.

4.1.3 Purpose

The aim of the work presented in this chapter, was to build a comprehensive software package for
the fast, parallel and memory-e�cient computation of forward solutions on parallel machines and
clusters, in order to reduce the computational time of the image reconstruction process in EIT. The
solver, abbreviated hereinafter Peits (Parallel EIT Solver), is �exible in terms of preconditioning
options and inversion algorithms, and it includes the Jacobian matrix computation.

After a short review of the used numerical libraries and fundamental mathematical problem
formulation, the implementation of Peits is described in chronological steps of computation.
The performance of each step is analysed separately and di�erent preconditioners and inversion
methods are compared. The overall performance for practical applications is assessed and
compared to Eidors. Finally, �rst and second order shape functions are compared. A user guide
to the solver is found in Appendix A.

4.2 Technical Background

4.2.1 Dune and PETSc

The solver was implemented in the Distributed and Uni�ed Numerics Environment (Dune),
which is a grid-based C++ toolbox for solving partial di�erential equations. Dune includes
the discretisation module Dune-Fem, which allows implementations of �nite element solvers
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for parallel computers. It provides functions to implement local grid adaptivity, dynamic load
balancing and higher order discretisation schemes (Dedner et al., 2010). Apart from native
implementations of conjugate gradients solvers it also provides interfaces to the solvers and
preconditioners of the Dune-Istl module, Ufmpack (Davis, 2004) for unsymmetric problems
and PETSc (Balay et al., 2015), which has an extensive collection of solvers and preconditioners.
Dune-Fem supports two types of parallelism, MPI and pthread. Dune is licensed under the GNU
General Public Licence version 2.0 and thus free to use for everyone.

The decision to use Dune-Fem was made, because it is a fast, template-based and thus
versatile C++ library that allowed the implementation of the complete electrode model (CEM),
which has an uncommon weak formulation and is thus not easily implementable in most �nite
element libraries. Furthermore, Dune-Fem provides an interface to many di�erent preconditioner
and solver libraries and supports tetrahedral elements. The module is still in development and
was �exibly adjusted to the requirements of this project.

PETSc is a C++ library providing data structures and routines for the solution of systems
obtained from discretisation of partial di�erential equations. Its focus is on providing scalable
parallel routines supporting MPI, pthread and GPU parallelism. Dune interfaces to PETSc in
order to use the linear system solvers included in PETSc:

• Krylov Methods - PETSc has more than a dozen Krylov solvers available, such as CG,
Bi-CG, Bi-CG-stab and GMRES.

• Preconditioners - Many preconditioners are provided, some from external packages. For
non-parallel applications there are implementations for incomplete LU decomposition
and successive over-relaxation. Supporting parallelism, the most interesting precondi-
tioners are the ’classic’ algebraic multigrid from Hypre (Falgout, 2015) and the smoothed
aggregation AMG from Trilinos (Gee et al., 2006).

• Direct Solvers - Some direct solvers are available, e.g. Mumps (Amestoy et al., 2006).

4.2.2 Complete Electrode Model and Jacobian Matrix

The derivation of the weak formulation of the CEM, which was used in Peits, is given in section
2.2.4. It does not directly solve for (u, U) ∈ (H1(Ω)⊕ RM )/R, but instead �rst solves for the
internal potential u and then computes the electrode potentials Um in a second step

∫
Ω
σ∇v∇u+

M∑
m=1

1

zm

∫
Γm

vu−
M∑
m=1

1

zm|Γm|

∫
Γm

v

∫
Γm

u =

M∑
m=1

1

|Γm|

∫
Γm

vIm. (4.1)

One important observation in this weak formulation is the uncommon third term of type∫
Γm

u
∫

Γm
v. To facilitate the parallel assembly of this term and to reduce communication
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between processes, it has to be ensured that each electrode is not split onto di�erent partitions
(see Section 4.3.1 for the implementation).

Di�erent grounding conditions can be applied. One option would be to set the average surface
potential to zero (2.10c), but for ease of implementation it was decided to set one surface node
to 0 V by applying a Dirichlet boundary condition. It is important to note, that the traditional
CEM grounding condition

∑M
m=1 Um = 0 is not easily implemented here, since the electrode

potentials are only computed in a later step. Once the forward solutions are computed, most EIT
inversion algorithms require the Jacobian matrix which translates a change in conductivity to a
change in measured voltages by linearisation at the simulated conductivity distribution. The
lead (or adjoint) �elds method (section 2.2.7) was used to compute the Jacobian

δVda = −
∫

Ω
δσ∇u(Id) · ∇u(Ia) dΩ, (4.2)

where u(Id) ∈ H1(Ω) is the electric potential emerging when the drive current Id is applied
to the electrodes and u(Ia) ∈ H1(Ω) the electric potential when a unit current is applied to
the two measurement electrodes. δVda ∈ R is then the linearly approximated voltage change
between the two measurement electrodes when the conductivity changes by δσ ∈ L∞(Ω).

4.2.3 Methods

Unless otherwise noted, all run times were computed on a head mesh with di�erent conductivities
for the scalp, skull, cerebro-spinal �uid (CSF), white matter, grey matter and superior sagittal
sinus (�gure 4.1). The meshes were created from a CT and MRI scan of the same patients head
as described in chapter 3. The assembly of the system matrix will be slower, the more elements
are part of an electrode. To ensure that the results presented here can be compared to each other,
the ratio of electrode elements to other elements was kept �xed by having a constant element
size throughout the mesh. For real applications it is advantageous to re�ne the mesh around the
electrodes and use larger elements towards the center of the head.

To measure the parallel scalability of the code, the e�ciency was calculated as follows for p
parallel processes

strong scaling efficiency(p) =
runtime(1)

runtime(p) · p
. (4.3)

This e�ciency is a value for the strong scaling. For the weak scaling it should be shown how
much more elements can be computed in the same time by using more processors. The following
de�nition for the e�ciency of the weak scaling was used, where x is a �xed number of elements
and runtime(px) means the time it takes to compute p · x elements on p processors

weak scaling efficiency(p) =
runtime(x)

runtime(p · x)
. (4.4)
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Figure 4.1: Layered cut through a 5million element headmesh - The mesh was created withCgal from a segmentation
of a CT and an MRI scan of the same person and contains the following tissues: scalp, skull, cerebro-spinal �uid, grey and
white matter, and also parts of the superior sagittal sinus and air cavities, which are not visible in this image.

All run times were taken on a cluster with 5 nodes. Each node had two 6 core 2.40 GHz Intel
Xeon processors with 12 MB cache and a total of 192 GB of memory. The nodes were connected
by a dedicated 1 GB Ethernet switch. PETSc version 3.4.2 and Zoltan version 3.6 were used.

4.2.4 Overall Structure of Peits

The code is structured in di�erent �les that contain classes, structs and functions for speci�c
tasks. The main �le is dune_peits.cc, which performs the following important steps in this
order:

• Loading the mesh and partitioning it. If the mesh was already partitioned before, those
partitions are loaded by the parallel processes directly.

• The electrode positions are loaded into a struct. This struct has query functions that
evaluate if a given element belongs to an electrode.

• The current protocol is read from the speci�ed �le. Upon reading the protocol, it is
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disassembled into unique injections. The solution for each unique current injection is
computed just once. This reduces the number of required forward solutions for a standard
EIT protocol with around 1000 lines to around 60.

• The system matrix is assembled. The function which computes the system matrix entries
is located in the �le elliptic.hh.

• In a for-loop the following steps are performed for each unique current injection:

– The right-hand side of the weak formulation is assembled using a function in rhs.hh.

– The CG solver computes the resulting electric potentials and the result is stored in a
vector.

– If speci�ed in the parameter �le, the �rst solution is written to a VTK �le for visual
inspection.

• In a second for-loop the following steps are performed for each line in the current protocol:

– Trace back which forward solutions correspond to the drive current and measurement
current of this protocol line.

– Compute the measured voltage and save to a binary �le.

– Compute the row of the Jacobian matrix using the forward solutions for the drive
and measurement current and save it to a binary �le.

4.3 Implementation of the Functional Steps

4.3.1 Parallel Substructuring

When using a �nite element mesh for the �rst time, it needs to be partitioned evenly onto the
used number of parallel processes. Dune-Fem has a partitioning tool available, but this tool
does not enable the user to guide the load-balancing by �xing regions to a speci�c process.
Peits requires the electrodes to be on only one process each, since this facilitates the correct
system matrix assembly and minimises communication between processes. A well documented
and established library supporting user de�ned load-balancing is Zoltan (Devine et al., 2006).
Zoltan is a parallel C, C++ and Fortran 90 library with a simple object-based interface that
is easily adapted to many applications. The Zoltan tool employed here is called hypergraph
partitioning. A hypergraph interpretation of a �nite element mesh has the following appearance:
each element is a vertex of the hypergraph and the element together with all its neighbours
forms one hyperedge. Thus, for a mesh with N elements, the hypergraph has N vertices and N
hyperedges, which correspond to the communication requirements of the parallel program. The
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parallel hypergraph partitioning (PHG) tool in Zoltan allows the user to assign di�erent weights
to hyperedges and to �x selected vertices to one section.

partitioning loading

2m 15m 2m 15m

12 processes 214 2137 5.7 52

24 processes 250 2405 2.89 26.8

48 processes 241 2400 1.45 12.8

Table 4.1: Total time required for partitioning and loading the

meshes - All times are in seconds. The times for the partitioning
include the loading of the mesh, the initial load-balancing, the Zoltan
repartitioning and the second load-balancing in Dune-Fem. Since the
parallel substructuring has to be done only once for each mesh, the
performance of this operation is not critical.

When a mesh is loaded in Peits
for the �rst time it is initially parti-
tioned by the load-balancing function of
Dune-Fem. This �rst step is very time
consuming, because it is done serially
and can not be sped up by employing
more processors. The resulting parts
are then made accessible to Zoltan by
translating them into the hypergraph
format Zoltan requires. De�ning the
electrode areas with the query func-
tions ZOLTAN_NUM_FIXED_OBJ_FN and
ZOLTAN_FIXED_OBJ_LIST_FN, Zoltan’s
PHG partitioner is applied to the mesh in order to optimise the load-balancing while ensuring
that each electrode is assigned to one process only. Zoltan will return a list of elements that
need to be moved from one part to another part. This list is subsequently applied using the
load-balancing function of Dune-Fem (�gure 4.2). The number of elements which need to be
transferred between processes varies, but tends to increase as the number of processes increases.
Because these three steps are time consuming (table 4.1) and need to be done only once for each
�nite element mesh and number of parallel processes, the resulting mesh parts are written into
separate Dune grid �les (DGF). These DGF can then be loaded in parallel for each subsequent
use of the same mesh. The loading of these partitions took less than a minute for a 15 million
element mesh and scales almost linearly, since each processor loads its mesh partition separately
(table 4.1).

4.3.2 Assembly of the System Matrix

The assembly of the system matrix is done in two mesh iterations. The �rst iteration stores all
elements that belong to an electrode in a two-dimensional vector electrodeElements of length
M ∈ N equal to the number of electrodes with electrodeElements[m] containing all elements
that constitute electrode m. Furthermore, the overall electrode areas are computed and stored in
a vector. Storing the electrode elements is essential to reduce the time for the matrix assembly
and later on for the computation of the electrode potentials.

During the second iteration, the Laplacian term
∫

Ωn
σn∇v · ∇v dΩn is added to the system

matrix for each element Ωn for n = 1, . . . , N where N ∈ N is the number of elements in the
mesh. If element Ωn constitutes part of an electrode Γm, a nested loop iterates over all elements
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Figure 4.2: Partitions before and after Zoltan load-balancing - This is a relatively small head mesh with two million
elements which was partitioned into four sections. Some electrodes were split onto di�erent processors by the load-balancing
of Dune-Fem. The Zoltan partitioner minimises the number of elements that have to be moved from one process to another,
while optimising the partitions and �xing the electrode areas to one process.

of that electrode electrodeElements[m], writing each elements contribution to the third term
of weak formulation (4.1) 1

zm|Γm|
∫

Γm
v dΓm

∫
Γm

v dΓm into the system matrix. Additionally, for
each element under an electrode the second term of the weak formulation 1

zm

∫
Γm

v2 dΓm is
assembled.

In a last step, one surface node of the mesh is assigned a Dirichlet boundary condition to
make the problem uniquely solvable. The coordinates of the Dirichlet nodes have to be given
to the solver in a mesh speci�c parameter �le. The solver then evaluates for each node if the
coordinates match the given ones and applies the Dirichlet boundary conditions if they do.

Since the numerical solvers available in the PETSc library (Balay et al., 2015) are used, the
system matrix is directly assembled in the native PETSc sparse row matrix format MATMPIAIJ.
The di�culty using this format lies in the correct memory pre-allocation. If PETSc has to re-
allocate more memory during the matrix assembly, the performance can decrease by more than a
factor of 50. Due to the Dune-Fem implementation of the boundaries between parallel partitions,
only one side ever knows that there are neighbouring elements. Thus, a perfect pre-allocation
can only be achieved by a process in charge of all its interfaces. All other processes underestimate
the number of entries in the rows corresponding to communication with elements belonging
to other processes. Thus, it is not easily possible to perfectly pre-allocate the memory for the
PETSc sparse row matrix structure in our application. Instead, a �rst estimate of the maximum
number of non-zeros per row is pre-allocated for each mesh and the solver is subsequently run
with the option -info which outputs the precise maximal number of non-zeros per row per
process and the required number of mallocs required. Based on this output, the pre-allocation
can be further optimised such that no additional malloc is required during subsequent solves.
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2m 15m

1 process 27.89 231.41

2 processes 15.71 126.07

5 processes 6.56 54.04

10 processes 3.74 30.19

20 processes 2.23 16.93

40 processes 1.34 10.27

60 processes 1.11 7.3

Table 4.2: Total time required to assemble the

system matrix - All times are in seconds.

For realistic head meshes with sizes of up to 15
million elements, 100 diagonal and 40 o�-diagonal
entries per row were allocated with the function
MatMPIAIJSetPreallocation(mat,100,

PETSC_NULL,40,PETSC_NULL) in the corresponding
�le in the Dune-Fem library \dune\fem\misc\

petsc\petsccommon.hh. This approach allocates far
more entries than are actually used, but the perfor-
mance of the matrix assembly is not signi�cantly
decreased.

The parallel e�ciency of the matrix assembly
drops down to around 0.4 for small meshes and 0.5

for large meshes (�gure 4.3a). Even though the ef-
�ciency drops, the absolute times to assemble the
system matrix still improve on 60 parallel processes (table 4.2). The weak scaling (�gure 4.3b)
indicates that a load of around 0.5 million elements per processor is optimal.
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Figure 4.3: Strong and weak scaling of the system matrix assembly - (a) As expected, the e�ciency of the matrix
assembly drops when more processors are used, since the ratio of computation to communication is getting smaller. On
the larger mesh this e�ect is smaller than on the coarse mesh. (b) For half a million elements per process the ratio of
communication over computation scaled best.

4.3.3 Preconditioning

Multigrid methods are known to be very e�cient solvers for elliptic boundary value problems,
such as the Laplace problem solved in EIT. The underlying principle of multigrid methods is
to use several layers of coarseness to guide information exchange rather than having elements
exchange information only locally to their direct neighbours. Two general approaches to
multigrid methods are geometric multigrid (GMG) and algebraic multigrid (AMG). GMG relies
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on coarser �nite element meshes with the same geometry, which are not easily created in head
EIT because the complicated geometry cannot simply be coarsened. AMG on the other hand
does not require any geometric information and constructs the coarser levels directly from the
system matrix, which makes it very adaptable to di�erent problems. With a reduced tolerance,
multigrid methods can e�ciently be used as preconditioners for interative solvers.

Since the problem (4.1) is a Laplace problem with a compact perturbation, AMG is a very
e�cient preconditioner in EIT. Through PETSc Peits has two very good AMG implementations
available, BoomerAMG from Hypre (Falgout, 2015) and ML from Trilinos (Gee et al., 2006). The
performance of the two AMG implementations was compared on two di�erent mesh sizes using
the default settings of the respective preconditioner. The results in table 4.3 show, that ML was
faster for our application.

2m elements 15m elements
assembly solving assembly solving

ML BAMG ML BAMG ML BAMG ML BAMG
5 processes 1.1 4.4 3.5 4.4 13.8 55.0 79.0 64.7
10 processes 0.7 3.3 2.3 3.1 5.8 34.1 45.8 43.5
20 processes 0.62 5.54 0.60 2.34 3.3 36.7 22.3 24.7
40 processes 1.02 8.3 0.58 2.1 3.7 41.5 13.0 14.4
60 processes 4.8 10.5 1.3 2.53 4.5 39.4 9.6 10.5

Table 4.3: Times for the assembly of the preconditioner and subsequent CG solutions - All times are in seconds.
The assembly of the ML preconditioner was signi�cantly faster than for BoomerAMG (BAMG). Also, the performance of
both preconditioners dropped with more than 40 parallel processes on the smaller mesh. This was most likely due to the
increasing communication requirements between processors.

The e�ciency of the setup of the ML preconditioner was tested on two di�erent sized �nite
element meshes. As expected, a better parallel performance was observed on the large mesh, due
to the larger ratio of computation over communication (�gure 4.4a). The weak scaling (�gure
4.4b) indicates that a load of approximately 0.5− 1 million elements per processor is optimal.

4.3.4 Solver

The optimal multigrid preconditioning can be used with all Krylov subspace solvers avail-
able in PETSc, which are Conjugate Gradients (CG), Generalised Minimal Residual (GMRES)
and two CG algorithms for non-symmetric problems BiCG and BiCGstab. Since the sys-
tem matrix is positive symmetric, CG is generally used in Peits. The stopping criterion for
the CG solver was set to a relative residuum of 10−12. On the two million element mesh,
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Figure 4.4: Strong and weak scaling of the assembly of the AMG preconditioner ML - (a) Since the computational
cost was larger on the �ne mesh, the increasing communication volume between parallel processes had a smaller in�uence
on the overall e�ciency of the preconditioner assembly when compared to the coarse mesh. (b) With an average load of
half a million elements, the ML preconditioner assembly scaled best.

2m 15m

1 process 18.5 399

2 processes 8.3 169

5 processes 3.6 77

10 processes 2.25 45.8

20 processes 0.6 22.3

40 processes 0.58 13.0

60 processes 1.3 9.6

Table 4.4: Time for one forward solution for CG

with ML preconditioning - All times are in sec-
onds.

large and reproducible �uctuations in the e�ciency
were observed (�gure 4.5a), which most likely
emerged from di�erent communication requirements
and cache usage for the di�erent partitions. This
e�ect was less visible on the large mesh since the
computation load was proportionally larger than the
access to the memory and communication between
processors. The absolute run times on 60 processors
were 1.3 seconds on two million elements and 9.6
seconds on 15 million (table 4.4). The weak e�ciency
(�gure 4.5b) indicates that the optimal load per pro-
cessor was around 0.5 million elements. The weak
scaling was not as good as the strong scaling, because
the CG solver generally had a slower convergence
rate on the larger meshes (table 4.5). The required iterations on larger meshes correlate very
well with the decrease in e�ciency of the weak scaling (�gure 4.5b).

335k 656k 1m 2m 5m 8m 15m
Iterations 44 41 34 35 46 43 63

Table 4.5: Iterations of the CG solver on di�erent mesh sizes - The number of iterations was not dependent on how
many parallel processes were used.

A possible alternative to using an AMG preconditioned CG algorithm is to set up a direct
solver. A direct solver takes very long to assemble, but reduces subsequent solutions to mere
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Figure 4.5: Strong and weak scaling of the CG solver with ML preconditioning - (a) On the small mesh the run times
show reproducible large �uctuations, which were most likely caused by di�erent cache e�ciency for di�erent partitions.
On the larger mesh, where the computational load is larger these cache e�ects are not visible. (b) An average load of
half a million elements per processor lead to the optimal ratio of computation over communication. However, there was a
signi�cant drop in e�ciency on many parallel processes. This can be explained by di�erent convergence rates of the solver
on the di�erent meshes, as can be seen in table 4.5.

forward and back substitutions. Thus, if many forward solutions are required (i.e. many
electrodes are used) then a direct solver might be faster. PETSc interfaces to the Mumps direct
solver (Amestoy et al., 2006), using it as a preconditioner for the CG solver. This reduces each
solution to one or two iterations. The assembly took very long on large meshes and the CG
solver with Mumps preconditioning did not scale well on many processes (table 4.6). The weak
scaling of Mumps was much worse than that of the MG preconditioners, meaning that for large
problems the number of required forward solutions for the direct solver to be faster increased
(table 4.7). Furthermore, the strong scaling was worse than that of ML as well, such that for
many parallel processes AMG was always the better choice (as indicated with the minus symbol
in the last row in table 4.7).

2m 15m
assembly solve assembly solve

1 process 1388.5 3.5 91375 48.9
10 processes 258.0 0.94 28969 15.9
50 processes 128.9 1.0 9469 16.3

Table 4.6: Performance of the Mumps direct solver - All times are in sec-
onds. Especially the assembly times on the larger mesh illustrate well why the
direct solver is not a valuable alternative for our application. Also, the solving
times did not scale very well on many parallel processes.

2m 15m
1 process 93 261

10 processes 197 969
50 processes - -

Table 4.7: Number of forward solu-

tions for Mumps to be faster than

ML - The number of forward solutions
to be computed, in order for Mumps to
be faster. On 50 processes ML was al-
ways faster than Mumps.

It was concluded, that for this application a direct solver was only worth considering on
relatively small problems with many electrodes, leading to more than one hundred independent
current injections. Most applications will be solved faster by using ML as a preconditioner.
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4.3.5 Jacobian Calculation

2m 15m

1 process 1.44 20.3

2 processes 0.57 8.6

5 processes 0.22 3.8

10 processes 0.11 1.85

20 processes 0.057 0.84

40 processes 0.026 0.34

60 processes 0.017 0.16

Table 4.8: Time taken for the computation of

one row of the Jacobian matrix - All times are in
seconds.

The Jacobian matrix is computed based on the adjoint
�eld method (4.2). In Peits the computations are
handled by a struct JacobianRowCalculator, which
computes the local sti�ness matrices of all elements
in the constructor and stores them. When Peits then
iterates over all lines of the measurement protocol, the
member function getJacobianRow is called with the
voltage distributions for both drive and measurement
current as arguments. getJacobianRow then iterates
over all elements and computes two matrix-vector
products in each step to obtain the local entry of the
row of the Jacobian matrix. Since this process requires
no communication between processors at all, a very
good parallel e�ciency can be expected. We observed
that the e�ciency was reliably larger than 1, going
up to more than 2 in one case (�gure 4.6a). This was most likely due to a more e�cient use of
cache memory, since for the larger mesh the e�ciency kept improving for more processors while
it remains around 1.4 for the smaller mesh, indicating that already all local sti�ness matrices
were stored in cache. The weak scaling of the Jacobian matrix computation (�gure 4.6b) indicates
that the optimal load per processor was around half a million elements.
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Figure 4.6: Strong andweak scaling of the computation of the Jacobianmatrix - (a) The e�ciency of the computation
of a Jacobian row increased, as the number of processors increased. This was most likely due to a more e�cient usage of the
cache. On the larger mesh, where the computational load is larger, these cache e�ects were more visible on many processors.
(b) The weak e�ciency decreased on large meshes, most likely due to the memory access. When the processes were not
evenly distributed over all cluster nodes the weak e�ciency dropped earlier, supporting this claim.
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4.3.6 Veri�cation of Correct Performance

Figure 4.7: Simulated electric potential in a 2 million ele-

ment mesh of the head - A current is applied from the front of
the head to the back of the head and the computed voltage distri-
bution on a slice though the head mesh is shown. As expected,
the electric potential drops sharply at the skull due to its low con-
ductivity.

The correctness of the results of the forward
problem was veri�ed in two ways. First, sim-
ulations were done on meshes of cubes of
varying size, number of elements, conduc-
tivities and contact impedances of the two
electrodes, which were placed on opposite
sides of the cube. The results were then com-
pared to the analytical solution and were
precise up to computer precision. To verify
that Peits gave correct results on more com-
plicated shapes, the results of simulations
on a head shaped mesh were compared both
to the version of Eidors currently used in
our group and to real measurements in a saline �lled tank. They matched the computed results
by computer precision and the experimental results closely. Figure 4.7 shows the resulting
simulated electric potential distribution when a current was applied from the front of the head
to the back of the head. It is visible how the potential drops at the highly resistive skull.

4.4 Performance

4.4.1 Total Run Times with 1st Order Elements

A common forward problem in EIT with pairwise current injection requires around 60 forward
solutions for the unique drive and measurement current injections and around 1000 current
protocol steps, i.e. 1000 lines in the Jacobian matrix. Therefore, the total runtime for Peits can be
estimated by adding up the times for the components which have to be done once per execution
(loading partitions, �nding electrode elements and areas, matrix assembly, preconditioning,
computing local sti�ness matrices used for the Jacobian calculations) with 60 times the time it
took for one forward solution and 1000 times the time for one Jacobian row computation. Based
on the run times shown in the previous sections, the total runtime for a common application of
the solver was estimated (table 4.9). It was found that the overall e�ciency scaled very well, in
parts due to the high e�ciency of the Jacobian matrix calculation (�gure 4.8).
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2m 15m
1 processes 3089.5 48644
2 processes 1335.6 22457
5 processes 498.2 6714.6
10 processes 254.3 3357.8
20 processes 117.1 1948.6
40 processes 78.3 1071.1
60 processes 86.7 842.4

Table 4.9: Total estimated run times for a proto-

col with 1000 lines - All times are in seconds and
include the loading of the mesh partitions, system
matrix assembly, setup of the preconditioner, 60 for-
ward solutions and computing 1000 rows of the Jaco-
bian matrix.
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Figure 4.8: Estimated e�ciency of the total run time

of a realistic EIT protocol - Strong scaling based on the
estimated run times shown in table 4.9.

4.4.2 Comparison to Eidors

Since Eidors is the most prevalent software for the computation of the forward solutions in EIT,
the performance of Peits was compared to Eidors on Matlab. The new Eidors version 3.7.1
has recently been released and was used to do the timings. For this section the performance of
Eidors on a 2 million element head mesh was compared with the performance of the Peits on
the same mesh in serial (table 4.10). To make the comparison valid, Matlab’s multi-threading
routines were disabled by setting maxNumCompThreads(1). Matlab version R2013a was used.

Matlab Peits

matrix assembly 128 27.8

preconditioner assembly 0.8 5.4

CG solve step 39 18.5

Jacobian row calculation 0.3 1.4

Table 4.10: Comparison of Eidors/SuperSolver and Peits -
All times are in seconds for an execution on one processor.

The standard solver in Eidors is Mat-
lab’s backslash operator, which took approx-
imately 1936 seconds for the direct solver to
be assembled and around 12.5 seconds for
each unique current pattern solved with it.
The mumps direct solver was faster for each
solve (3.5 seconds) as well as for its assem-
bly (1389 s). To compare iterative solvers,
an incomplete LU decomposition was used
as a preconditioner for a conjugate gradient
solver in Matlab and the ML preconditioned CG solver in Peits, since these combinations were
the best for the respective solvers. While the Matlab routine ilu was very quick (0.8 s), each
successive solve with pcg took 39 seconds. In Dune, the assembly of the AMG preconditioner
took 5.4 seconds and each solve 18.5 s.

The assembly of the system matrix took 128 seconds in Eidors. This is di�cult to compare to
the assembly in Peits, since Eidors creates more data structures for later use (plotting, inverse,
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...) and also assigns the electrode areas and ground indices di�erently. Peits is less �exible and
focuses only on the forward problem, which is one of the reason why it was more than twice as
fast for the matrix assembly (27.8 seconds).

The mesh was loaded much faster in Matlab (0.5 seconds as opposed to 61 seconds), because
Matlab uses a compressed binary data format (.mat �le) whereas Peits is currently still using
ASCII data �les. It is planned to switch to binary data �les in future.

The calculation of a single row of the Jacobian was very di�cult to compare since Eidors and
Peits use completely di�erent approaches. While Peits uses the adjoint �eld method, Eidors
applies the derivative form (Yorkey, 1990). Thus, the total time it takes to compute a Jacobian
matrix with either 1, 7 or 259 lines was compared. In Eidors it took 2433, 2442 and 2817 seconds,
respectively, and in Peits 1.44, 10.1 and 373 seconds. The matrix based approach of Eidors is
less dependent on the number of protocol lines. However, the memory usage is much higher
and becomes inhibitive for bigger meshes and longer protocols. For 2 million elements and 258
protocol steps the memory usage of Eidors during the Jacobian calculation was 150 GB. This
is why the time to compute the Jacobian was also measured with a Matlab based adjoint �eld
method which has been implemented in our group (used for instance in Horesh et al., 2006).
This implementation turned out to be extremely quick and much more memory e�cient than
the Eidors implementation. The computation times for 1, 7 and 259 lines were 1.47, 4.3 and 77.3
seconds, which compares to Peits on approximately 4 parallel processes. It was signi�cantly
faster than Peits, because a generic derivative matrix was constructed. For successive protocol
lines it was then multiplied by the nodal potentials of the di�erent forward solutions to get the
gradients. Peits on the other hand iterates over all elements and multiplies the local potentials
with the gradients element wise for each protocol line.

To summarise, for a typical EIT application with 60 forward solutions and 1000 current
protocol lines on a two million element mesh with an iterative solver Eidors took around 6469
seconds and Peits on one processor around 3090 seconds. In parallel, the performance of Peits
improves linearly with the number of processors, while the parallel e�ciency of Matlab is lower.
Furthermore, due to more e�cient memory usage, Peits allows for the use of much larger �nite
element meshes.

4.4.3 Comparison with 2nd Order Elements

In Peits, it is very straight forward to switch to quadratic (or even cubic) shape functions.
Only one environment variable needs to be changed, when compiling the solver. For smooth
functions the use of higher order shape functions achieves the same precision of the solution
obtained with 1st order elements, but with a much smaller mesh, thereby possibly reducing
computation time. In order to get a rough estimate of the ratio of the required element sizes to
get the same precision, cube shaped meshes were created with regular tetrahedral elements of
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size h = 1/10, 1/20, 1/30, ... for a cube with dimensions (1, 1, 1). Two electrodes were assigned
to the central square with area 1/25 on opposite sides of the cube and a current of 133 µA was
applied. The cube had a uniform conductivity of 0.3 S m−1. The convergence of the simulated
voltage between these two electrodes was plotted against the element size for �rst and second
order polynomials. For a similar accuracy, the number of elements could be reduced by a factor
of 67 when second order elements were used (�gure 4.9). The slope of both curves is the same,
because the solution is in H1(Ω) and the convergence rate of second order elements is therefore
the same than that of linear elements.

−6 −5 −4 −3 −2
−12

−11.5

−11

−10.5

−10

−9.5

−9

ln( h )

ln
( 

v m
ea

s −
 0

.2
68

 )

 

 

p = 1
p = 2

Figure 4.9: Comparison of 1st and 2nd order shape functions - By using quadratic shape functions the same conver-
gence could be achieved with around 67 times less elements.

The run times of the di�erent parts of the solver were compared on the 24’576’000 linear
element mesh and on the 384’000 element mesh with quadratic shape functions. The result on
the small mesh with second order shape functions was 0.267 988 7 V and on the large linear
mesh 0.267 987 3 V, meaning the second order mesh was a bit closer to the value the simulations
converged to. All parts of the solver were much faster on the small mesh of second order
elements (table 4.11). For this test example the PETSc pre-allocation was set to 2500 diagonal
and 2500 o�-diagonal entries per row to account for the electrodes on the 25 million element
mesh.

4.4.4 Two Applications of Peits

To illustrate the range of applications envisaged for the presented software, two works using
Peits are highlighted. The �rst was a simulation study evaluating the feasibility of detecting
two di�erent types of stroke in the human head using EIT measurements at di�erent frequencies
for the injection current (chapter 6). In the second application, Peits was used to compute the
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serial 20 processes
1st ; 24’576k 2nd ; 384k 1st ; 24’576k 2nd ; 384k

loading partitions 357.7 4.78 21.33 0.42
matrix assembly 372.4 39.8 112.02 6.76
AMG assembly 38.8 6.52 14.53 1.70

solve 64.2 14.6 10.61 3.27
Jacobian row 9.94 0.32 0.59 0.02

Table 4.11: Run time comparison 1st vs. 2nd order elements - All times are given in seconds. To achieve the same
precision using 2nd order elements, the mesh could have around 64 times less elements. For this ratio, the performance
of the solver was compared: the loading of the partitioned mesh, the assembly of the system matrix, the assembly of the
ML preconditioner, one solve and one Jacobian line computation. It is apparent that second order shape functions reduced
computation time in this test example.

forward solutions and the Jacobian matrix on a 7 million element mesh of the rat brain, in order
to reconstruct neural activity from EIT measurements on the brain of a living rat (Aristovich et
al., 2014).

The main di�culty in stroke type detection with multi-frequency EIT is that the �nite
element model never accurately matches the measurement setup. These modelling errors can
introduce large artefacts into the reconstructed images. To distinguish the main sources of
artefacts, boundary voltages were simulated in the presence of three di�erent types of modelling
errors on a �ne mesh and images were reconstructed on a coarse, modelling error free mesh.
Forward solutions were computed at 12 di�erent frequencies for three di�erent modelling errors
with two di�erent standard deviations each, and this for ischaemic and haemorrhagic stroke
at two di�erent locations in the head. This means that the study involved the computation
of 288 ·N forward solutions, where N was the number of independent current injections (in
our case 31). To compute that many forward solutions on a 5 million element mesh in Matlab
would have taken 288 · 30 minutes. This estimate shows that simulation studies of this scale
were previously not feasible. Using Peits, the time for the forward simulations was reduced to
288 · 1.7 minutes on a workstation with two eight-core 2.4GHz Intel Xeon CPUs with 20MB
cache each.

For EIT applications with high precision requirements, a very �ne mesh is required for the
forward computations. In the second application the aim was to image fast neural activity in
the rat cortex using a planar electrode array, which was surgically applied directly to the brain
surface. A convergence study on the required �nite element size was performed as follows.
Iteratively, the element size was reduced and ten meshes were created using the same settings.
Then the di�erences in simulated voltages on these meshes were compared to the di�erences
of the next coarser meshes. Once the variability between meshes of the same resolution was
the same than the variability between di�erent mesh sizes, the optimal mesh size was reached
(�gure 4.10). It was found that the required mesh size for this application was 8 million elements.
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Figure 4.10: Convergence of simulated voltages by

reducing element size - The maximal relative error in
simulated boundary voltages on meshes with the same
element size (variability) was compared to the same er-
ror between meshes with di�erent element size (conver-
gence). 0.1 mm was found to be the optimal element size
for this application.

0.2

0.3

0.4

0.5

0.6

0.7

0.3

0.8

0.9

Δσ (%)

Figure 4.11: Three dimensional image of conduc-

tivity increase due to neural activity - This image
shows the conductivity increase caused by opening ion
channels during neural activity, which was induced by
whisker stimulation of a rat. The activity patterns match
the literature and correlate with intrinsic optics and local
�eld potentials (Aristovich et al., 2016).

Due to the large number of electrodes, the measurement protocol (and thus the Jacobian matrix)
was very long and to compute all forward solutions and the Jacobian matrix in Matlab would
have taken around 16.5 hours. By using Peits, this was reduced to just about an hour on the
same workstation used for the �rst application. Therefore, it was possible to make reasonably
quick informed decisions about the quality of acquired data and experimental paradigm changes.
The iterative process of improving experimental procedures was sped up by more than a factor
of 16 and for the �rst time high-quality images of fast neural activity in the rat cortex using EIT
could be reconstructed with the methods outlined in (Aristovich et al., 2014) (�gure 4.11).

4.5 Discussion

It was shown, that Peits signi�cantly reduces the computation time of forward solutions in EIT.
To facilitate the use of the solver, Matlab functions are provided to write a mesh in DGF format
and call the solver with di�erent settings. This makes it possible to run Peits from Matlab by
calling just one function run_forward_solver(), which returns the Jacobian matrix and the
measured voltages.

Peits is actively used for forward simulations on 3-15 million element meshes. The computed
results are used for the image reconstruction from experimental data. Furthermore, simulation
studies are performed on models with changing settings such as electrode position, tissue
conductivity, contact impedances and more, with the aim to characterise di�erent sources of
image artefacts caused by modelling errors.

Particularly in the use of adaptive mesh optimisation there is room for improvements, such

79



4. A Fast Parallel Forward Solver (Peits)

as using second order elements in regions where the solution is in H2 or re�ning the mesh
around the electrodes based on local error estimates (Sawicki and Okoniewski, 2010; Johnson and
MacLeod, 1994; Molinari et al., 2001). Dune-Fem natively supports such local grid re�nements.

In comparison to Matlab, Peits is already faster in serial in every step except for the compu-
tation of the Jacobian matrix. This is where we see the largest potential speed improvements,
especially since this is the step that is repeated around 1000 times for a typical EIT application.
Several approaches to speed up the Jacobian computation are known. One would be to use a
coarser mesh to compute the Jacobian on (as shown in Adler et al., 2008; Borsic et al., 2010),
since most reconstruction algorithms do not (and do not need to) rely on a �ne mesh. Another
one would be to run the Jacobian matrix calculation on a GPU, where memory access is much
faster. This has already been shown to improve the speed signi�cantly (Borsic et al., 2012).
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Chapter 5

Correction for Electrode Movement

in Time-Di�erence EIT

5.1 Overview

5.1.1 Introduction

In chapter 3 a novel method for making accurate head models was presented. The created head
models were used to evaluate the in�uence of geometrical errors on time-di�erence (TD) image
reconstructions. With the fast forward solver described in chapter 4, a tool is now available
to e�ciently simulate other sources of image artefacts on accurate head models. While time-
di�erence reconstructions are relatively stable in the presence of static modelling errors and
instrumentation noise, changes between reference and data measurement strongly a�ect the
image quality, due to the ill-posed inverse problem in EIT. Consequently, there is a lot of interest
in �nding ways to account for di�erent sources of errors, such as varying electrode contact
impedances, object boundary shape and electrode positions.

The consideration of changes in the boundary shape of the imaged object is of particular
interest for thoracic imaging studies (e.g. lung ventilation, gastric emptying or heart cycles),
because breathing changes the shape of the thorax signi�cantly. Therefore, a simultaneous
reconstruction of the conductivities and the boundary shape would improve the image quality
(Boyle et al., 2012; Dardé et al., 2013). In TD head imaging, such temporal changes of the
geometry do not occur. The focus of this chapter is on the long term monitoring of haemorrhagic
transformations (Xu et al., 2010), an application where electrodes are kept on the head of a patient
for several hours. In measurements over such an extended period of time, changes in electrode
contact impedance and small electrode movements can be expected. Contact impedances were
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found to have particularly severe e�ects on image quality for current injection schemes where
voltages are measured on injecting electrodes (Kolehmainen et al., 1997), but less so when
injecting current through electrode pairs while measuring on all other electrodes (four electrode
measurements, i.e. McEwan et al. (2007)).

Electrode movements between reference and data measurement, however, are long known
to have a strong impact on image quality (Barber and Brown, 1988).

5.1.2 Background

Initial approaches to correcting electrode positions include di�erential approximations of the
electrode displacement Jacobian (Soleimani et al., 2006), direct methods based on the mesh
geometry (Gómez-Laberge and Adler, 2008) and the approximation error approach (Nissinen
et al., 2008). The most fundamental and straightforward way of computing a Jacobian matrix
predicting voltage changes due to electrode boundary changes was shown by Dardé et al. (2012).
They derived an explicit formula for the Fréchet derivative with respect to the electrode boundary,
which can be used to compute the Jacobian matrix with respect to electrode size, position
and shape. Both, Soleimani et al. (2006) and Dardé et al. (2012), applied electrode movement
corrections to cylindrical 3D saline phantoms with positive results, but the performance in
anatomically realistic 3D problems has not been studied. A more in-depth review of previous
work on electrode movement correction is given in section 2.2.8.

5.1.3 Purpose

The purpose of the work in this chapter was to develop a method for correction of errors in
electrode modelling in EIT of the human head. The questions to be answered were: 1) Which
aspect of the electrodes - position, size, shape - most a�ects the boundary voltages and how
accurately does the electrode boundary Jacobian matrix describe the in�uence of this aspect? 2)
Does the simultaneous reconstruction of conductivities and electrode parameters remove image
artefacts originating from imprecise electrode modelling in simulations and experiments? 3)
Does the correction work in absolute imaging, where electrodes are modi�ed iteratively?

These were addressed using a fast calculation of the Jacobian matrix with respect to electrode
boundary perturbations, which was computed on a 4 million element mesh in less than a minute
(described in Section 5.2). Characterising the di�erent aspects of the electrodes, it was found
that the electrode position was the dominating variable and that it was accurately modelled by
the electrode boundary Jacobian (Section 5.3). The correction of electrode positions from time-
di�erence data was therefore applied to an anatomically realistic 3D head model in simulations
(Section 5.4) and experiments on a 3D printed head shaped saline tank with skull (Section 5.5).
Finally, the correction for electrode movements was applied to absolute imaging (Section 5.6).
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5.2 Electrode Boundary Jacobian Implementation

5.2.1 Mathematical Formulation

The detailed derivation and proof of the electrode boundary Jacobian (EBJ), which describes
voltage changes caused by electrode boundary movement, is found in (Dardé et al., 2012), and
a summary of the parts relevant for the implementation is given in section 2.2.8. Electrode
boundary changes can be characterised by C1 vector �elds v on the electrode boundaries ∂Em
and the measurement map including perturbed electrodes can then be considered as the operator

R : (v, Id) −→ Ud(v), Bb × RM� −→ RM . (5.1)

The Fréchet derivative with respect to the vector �eld v ful�ls

M∑
m=1

(
R′(v, Id)

)
m
Iam = −

M∑
m=1

1

zm

∫
∂Em

(vτ · n∂Em)(Udm − ud)(Uam − ua) ds, (5.2)

where vτ is the component of v which is tangential to Γ, n∂E the outward normal of ∂Em
which is tangential to Γ and (ud, Ud) the solution to the unperturbed CEM forward problem
corresponding to the drive current Id ∈ RM� . The adjoint �eld (ua, Ua) is the forward solution
to the unit measurement current Ia ∈ RM� .

It is interesting to note, that the computation of the EBJ resembles the computation of the
conductivity Jacobian using the adjoint �eld method (section 2.2.7), in that the results of ‘drive
current’ and ‘measurement current’ injections are used. Therefore, the calculation of the EBJ
does not require any additional forward simulations to those performed for the calculation of
the traditional Jacobian matrix.

5.2.2 Implementation

To describe the movement of an electrode along the surface of a mesh, a surface coordinate
system is required. On the human head mesh, a surface coordinate system [xs × ys] was created
as follows. Starting from the surface node with the largest y-coordinate (top of the head - (0, 0)

in �gure 5.2), the algorithm moved along the surface in x- and z-direction and found surface
nodes that were a de�ned distance d±ε away from the previous point, where εwas chosen large
enough that surface nodes were found. Distance d was chosen such that the surface coordinate
points were far enough from each other to describe the surface curvature without signi�cant
in�uence of the mesh discretisation. If no more surface nodes could be found that either ful�lled
these requirements or were above a certain y-coordinate limit, the xs- and ys-axis were de�ned
by the found points. The four quadrants were then �lled with points the same way, by averaging
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(a) (b)

Figure 5.1: Surface coordinate system on a 800k mesh with one re�ned electrode - (a) The discrete points of the
surface coordinate system in red and (b) a 10 mm displacement of electrode number 30 along the xs-coordinate (arrow)
seen as indicated by the box in (a).

the coordinates of all surface vertices within the area spanned by d± ε (�gure 5.2). To describe
directions of movement for each electrode, the four closest surface coordinate points to that
electrode were found (�gure 5.1). A mapping back from surface coordinates to mesh nodes
was not required. This approach had the advantage that the surface coordinate system could
be stored together with the mesh and used for any electrode positions. The Jacobian matrix
with respect to electrode radius was computed with a vector �eld v pointing from the electrode
center to the center of each electrode boundary edge.

(1,$1)&&

(0,0)&

(0,$1)&

($1,0)& (1,0)&&($2,0)&

z&

x&
2ε&

d

y&

(xs,&ys)=(0,1)&&

(0,$2)& (1,$2)&&

($1,$1)&&($2,$1)&&

($1,$2)&&

($1,1)&&

Figure 5.2: Generation of the surface coordi-

nate system - Starting from the top of the head
(0, 0), equispaced surface nodes within a tolerance
ε were found in x and z direction. The coordinates
of all surface nodes within this tolerance were aver-
aged to de�ne the surface coordinate system.

For small meshes, the electrode boundary Jaco-
bian (EBJ) was calculated in Matlab using a modi�ed
version of Eidors (Adler and Lionheart, 2006). On
the 4 million element mesh used for simulations, the
EBJ was computed with Peits (chapter 4) in order to
reduce computing time and memory requirements.
The implementation was similar in Matlab and Peits:
for each electrode, a sparse template matrix was con-
structed to store the contributions of drive and mea-
surement �elds. For each injection and measurement
electrode pair this template matrix could then be mul-
tiplied by the electric potential �elds of the drive
and measurement currents to obtain the EBJ entry
for this electrode for this line of the protocol. The
integral along the electrode boundary (5.2) can be
decomposed into a sum of the integrals over each
element edge e, from node i1 to node i2. To compute this integral, the drive and measurement
potential �eld values at the two nodes and the corresponding electrode m have to be known. In
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this implementation, Gauss-Lobatto quadrature with three points was used to approximate the
integral along one edge. The Gauss-Lobatto weights on a unit interval were given as w1 = 1/6,
w2 = 4/6 and w3 = 1/6, and therefore the integral along edge e could be approximated as

1

|e|

∫
e
(Udm − ud)(Uam − ua) ds ≈ 1

6
(Udm − udi1)(Uam − uai1)

+
4

6
(Udm − udim)(Uam − uaim) +

1

6
(Udm − udi2)(Uam − uai2). (5.3)

Since linear shape functions were used, the voltage at the midpoint im was given by uim =
1
2(ui1 + ui2). Calculating out and writing as a matrix vector multiplication, the right hand side
(5.3) can be written as

f(de,ae) = d>e

 1/3 1/6 −1/2

1/6 1/3 −1/2

−1/2 −1/2 1

ae,
with drive voltages d>e = [udi1 , u

d
i2
, Udm]> and adjacent voltages a>e = [uai1 , u

a
i2
, Uam]>. For the

integral along one edge, the dot product of the outward normal and the permutation vector �eld,
(v ·ne), was kept �xed. Therefore, the electrode Jacobian entry for one electrode for one current
injection and voltage measurement electrode pair can be written as the sum of the integral
approximations along all electrode boundary edges

EBJ(m,d,a) =
∑
e

−|e|
zm|Γm|

(ne · v)d>e

 1/3 1/6 −1/2

1/6 1/3 −1/2

−1/2 −1/2 1

ae
= d>Mtemp(m)a. (5.4)

Consequently, one sparse [N +M ×N +M ] template matrix Mtemp could be created for each
electrode by summing the contributions of all electrode boundary edges into the corresponding
indices i1, i2 and ielec. N are the number of nodes in the mesh, M the number of electrodes
and R the number of protocol lines (i.e. number of injections times number of measurements at
each injection). These M template matrices could then be multiplied with all used combinations
of d> = [ud,Ud]> and a> = [ua,Ua]> to obtain the [R ×M ] electrode boundary Jacobian
with respect to vector �eld v.

Once the template matrices were set up for all electrodes, the drive and measurement
(adjacent) �elds to multiply them with were the same forward solutions that were required to
compute the ‘traditional’ Jacobian matrix and therefore no additional forward solutions had to
be computed. The computation of one line of the EBJ took on average 0.03 seconds for a 4m
element mesh on ten processors using Peits, whereas one line of Jσ took around 0.1 seconds
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to compute. The additional computation of the EBJ therefore had a minimal e�ect on the
computation time.

5.3 Electrode Boundary Jacobian Characteristics

5.3.1 Simulation Parameters and Analysis Methods

In order to study the characteristics of the voltage changes due to electrode boundary changes,
a simulation study was performed on an 800 thousand element mesh (�gure 5.1a). The mesh
had re�ned elements (element size 3 mm instead of 6 mm) in the region where electrodes were
located and very �ne elements in the vicinity of one electrode (element size 0.4 mm). Current
injection was then either simulated to be through a polar electrode pair involving the re�ned
electrode and a coarse electrode on the opposite side of the head or through adjacent electrodes,
again a coarse and the �ne one. A representative set of ten di�erent measurement electrode pairs
(that were not injecting current) were chosen. The ten measured voltages were simulated for
the following permutations: xs-coordinate, ys-coordinate or electrode diameter change, polar or
adjacent injection, �ne or coarse electrode. The diameter of 7 mm was altered between±1.5 mm.
Electrode movements were simulated in the range of 0.1 mm–10 mm in both directions and both
surface coordinate dimensions. The mesh was not altered to model the electrode movement.
Instead, the assignment of surface facets to the electrodes was used to move the electrodes. This
approach was simpler and could account for larger movements of the electrodes.

Subsequently, the simulated voltage changes due to the changes in electrode boundaries
were scaled by the changes predicted by the EBJ. This scaling was done in order to be able to
show all voltage changes together in one �gure, even though they were of di�erent magnitude.
The plots of the EBJ accuracy have the simulated electrode change in millimetres on the x-axis
and the electrode movement the EBJ would recover — given the simulated voltage di�erence —
on the y-axis (in millimetres as well). Therefore an optimal prediction of voltage change would
result in all 10 curves being perfectly diagonal (black dashed bar in �gures 5.3 and 5.4). The
absolute values of the EBJ with respect to position (both xs and ys) and the EBJ with respect
to radius were taken in order to determine which factor was more important. The accuracy of
the three di�erent EBJs for the three studied electrodes for adjacent and polar injections was
evaluated by linearly interpolating the voltages from simulated electrode boundary changes and
comparing the slope to the value of the EBJ.

The simulations were performed using a current level of 133 µA and contact impedance of the
electrodes (with area |E|) of zm = 1 kΩ·|E| on a realistic head mesh with the following layers and
corresponding conductivities: scalp (0.44 S m−1), skull (0.018 S m−1), dura mater (0.44 S m−1),
cerebrospinal �uid (1.79 S m−1), grey matter (0.3 S m−1) and white matter (0.15 S m−1). The
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mesh was created as described in chapter 3. The ten simulated measurements were the �rst ten
lines of the ‘EEG31’ protocol (Tidswell et al., 2001b) and for the adjacent injection one of the
injecting electrodes was substituted with an adjacent one.

5.3.2 Voltage Dependence on Electrode Characteristics

Comparison of xs, ys and d Prediction of EBJ

The EBJ accurately predicted voltage changes caused by electrode movement (�gure 5.3). The
changes caused by electrode diameter variations were overestimated by the EBJ, and were
signi�cantly smaller than the changes caused by electrode movement (colour bars in �gure 5.3).

(a) (b) (c)

Figure 5.3: Ratio of voltage change over EBJ prediction for adjacent injection - (a) For movement of the �ne electrode
along xs, (b) movement along ys and (c) change in electrode diameter (di�erent scaling of x- and y-axis). The dashed lines
represent a perfect prediction of the voltage changes by the EBJ and the colours represent the amplitude of the changes (i.e.
the value of the EBJ: large changes are blue, small changes yellow).

E�ect of Mesh Re�nement

The mesh re�nement around an electrode did not limit the precision of the EBJ. However, if the
electrode positions were corrected on a coarse mesh then the discretisation error was bigger
(the big steps in �gure 5.4b as opposed to the small steps in �gure 5.4a). This was to be expected,
since the boundary of the electrode could only change in intervals equal to the element size.

Comparison of Polar and Adjacent Current Injection

The voltage changes caused by electrode movement were only minimally di�erent between adja-
cent and polar current injection (�gures 5.3b and 5.4a). This matched expectations, considering
that the formula for the computation of the EBJ only depends on electric potential di�erences at
the electrode boundary.
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(a) (b)

Figure 5.4: Same than �gure 5.3 for polar current injection - EBJ accuracy for movement along ys (a) on the �ne
electrode and (b) on the coarse electrode.

5.3.3 Precision of Electrode Boundary Jacobian

The slopes of simulated voltage changes due to electrode boundary changes were linearly �tted
and compared to the EBJ values, to get a measure of the EBJ precision (�rst three rows of table
5.1). The voltage changes due to electrode movement were well approximated by the EBJ, with
most values having around 15% mismatch. The predicted changes due to electrode size changes
were on average 690% o�. The average absolute values of the EBJ were compared for the
di�erent types of electrode perturbation (movement along xs and ys and change in radius r) to
illustrate that the changes due to electrode size were signi�cantly smaller than the ones caused
by movement (last three rows of table 5.1).

polar injection adjacent injection
coarse �ne coarse �ne

xs error 10.4% 23.3% 12.4% 23.3%
ys error 10.2% 7.0% 46.0% 7.0%
r error 698% 1372% 30.2% 663%

abs(EBJxs) 9.8 mV/m 19.0 mV/m 8.3 mV/m 18.8 mV/m
abs(EBJys) 16.1 mV/m 25.6 mV/m 18.2 mV/m 25.3 mV/m
abs(EBJr) 0.3 mV/m 1.1 mV/m 1.3 mV/m 1.1 mV/m

Table 5.1: Accuracy and amplitudes of the EBJ - The accuracy and the amplitude of the EBJ are shown for movements
along xs and ys and electrode radius changes for polar and adjacent current injection. All values are the average of 10
di�erent measurements.
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5.4 Simulation Study

5.4.1 Time-Di�erence Image Reconstruction Algorithm

In both the simulation study and its experimental validation, spherical perturbations in the
brain were used to represent a stroke. Therefore, prior information could be introduced into
the reconstruction by using �rst order Tikhonov regularisation to bias the algorithm towards
�nding small connected perturbations. All time-di�erence images were created with a stan-
dard least-squares minimisation using generalised singular value decomposition (gSVD). Many
other algorithms have been successfully applied to EIT data (Lionheart et al., 2004), and could
equally well be used here for simultaneous reconstruction of conductivity changes and electrode
movements.

The image reconstruction problem can be described by the minimisation of the cost functional

Φ(x) =
1

2

(
F(x)− δv

)>(
F(x)− δv

)
+

1

2
λ2x>D>Γ−1

x Dx (5.5)

with x = [δσ, δp]> the change in conductivity and electrode positions to be reconstructed,
δv the voltage di�erence between the two measurements, F(x) a non-linear function relating
conductivity and electrode position changes to voltage changes, Γx the expected variance of the
change of the reconstructed variables (conductivities Γσ and positions Γp)

Γx =

[
Γσ 0

0 Γp

]
=

[
stdσ ·I 0

0 stdp ·I

]2

= ΣxΣx (5.6)

and the �rst order Tikhonov regularisation term for the conductivities combined with zero order
Tikhonov for the electrode positions

D>D =

[
L>L 0

0 I

]
. (5.7)

The cost function 5.5 was minimised with the gSVD of J and Σ−1
x D (section 2.3.2).

To reduce the computational cost of calculating the gSVD and to prevent the ‘inverse crime’
(Lionheart et al., 2004), a much smaller hexahedral mesh (2526 elements of 1 cm× 1 cm× 1 cm)
was used for the image reconstructions (�gure 5.5a). The Jacobian matrix Jσ , which was com-
puted on the �ne mesh, was summed into geometrically regular cubes Jhex and the Laplacian
matrix L for the �rst order Tikhonov regularisation was computed on this hexahedral mesh. In
order to simultaneously reconstruct conductivity changes and electrode movements, the ‘tradi-
tional’ Jacobian matrix Jhex was combined with the EBJ as J =

[
Jhex EBJ

]
. Equivalently,

if only the conductivity changes or only the electrode movements were reconstructed, only the
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relevant Jacobian matrix and the corresponding part of Σ−1
x D was used.

The expected standard deviation of the conductivity was set to stdσ = 0.1 S m−1 and for
the electrode positions to stdp = 1 mm. For all reconstructed images and electrode positions,
the regularisation factor λ2 = 2.1 · 10−7 was kept constant. The value was chosen based on
the shape of the L-curve (Hansen, 1994), however the L-curve was not pronounced enough
to choose λ in an automated way. The solution norm ||x||2 was generally around 0.1 and the
residual norm ||Jx− δv||2 around 1.0 · 10−4. The colour bar of all images was scaled according
to the largest reconstructed change in the whole mesh. Therefore images of slices sometimes do
not contain the maximum value of the colour bar.

5.4.2 Image Error Quanti�cation

In order to evaluate the image quality objectively, three image error quanti�cation measures
were applied. The volume P corresponding to the reconstructed perturbation was identi�ed as
the largest connected cluster of voxels with 50% of the maximum of the image. The region of
interest (ROI) was de�ned as the largest connected cluster of voxels with 50% of the maximum
of the simulated conductivity change.

• Localisation error: ratio between the distance ‖(xP , yP , zP )‖ of the centre of mass of
the reconstructed perturbation P from the actual perturbation location, and the average
dimension of the mesh mean(dx, dy, dz)

‖(xP , yP , zP )‖
mean(dx, dy, dz)

. (5.8)

• ROI change: di�erence of the average value of the reconstructed image (dσr) in the ROI
and the average value of the actual perturbation (dσa), divided by the average value of
the perturbation

|ftikh ·meanROI(dσr)−meanROI(dσa)|
|meanROI(dσa)|

, (5.9)

where the Tikhonov smoothing correction factor ftikh corrects for the e�ect, that the
reconstructed perturbation is larger in volume and smaller in amplitude by scaling the
reconstructed conductivity change within the ROI (ftikh = 10 was used throughout).

• ROI noise: noise-to-signal ratio of the reconstructed image (dσr), computed as the ratio
between the standard deviation (std) outside the ROI and the average value in the ROI

stdΩ\ROI(dσr)

meanROI(dσr)
. (5.10)
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5.4.3 Simulation Parameters

Jσ and EBJ for the image reconstructions in the simulation study and tank experiments
were computed on the same 4 million element human head mesh with a homogeneous saline
background of 0.4 S m−1 conductivity and a realistic human skull with variable conductivities
between 0.0094 S m−1 and 0.025 S m−1 (Tang et al., 2008). The current level was 250 µA, contact
impedances of all electrodes were set to zc = 220Ω · |E| and the diameter of the 32 electrodes
was 10 mm. The perturbation had a radius of 1.5 cm and a conductivity of 0.0001 S m−1 for
plastic and 0.36 S m−1 for sponge (�gure 5.5b). The injecting pairs of electrodes were chosen to
maximise the distance between electrodes by �nding the maximum spanning tree, weighted
by the inter-electrode distances. Measurements were made for each injection on all adjacent
electrode pairs not involved in delivering the current, giving a total of 869 measured voltages
from 31 independent current injections. All voltages, the conductivity Jacobian matrix and the
EBJ were computed with Peits (chapter 4).

The level of noise added to simulated voltages was chosen to match the experiments and
consisted of ςp = 0.006% proportional noise and ςa = 1 µV additive noise, such that

vwith noise = vno noise

(
1 + rand(ςp)

)
+ rand(ςa), (5.11)

where rand(ς) indicates random numbers drawn from a Gaussian distribution with zero mean
and standard deviation ς .

(a) (b)

Figure 5.5: Slices through the coarse hexahedral mesh used for reconstruction - (a) Baseline conductivities and (b)

conductivity change when a plastic perturbation of 0.0001 S m−1 was inserted in the back of the head.

5.4.4 Electrode Position Recovery

To reconstruct conductivities and electrode positions simultaneously, the algorithm outlined
in section 5.4.1 was used. Analogously, if only electrode positions were recovered, then the
full Jacobian was replaced by only the EBJ. The performance of the EBJ for electrode position
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recovery was validated with three di�erent recovery modalities: 1) only the EBJ was used to
recover electrode positions when the electrodes moved and the conductivities did not change;
2) only EBJ was used when electrode positions and conductivity (plastic ball in back of the
head) changed; 3) the full Jacobian matrix was used to reconstruct conductivities and electrode
movement at the same time when both electrode positions and conductivity have changed. All
these di�erently recovered electrode positions were plotted together with the actual electrode
movement for two cases, one where only one electrode on the back of the head moved by 5 mm
(�gure 5.6a) and the other one where all electrodes were moved along both xs and ys by random
values with standard deviation 1 mm (�gure 5.6b).

The 2-norm of the di�erence of recovered movement versus actual movement shows that the
simultaneous reconstruction of a conductivity perturbation and electrode movements (last row
in table 5.2) was close to that of the sole recovery of the electrode positions when no perturbation
was introduced (�rst row in table 5.2). Contrastingly, if the conductivity changed simultaneously
with the electrode positions, the recovery of only the electrode positions resulted in a signi�cant
over-correction (second row in table 5.2), in particular close to where the perturbation was
introduced (numbers 41 to 64 in �gure 5.6 corresponding to xs and ys coordinates of electrodes
21 to 32 towards the back of the head).

Elec. 24 xs: 5 mm STD: 1 mm
EBJ no perturbation 1.1 mm 3.8 mm

EBJ with perturbation 11.3 mm 10.3 mm
J with perturbation 1.9 mm 4.7 mm

Table 5.2: 2-norm of the electrode movement recovery error - 2-norm of the di�erence of recovered and simulated
electrode movement. Simultaneous recovery of conductivity changes and electrode movement (last row) was almost as
accurate as sole recovery of electrode movements.

5.4.5 Images

The best possible images (i.e. in the presence of no electrode movement) that were achiev-
able with time-di�erence reconstructions without electrode correction (�gure 5.7a) and with
electrode correction (�gure 5.7b) were qualitatively similar. The simultaneous reconstruction
of conductivity and electrode positions slightly reduced the contrast and the precision of the
imaged perturbation.

If one electrode in the top back of the head was moved by 5 mm, the simple time-di�erence
reconstruction resulted in an unsurprisingly noisy image (�gure 5.9a) with large artefacts around
the moved electrode. Simultaneous reconstruction of the electrode positions (�gure 5.9b) restored
the quality of the image almost to the ideal case (�gure 5.7a).
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(a) (b)

Figure 5.6: Recovered electrodemovement - For three di�erent cases: only EBJ was used and only the electrode positions
changed, only EBJ was used and additionally to the electrode movement a perturbation was inserted in the back of the head,
and the complete Jacobian J was used when both electrodes and conductivity changed. In (a) an electrode on the back of the
head was moved along xs by 5 mm and in (b) all electrodes were moved along xs and ys by a random value with standard
deviation 1 mm. On the x axis of these two plots the entries 1 and 2 correspond to the xs and ys coordinate of electrode 1,
then the next two entries correspond to electrode 2 and so on.

(a) (b)

Figure 5.7: Reconstructions when electrodes have not moved - A perturbation in the back of the head (black outline)
was simulated with the correct electrode positions. (a) The best achievable reconstruction without using the EBJ and (b)

the best achievable reconstruction with EBJ, demonstrating the inevitable decrease in image quality compared to (a), since
electrodes have not moved.
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Figure 5.8: Electrodes connected by the 31 unique current

injections - All electrodes and injections were projected onto the
x-z plane and the electrodes were coloured according to their max-
imal EBJ entry. Because the used protocol was optimised accord-
ing to electrode distances, most injections connected the front
(top of this �gure) to the back of the head. The used perturbation
locations are indicated by the green stars.

As with a large movement of one elec-
trode, smaller movements of all electrodes
had a detrimental e�ect on the image quality
for simple time-di�erence imaging (�gure
5.10a). The image reconstructed with the
full Jacobian was again largely una�ected by
the electrode movement (�gure 5.10b). All
these �ndings were summarised for three
di�erent positions of the perturbation by
assessing the image quality according to
the previously de�ned error metrics (�g-
ure 5.11). The larger localisation error (and
inherently larger ROI errors) for a pertur-
bation on the side can be explained by the
reduced sensitivity of the current protocol
used for the simulations (�gure 5.8).

(a) (b)

Figure 5.9: Reconstructions when one electrodemoved by 5mm - Electrode 24 (top back of the head) was moved 5 mm
along xs. (a) Reconstruction without using the EBJ and (b) reconstruction with EBJ, demonstrating a decrease in artefact
around electrode 24 and improved localisation of the perturbation.

All results shown so far were obtained with a plastic perturbation, which provided a large
contrast. When imaging a sponge ball with 90% of the saline conductivity instead of a plastic
ball with e�ectively zero conductivity, the reduced signal-to-noise ratio introduced artefacts
into the image of larger magnitude than the perturbation (�gure 5.12). However, even when
reconstructing a 10% conductivity change inside the highly resistive skull, the use of the EBJ
signi�cantly improved the image quality (�gure 5.13).
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(a) (b)

Figure 5.10: Reconstructions when all electrodes moved around 1mm - Electrodes were moved along both surface
coordinatesxs and ys by normally distributed random distances with standard deviation 1 mm. (a) Reconstruction without
using the EBJ and (b) reconstruction with EBJ, demonstrating decreased electrode artefacts and improved perturbation
localisation.

(a) (b) (c)

Figure 5.11: Image errors for three di�erent perturbation locations - (a) Perturbation in the back, (b) in the middle and
(c) on the side. 1 and 2 are the error metrics for reconstructions without and with electrode correction when the electrodes
have not moved. 3 and 4 are the metrics for reconstructions without and with electrode correction when electrode 24 in the
top back of the head was moved along xs by 5 mm. And 5 and 6 are the same metrics in the case of random movements of
all electrodes with a standard deviation of 1 mm.

(a) (b) (c)

Figure 5.12: Reconstructions of a simulated sponge in the back of the head - Reconstructions are made with electrode
movement correction (a) when electrodes have not moved, (b) when electrode 24 in the back top of the head was moved
along xs by 5 mm and (c) when all electrodes were moved along xs and ys by random distances with standard deviation of
1 mm.
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(a) (b) (c)

Figure 5.13: Image errors for reconstructions of a sponge - (a) Sponge in the back, (b) in the middle and (c) on the side.
1 and 2 are the error metrics for reconstructions without and with electrode correction when the electrodes have not moved.
3 and 4 are the metrics for reconstructions without and with electrode correction when electrode 24 in the top back of the
head was moved along xs by 5 mm. And 5 and 6 are the same metrics in the case of random movements of all electrodes
with a standard deviation of 1 mm.

5.5 Experimental Validation

5.5.1 Experimental Setup

Two saline tanks were printed using the 3D printer Makerbot Replicator 2 from Makerbot
Ind. The model for the tank was created from the same MRI segmentation used for the mesh
creation, whereas the skull was segmented from a corresponding CT scan. The skull model
was further edited by introducing small holes, such that the conductivity matched that of a
real skull (Avery, 2015). One tank was printed with a modi�ed EEG 10-20 electrode placement
(Avery, 2015; Tidswell et al., 2001a) and the other tank had perturbed electrode positions with
random displacements along xs and ys with standard deviation of 1 mm, matching the electrode
movement simulated in section 5.4.

For the recordings, the tanks were �lled with 0.4 S m−1 saline (�gure 5.14). The electrode
contact impedances were measured to be 220Ω · |E|. Current was injected at 1.76 kHz with
250 µA amplitude, to approximately match the allowed current level in human measurements
(Dybdahl, 2009). A slightly modi�ed 32-channel version of the KHU Mark 2.5 system (Wi et
al., 2014) was used for the recordings and each measurement was repeated 20 times over the
course of approximately one minute. Plastic perturbations with 3 cm diameter were placed in
approximately the same locations used in the simulations.

5.5.2 Images

With baseline and perturbation measurements in the same saline tank, both using Jhex (�gure
5.15a) and using J (�gure 5.15b) resulted in a reconstruction of the perturbation with only
minimally worse quality than for simulated noisy voltages (�rst two bars in the quality measures
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Figure 5.14: The KHU Mark 2.5 system and the 3D printed head shaped tank with skull - The skull (blue) was
printed with small holes in it, to give it a realistic conductivity when it is immersed in saline.

in �gure 5.16). However, when reconstructing a perturbation measured in the tank with the
moved electrodes, then large artefacts in the outer layers of the head near the skull were observed
(�gures 5.15c and 5.15d). These artefacts strongly in�uenced the localisation errors (�gure 5.16),
where an artefact was interpreted as the reconstructed perturbation. The drop in image quality
was most likely caused by small di�erences in skull placement in the two di�erent saline tanks.

(a) (b)

(c) (d)

Figure 5.15: Experimental images in the head tankwith realistic skull - The perturbation was a plastic ball in the back
of the 3D printed head tank. (a) The reconstruction without EBJ when baseline and perturbation measurements were done in
the tank with the correct electrode positions and (b) the same reconstruction including EBJ. (c) The reconstruction without
EBJ when the baseline was measured in the tank with the correct electrode positions and the perturbation measurement was
done in the tank with the electrodes shifted by random values with standard deviation 1 mm in both surface directions and
(d) the same reconstruction with EBJ.

Simultaneous reconstruction of conductivities and electrode movements improved the image
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(a) (b) (c)

Figure 5.16: Image error quanti�cation results for experimental images - (a) Plastic perturbation in the back, (b) in
the middle and (c) on the side. 1 and 2 are the error metrics for reconstructions without and with electrode correction when
the electrodes have not moved. And 3 and 4 are the same metrics in the case of random movements of all electrodes with a
standard deviation of 1 mm.

visibly (�gure 5.15d), but did not remove all artefacts. Since electrode movement cannot account
for all voltage changes, artefacts caused by other e�ects (such as skull position in the two tanks)
remained in the conductivity image. Parts of the voltage di�erences caused by these geometrical
di�erences were, however, pulled into the electrode movement recovery. Therefore, the precision
of the recovered electrode movement between the two 3D printed tanks was lower than in
simulations (error 2-norm 8.0 mm instead of 4.7 mm in simulations).

5.6 Absolute Reconstructions

5.6.1 Absolute Reconstruction Algorithm

In contrast to time-di�erence imaging, absolute reconstructions do not require a baseline mea-
surement. In many realistic applications, absolute imaging fails – among other reasons – because
of small di�erences between the model and the imaged object, resulting in large image artefacts
(Kolehmainen et al., 1997; Heikkinen et al., 2002; Malone et al., 2014). Since the 3D printed
saline tank and skull were very close to the corresponding mesh, a trial how the correction of
electrode positions performed in iterative absolute reconstructions was considered worthwhile.
A generalised minimal residual algorithm with tolerance of 5 · 10−11 was used to solve the
standard Gauss-Newton problem

∇Φ(xk) = −J>(xk)
(
J(xk)dk

)
− λ2D>Γ−1

x Ddk (5.12)
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for the search direction dk. The reconstructed change in conductivity and electrode positions
was then updated in each iteration

xk+1 = xk + τkdk, (5.13)

where τk is the step size and was optimised using the Brent line search method (section 2.3.3;
Brent, 1973) with a gold-section bracketing loop to �nd the Brent abscissae. Analogous to
the time-di�erence approach, the reconstructions were weighted by the expected variance. In
iterative reconstructions it is important to ensure the positivity of the elements’ conductivity,
which was done here by using the substitution

y =

[
log(std−1

σ σ)

std−1
p p

]
, (5.14)

where x = [σ,p]>. Applying this substitution to (5.12) moved the scaling by the expected
standard deviation of the variables from the regularisation term to the Jacobian matrix, making
the Jacobian dimensionless. According to the chain rule, the logarithmic part of the substitution
results in a multiplication of the Jacobian entries corresponding to conductivities by eσ . After
yk+1 was found using Gauss-Newton, the electrode positions and conductivities were updated
according to the corresponding xk+1.

The regularisation parameter for all absolute reconstructions was set to λ2 = 10−11 and the
stopping criterion was set to < 10−7 change between iterations with a maximum of 6 iterations.
As a trade-o� between computational e�ciency and precision of the forward solutions, a
tetrahedral mesh with 1 million elements was used for the absolute reconstructions.

5.6.2 Images

Elec. 24 xs: 5 mm STD: 1 mm

Back 2.5 mm 4.7 mm

Middle 2.0 mm 4.5 mm

Side 3.3 mm 4.5 mm

Table 5.3: 2-norm of the electrode position recovery error

- The error was de�ned as the di�erence of recovered electrode
movement and actual electrode movement, minus the ‘baseline’
movement that corresponds to the algorithm trying to reduce the
artefact in the front of the head.

All absolute reconstructions from simulated
data had a large positive artefact in the front
of the head (�gure 5.17a), where the sensi-
tivity was high. When the full Jacobian ma-
trix was used, the algorithm unsuccessfully
tried to reduce this artefact by moving the
electrodes in the front of the head (left side
of �gure 5.17b). When evaluating the recov-
ery of electrode movements, this ‘baseline’
movement was therefore subtracted from
the recovered movement of the electrodes
when they have actually moved. Doing this, a good performance of the iterative electrode
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movement correction was found (table 5.3, as compared to the last row in table 5.2). The large
artefact resulted in a poor image quanti�cation score for all reconstructed images, with or
without inclusion of the EBJ. Consequently, the di�erence the electrode correction made is
illustrated by showing one reconstruction without and one with EBJ, both thresholded to one
third of the maximum reconstructed change (�gure 5.18).

(a) (b)

Figure 5.17: Absolute reconstruction and absolute electrode position recovery - (a) Conventional absolute recon-
struction (no electrode correction) of a simulated plastic perturbation in the back of the head. Voltages were simulated
with original electrode positions. (b) Comparison of the recovered electrode movement (using the full Jacobian) in absolute
imaging when using the original electrode positions, and when electrode 24 was moved by 5 mm along xs (dashed black
line).

(a) (b)

Figure 5.18: Absolute reconstructionswith 1mmelectrodemovement - Electrode positions were changed by normally
distributed random distances with standard deviation 1 mm along both surface dimensions xs and ys. (a) Reconstruction
without using the EBJ and (b) reconstruction with EBJ. Both reconstructions were thresholded at ±33% of the maximum
change.

We were not able to reconstruct meaningful absolute images from the experimental data.
Even on the tank with no electrode movement, the reconstructions did not show the perturbation,
suggesting that the di�erences between the mesh and the tank were too large to enable absolute
imaging.
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5.7 Discussion

5.7.1 Electrode Boundary Jacobian Characteristics

Measured voltages changed linearly with electrode movement over 1 cm and were accurately pre-
dicted by the EBJ (the linearity was already observed multiple times, as reviewed in Kolehmainen
et al. (1997)). There were outliers where some voltages did behave highly non-linearly (�gure
5.3a), but as seen from the colour coding these outliers were of small amplitude. Therefore
they were not expected to adversely in�uence the recovery of electrode movements. Changes
in electrode diameter had a less predictable in�uence on the measured voltages (�gure 5.3c).
Firstly, the EBJ predicted changes were between one and two orders of magnitude smaller than
for electrode movements and, secondly, the observed voltage changes were even smaller than
the EBJ predictions. Changes in electrode shape can be viewed as a combination of a change in
diameter and the discretisation errors seen in the electrode movement on the coarse electrode
(�gure 5.4b). Therefore these changes can be expected to be small, even though this was not
analysed speci�cally. It was concluded, that changes in electrode size and shape could be ignored
in the presence of electrode movement, and that they were not well approximated by the EBJ.
The focus of the simulation study and the experiments was therefore laid on the correction of
electrode movements, which had the strongest impact on the image quality.

The mesh re�nement around an electrode had no in�uence on the precision of the EBJ
(�gure 5.4), which indicated that the meshes did not have to be altered for the use of electrode
movement correction. Electrodes could be moved by simply assigning di�erent surface facets
to the electrode, without introducing errors larger than the discretisation errors caused by the
element size. This facilitated the electrode movement correction signi�cantly, since the mesh
remained unchanged and the electrodes could be moved by more than the size of the �nite
elements.

5.7.2 Simulation Study

Time-di�erence reconstructions were very stable and gave good images in all cases. Using the
EBJ, the reconstruction algorithm could account for large electrode movements and thereby
reduce the image noise notably. In the presence of image artefacts which were not caused by
electrode movement, using the EBJ resulted in a less precise recovery of the electrode positions.
This was because the reconstruction algorithm reduced the cost functional by moving parts of
the image artefact into the electrode positions. However, since 64 parameters constituting the
positions of the 32 electrodes could not account for these artefacts, they were still visible in the
resulting conductivity image.
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5.7.3 Experimental Validation

Time-di�erence reconstructions in the printed head tank with the correct electrode positions
gave good results. Using the baseline measurement with the correct tank and the perturbation
measurement on the tank with changed electrode positions resulted in noisier images than in the
corresponding simulations. The additional noise was most likely caused by small geometrical
di�erences in the skull positioning in the two di�erent tanks, slightly di�erent saline levels
between the measurements and ambient and system temperature di�erences. While such errors
were not present in conventional time-di�erence measurements, they manifested themselves
when two di�erent tanks were used with a half an hour break in between setting up each tank.
Still, the simultaneous reconstruction of conductivity and electrode movement signi�cantly
improved the reconstructions and allowed for the detection of the perturbation.

5.7.4 Absolute Reconstructions

The iterative absolute recovery of electrode positions was accurate and strongly reduced the
electrode modelling related artefacts. Still, the absolute conductivity reconstructions with or
without electrode correction showed a systematic artefact in the front of the head. This was in a
region of strong sensitivity and might have been exacerbated by the comparative imprecision of
the one million element mesh used for the absolute reconstructions. Moving to a �ner, more
precise mesh would result in very long computation times even for a single image reconstruction.

We were not able to get meaningful absolute reconstructions from the experimental data,
suggesting that the simulations and experiments were still too di�erent even though the geometry
of the tank and inserted skull were printed with a precision of 0.2 mm. However, the placing
of the skull in the tank was less precise than this. More advanced absolute reconstruction
algorithms might be able to retrieve more information from the collected experimental data by
including geometrical uncertainties around the skull into the imaging method.

5.7.5 Conclusion

The Fréchet derivative of the EIT forward problem with respect to electrode boundary changes
was applied to a realistic three-dimensional model of the human head, using a fast implementation.
This allowed for the simultaneous recovery of conductivities and electrode positions, and
therefore made image reconstructions more stable in the presence of electrode movement. It
was found that:

1. The electrode position has a much stronger e�ect on the boundary voltages than the
electrode diameter and shape. The voltages changed linearly for electrode movements up
to 1 cm and were accurately predicted by the EBJ.
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2. The simultaneous reconstruction of conductivity and electrode positions worked very well.
Image artefacts caused by electrode movements were reliably removed and the electrode
positions were accurately corrected. The positive results of the simulation study were
con�rmed in experiments on a 3D-printed saline tank containing a realistic 3D-printed
skull.

3. While the correction of electrode movements was accurate in iterative absolute imaging
as well, the absolute conductivity reconstructions from simulated data had a large artefact
in the front of the head. No meaningful absolute images could be reconstructed on the
3D-printed saline tank.

The proposed application of the EBJ performs well in time-di�erence reconstructions and can
be used for long term monitoring of physiological changes. For stroke type di�erentiation,
time-di�erence measurements are not possible. Therefore, multi-frequency (MF) reconstruction
algorithms have to be used (Malone et al., 2014; Jun et al., 2009). An evaluation of the in�uence
of modelling errors in MF imaging could show, whether electrode modelling errors are equally
detrimental for image quality and should be accounted for in the reconstruction.
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Chapter 6

Feasibility of Stroke Imaging with

Multi-Frequency Tissue Fraction

Reconstructions

6.1 Overview

6.1.1 Introduction

In chapter 3, the in�uence of geometrical modelling errors on time-di�erence (TD) reconstruc-
tions was investigated. In the previous chapter the analysis of modelling errors in TD imaging
was extended to the electrode modelling and it was found that electrode movement caused large
artefacts. A computationally e�cient correction method for electrode modelling errors was
implemented and tested on a realistic head. The electrode correction was stable in the presence
of large electrode movements and even worked in an iterative absolute reconstruction algorithm.

Multi-frequency Electrical Impedance Tomography (MFEIT) is a method for imaging biolog-
ical tissues with frequency-dependent conductivity, which does not require reference measure-
ments. Therefore MF imaging can be used as a diagnostic tool for multiple applications, where
reference measurements are not usually available (Malich et al., 2003; Hampshire et al., 1995;
Brown et al., 1995; Shi et al., 2008), including stroke type di�erentiation (Horesh et al., 2005;
Romsauerova et al., 2006; Packham et al., 2012). While in ischaemic strokes, cell swelling caused
by energy failure results in a conductivity decrease (Hansen and Olsen, 1980; Holder, 1992), in
haemorrhagic strokes, the increased blood volume results in higher conductivity. Knowledge of
the conductivity spectra of ischaemic and haemorrhagic tissue compared to healthy brain tissue
allows for their di�erentiation in MFEIT.

Like TD reconstructions, MF imaging has the advantage over absolute imaging, that some
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modelling and instrumentation errors are cancelled by using di�erential measurements. A novel,
non-linear method for performing MF reconstructions simultaneously from measurements at
multiple (as opposed to two) frequencies was recently proposed (Malone et al., 2014). The inverse
problem was modi�ed by substituting conductivity with an auxiliary variable, which depends
on the conductivity spectra of the tissues. The new variable, the volume fraction of each tissue
in each voxel, describes the physical distribution of tissues in the domain, and is independent of
frequency.

So far, it is unknown how stable non-linear multi-frequency reconstructions are with respect
to modelling errors, such as contact impedances, electrode positions, geometry and tissue
conductivity spectra.

6.1.2 Background

A �rst MF reconstruction algorithm was proposed for homogeneous, frequency independent
backgrounds (Brown et al., 1995), and was found to be relatively stable in the presence of
geometrical errors in 2D. Later, this linear method was extended to be compatible with frequency
dependent, but still homogeneous, background media (Seo et al., 2008; Jun et al., 2009) and
named weighted frequency di�erence algorithm (WFD). WFD was then applied to a simple
hemispherical 3D model and tested with regards to di�erent modelling errors (Ahn et al., 2011).
It was shown to cope well with wrongly modelled electrode positions and mesh geometries.

For non-homogeneous backgrounds, the linearity assumption of the WFD algorithm is no
longer valid and non-linear reconstruction methods have to be used (Malone et al., 2014). Two
non-linear MF algorithms have been proposed, one was more stable with respect to tissue
spectrum errors (Malone et al., 2015) than the fraction reconstruction method (Malone et al.,
2014), but at the cost of having to optimize an additional parameter. Both non-linear methods
were only tested on simple cylindrical shapes and their stability with respect to modelling errors
was not assessed.

6.1.3 Purpose

In this chapter, the fraction reconstruction algorithm was for the �rst time applied to a realistic
three-dimensional model of the head. The purpose of this simulation study was to evaluate the
feasibility of stroke type di�erentiation with MFEIT. The in�uence of imprecise modelling was
evaluated for four common sources of image artefacts in MFEIT (McEwan et al., 2007): mesh
discretisation, electrode positions, electrode contact impedance and tissue conductivity spectra.

Voltages were simulated on a head mesh with realistic geometries for brain, skull and scalp,
and modelling errors that can be expected with modern experimental setup were included. Images
were then reconstructed from the simulated noisy voltages with the fraction reconstruction
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method and objective metrics for image errors were computed.

6.2 Methods

6.2.1 Model and Tissue Conductivity Spectra
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Figure 6.1: Conductivity spectra and simulated stroke positions - (a) Conductivity spectra of tissues in the head and
view from the top on the (b) lateral and (c) posterior stroke position.

A three dimensional model of a human head was used to simulate EIT data. The model
comprised three layers, corresponding to the scalp, skull, and brain. For simplicity, in this �rst
feasibility study the model did not include the cerebro-spinal �uid, a simpli�cation which is
commonly made in EIT research. A �ne mesh with ∼5 million elements was used to simulate
the boundary voltages, and a coarse mesh with ∼180 thousand elements was used to reconstruct
the images, in order to avoid the inverse crime (Lionheart et al., 2004). A spherical perturbation
of diameter 3 cm was placed in two di�erent positions inside the brain: lateral and posterior
(�gures 6.1b and 6.1c). The conductivity spectra of the tissues (scalp, skull, brain, ischaemic
brain, blood — �gure 6.1a) were obtained from the literature (Romsauerova et al., 2006; Horesh
et al., 2005). In order to simulate an ischaemic stroke, the conductivity of the perturbation was
set to the conductivity of ischaemic brain approximately one hour after onset, and in order to
simulate a haemorrhagic stroke, the conductivity of the perturbation was set to the conductivity
of blood. Twelve frequencies were chosen in the range 5 Hz—5 kHz based on the observation
that the slopes of di�erent tissues are most separate in this region (�gure 2.7), and the boundary
voltages were simulated for each frequency.

32 electrodes of diameter 10 mm were placed on the scalp in the same positions used to
acquire EEG measurements and injecting electrode pairs were chosen to maximize the distance
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between the electrodes. This was done by �nding the maximum spanning tree of the electrodes,
weighted by the distance between the electrodes. The electrodes were modelled using the
complete electrode model (CEM), and the contact impedance was set to 1 kΩ · |E| for the
electrode contact surfaces |E|. The amplitude of the current was set to 140 µA and voltage
measurements were made for each injection on all adjacent electrode pairs not involved in
delivering the current. The total number of measurements acquired for each frequency was 869.
The boundary voltages were computed with Peits (chapter 4) to reduce computation time for
forward simulations. On all 16 cores of a workstation with two 2.4GHz Intel Xeon CPUs with
eight cores and 20MB cache each, the computation time for the 31 forward solutions on the �ne
5 million element mesh, which were required for the simulation of each frequency with each
modelling error, was less than 2 minutes.

6.2.2 Image Reconstruction

Images were reconstructed using the fraction reconstruction method (section 2.3.4; Malone et al.,
2014). For all frequencies {ωi; i = 1, . . . ,W} and tissues {tj ; j = 1, . . . , T}, the conductivity
of a tissue sample εij = σtj (ωi) was assumed to be known. The conductivity of �nite element n
at a certain frequency σn(ωi) was then modelled as the linear combination of the conductivities
of individual tissues {εij ; j = 1, . . . , T}:

σn(ωi) =
T∑
j=1

fnj · εij , (6.1)

with 0 ≤ fnj ≤ 1 and
∑T

j=1 fnj = 1. The weightings fnj of the linear combination are called
fractions, and were de�ned for each tissue and element. The fractions represent the physical
distribution of the tissues, and are independent of the frequency at which the data is acquired.

For f j = {fnj ; n = 1, . . . , N} ∈ RN×1 and f =
{
f j ; j = 1, . . . , T

}
∈ RN ·T×1, the

objective function was

Φ(f) =
W∑
i=2

∥∥∥∥∥∥
T∑
j=1

Jijf jεij −
T∑
j=1

J1jf jε1j − (vωi − vω1)

∥∥∥∥∥∥
2

+ λ2Ψ(f) (6.2)

with a �rst order Tikhonov regularization term of the form

Ψ(f) =
T∑
j=1

N∑
n=1

∑
l(n)

|fnj − fl(n)j |2, (6.3)

where l(n) runs over all neighbours of the nth element.
The fractions were recovered simultaneously for all tissues and elements by minimizing
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the objective function Φ(f), using alternating steps of gradient projection and damped Gauss-
Newton algorithms (section 2.3.4). The skull and scalp were �xed in place, and it was assumed
that the area inside the skull was occupied by either the brain or the stroke. The initial guess
was the healthy brain. The optimal regularization parameter was approximated by computing
the L-curve for one step of Gauss-Newton descent. The corner of the L-curve was selected for
the �rst step of the reconstruction, and the value was halved after each iteration for ischaemic
strokes and, divided by 3 for the haemorrhages. The di�erent reduction of the regularisation
parameter was originally though necessary, but was since found not to a�ect reconstructions
signi�cantly. The maximum number of iterations for the reconstruction algorithm was set to
ten.

6.2.3 Image Error Quanti�cation

An image error quanti�cation method was devised to evaluate the images objectively. The
image quality was assessed in terms of the ability to distinguish an anomaly (the stroke) from a
background (the brain). For this reason the fraction f s corresponding to the tissue that makes up
the anomaly was assessed. The volume P corresponding to the reconstructed perturbation was
identi�ed as the largest connected cluster of voxels with values larger than 50% of the maximum
of the image. Three measures of image errors were chosen:

1. Location error: ratio between the distance ‖(xP , yP , zP )‖ of the centre of mass of the
reconstructed perturbation P from the actual position, and the average dimension of the
head mean(dx, dy, dz)

‖(xP , yP , zP )‖
mean(dx, dy, dz)

. (6.4)

2. Shape error: ratio of the di�erence between the dimensions of the simulated (sx, sy, sz) and
reconstructed perturbation (rx, ry, rz), and the dimensions of the simulated perturbation

‖(rx − sx, ry − sy, rz − sz)‖
‖(sx, sy, sz)‖

. (6.5)

3. Image noise: inverse of the contrast-to-noise ratio between the perturbation P and the
background B

std(fBs )∣∣f̄Ps − f̄Bs ∣∣ , (6.6)

where f̄Ps and f̄Bs are the mean intensities of the perturbation and background and std

the standard deviation.
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6.2.4 Error Simulation

Instrumentation noise

Instrumentation noise was added to all simulated voltages and was chosen to match that of
measurements acquired using the KHU Mark 2.5 EIT system (Oh et al., 2011) on a human subject
and averaged over 64 frames. This noise level is achievable with most EIT measurement systems
and can be reduced by use of better instrumentation. The standard deviation of the proportional
noise was ςp = 0.02% and the standard deviation of the additive noise was ςa = 5 µV, such that

vwith noise = vno noise

(
1 + rand(ςp)

)
+ rand(ςa), (6.7)

where rand(ς) indicates a random number drawn from a Gaussian distribution with zero mean
and standard deviation ς . The additive noise was dominating these simulated EIT measurements.

Mesh Discretisation

In order to validate the reconstruction method on the realistic head model, images were re-
constructed from simulated data without the addition of modelling errors except those due
to mesh discretisation and noise. The data were simulated using the �ne 5 million element
mesh and the images were reconstructed using the coarse 180 thousand element mesh. Mesh
discretisation errors could be reduced by using a �ner mesh for reconstructions, at the cost of
longer computation times and memory requirements.

Electrode Positions

Electrode positions can currently be measured to around 1 mm precision using photogrammetry
(Qian and Sheng, 2011). Other technologies, such as the commercial MicroScribe, laser 3D
scanners, or electrode helmets, can achieve an even higher precision in electrode localisation.
To demonstrate the importance of using such localisation technologies, electrode position errors
of around 1 mm and 2 mm were simulated. Given that the electrodes were represented on a
discrete mesh, the shape and size of the electrodes did also change when an error was added to
the position of the centre. This could have been corrected for by re�ning the mesh. However,
it was decided not to re�ne the mesh around the electrodes, since a coarse representation of
the electrodes constituted an unpredictable error source on electrode shape and contact area,
like the application of conductive gel in an experimental setup (Kolehmainen et al., 1997; Boyle
and Adler, 2011). The positional errors were added by perturbing the (x, y, z) coordinates
of all electrodes with random numbers drawn from zero-mean Gaussian distributions with
standard deviations of 0.25 mm and 0.5 mm. Deviations of up to 3 times the standard deviation
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of the error were expected in the majority of cases. Therefore the overall displacement of each
electrode was normally less than or equal to

•
√

3(3 · 0.25)2 ≈ 1.3 mm for a standard deviation of 0.25 mm;

•
√

3(3 · 0.5)2 ≈ 2.6 mm for a standard deviation of 0.5 mm.

Tissue Spectra

Prior spectral information is imprecise because tissue conductivity is in�uenced by anisotropy,
inhomogeneity and temperature. The resulting e�ect of these factors is di�cult to predict.
Therefore, the frequency-dependent contribution of those factors were simulated for a reasonable
and a "worst-case" level of spectral errors, 1% and 5% (Edd et al., 2005). The errors were added
to the tissue conductivities εij independently for each frequency i and each tissue type j. It is
important to note here that the multi-frequency reconstruction algorithm used in this study is
insensitive to conductivity changes with a �at frequency-spectrum. Therefore, only frequency-
dependent errors had to be considered, which constitute a small fraction of the above mentioned
error sources.

Contact Impedances

Contact impedance errors were chosen to match experiments on human skin. It was assumed that
all electrodes had su�ciently low contact impedance. In an experimental setup, this is equivalent
to discarding any electrodes with near-in�nite impedance, which may have detached from the
head. The two levels of contact impedance errors had standard deviation 20%, corresponding
to suboptimal measurement setups, and 50%, in which case the electrodes would normally be
re-applied in experiments. These two high levels of error were chosen to illustrate that the
contact impedance mostly in�uences the instrumentation, rather than the modelling and image
reconstruction. This is because a high transfer impedance introduces higher instrumentation
noise (McEwan et al., 2007).

6.3 Results

6.3.1 Mesh Discretisation

The voltages were simulated on the �ne mesh, noise was added to the data, and then the images
were reconstructed on the coarse mesh. For comparison, the process was repeated using data
simulated on the coarse mesh (�gure 6.2). The discretisation introduced average electrode area
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Figure 6.2: E�ect of mesh discretisation on image reconstructions - Images reconstructed on the coarse mesh from
data simulated on the coarse and the �ne mesh for (a) lateral ischaemic stroke, (b) posterior ischaemic stroke, (c) lateral
haemorrhagic stroke and (d) posterior haemorrhagic stroke.
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Figure 6.3: Quanti�cation of image errors caused by mesh discretisation - Image errors in reconstructions on the
coarse mesh, for (a) ischaemic strokes and (b) haemorrhagic strokes simulated on the coarse and the �ne mesh.
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Figure 6.4: Electrode areas on the �ne and the coarse mesh - The voltages were simulated on the �ne 5 million element
mesh and the images were reconstructed on the coarse 180 thousand element mesh.

errors of 0.56 mm2, corresponding to ∼1.4% of the average electrode area (�gure 6.4). Image error
measures for the reconstructions indicated, that images from data simulated and reconstructed
on the same mesh were superior to those obtained from data simulated on the �ne mesh (�gure
6.3). The reconstructions of ischaemic strokes had a larger contrast than for haemorrhagic stroke
and images obtained for the posterior position were usually better than for the lateral position.

6.3.2 Erroneous Electrode Positions

The images were reconstructed assuming that the electrodes were at the original positions (�gure
6.5) and image error measures were computed for each reconstruction (�gure 6.6). Imaging was
not even possible with small modelling errors of 0.25 mm electrode position mismatch.

6.3.3 Erroneous Tissue Conductivity Spectra

Errors were added to the conductivity values of the model to simulate a deviation from the
literature values. The images were reconstructed using the original values for the conductivities
of the brain and stroke (�gure 6.7), and error measures were computed for each image (�gure
6.8). The perturbation was recovered successfully in all cases with 1% spectral errors, but for 5%
spectral errors imaging was unsuccessful. Plotting the frequency-di�erence spectra for brain,
ischaemic brain and blood together with the associated error bars (�gure 6.9) illustrates the
degree of the used spectral errors. The error bars indicate the minimum and maximum limit
within which the majority of the errors were drawn, given by ±3 times the standard deviation.
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Figure 6.5: Image reconstructions with inaccurately modelled electrode positions - Image reconstructions from
voltages simulated with with errors of 0.25 mm and 0.5 mm standard deviation added to all three coordinates of the elec-
trode position. (a) Lateral ischaemic stroke, (b) posterior ischaemic stroke, (c) lateral haemorrhagic stroke and (d) posterior
haemorrhagic stroke.
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Figure 6.6: Quanti�cation of image errors caused by inaccurate electrode modelling - Positional errors of 0.25 mm
and 0.5 mm standard deviation were added to all three coordinates of the electrode position and voltages were simulated
with two positions for (a) ischaemic strokes and (b) haemorrhagic strokes.
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Figure 6.7: Image reconstructions with erroneous tissue spectra - Images were reconstructed from voltages simulated
with 1% and 5% errors on the tissue conductivities for (a) lateral ischaemic stroke, (b) posterior ischaemic stroke, (c) lateral
haemorrhagic stroke and (d) posterior haemorrhagic stroke.
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Figure 6.8: Quanti�cation of image errors caused by spectral errors - Errors on the conductivity spectra of the tissues
of standard deviation 1% and 5% were simulated for (a) ischaemic strokes and (b) haemorrhagic strokes.
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Figure 6.9: Conductivity di�erences and noisewith respect to the lowest frequency - For each tissue the conductivity
di�erences with respect to the lowest frequency are shown with the associated error bars for (a) 1% and (b) 5% errors added
to the absolute spectra. The error bars represent the minimum and maximum limits within which the errors on the relative
spectra were drawn. The errors were added to the absolute values of the conductivity, therefore the variance was proportional
to the conductivity value.
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Figure 6.10: Image reconstructions with inaccurately modelled contact impedances - Voltages were simulated with
errors of 20% and 50% standard deviation added to the electrode contact impedances and reconstructions were made with the
original values. (a) Lateral ischaemic stroke, (b) posterior ischaemic stroke, (c) lateral haemorrhagic stroke and (d) posterior
haemorrhagic stroke.
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Figure 6.11: Quanti�cation of image errors caused by contact impedance errors - Errors of 20% and 50% standard
deviation were added to the electrode contact impedances for (a) ischaemic strokes and (b) haemorrhagic strokes.

6.3.4 Erroneous Electrode Contact Impedances

Images were reconstructed assuming a value of 1 kΩ · |E| for the contact impedances of the
electrodes (�gure 6.10), and error measures were computed for each image (�gure 6.11). The
images were nearly unchanged by the introduction of up to 50% errors on the contact impedances.

6.4 Discussion

6.4.1 Mesh Discretisation

The reduction in image quality between the case of data simulated on the coarse and �ne
mesh was primarily caused by the modelling of the electrodes and skull. Given the di�erent
resolutions, the shape and size of the electrodes and the skull di�ered between the two meshes.
The purpose of using a �ne mesh to simulate the data, and a coarse mesh to reconstruct the
image, was to make the simulation more realistic. In the case of imaging a real human head, the
size and thickness of the skull is not usually known accurately. Furthermore, the modelling of
the electrodes on the mesh is rarely precise in reality. Therefore it was necessary to consider
these discrepancies for realistic simulations.

6.4.2 Erroneous Electrode Positions

Errors added to the electrode positions severely a�ected the image quality. This highlights the
importance of registering the positions of the electrodes accurately. Simultaneous recovery
of fraction values and electrode positions (as shown in chapter 5 for time-di�erence imaging),
could further improve stability of MFEIT in the presence of electrode modelling errors.
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6.4.3 Erroneous Tissue Conductivity Spectra

The fraction reconstruction method requires knowledge of the conductivity spectra of all tis-
sues, and these were assumed to be �xed and exact. The performance of the algorithm was
therefore diminished, if the used spectral information was incorrect (�gure 6.8). The tissues
were distinguished on the basis of the respective change in conductivity between the lowest
and the other frequencies. If a random error was added to the absolute spectrum, then the error
on the di�erence in the spectrum with respect to the lowest frequency was given by the sum
of the absolute errors. For 1% error, all the spectra were distinct, but for 5% error, the spectra
overlapped for some or all frequencies (�gure 6.9). For this reason it was not possible to locate
the haemorrhagic stroke in the case of 5% error added to the conductivities (�gure 6.7), and
the ischaemic stroke was only identi�ed in the lateral position (�gure 6.7a). For haemorrhagic
strokes, the addition of a proportional 5% error caused a large degree of uncertainty because
the absolute value of the conductivity of blood was large.

6.4.4 Erroneous Electrode Contact Impedances

The e�ect of the errors added to the contact impedance values was very small, because four
electrode measurements were performed (McEwan et al., 2007). If voltages were measured on
electrodes injecting current, much larger errors would be expected (Kolehmainen et al., 1997).

6.4.5 Technical Remarks

Ideally, several images would have been created for each noise level in order to characterise
the e�ect of modelling errors over a large number of samples. The computational expense of
multiple repetitions was prohibitive, in that reconstruction of a single image took 5-6 hours.
However, given that the electrode speci�c errors (contact impedance and position) were sampled
on the 32 electrodes individually, this provides a su�ciently large number of samples to give a
reasonable characterization of the in�uence of the noise. Likewise, errors on the tissue spectra
were added independently to each tissue and at each frequency, thereby describing the e�ect of
spectral errors reasonably well. The conclusions derived from this relatively small number of
images appear to be valid in principle. In future, examination of more permutations in simulation
and tank studies may allow the de�nition of quantitative limits for the acceptable variation of
each parameter.

6.4.6 Conclusion

The fraction reconstruction method using spectral constraints was applied to a numerical head
phantom with realistic conductivities for skull, scalp and brain tissue. Instrumentation noise and
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modelling errors were added to investigate the robustness of this MFEIT method. The results
showed a varying degree of sensitivity to di�erent sources of modelling errors.

• Mesh discretisation lead to image artefacts near the skull and electrodes.

• The method was highly sensitive to errors in the position of the electrodes.

• If the respective spectra were su�ciently distinct, tissues could be distinguished even in
the presence of spectral inaccuracies.

• The method was highly robust to errors in the modelled contact impedances.

Further work is required to improve the image quality in the presence of modelling errors. The
artefacts caused by the discretisation of the skull and electrodes in the coarse reconstruction
mesh, may be reduced by simultaneously reconstructing the brain and the skull. Using a �ner
mesh for reconstructions would further allow for a more accurate modelling of the skull and
electrodes, at the cost of longer computation times. Inaccurate modelling of the electrodes had
the strongest impact on image quality. To reduce the sensitivity to electrode position errors, a
simultaneous correction of the modelled electrode positions should be included into the fraction
reconstruction method.
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Chapter 7

Correction of Electrode Modelling

Errors in Multi-Frequency Tissue

Fraction Reconstruction

7.1 Overview

7.1.1 Introduction

In the previous chapter, the feasibility of imaging stroke types with multi-frequency EIT (MFEIT)
imaging was evaluated. The in�uence of common modelling errors — mesh discretisation,
electrode positions, tissue conductivity spectra and contact impedances — on the image quality
was assessed, and the accurate modelling of electrode positions was found to be very important.
Electrode positions can currently be measured to around 1 mm precision using photogrammetry
(Qian and Sheng, 2011). Other technologies, such as the commercial MicroScribe, laser 3D
scanners, or electrode helmets (Avery, 2015), can achieve an even higher precision in electrode
localisation.

While electrode position modelling errors in this range were found not to a�ect weighted
frequency di�erence imaging (Ahn et al., 2011), this linear method cannot be used for stroke
type di�erentiation because of the inhomogeneous head geometry (Malone et al., 2014). The
non-linear tissue fraction reconstruction algorithm used in chapter 6, was already strongly
a�ected by electrode position errors below 1 mm.
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7.1.2 Background

MFEIT is a relatively new �eld, and not much work has been done on making multi-frequency
reconstructions more resilient to modelling errors. The linear weighted-frequency di�erence
algorithm (Jun et al., 2009) is inherently stable to modelling errors (Ahn et al., 2011). A non-linear
MF reconstruction algorithm was recently proposed (Malone et al., 2015), which is more stable
with respect to spectral errors when compared to the fraction reconstruction method. This,
however, comes at the cost of having a second parameter — apart from the regularisation factor
—, which has to be optimized. Furthermore, it has been shown in chapter 6, that tissues are
well di�erentiated by the fraction reconstruction algorithm (Malone et al., 2014) as long as their
conductivity spectra do not overlap.

The correction for electrode modelling errors has been used in time-di�erence (Soleimani et
al., 2006) and absolute imaging (Dardé et al., 2012) on cylindrical domains and on realistic head
shapes (chapter 5). It was shown to be very stable, both for linear and iterative reconstruction
algorithms, and could therefore be bene�cial to MF reconstructions in the presence of electrode
modelling inaccuracies.

7.1.3 Purpose

The purpose of this study was to evaluate the performance of simultaneous recovery of electrode
positions and conductivity spectrum changes. Speci�cally, the following two questions were
addressed: 1) Does the simultaneous recovery of conductivity changes and electrode modelling
errors remove image artefacts caused by inaccurately modelled electrode positions? 2) At which
magnitude of electrode position errors does the proposed algorithm begin to fail?

To answer these questions, multi-frequency boundary voltages were simulated on a �ne 5
million element head mesh with di�erent levels of electrode position errors. Reconstructions
were made with and without the proposed addition of electrode modelling corrections and
the resulting images were compared. It was found, that the proposed algorithm could stably
recover simulated strokes in the presence of electrode modelling errors of up to 1.5 mm standard
deviation.

7.2 Methods

7.2.1 Tissue Fraction Reconstruction With Electrode Position Correction

The general structure of the used multi-frequency reconstruction algorithm was identical to the
one described in section 2.3.4 (originally published by Malone et al., 2014). To be able to use
conductivity measurements at di�erent frequencies ωi, i = 1, . . . ,W simultaneously in a single
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image reconstruction, the conductivity spectrum of one element in the mesh was described
as a linear combination of the known spectra of present tissues tj , j = 1, . . . , T . Instead of
reconstructing conductivities directly, the prior knowledge of the conductivity spectrum εij

of all tissues was therefore used to assign fractions fnj of these tissues to all �nite elements
n = 1, . . . , N , such that

σn (ωi) =
T∑
j=1

fnj · εij , (7.1)

where 0 ≤ fnj ≤ 1 and
∑T

j=1 fnj = 1. The modi�ed Jacobian matrix at each frequency was
obtained using the chain rule

∂F(σi)

∂f j
=

∂F

∂σi

∂σi
∂f j

=
∂F

∂σi
εij = Jσi · εij = Jij ∈ RR×N , (7.2)

where r = 1, . . . , R are the lines in the protocol, i.e. the combinations of di�erent current
injection and voltage measurement electrode pairs d and m. The Jacobian matrix Jσi relating
voltage changes to changes in conductivity σi at each frequency ωi, was computed using the
adjoint �elds method (section 2.2.7), giving one entry for element n as

Jrn = −
∫
n
∇ud · ∇ua dV, (7.3)

where ud ∈ H1(Ω) is the electric potential emerging when the drive current Id is applied to
the electrodes and ua ∈ H1(Ω) the electric potential when a unit current is applied to the two
measurement electrodes.

In order to correct for wrongly modelled electrode positions, this ‘traditional’ Jacobian matrix
was augmented by an electrode boundary Jacobian EBJ ∈ RR×M , relating electrode boundary
changes (in our case electrode movement) to voltage changes. Given a continuous vector �eld v
on the boundary of electrode m = 1, . . . ,M , one entry of the EBJ along this vector �eld was
computed similarly to the conductivity Jacobian (chapter 5; Dardé et al., 2012)

EBJrm = − 1

zm

∫
∂Em

(v · n∂E)(Udm − ud)(Uam − ua) ds, (7.4)

where zm is the contact impedance, Udm and Uam the drive and measurement electrode potentials
andn∂E the outward normal of the electrode boundary, tangential to the head surface. The vector
�eld v describes the studied change in the electrode boundary, e.g. to compute the EBJ with
respect to movement along one direction, the vector �eld was chosen to point homogeneously
in that direction. The Jacobian matrices were combined Υi = [Ji1, . . . ,JiT ,EBJi] and the
unknown electrode position errors p were appended to the vector of the tissue fractions to
be recovered x = [f ,p]>, where f = [f1, . . . ,fT ] and p consisted of two variables per
electrode that described electrode movements along both surface directions xs and ys, p =
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[p1
xs , p

1
ys , p

2
xs , p

2
ys , . . . ]. The regularised objective function to be minimised was then

Φ(x) =
W∑
i=2

∥∥∥ (Υi −Υ1)x− (vωi − vω1)
∥∥∥2

+ λ2Ψ(x), (7.5)

with vωi being the boundary voltages measured at frequency ωi and the regularisation term

Ψ(x) = x>Σ>x D>DΣxx. (7.6)

The regularisation matrix D was composed of one Laplacian matrix per recovered tissue and
one identity matrix for the electrode movement variables. All components were scaled according
to the expected standard deviation of the corresponding variable changes stdf = 0.01 and
stdp = 1 mm

D =


L 0 0 0

0
. . . 0 0

0 0 L 0

0 0 0 I

 ; Σx =


std−1

f ·I 0 0 0

0
. . . 0 0

0 0 std−1
f ·I 0

0 0 0 std−1
p ·I

 . (7.7)

The minimisation of the objective function (7.5) was performed by alternating steps of
gradient projection and damped Gauss-Newton algorithms (section 2.3.4). After two iterations
of gradient projection and Gauss-Newton, the electrode positions had normally converged and
were subsequently kept �xed for the remaining iterations. The number of iterations of this
reconstruction algorithm was �xed to ten for all image reconstructions. To avoid the inverse
crime (Lionheart et al., 2004) and speed up image reconstruction, all reconstruction were made
on a coarse 180 thousand element mesh on which the skull and scalp were kept �xed and it
was assumed the inside of the skull was occupied by either the brain or the stroke with the
initial guess being the healthy brain. The regularisation parameter of λ2 = 8 · 10−10 was chosen
empirically and was the same for all reconstructed images. After each iteration of gradient
projection and Gauss-Newton minimisation, the regularisation parameter was halved in the case
of ischaemias, and divided by three for haemorrhages.

7.2.2 Data Simulation

The simulation parameters in this study were identical to the ones used in the preliminary
feasibility study (chapter 6). Boundary voltages were computed on a �ne 5 million element mesh,
which was created from a CT scan of a human head and included three homogeneous tissues:
brain, skull and scalp. Computations of the boundary voltages were done with Peits (chapter 4)
on all 16 processors of a workstation with two 2.4 GHz Intel Xeon CPUs with eight cores and
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20 MB cache each. It took less than 2 minutes to compute the required 31 forward solutions for
each frequency. 32 electrodes of diameter 10 mm were placed on the surface of the model in
the same positions used to acquire EEG measurements (Tidswell et al., 2001b). The electrodes
were modelled using the complete electrode model (CEM), and the contact impedance was set
to 1 kΩ · |E| for all electrodes, where |E| was the electrode area. The amplitude of the current
was set to 140 µA and twelve frequencies between 5 Hz and 5 kHz were used (�gure 6.1a). 31
linearly independent current injection pairs were created by �nding the maximum spanning tree
of the electrode positions. Voltage measurements were made for each injection on all adjacent
pairs not involved in delivering current. The total number of measurements acquired for each
frequency was 869.

Strokes were simulated by changing the conductivities of all elements within a 1.5 cm radius
of the stroke location. Simulated locations were set in a posterior (�gure 6.1c) and lateral position
in the head (�gure 6.1b), and stroke conductivities were set to the spectral values of ischaemic
tissue (�gure 6.1a) or to the conductivity of blood, 0.697 S m−1, for haemorrhage (Horesh et al.,
2006). Both, proportional and additive noise, was added to all simulated voltages:

vwith noise = vno noise

(
1 + rand(ςp)

)
+ rand(ςa), (7.8)

where rand(ς) indicates a random number drawn from a Gaussian distribution with zero mean
and standard deviation ς . The standard deviation of the proportional noise was ςp = 0.02%

and the standard deviation of the additive noise was ςa = 5 µV, which correspond to human
experiments (Goren et al., 2015).

Electrode position errors were created by drawing two random numbers for each electrode
from Gaussian distributions with zero mean and standard deviations 0.5 mm, 1 mm, 1.5 mm and
2 mm. According to these drawn random numbers, the electrodes were then moved along a two
dimensional surface coordinate system (chapter 5). Therefore, the overall electrode position
errors were the combined errors of the displacement along the two surface dimensions. The
electrode movement was implemented by assigning di�erent surface facets to the electrodes,
such that the mesh did not have to be changed.

7.2.3 Image Error Quanti�cation

The quality of an image was objectively quanti�ed using the same metrics than in the previous
chapter. First, the images reconstructed on the 180 thousand element mesh were averaged onto
cubic voxels with 0.5 cm sides. The volume P corresponding to the reconstructed perturbation
was identi�ed as the largest connected cluster of voxels with values larger than 50% of the
maximum of the image. Three measures of image errors were de�ned:

1. Location error: ratio between the distance ‖(xP , yP , zP )‖ of the centre of mass of the
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reconstructed perturbation P from the actual position, and the average dimension of the
head mean(dx, dy, dz)

‖(xP , yP , zP )‖
mean(dx, dy, dz)

. (7.9)

2. Shape error: ratio of the di�erence between the dimensions of the simulated (sx, sy, sz) and
reconstructed perturbation (rx, ry, rz), and the dimensions of the simulated perturbation

‖(rx − sx, ry − sy, rz − sz)‖
‖(sx, sy, sz)‖

. (7.10)

3. Image noise: inverse of the contrast-to-noise ratio between the perturbation P and the
background B

std(fBs )∣∣f̄Ps − f̄Bs ∣∣ , (7.11)

where f̄Ps and f̄Bs are the mean intensities of the perturbation and background and std

the standard deviation.

7.3 Results

7.3.1 Multi-Frequency Tissue Fraction Reconstructions

When electrode positions were modelled accurately in the reconstruction algorithm, image
reconstructions with electrode modelling correction were slightly worse than without correction
(�gure 7.1a). This was expected, since the reconstruction algorithm simply aims to minimise the
value of the objective value, with no knowledge whether electrodes or conductivities caused
the voltage di�erences. Consequently, it tried to minimise some voltage di�erences caused by
conductivity changes by moving the electrodes away from the correct position. The average
image error of reconstructions without electrode correction was 10% and with correction 17%;
particularly the reconstruction of the lateral haemorrhage was not good (24%).

With the traditional fraction reconstruction MFEIT algorithm, already 0.5 mm of electrode
position modelling errors made stroke detection impossible (�gure 7.2a). The average image
error of the reconstructions without electrode modelling correction was 55% (�gure 7.2b).

Simultaneous recovery of stroke tissue fractions and electrode positions signi�cantly im-
proved image quality in the presence of electrode modelling errors (�gure 7.3a). The average
image error of the reconstructed images with correction was 23% (�gure 7.3b), excluding the
three outliers (numbers 5, 10 and 14) only 16%. Remarkably, all three bad reconstructions oc-
curred for ischaemic strokes, suggesting that local conductivity spectrum changes caused by
ischaemia were more di�cult to separate from electrode position errors than for haemorrhage.
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The shape error of the reconstruction of a lateral ischaemia with electrode movement of 2 mm
(number 13) is misleadingly small, because the recovered perturbation was a diagonal disc with
very similar x-y-z dimensions than the simulated stroke.
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Figure 7.1: Image reconstructions without electrode modelling errors - (a) Multi-frequency fraction reconstructions
of strokes without and with electrode modelling correction when electrodes were modelled accurately and (b) the corre-
sponding image error measures.
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Figure 7.2: Traditional MF fraction reconstructions with electrode modelling errors - (a) Multi-frequency fraction
reconstructions of strokes without electrode modelling correction for two di�erent levels of electrode position errors and
(b) the corresponding image error measures.

7.3.2 Electrode Placement Correction

The 2-norm of the di�erence between recovered and simulated electrode position mismatch
was computed. While the electrode position correction was more accurate for ischaemic strokes
when electrodes were correctly modelled, for position mismatch of 1 mm standard deviation the
correction was better in the presence of haemorrhages (table 7.1). The accuracy of the electrode
position recovery tended to correlate with the quality of the reconstructed image (�gures 7.1a
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Figure 7.3: Novel MF fraction reconstructions correcting for electrode modelling errors - (a) Multi-frequency frac-
tion reconstructions of strokes using electrode correction for four di�erent levels of electrode position modelling errors and
(b) the corresponding image error measures.

and 7.3a). This is intuitive and was already observed for time-di�erence electrode movement
corrections (chapter 5).

ischaemia haemorrhage
lateral posterior lateral posterior

0 mm 0.8 · 10−3 1.6 · 10−3 1.7 · 10−3 3.7 · 10−3

1 mm 13.0 · 10−3 11.2 · 10−3 7.1 · 10−3 5.8 · 10−3

Table 7.1: Accuracy of electrode position recovery - 2-norm of the di�erence in simulated and recovered electrode
position errors, when electrodes were accurately modelled in the reconstruction algorithm (�rst row) and when there was a
position mismatch of 1 mm standard deviation along both surface dimensions (second row).

The reason for the worse 2-norm of ischaemic electrode position correction of 1 mm errors,
was electrode 17 (entries 33 and 34 on x-axis of �gure 7.4). Interestingly, after one iteration of
the proposed algorithm, the electrode position recovery of this electrode was still accurate. Only
in the second iteration, the electrode was moved several millimetres in both surface dimensions.
Since electrode 17 was located on the side, 5.4 cm from the centre of the lateral ischaemia, this
a�ected the reconstruction of the lateral ischaemia more than the reconstruction of the posterior
ischaemia (�gure 7.3a).
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Figure 7.4: Recovered electrode position errors for di�erent stroke types and positions - Recovery of electrode
position modelling errors for di�erent stroke types and positions, when electrodes were simulated with standard deviation
of 1 mm positional errors (black dashed line). Along the x-axis are the movement components along both surface dimensions
for each electrode, i.e. 1&2 are xs and ys of electrode 1, 3&4 for electrode 2 and so on.

7.4 Discussion

7.4.1 Electrode Modelling Correction in Multi-Frequency Reconstruction

The simultaneous recovery of stroke tissue fractions and electrode positions signi�cantly im-
proved image quality in the presence of electrode modelling errors. For movements between
0.5 mm and 2 mm standard deviation along both surface dimensions, the average image error
was 23% compared to 55% without electrode correction. While reconstructions of haemorrhagic
strokes were even successful in the presence of 2 mm of electrode errors, ischaemia detection
was less reliable from 1 mm onwards.

7.4.2 Technical Remarks

Ideally, several images would have been created for each electrode movement level, in order
to characterise the e�ect of electrode modelling errors over a number of samples. However,
the computational expense of multiple repetitions was prohibitive, in that reconstruction of a
single image took around 6 hours. For the same reason, only two stroke positions were studied.
Nonetheless, the produced images clearly illustrate the advantage of simultaneous tissue fraction
and electrode position recovery.
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7.4.3 Conclusion

Simultaneous iterative electrode position correction with the fraction reconstruction method
using spectral constraints was applied to a numerical head phantom with realistic conductivities.
Realistic noise was added to the simulated voltages to investigate the robustness of the proposed
method. The results show that

1. the simultaneous recovery of tissue volume fractions and electrode position errors removed
most image artefacts caused by inaccurately modelled electrodes.

2. while haemorrhagic strokes could be reconstructed with electrode position errors up to
2 mm standard deviation in both surface dimensions, the reconstruction of ischaemic
strokes was less reliable from electrode movements of 1 mm onwards.

Further work is required to understand why ischaemic stroke reconstructions were less reliable
with the proposed method, and to correct for it. Additionally, it has so far not been studied
how stable non-linear multi-frequency reconstruction methods are in the presence of geometric
modelling errors, such as skull shape (chapter 3). The mesh used for this simulation study
had the same geometry than the 3D printed head shaped tank used in chapter 5, such that the
presented results can be veri�ed in tank experiments.
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Chapter 8

Conclusion

8.1 Summary

In chapter 3, a new method for creating head meshes was proposed. The new meshing procedure
enabled the creation of head models with more physiological accuracy than previously achieved.
Once the manual segmentation was done, meshes with di�erent element density — globally, as
well as locally — could easily be created. Four meshes of di�erent heads were then used to study,
whether subject speci�c head models are required for time-di�erence imaging of stroke. While
it was concluded that the image quality pro�ted from accurate models, the detection of localised
conductivity changes in the range of 100% and 10% was not improved.

To address the computational requirements concomitant with the use of accurate head models,
a fast and memory e�cient parallel solver for the forward problem (Peits) was implemented in
chapter 4. With Peits, forward solutions, the conventional conductivity Jacobian matrix and the
Jacobian matrix with respect to electrode movement could be computed on many processors in
parallel, thereby increasing the speed of computations up to 60 times compared to the currently
most prevalent Eidors forward solver.

In chapter 5, a fast implementation for the calculation of the electrode boundary Jacobian
matrix (EBJ) was used on a human head model. The implementation was based on an analytical
formulation for the EBJ and was e�cient due to the use of template matrices storing the
contributions of drive and adjoint �elds. The EBJ was shown to accurately model electrode
movement, but overestimated the already small e�ect electrode size had on the measured
voltages. Because electrode position errors were found to be the most important factor in
electrode modelling, electrode movement correction was applied to time-di�erence and absolute
imaging on a realistic head geometry. The simultaneous recovery of conductivity changes and
electrode movement removed most image artefacts caused by inaccurate electrode modelling in
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simulation studies and tank experiments. All absolute reconstructions from simulated voltages
had a large artefact in the front of the head, which was probably caused by mesh discretisation
errors. Absolute reconstructions from experimental data were unsuccessful.

The feasibility of acute stroke imaging with non-linear multi-frequency EIT (MFEIT) was
evaluated in chapter 6. Measurements were simulated in the presence of di�erent types of
modelling errors: electrode positions, tissue conductivity spectra and contact impedances.
Images were reconstructed from the noisy simulated voltages with the fraction reconstruction
algorithm and the image quality was objectively assessed. While erroneously modelled contact
impedances did not markedly a�ect images, spectral errors of 5% resulting in spectral overlap
and electrode position errors of 0.25 mm made reliable stroke imaging impossible.

In chapter 7, the �ndings of the previous two chapters were combined, in order to itera-
tively update the electrode modelling during MFEIT reconstructions. This modi�ed fraction
reconstruction algorithm was shown to be considerably more stable in the presence of electrode
modelling errors. Haemorrhages could be imaged with electrode position errors of 2 mm, while
ischaemia detection deteriorated from errors of 1 mm upwards.

8.2 Limitations

The manual segmentation presented in chapter 3 is time-consuming and requires logical skills
in applying the tools provided by Seg3D e�ciently. Therefore, the presented meshing pipeline
is far from the end goal of ‘pushing a button and getting a good quality mesh’. Whether subject
speci�c head models are required, was only studied for the application of stroke detection in time-
di�erence imaging. Other TD applications, where the number and shape of the perturbations
are of interest, will likely have di�erent mesh accuracy requirements. Consequently, similar
studies should be performed for applications where the characteristics of the perturbation and
image resolution requirements are di�erent, such as imaging fast neural activity in the rat brain.

The fast forward solver described in chapter 4 (Peits) is currently not straight-forward to
install on Windows and OS X. Since it is mostly aimed at high parallelism on workstations
or clusters, which are usually UNIX-based, this is not essential. However, the lower memory
consumption compared to Eidors would make Peits attractive also for desktop use, and an
easier installation procedure is essential in increasing the Peits uptake. The requirements for
mesh re�nement can only inadequately be studied with Peits, by creating meshes with di�erent
element sizes and studying convergence of voltages. Therefore, an implementation of adaptive
mesh re�nement based on local error estimates in Peits would help obtaining more accurate
mesh precision requirements.

The implementation of the electrode movement correction on realistic heads presented
in chapter 5 relies on a surface coordinate system. This was created with a relatively basic
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algorithm moving along the surface and pooling vertices within de�ned distances from each
other. Parametrising a roughly spherical 3D surface with a 2D coordinate system was di�cult,
and the proposed system only worked reliably on the upper two thirds of the head. Below, the
xs and ys axes started overlapping and the algorithm stopped adding new coordinate points.
Consequently, a more reliable system of generating surface coordinates for various types of
geometries would facilitate the use of electrode movement correction.

In chapter 6, di�erences between the 5 million element mesh used for voltage simulations
and the 180 thousand element mesh for the image reconstruction introduced visible image
artefacts. Consequently, di�erences between patients are likely to have a stronger impact on
non-linear multi-frequency reconstructions, than on time-di�erence imaging (chapter 3). A
thorough analysis of the in�uence of using a generic head model in MFEIT should be performed
to validate this assumption.

The fraction reconstruction method with electrode position correction, which was used
in chapter 7, was much more stable in the presence of modelling errors than the original
implementation. However, particularly the imaging of ischaemia was still not fully reliable.
More work is required to determine, why ischaemic strokes were more challenging to detect
than haemorrhages and to �nd ways to account for it. Furthermore, the fraction reconstruction
algorithm — with or without electrode position correction — is relatively slow, as it takes
around 6 hours to create one image. This severely limits the extent of simulation studies
and currently excludes diagnostic applications, where quick results are required. With a more
e�cient implementation including better parallel routines, the speed could reasonably be doubled.
However, for further reductions in computation time, structural changes in the algorithm will
be required.

8.3 Outlook

The meshing procedure presented in this thesis is time-intensive and requires mostly manual
segmentation of CT and MRI scans. The resulting meshes, however, are of very good quality,
unparalleled by current automatic segmentation algorithms and meshing pipelines. Even though
the meshing would pro�t from automatic segmentation, this is currently not the most important
challenge in EIT, since meshes only have to be created once and can then be used for the
development of many di�erent applications. There are still open questions as to the required mesh
re�nement for the forward solutions to converge, as well as the precision requirements on the
forward solutions to exclude easily avoidable discretisation errors in EIT image reconstructions.
Future analysis of these points will be facilitated by the fast parallel forward solver Peits, which
was presented in chapter 4.

As shown by results in this thesis, time-di�erence EIT imaging on patients should from
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now on standardly include electrode movement correction, to exclude artefacts from inaccurate
electrode modelling at the cost of minimally reduced image quality. Since the movement recovery
combines naturally with all conventional EIT image reconstruction methods, its inclusion
involves very little work, but adds signi�cant stability in the presence of electrode movements.
The ease of use of the movement correction can, however, be improved by �nding more e�cient
methods for de�ning a surface coordinate system. TDEIT applications, where the appearance of
one local conductivity change has to be detected, are further facilitated by the �nding presented
here, that subject speci�c head meshes are not necessarily required.

Multi-frequency imaging is still a relatively new EIT modality, and fast and reliable algorithms
need to be developed. One step towards more stable MFEIT imaging was the inclusion of electrode
model adaptivity presented in this thesis. In a next stage, the in�uence of using a generic head
model on MFEIT image quality should be assessed. As long as subject speci�c head meshes are
required, acute stroke diagnosis is not feasible and monitoring of TBI patients is complicated by
the requirement of segmenting and meshing each head from CT and MRI scans. If it is found
that generic head models are su�cient, or when MF algorithms have been developed that can
cope with geometrical errors, then MFEIT can be validated in clinical studies and promises to
be a valuable diagnostic tool. In the meantime, tank experiments with known geometry can be
used to test systems, and algorithms with real data in a relatively controlled environment.

In applications that only require a yes or no answer, machine learning (ML) is a potentially
valuable alternative to MFEIT imaging. In ML, an algorithm is trained to di�erentiate di�erent
groups of data by showing it many examples. Based on the presented data, it �nds distinguishing
features (i.e. learns them) that are not easily visible to a human. The two head EIT applications
this thesis focused on, fall into this category of situations where a binary answer might be
su�cient. In acute stroke type detection, the question would be: does the patient have an
ischaemic stroke or not? Should thrombolysis be performed or not? And for the monitoring of
TBI patients, ML could answer the question: did a bleeding develop?

Machine learning has two advantages over MF imaging: 1) By reducing the variables to
be reconstructed from the number of elements in the mesh to one binary value, the problem
becomes better (if not well) posed. 2) ML is a booming research �eld with many available
algorithms, that can basically be used out of the box on the unprocessed multi-frequency data.
The obvious downside of using ML is that an image is no longer available, and that physicians
have to rely on the con�dence value the algorithm computed. If an image is required to localise
the stroke and correlate the location with the symptoms a patient presents, the result from the
machine learning could still be used to evaluate, whether the data contain enough information
to make imaging feasible.

ML has already been applied to stroke type detection with microwave tomography by Persson
et al. (2014). At 99.9% sensitivity to detect haemorrhages, they diagnosed around 30% of the
ischaemas. However, the microwave-based imaging technique is still at an early development
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stage and the data collected on patients look very noisy. Given the achieved performance of the
ML algorithm with these noisy microwave data, MFEIT machine learning has the potential to
expedite diagnosis and treatment for many patients with ischaemic stroke.

8.4 Guidelines

Based on the �ndings in this thesis, practical guidelines for EIT head imaging are brie�y sum-
marised in this section.

For simulation studies, voltages should be simulated on a �ne head mesh to exclude discreti-
sation errors. On 4 million element head meshes, the discretisation errors were estimated to be
approximately half the typical instrumentation noise in tank experiments. This would suggest,
that a 3-5 million element head mesh should be su�cient for most simulation studies. The
forward solutions on a 4 million element mesh can be e�ciently computed on Peits, and then
realistic instrumentation noise should be added: around 0.006% proportional and 1 µV additive
noise for tank experiments, 0.01% and 2 µV for human measurements with low noise or 0.02%
and 5 µV for higher noise.

Time-di�erence reconstructions from simulated and tank data do not require electrode move-
ment correction, unless the in�uence of electrode movement is studied. Reconstructions from
human experiments should be done with electrode movement correction, since it reduces noise
caused by patient movement and electrode drift. If the aim of the TD reconstructions is to detect
one localised conductivity change, then a subject speci�c head model is not required. If, however,
the image quality is of utmost importance, then an accurate head model is recommended.

Multi-frequency imaging with the fraction reconstruction algorithm requires more accurate
head models than time-di�erence imaging. At the same time, the reconstruction mesh should not
be too �ne, because a single image reconstruction already takes several hours on a 200 thousand
element mesh. A mesh of this size, ideally re�ecting the geometry accurately, is therefore
recommended for MFEIT. For human studies, it is again strongly recommended to include
electrode position recovery methods into the reconstruction algorithm, since this stabilises
reconstructions signi�cantly in realistic experiments.
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Appendix A

Peits User Guide

This appendix guides the reader through the installation process of the Peits forward solver
and explains how it is used. Even though the solver was successfully installed on Windows and
OS X, the instructions here only work reliably on UNIX.

A.1 Downloading and Installing the Required Modules

Create a new folder — for instance named Peits (Parallel EIT Solver) —, where the modules will
be installed into. First, the external libraries should be installed. PETSc can be downloaded with
Git,

git clone -b maint https://bitbucket.org/petsc/petsc petsc

and then con�gured with many external libraries:
./configure --prefix=/home/username/PEITS/petscBUILD --with-x=0 --with

-debugging=0 -CFLAGS=“-O3 -DNDEBUG -ffast-math“ --with-parmetis=1

--download-parmetis=yes --with-hypre=1 --download-hypre=yes

--with-superlu_dist=1 --download-superlu_dist=yes --with-mumps=1

--download-mumps=yes --with-ml=1 --download-ml=yes --with-metis=1

--download-metis=yes --download-scalapack=yes --download-blacs=yes

In a �nal step it has to be built:
make all test

make install

Most external libraries are installed now, only Zoltan is left. Zoltan can be downloaded from
http://www.cs.sandia.gov/Zoltan/ and then installed:

../configure --prefix=/home/username/PEITS/Zoltan_v3.8/BUILD_DIR

--with-parmetis --with-parmetis-incdir=“/home/username/PEITS/

petscBUILD/include“ --with-parmetis-libdir=“/home/username/PEITS/
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petscBUILD/lib“

make everything

make install

Now that the external libraries are installed, the actual EIT solver with all the general Dune
modules can be downloaded:

git clone http://users.dune-project.org/repositories/projects/

dune-peits.git

In the �le config.opts, the paths to PETSc and Zoltan have to be adapted to the local machine.
Then, the installation of the solver can be done with just one command:

sh INSTALL

In the generated output it should be controlled that all Dune modules found METIS, MPI,
ParMETIS, PETSc and Zoltan. If not then the con�guration options in config.opts have to
be corrected. Now it should be possible to run the code in the folder PEITS/dune-peits/src/
with the command

mpirun -np 2 ./dune_peits

where -np speci�es the number of processors the solver should be run on. If the solver needs
unreasonably long for the assembly of the system matrix, then the pre-allocation of memory in
PETSc needs to be adjusted. In �le dune-fem-1.4.0/dune/fem/misc/petsc/petsccommon.hh
the number of allocated non-zeros can be changed in the command MatMPIAIJSetPrealloca

tion(mat,100,PETSC_NULL,40,PETSC_NULL). A safe way of adjusting this is to use very high
numbers (e.g. 1000 and 150) and then running the solver with the option -info, which outputs
the precise number of non-zeros required on the used mesh. Also, on some meshes ML pre-
conditioning fails on some numbers of parallel processes. If this happens, either the number of
processes can be changed or hypre preconditioning can be used.

A.2 Running the Solver with Di�erent Settings

All regularly used settings are de�ned in dune-peits/data/parameter. The most important
settings are the following:

• fem.io.loadPartitions - if the used mesh was already partitioned before this should
be set to true, if it is used for the �rst time to false

• fem.io.do_elec_volts - if the measured boundary voltages should be saved into a binary
�le or not

• fem.io.do_jacobian - if the Jacobian matrix is computed and saved into a binary �le

• fem.io.do_electrode_jacobian - if the electrode movement Jacobian is computed and
appended to the Jacobian matrix binary �le
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• mesh - the mesh that is used

• fem.io.load_sigma_separately - if this is set to true, then the conductivities of the
mesh are loaded from a separate �le speci�ed in the next setting

• fem.io.separate_sigma_file - the binary �le with the conductivity values for all ele-
ments

• conductivities - a �le containing the conductivities for the di�erent tissues in the mesh

• petsc.preconditioning.method - which preconditioner should be used. Interesting
options are ml, hypre and as a direct solver mumps

• petsc.kspsolver.method - which solver should be used (default is conjugate gradients)

• poisson.solvereps - precision of solutions

• poisson.solveriter - maximum iterations of the solver

• current.protocol - the injection and measurement protocol �le to be used

• mesh.perturbation - true if a spherical perturbation should be simulated

• mesh.perturbation.multORabs - if the conductivity of the perturbation should be a
multiplication of the normal conductivity or an absolute value

• mesh.perturbation.value - the value that is either multiplied to the normal conductivity
of the relevant elements or assigned as their conductivity

• mesh.perturbation.radius - the radius of the perturbation in millimetres

• mesh.perturbation.pos_C - the C-coordinate of the perturbation in meters

Rarely changed settings are de�ned in dune-peits/data/standardparams out of which the
following are the most interesting:

• write.vtk - writes the solution of the �rst protocol line into a vtk �le for illustration.
This is also helpful to visually evaluate the result of the Zoltan load-balancing, since the
additionally saved rank variable encodes the partitions.

• output.print_electrode_voltages - prints the electrode areas and voltages of each
protocol step into the terminal. This is useful to spot mistakes in the electrode assignment.

• fem.io.write_only_measured_voltage - there are two modes how the electrode volt-
ages can be written to the binary �le. If this variable is set to true, then for each protocol
step only the voltage measured between the two de�ned measurement electrodes is written.
If it is false, then all electrode potentials are written.
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• fem.uniform_conductivity - if true, then the conductivities of the mesh are overwritten
by a constant value which is de�ned in fem.uniform_conductivity_value.

• contact.impedance - the contact impedance of the electrodes, given in Ohm. This will
internally be multiplied with the electrode area.

• input.current - the current level in given in Ampère.

• electrode.diameter - the diameter of the electrodes in millimetres.

A.3 Making a Mesh Accessible to the Solver

The solver only accepts �nite element meshes saved in the Dune Grid Format (DGF). A Matlab
function dune_exporter to write a mesh to this format is provided in the folder dune-peits/
matlab. It takes seven arguments:

• Nodes - an Nx3 matrix with the coordinates in meters, where N is the number of nodes.

• Tetra - a Tx4 matrix de�ning the T tetrahedra by their four nodes.

• sigma - a Tx1 matrix with the conductivity value in S m−1 or tissue index for each element.
If it is an integer it is interpreted as a tissue index and assigned a conductivity value that
is set in the conductivities �le speci�ed in the parameter �le.

• filepath - the path where the �le should be saved to, i.e. ‘/home/username/
PEITS/dune-peits/data/‘.

• filename - the name of the new mesh, e.g. ‘new_mesh.dgf‘.

• electrodepositions - an Ex3 matrix with the approximate coordinates of the E electrodes
in meters.

• groundposition - a 1x3 vector with the approximate coordinates of where a node should
be set to ground.

The dune_exporter function writes three �les, the DGF �le with the mesh, a param_new_mesh

�le with mesh speci�c parameters and an electrode_positions_new_mesh �le with the precise
electrode positions. The precise electrode positions are used by the solver to �nd surface triangles
that have their center within a surrounding sphere. If the electrode movement Jacobian (chapter
5) should be computed, then the function generate_surface_coords can be used to create the
surface coordinate system (eps and d have to be adapted to the mesh resolution), which can
then be written into a text �le (e.g. fprintf). The name of the surface coordinate �le then needs
to be updated in the mesh speci�c parameter �le param_new_mesh.
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A.4 Reading the Results into Matlab

All binary �les the solver writes have a timestamp in their name for identi�cation. The
electrodevoltagesTIMESTAMP.bin �le can be loaded in Matlab with the function dune-peits/

matlab/load_electrode_voltages_binary.m. The Jacobian matrix has to be read in Matlab
using the following four steps:

[ elementID, unsorted_sigma ] = load_sigma_vector_binary(‘sigmavector

TIMESTAMP.bin‘);

unsorted_jacobian = load_jacobian_binary(‘jacobianTIMESTAMP.bin‘);

jacobian = zeros(size(unsorted_jacobian));

jacobian(:,elementIDs) = unsorted_jacobian;

The sorting is necessary because Dune rearranges the elements when loading the mesh. Thus,
both the columns of the Jacobian matrix and the entries in the vector with the conductivity
values of the elements have to be sorted to match the original mesh.

A.5 Running the Solver from Matlab

To facilitate the use of the solver, two functions are provided that allow Matlab users to de�ne the
solver settings and run the solver directly from Matlab code. The function dune-peits/matlab/

set_forward_default_values.m returns a struct with default settings for the solver, which
are well documented in the code. Once the forward_settings struct is set up and adjusted, the
solver can be called with the function dune-peits/matlab/run_forward_solver.m:

forward_settings = set_forward_default_values();

[v,J,output] = run_forward_solver(forward_settings, processes);

The electrode voltages are written to v, J is the Jacobian matrix, output contains the run time
output of the solver and processes de�nes on how many parallel processes the solver should
be run.
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Eyüboǧlu B & Pilkington T (1993). Comments on
distinguishability in electrical impedance imaging.
IEEE Transactions on Biomedical Engineering 40,
1328–1330. 12

Fabrizi L, McEwan A, Oh T, Woo E & Holder D (2009).
An electrode addressing protocol for imaging brain
function with electrical impedance tomography us-
ing a 16-channel semi-parallel system. Physiological
Measurement 30, 85–101. 10

Fabrizi L, Sparkes M, Horesh L, Abascal J, McEwan A,
Bayford R, Elwes R, Binnie C & Holder D (2006). Fac-
tors limiting the application of electrical impedance
tomography for identi�cation of regional conductiv-
ity changes using scalp electrodes during epileptic
seizures in humans. Physiological Measurement 27,
163–174. 18

Falgout R (2015). Hypre website http://www.llnl.

gov/CASC/hypre Accessed: 16-12-2015. 63, 70

Fitzgerald A, Holder D, Eadie L, Hare C & Bayford R
(2002). A comparison of techniques to optimize mea-
surement of voltage changes in electrical impedance
tomography by minimizing phase shift errors. IEEE
Transactions on Medical Imaging 21, 668–675. 59

Frangi A, Riu P, Rosell J & Viergever M (2002). Propaga-
tion of measurement noise through backprojection
reconstruction in electrical impedance tomography.
IEEE Transactions on Medical Imaging 21, 566–578. 9

Frerichs I (2000). Electrical impedance tomography (EIT)
in applications related to lung and ventilation: a re-
view of experimental and clinical activities. Physio-
logical Measurement 21, 1–21. 1, 15

Gee M, Siefert C, Hu J, Tuminaro R & Sala M (2006). ML
5.0 smoothed aggregation user’s guide. Technical re-
port SAND2006-2649, Sandia National Laboratories.
63, 70

Gençer N & Tanzer I (1999). Forward problem solution
of electromagnetic source imaging using a new BEM
formulation with high-order elements. Physics in
Medicine and Biology 44, 2275–2287. 21, 32

Gibson A (2000). Electrical impedance tomography of
human brain function Ph.D. diss., University College
London. 10, 11

Gómez-Laberge C & Adler A (2008). Direct EIT Jacobian
calculations for conductivity change and electrode
movement. Physiological Measurement 29, 89–99. 31,
82

Gong B, Krueger-Ziolek S, Moeller K, Schullcke B &
Zhao Z (2015). Electrical impedance tomography:
functional lung imaging on its way to clinical prac-
tice? Expert Review of Respiratory Medicine 6348,
1–17. 15

Goren N, Avery J & Holder D (2015). Feasibility study
for monitoring stroke and TBI patients. In Solà J,
Braun F & Adler A, editors, Proc. 16th Int. Conf. on
Biomed. Appl. of EIT, p. 71. 51, 125

Grychtol B & Adler A (2013). FEM electrode re�nement
for electrical impedance tomography In EBMS, edi-
tor, Proc. Ann. Int. Conf. IEEE Eng. Med. & Biol. Soc.,
pp. 6429–6432. 23

145

http://www.llnl.gov/CASC/hypre
http://www.llnl.gov/CASC/hypre


Bibliography

Grychtol B, Lionheart W, Wolf G, Bodenstein M & Adler
A (2012). Impact of model shape mismatch on re-
construction quality in ElectricalImpedance Tomog-
raphy. IEEE Transactions on Medical Imaging 31,
1754–1760. 23

Hampshire A, Smallwood R, Brown B & Primhak R
(1995). Multifrequency and parametric EIT images
of neonatal lungs. Physiological Measurement 16,
175–189. 105

Hansen A & Olsen C (1980). Brain extracellular space
during spreading depression and ischemia. Acta Phys-
iologica Scandinavica 108, 355–365. 105

Hansen P (1994). Regularization Tools: A Matlab Pack-
age for Analysis and Solution of Discrete Ill-Posed
Problems. Numerical Algorithms 6, 1–35. 36, 52, 90

Heeger D & Ress D (2002). What does fMRI tell us about
neuronal activity? Nature Reviews Neuroscience 3,
142–151. 18

Heikkinen L, Vilhunen T, West R & Vauhkonen M (2002).
Simultaneous reconstruction of electrode contact
impedances and internal electrical properties: II. Lab-
oratory experiments. Measurement Science and Tech-
nology 13, 1855–1861. 12, 98

Henson V & Yang U (2002). BoomerAMG: A parallel al-
gebraic multigrid solver and preconditioner. Applied
Numerical Mathematics 41, 155–177. 29

Ho-Le K (1988). Finite element mesh generation meth-
ods: a review and classi�cation. Computer-Aided
Design 20, 27–38. 23

Holder D (1987). Feasibility of developing a method of
imaging neuronal activity in the human brain: a the-
oretical review. Medical and Biological Engineering
and Computing 25, 2–11. 19

Holder D (1992). Detection of cerebral ischaemia in the
anaesthetised rat by impedance measurement with
scalp electrodes: implications for non-invasive imag-
ing of stroke by electrical impedance tomography.
Clinical Physics and Physiological Measurement 13,
63–75. 105

Holder D (2004). Appendix A: Brief Introduction
to Bioimpedance. In Holder D, editor, Electrical

Impedance Tomography: Methods, History and Ap-
plications, pp. 411–422. Taylor & Francis. 7

Holder D & Tidswell T (2004). Electrical Impedance
Tomography of Brain Function. In Holder D, editor,
Electrical Impedance Tomography: Methods, History
and Applications, chapter 4, pp. 127–166. Taylor &
Francis. 1, 2, 17, 18, 59

Horesh L (2006). Some Novel Approaches in Modelling
and Image Reconstruction for Multi Frequency Elec-
trical Impedance Tomography of the Human Brain.
Ph.D. diss., University College London. 16, 17, 51

Horesh L, Gilad O, Romsauerova A, McEwan A, Arridge
S & Holder D (2005). Stroke type di�erentiation by
multi-frequency electrical impedance tomography —
a feasibility study. In Proc. 3rd Europ. Med. & Biol.
Eng. Conf., Prague, pp. 1252–1256. 17, 105, 107

Horesh L, Schweiger M, Bollhöfer M, Douiri A, Holder D
& Arridge S (2006). Multilevel preconditioning for 3D
large-scale soft �eld medical applications modelling.
Int. J. Inf. Syst. Sci. 2, 532–556. 32, 51, 62, 76, 125

IEC (2005). IEC 60601 Medical Electrical Equipment –
Part 1: General requirement for basic safety and es-
sential performance. International Electrotechnical
Commission, Geneva. 9

Isaacson D (1986). Distinguishability of conductivities by
electric current computed tomography. IEEE Trans-
actions on Medical Imaging 5, 91–95. 10, 21

Jang J & Seo J (2015). Detection of admittivity anomaly
on high-contrast heterogeneous backgrounds using
frequency di�erence EIT. Physiological Measure-
ment 36, 1179–1192. 41

Johnson C & MacLeod R (1994). Nonuniform spatial
mesh adaptation using a posteriori error estimates:
applications to forward and inverse problems. Ap-
plied Numerical Mathematics 14, 311–326. 46, 80

Jun S, Kuen J, Lee J, Woo E, Holder D & Seo J (2009).
Frequency-di�erence EIT (fdEIT) using weighted dif-
ference and equivalent homogeneous admittivity:
validation by simulation and tank experiment. Physi-
ological Measurement 30, 1087–1099. 14, 41, 103, 106,
122

146



Bibliography

Jurcak V, Tsuzuki D & Dan I (2007). 10/20, 10/10, and
10/5 systems revisited: Their validity as relative head-
surface-based positioning systems. NeuroImage 34,
1600–1611. 10

Kohn R & Vogelius M (1985). Determining conductiv-
ity by boundary measurements II. Interior results.
Communications on Pure and Applied Mathematics 38,
643–667. 20, 33

Kolehmainen V, Vauhkonen M, Karjalainen P & Kai-
pio J (1997). Assessment of errors in static elec-
trical impedance tomography with adjacent and
trigonometric current patterns. Physiological Mea-
surement 18, 289–303. 12, 13, 45, 82, 98, 101, 110,
118

Langlois J, Rutland-Brown W & Wald M (2006). The
epidemiology and impact of traumatic brain injury:
a brief overview. The Journal of Head Trauma Reha-
bilitation 21, 375–378. 15

Lionheart W, Polydorides N & Borsic A (2004). The re-
construction problem. In Holder D, editor, Electrical
Impedance Tomography: Methods, History and Appli-
cations, chapter 1, pp. 3–64. Taylor & Francis. 20, 21,
22, 34, 36, 45, 51, 89, 107, 124

Lionheart W, Kaipio J & McLeod C (2001). Generalized
optimal current patterns and electrical safety in EIT.
Physiological Measurement 22, 85–90. 12

Lionheart W (1998). Boundary shape and electri-
cal impedance tomography. Inverse Problems 139,
139–147. 31

Liston A, Bayford R & Holder D (2012). A cable theory
based biophysical model of resistance change in crab
peripheral nerve and human cerebral cortex during
neuronal depolarisation: implications for electrical
impedance tomography of fast neural activity in the
brain. Medical and Biological Engineering and Com-
puting 50, 425–37. 19

Liszka T & Orkisz J (1980). The �nite di�erence method
at arbitrary irregular grids and its application in ap-
plied mechanics. Computers & Structures 11, 83–95.
21

Liu A & Joe B (1994). Relationship between tetrahe-
dron shape measures. BIT Numerical Mathematics 34,
268–287. 49

Malich A, Böhm T, Facius M, Kleinteich I, Fleck M,
Sauner D, Anderson R & Kaiser W (2003). Electrical
impedance scanning as a new imaging modality in
breast cancer detection — a short review of clinical
value on breast application, limitations and perspec-
tives. Nuclear Instruments and Methods in Physics
Research 497, 75–81. 105

Malone E, Sato Dos Santos G, Holder D & Arridge S
(2014). Multifrequency Electrical Impedance Tomog-
raphy using spectral constraints. IEEE Transactions
on Medical Imaging 33, 340–350. 14, 18, 41, 59, 98,
103, 106, 108, 121, 122

Malone E, Sato Dos Santos G, Holder D & Arridge S
(2015). A reconstruction-classi�cation method for
multifrequency electrical impedance tomography.
IEEE Transactions on Medical Imaging 34, 1486–1497.
14, 43, 106, 122

Manwaring P, Moodie K, Hartov A, Manwaring K &
Halter R (2013). Intracranial electrical impedance
tomography: A method of continuous monitoring
in an animal model of head trauma. Anesthesia and
Analgesia 117, 866–875. 16

Matsuda W, Sugimoto K, Sato N, Watanabe T, Fujimoto
A & Matsumura A (2008). Delayed onset of post-
traumatic acute subdural hematoma after mild head
injury with normal computed tomography: a case
report and brief review. The Journal of Trauma 65,
461–463. 15

McAdams E, Jossinet J, Lackermeier A & Risacher F
(1996). Factors a�ecting electrode-gel-skin interface
impedance in electrical impedance tomography. Med-
ical and Biological Engineering and Computing 34,
397–408. 12

McAuli�e M, Lalonde F, McGarry D, Gandler W, Csaky
K & Trus B (2001). Medical Image Processing, Anal-
ysis and Visualization in Clinical Research. In Proc.
14th IEEE Symp. on Computer-Based Medical Systems,
pp. 381–386. IEEE Comput. Soc. 47

147



Bibliography

McEwan A, Cusick G & Holder D (2007). A review of
errors in multi-frequency EIT instrumentation. Phys-
iological Measurement 28, 197–215. 82, 106, 111, 118

McEwan A, Romsauerova A, Yerworth R, Horesh L, Bay-
ford R & Holder D (2006). Design and calibration of a
compact multi-frequency EIT system for acute stroke
imaging. Physiological Measurement 27, 199–210. 9

Modat M, Ridgway G, Taylor Z, Lehmann M, Barnes
J, Hawkes D, Fox N & Ourselin S (2010). Fast free-
form deformation using graphics processing units.
Computer Methods and Programs in Biomedicine 98,
278–284. 24

Mohammed B, Abbosh A, Mustafa S & Ireland D
(2014). Microwave system for head imaging. IEEE
Transactions on Instrumentation and Measurement 63,
117–123. 18

Molinari M, Cox S, Blott B & Daniell G (2001). Adaptive
mesh re�nement techniques for electrical impedance
tomography. Physiological Measurement 22, 91–96.
46, 80

Murphy D, Burton P, Coombs R, Tarassenko L & Rolfe P
(1987). Impedance imaging in the newborn. Clinical
Physics and Physiological Measurement 8, 131–140. 16

NICE (2014). Head Injury – Methods, evidence and recom-
mendations. National Institute for Health and Care
Excellence, United Kingdom. 15

Nissinen A, Heikkinen L & Kaipio J (2008). The
Bayesian approximation error approach for electri-
cal impedance tomography — experimental results.
Measurement Science and Technology 19, 015501. 82

Nissinen A, Heikkinen L, Kolehmainen V & Kaipio J
(2009). Compensation of errors due to discretization,
domain truncation and unknown contact impedances
in electrical impedance tomography. Measurement
Science and Technology 20. 31

Nissinen A, Kolehmainen V & Kaipio J (2011). Compen-
sation of modelling errors due to unknown domain
boundary in electrical impedance tomography. IEEE
Transactions on Medical Imaging 30, 231–242. 31

Nocedal J & Wright S (1999). Numerical optimization.
Springer Series in Operations Research and Financial
Engineering, New York. 39, 42

Nuwer M, Comi G, Emerson R, Fuglsang-Frederiksen A,
Guérit JM, Hinrichs H, Ikeda A, Luccas F & Rappels-
burger P (1998). IFCN standards for digital recording
of clinical EEG. Electroencephalography and Clinical
Neurophysiology 106, 259–261. 50

Oh T, Wi H, Kim D, Yoo P & Woo E (2011). A fully parallel
multi-frequency EIT system with �exible electrode
con�guration: KHU Mark2. Physiological Measure-
ment 32, 835–849. 110

Oostenveld R & Praamstra P (2001). The �ve per-
cent electrode system for high-resolution EEG and
ERP measurements. Clinical Neurophysiology 112,
713–719. 11

Packham B, Koo H, Romsauerova A, Ahn S, McEwan A,
Jun S & Holder D (2012). Comparison of frequency dif-
ference reconstruction algorithms for the detection
of acute stroke using EIT in a realistic head-shaped
tank. Physiological Measurement 33, 767–786. 14, 17,
41, 105

Persson M, Fhager A, Trefná H, Yu Y, McKelvey T, Pege-
nius G, Karlsson J & Elam M (2014). Microwave-
based stroke diagnosis making global prehospital
thrombolytic treatment possible. IEEE Transactions
on Biomedical Engineering 61, 2806–2817. 18, 134

Polydorides N (2009). Linearization Error in Electrical
Impedance Tomography. Progress In Electromagnetics
Research 93, 323–337. 30

Polydorides N & Lionheart W (2002). A Matlab toolkit
for three-dimensional electrical impedance tomog-
raphy: a contribution to the Electrical Impedance
and Di�use Optical Reconstruction Software project.
Measurement Science and Technology 13, 1871–1883.
25, 29

Power M (2004). An update on thrombolysis for acute
ischaemic stroke. Advances in Clinical Neuroscience
and Rehabilitation 4, 36–37. 16

Qian S & Sheng Y (2011). A single camera photogram-
metry system for multi-angle fast localization of EEG
electrodes. Annals of Biomedical Engineering 39,
2844–2856. 110, 121

148



Bibliography

Romsauerova A, McEwan A, Horesh L, Yerworth R, Bay-
ford R & Holder D (2006). Multi-frequency electrical
impedance tomography (EIT) of the adult human
head: initial �ndings in brain tumours, arteriovenous
malformations and chronic stroke, development of
an analysis method and calibration. Physiological
Measurement 27, 147–161. 105, 107

Rosenow F & Lüders H (2001). Presurgical evaluation
of epilepsy patients. Brain 124, 1683–1700. 18

Sadleir R, Vannorsdall T, Schretlen D & Gordon B (2010).
Transcranial direct current stimulation (tDCS) in a
realistic head model. NeuroImage 51, 1310–1318. 47

Sattin J, Olson S, Liu L, Raman R & Lyden P (2006). An
Expedited Code Stroke Protocol Is Feasible and Safe.
Stroke 37, 2935–2939. 17

Saulnier G (2004). Eit instrumentation. In Holder D,
editor, Electrical Impedance Tomography: Methods,
History and Applications, chapter 2, pp. 65–104. Tay-
lor & Francis. 8, 9, 20

Saulnier G, Blue R, Newell J, Isaacson D & Edic P (2001).
Electrical impedance tomography. IEEE Signal Pro-
cessing Magazine 18, 31–43. 14

Saver J, Fonarow G, Smith E, Reeves M, Grau-Sepulveda
M, Pan W, Olson D, Hernandez A, Peterson E &
Schwamm L (2013). Time to Treatment With Intra-
venous Tissue Plasminogen Activator and Outcome
From Acute Ischemic Stroke. The Journal of the Amer-
ican Medical Association 309, 2480–2488. 16

Sawicki B & Okoniewski M (2010). Adaptive mesh re-
�nement techniques for 3-D skin electrode model-
ing. IEEE Transactions on Biomedical Engineering 57,
528–533. 46, 59, 80

Scapaticci R, Bucci O, Catapano I & Crocco L (2014).
Di�erential Microwave Imaging for Brain Stroke Fol-
lowup. International Journal of Antennas and Propa-
gation 2014, 1–11. 18

Scapaticci R, Di Donato L, Catapano I & Crocco L (2012).
A feasibility study on microwave imaging for brain
stroke monitoring. Progress In Electromagnetics Re-
search B 40, 305–324. 18

Schenk O (2015). PARDISO Website http://www.

pardiso-project.org Accessed: 16-12-2015. 32

Schöberl J (1997). NETGEN - An Advancing Front 2D/3D
Mesh Generator Based on Abstract Rules. Computing
and Visualization in Science 1, 41–52. 23

Schramm J & Clusmann H (2008). The surgery of
epilepsy. Neurosurgery 62, 463–481. 18

Seo J, Lee J, Kim S, Zribi H & Woo E (2008). Frequency-
di�erence electrical impedance tomography (fdEIT):
algorithm development and feasibility study. Physio-
logical Measurement 29, 929–944. 14, 41, 106

Shewchuk J (1994). An introduction to the conjugate gra-
dient method without the agonizing pain. Carnegie
Mellon University, Pittsburgh, PA . 27, 37

Shewchuk J (1997). Delaunay re�nement mesh genera-
tion. DTIC Document . 23, 37

Shi X, You F, Fu F, Liu R, You Y, Dai M & Dong X
(2008). Preliminary research on monitoring of cere-
bral ischemia using electrical impedance tomogra-
phy technique. In Proc. IEEE Eng. Med. Biol. Soc.,
pp. 1188–1191. 105

Siltanen S, Mueller J & Isaacson D (2000). An implemen-
tation of the reconstruction algorithm of a nachman
for the 2d inverse conductivity problem. Inverse Prob-
lems 16, 681–699. 40

Soleimani M, Gómez-Laberge C & Adler A (2006). Imag-
ing of conductivity changes and electrode movement
in EIT. Physiological Measurement 27, 103–113. 31,
82, 122

Soleimani M, Powell C & Polydorides N (2005). Improv-
ing the forward solver for the complete electrode
model in EIT using algebraic multigrid. IEEE Trans-
actions on Medical Imaging 24, 577–583. 32, 62

Somersalo E, Cheney M & Isaacson D (1992). Existence
and Uniqueness for Electrode Models for Electric
Current Computed Tomography. SIAM Journal on
Applied Mathematics 52, 1023–1040. 21

Soni N, Paulsen K, Dehghani H & Hartov A (2006). Fi-
nite element implementation of Maxwell’s equations

149

http://www.pardiso-project.org
http://www.pardiso-project.org


Bibliography

for image reconstruction in electrical impedance to-
mography. IEEE Transactions on Medical Imaging 25,
55–61. 20

Stemer A & Lyden P (2010). Evolution of the throm-
bolytic treatment window for acute ischemic stroke.
Current neurology and neuroscience reports 10, 29–33.
16

Stüben K (2001). A review of algebraic multigrid. Jour-
nal of Computational and Applied Mathematics 128,
281–309. 28

Sylvester J & Uhlmann G (1987). A global uniqueness
theorem for an inverse boundary value problem. An-
nals of Mathematics 125, 153–169. 33

Tang C, You F, Cheng G, Gao D, Fu F, Yang G & Dong X
(2008). Correlation between structure and resistivity
variations of the live human skull. IEEE Transactions
on Biomedical Engineering 55, 2286–2292. 15, 91

The CGAL Project (2015). CGAL User and Reference
Manual. CGAL Editorial Board, 4.7 edition. 23, 47, 49

Tidswell A, Gibson A, Bayford R & Holder D (2001a).
Validation of a 3D reconstruction algorithm for EIT
of human brain function in a realistic head-shaped
tank. Physiological Measurement 22, 177–185. 15, 96

Tidswell T, Gibson A, Bayford R & Holder D (2001b).
Three-dimensional electrical impedance tomography
of human brain activity. NeuroImage 13, 283–294. 45,
87, 125

Tizzard A, Horesh L, Yerworth R, Holder D & Bayford
R (2005). Generating accurate �nite element meshes
for the forward model of the human head in EIT.
Physiological Measurement 26, 251–261. 23, 24, 46,
47, 57

Toussaint N, Souplet J & Fillard P (2007). MedINRIA:
Medical image navigation and research tool by INRIA.
Proc. of MICCAI 7. 47

Tuminaro R & Tong C (2000). Parallel smoothed aggre-
gation multigrid: aggregation strategies on massively

parallel machines. In Proc. Conf. on Supercomp., p. 5.
IEEE Computer Society. 29

Vauhkonen P, Vauhkonen M, Savolainen T & Kai-
pio J (1999). Static Three-Dimensional Electrical
Impedance Tomography. Annals of the New York
Academy of Sciences 873, 472–481. 13

Vonach M, Marson B, Yun M, Cardoso J, Modat M,
Ourselin S & Holder D (2012). A method for rapid
production of subject speci�c �nite element meshes
for electrical impedance tomography of the human
head. Physiological Measurement 33, 801–816. 24, 46,
47, 57, 58

Vongerichten A, Sato dos Santos G, Aristovich K, Av-
ery J, McEvoy A, Walker M & Holder D (2016).
Characterisation and imaging of cortical impedance
changes during interictal and ictal activity in the
anaesthetised rat. NeuroImage 124, 813–823. 18

Wesseling P & Oosterlee C (2001). Geometric multi-
grid with applications to computational �uid dynam-
ics. Journal of Computational and Applied Mathemat-
ics 128, 311–334. 28

Wi H, Sohal H, McEwan A, Woo E & Oh T (2014). Multi-
frequency electrical impedance tomography system
with automatic self-calibration for long-term moni-
toring. IEEE Transactions on Biomedical Circuits and
Systems 8, 119–128. 96

Xu C, Wang L, Shi X, You F, Fu F, Liu R, Dai M, Zhao
Z, Gao G & Dong X (2010). Real-time imaging and
detection of intracranial haemorrhage by electrical
impedance tomography in a piglet model. Journal of
International Medical Research 38, 1596–1604. 15, 16,
45, 81

Yorkey T (1990). Electrical impedance tomography with
piecewise polynomial conductivities. Journal of Com-
putational Physics 91, 344–360. 76

Zou Y & Guo Z (2003). A review of electrical impedance
techniques for breast cancer detection. Medical engi-
neering & physics 25, 79–90. 2

150


	1 Overview
	1.1 Introduction
	1.2 Purpose
	1.3 Statement of Originality
	1.4 List of Publications

	2 Literature Review
	2.1 Electrical Impedance Tomography
	2.1.1 Bioimpedance
	2.1.2 Measurements
	2.1.3 Protocols
	2.1.4 Imaging Modalities
	2.1.5 Experiments
	2.1.6 Traumatic Brain Injury
	2.1.7 Acute Stroke
	2.1.8 Other Head EIT Applications

	2.2 Forward Problem
	2.2.1 Maxwell's Equations
	2.2.2 Mathematical Formulation of the Complete Electrode Model
	2.2.3 Domain Discretisation
	2.2.4 Weak Formulation
	2.2.5 Galerkin Formulation
	2.2.6 Numerical Algorithms and Preconditioning
	2.2.7 Derivation of the Jacobian Matrix
	2.2.8 Electrode Movement Jacobian Matrix
	2.2.9 Forward Solvers

	2.3 Inverse Problem
	2.3.1 Linear Methods Based on Singular Value Decomposition
	2.3.2 Linear Methods With Variational Regularisation
	2.3.3 Non-Linear Methods
	2.3.4 Multi-Frequency Reconstruction Methods


	3 Head Models from CT and MRI Scans
	3.1 Overview
	3.1.1 Introduction
	3.1.2 Background
	3.1.3 Purpose

	3.2 Mesh Creation
	3.2.1 Segmentation
	3.2.2 Meshing

	3.3 Methods
	3.3.1 Voltage Simulation
	3.3.2 Image Reconstruction
	3.3.3 Image Quality Measures

	3.4 Results
	3.4.1 Analysis of the Image Quality
	3.4.2 Analysis of the Voltage Errors

	3.5 Discussion
	3.5.1 Mesh Creation
	3.5.2 Impact of Mesh Differences
	3.5.3 Conclusion


	4 A Fast Parallel Forward Solver (Peits)
	4.1 Overview
	4.1.1 Introduction
	4.1.2 Background
	4.1.3 Purpose

	4.2 Technical Background
	4.2.1 Dune and PETSc
	4.2.2 Complete Electrode Model and Jacobian Matrix
	4.2.3 Methods
	4.2.4 Overall Structure of Peits

	4.3 Implementation of the Functional Steps
	4.3.1 Parallel Substructuring
	4.3.2 Assembly of the System Matrix
	4.3.3 Preconditioning
	4.3.4 Solver
	4.3.5 Jacobian Calculation
	4.3.6 Verification of Correct Performance

	4.4 Performance
	4.4.1 Total Run Times with 1st Order Elements
	4.4.2 Comparison to Eidors
	4.4.3 Comparison with 2nd Order Elements
	4.4.4 Two Applications of Peits

	4.5 Discussion

	5 Electrode Model Correction in TDEIT
	5.1 Overview
	5.1.1 Introduction
	5.1.2 Background
	5.1.3 Purpose

	5.2 Electrode Boundary Jacobian Implementation
	5.2.1 Mathematical Formulation
	5.2.2 Implementation

	5.3 Electrode Boundary Jacobian Characteristics
	5.3.1 Simulation Parameters and Analysis Methods
	5.3.2 Voltage Dependence on Electrode Characteristics
	5.3.3 Precision of Electrode Boundary Jacobian

	5.4 Simulation Study
	5.4.1 Time-Difference Image Reconstruction Algorithm
	5.4.2 Image Error Quantification
	5.4.3 Simulation Parameters
	5.4.4 Electrode Position Recovery
	5.4.5 Images

	5.5 Experimental Validation
	5.5.1 Experimental Setup
	5.5.2 Images

	5.6 Absolute Reconstructions
	5.6.1 Absolute Reconstruction Algorithm
	5.6.2 Images

	5.7 Discussion
	5.7.1 Electrode Boundary Jacobian Characteristics
	5.7.2 Simulation Study
	5.7.3 Experimental Validation
	5.7.4 Absolute Reconstructions
	5.7.5 Conclusion


	6 Feasibility of Stroke Imaging with MFEIT
	6.1 Overview
	6.1.1 Introduction
	6.1.2 Background
	6.1.3 Purpose

	6.2 Methods
	6.2.1 Model and Tissue Conductivity Spectra
	6.2.2 Image Reconstruction
	6.2.3 Image Error Quantification
	6.2.4 Error Simulation

	6.3 Results
	6.3.1 Mesh Discretisation
	6.3.2 Erroneous Electrode Positions
	6.3.3 Erroneous Tissue Conductivity Spectra
	6.3.4 Erroneous Electrode Contact Impedances

	6.4 Discussion
	6.4.1 Mesh Discretisation
	6.4.2 Erroneous Electrode Positions
	6.4.3 Erroneous Tissue Conductivity Spectra
	6.4.4 Erroneous Electrode Contact Impedances
	6.4.5 Technical Remarks
	6.4.6 Conclusion


	7 Electrode Model Correction in MFEIT
	7.1 Overview
	7.1.1 Introduction
	7.1.2 Background
	7.1.3 Purpose

	7.2 Methods
	7.2.1 Tissue Fraction Reconstruction With Electrode Position Correction
	7.2.2 Data Simulation
	7.2.3 Image Error Quantification

	7.3 Results
	7.3.1 Multi-Frequency Tissue Fraction Reconstructions
	7.3.2 Electrode Placement Correction

	7.4 Discussion
	7.4.1 Electrode Modelling Correction in Multi-Frequency Reconstruction
	7.4.2 Technical Remarks
	7.4.3 Conclusion


	8 Conclusion
	8.1 Summary
	8.2 Limitations
	8.3 Outlook
	8.4 Guidelines

	A Peits User Guide
	A.1 Downloading and Installing the Required Modules
	A.2 Running the Solver with Different Settings
	A.3 Making a Mesh Accessible to the Solver
	A.4 Reading the Results into Matlab
	A.5 Running the Solver from Matlab

	Bibliography

