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Abstract

We introduce a binary regression accounting-based model for bankruptcy prediction
of small and medium enterprises (SMEs). The main advantage of the model lies in
its predictive performance in identifying defaulted SMEs. Another advantage, which is

especially relevant for banks, is that the relationship between the accounting character-



istics of SMEs and response is not assumed a priori (e.g., linear, quadratic or cubic) and
can be determined from the data. The proposed approach uses the quantile function of
the generalized extreme value distribution as link function as well as smooth functions
of accounting characteristics to flexibly model covariate effects. Therefore, the usual
assumptions in scoring models of symmetric link function and linear or pre-specified
covariate-response relationships are relaxed. Out-of-sample and out-of-time validation
on Italian data shows that our proposal outperforms the commonly used (logistic) scoring

model for different default horizons.

Keywords: logistic regression, generalized extreme value distribution, penalized regression

spline, scoring model, small and medium enterprises.

1 Introduction

A significant innovation of the Basel II regulatory framework (BCBS, 2005) is the greater
use of risk assessments provided by banks’ internal systems as inputs to capital calculations.
Based on the internal ratings-based approach of the revised framework, banking institutions
are allowed to use their own measures as input for their minimum regulatory capital calcu-
lations. The main input for these calculations is the probability of default forecasted one
year ahead. Therefore, in many credit risk models, such as CreditMetrics (Gupton et al.,
1997), CreditRisk+ (Products, 1997) and CreditPortfolioView (Wilson, 1998), default prob-
abilities are essential input parameters. Even if default risk could be estimated for differ-
ent kinds of loans, i.e. corporate loans, those for small and medium enterprises (SMEs),
and the creation of a rational and comprehensive policy for them, play a central role in
the European Union (EU) economy (see Small Business Act for Europe, 2008, Brussels:
European Commission, http://ec.europa.eu/enterprise/entrepreneurship/docs/sba/SBA_TA).
Banks have realized that small and medium sized companies are a distinct kind of clients with

needs and peculiarities which require specific risk management tools and methodologies (e.g.,



Altman and Sabato, 2006; Dietsch and Petey, 2004; Saurina and Trucharte, 2004).

SMEs are important for the economic system of many countries. Since lending to SMEs is
riskier than lending to large corporations (Altman and Sabato, 2006), Basel II (BCBS, 2005)
established that banks should develop credit risk models that are specific to SMEs. This
generated a lot of interest in the community, which resulted in a number of solutions (e.g.,
Altman and Sabato, 2006; Berger and Udell, 2002; Ciampi and Gordini, 2008; Fantazzini and Figini,
2009; Lin et al., 2012; Saurina and Trucharte, 2004). We propose a binary generalized ex-
treme value additive (BGEVA) model for predicting SMEs defaults. Specifically, since em-
ploying a symmetric link function for a rare event such as default may be problematic (see
King and Zeng, 2001, for the use of the logit link), we consider the quantile function of a gen-
eralized extreme value (GEV) random variable as link function (Calabrese and Osmetti, 2013;
Wang and Dey, 2010). Moreover, because the assumption of a linear or pre-specified (e.g.,
quadratic or cubic) relationship between the accounting characteristics of SMEs and default is
rarely satisfied in practice, we use penalized regression splines to flexibly determine covariate
effects from the data (e.g., Ruppert et al., 2003; Wood, 2006). We apply the BGEVA model,
and its traditional competitors, to data on 50,160 Italian SMEs for the period 2006 — 2011,
an important time horizon since it includes the financial crisis of 2008. Our empirical anal-
ysis shows that the relationship between accounting characteristics and default is not linear
and that our proposal outperforms the commonly used scoring model in terms of predictive
performance.

The contribution of this article is twofold. From a methodological point of view, we
present a penalized likelihood estimation framework for a binary regression model where the
link function is allowed to be asymmetric and the functional dependence of the response on
continuous covariates is flexibly determined from the data. Importantly, the methods discussed
in this article are implemented in the R package bgeva (Calabrese et al., 2013), which makes
it feasible for practitioners to fit BGEVA models. We elected to follow a frequentist approach

because it can particularly appeal to researchers already familiar with traditional frequentist



techniques and usually has the advantage of being computationally fast.

From an applied perspective, we improve on the prediction results obtained using classic
alternatives. This is crucial for financial institutions and the economic system. If banks
can discriminate better between defaulting and non-defaulting SMEs, then the credit system
may become more efficient. This is pivotal for small businesses since their financial structure
typically depends heavily on financial institutions that provide external funding. This means
that shocks to the banking system can have a significant impact on the credit supply to small
businesses. As a consequence, SMEs may be subject to funding problems and credit access
may be problematic during recession periods in financial markets. As this topic is pivotal in
the EU and USA (Berger and Udell, 2006; Pederzini, 2012), we would expect our proposal to
be generally useful for analyzing the SMEs of many countries.

The paper is organized as follows. The next section provides a review of the main literature
on scoring models for SMEs. In Sections 3 and 4, we discuss the main drawbacks of the
commonly used (logistic) regression for credit default applications and introduce the BGEVA
scoring model. Section 5 shows the results obtained from applying the traditional and proposed

approaches to data on Italian SMEs. The last section is devoted to the conclusions.

2 Literature review

Credit risk models which can separate defaulting and non-defaulting firms as well as predict
corporate bankruptcy can be classified into two groups: market-based models and accounting-
based models. The majority of them belong to the first group and are based on structural
and reduced-form approaches (Merton, 1974; Jarrow and Turnbull, 1995). Since these models
make use of capital market information, which is not available for small firms owing to their
information opacity and unattainability, we focus on the second group which uses accounting
variables of firms from financial statements. More details on credit risk assessment can be

found in Hand and Henley (1997).



Altman (1968) was the first to introduce an accounting-based model for estimating the de-
fault probabilities of firms. This was achieved calculating his well-known Z-Score using a stan-
dard discriminant model. Since then, different methodologies, such as linear regression, logistic
regression, classification trees and neural networks have been employed for credit risk assess-
ment (Thomas et al., 2002). The widely used model is logistic regression (Altman and Sabato,
2006; Lin et al., 2012), which shows, however, some important drawbacks for default predic-
tion. Since default can be viewed as a rare event (because the number of defaults in a sample
is typically very small) and the logit link function is symmetric, the default probability could
be underestimated (Calabrese and Osmetti, 2013). Moreover, the bias of maximum likelihood
parameter estimators for logistic regression is amplified in rare event studies (King and Zeng,
2001).

Accounting-based models can be applied to different kinds of firms. As mentioned in the
introduction, because of the Basel II regulatory framework, many scholars have focused on
developing tools specifically designed for SMEs. In Italy, SMEs form the 99.9% of the firms
(see the SBA fact sheet 2012 for Italy). These employ around the 81% of the individuals in
the workforce and contributed for the 68.3% of the Italian Added Value in 2011 (EC, 2012).
More generally, SMEs play a pivotal role in many countries. For example, Altman and Sabato
(2006) analyzed 2,010 US SMEs for the period 1994 — 2002. They stressed the importance
of using a model designed for assessing the rating of an SME, instead of employing a generic
model built for both SMEs and large corporations. According to Altman and Sabato (2006),
using different models for small/medium enterprises and large firms may lead banks to lower
the required capital as established by Basel I (BCBS, 2005). In a later work, Altman et al.
(2009) significantly improved the default prediction power of risk models for UK SMEs by
using explanatory variables such as legal action by creditors to recover unpaid debts, company
filing histories and comprehensive audit report/opinion. Lin et al. (2012) analyzed UK SMEs
adopting different definitions of a failing small business. Specifically, for 429 SMEs, whose

performance at the end of 2004 and financial ratios from 2001 were observed, they investigated



the impacts that several default definitions have on the choice of predictor variables and

model’s predictive accuracy.

3 Main drawbacks of the traditional credit scoring model

The most commonly used model for credit scoring applications is logistic regression (e.g.,
Altman and Sabato, 2006; Becchetti and Sierra, 2002; Lin et al., 2012; Zavgren, 1998). Let y;
be a binary response which describes the event default (y; = 1) and non-default (y; = 0) for

the i SME. The logistic model can be written as
logit(PD;) =1 PD; + Ep 6} i =1,2 i =1,2 (1)
ogl 7 1 _ PD,L (6% f= ]mjl iy, J 3 4y D, 1 ) “y , 1,

where PD; is the default probability, « is an intercept, the xj; are p financial and economic
continuous variables, the 3; are regression coefficients and n represents the sample size. Details
on estimation methods and inferential procedures can be found in McCullagh and Nelder
(1989).

There are two main drawbacks associated with model (1). First, PD; may be underes-
timated. Since the number of defaults in a sample is usually very small (e.g., Kiefer, 2010;
Lin et al., 2012), default can be viewed as a rare event. Hence, the use of the logit link function
may not be appropriate because of its symmetry around 0.5, which implies that the response
curve, PD; = 1/{1 + exp(—mn;)}, approaches zero at the same rate as it approaches one. This
is not ideal as the characteristics of defaults are more informative than those of non-defaults
and as a consequence PD; will be underestimated. This suggests using an asymmetric link
function as in Calabrese and Osmetti (2013) and Wang and Dey (2010). Second, model (1) as-
sumes a linear relationship between the accounting characteristics of SMEs and response (e.g.,
Chuang and Lin, 2009; Gestel et al., 2005; Huang et al., 2006; Lee and Chen, 2005; Ong et al.,
2005). One could easily include quadratic or cubic terms to relax the assumption of linearity

but such a procedure would require choosing a priori the order of the polynomial function for



each covariate and it is not in general recommended (e.g., Marra and Radice, 2010; Wood,
2006). This issue can mask possibly interesting non-linear patterns which can help improve
our understanding of the underlying covariate-response relationships and perhaps improve the
prediction accuracy of the scoring model as well. This calls for an approach which can flexi-
bly determine covariate effects from the data (see, for instance, Berg (2007) who employed a
logistic additive model).

The next section describes a methodology that can overcome the two aforementioned
model (1)’s drawbacks by blending the strengths of using an asymmetric GEV link function
(Calabrese and Osmetti, 2013; Wang and Dey, 2010) and an additive predictor (Berg, 2007).

4 The BGEVA model

Since the percentage of defaults is typically very low, even for SMEs, the defaulters’ character-
istics are more informative than those of non-defaulters (Berg, 2007; Kiefer, 2010; Lin et al.,
2012). This means that defaulters’ features are better represented by the tail of the re-
sponse curve for values close to one, which can be modeled using a GEV random variable
(Kotz and Nadarajah, 2000; Falk et al., 2010). Because our focus is on defaulters, as in
Calabrese and Osmetti (2013), we exploit the quantile function of a GEV random variable

and specify the link function
[—In(PD;)] " —1

T

, (2)

where 7 € R is the tail parameter. Hence, in (1) we replace logit(PD;) with (2). Since a GEV
link can be asymmetric, underestimation of the default probability may be overcome. As
discussed, for instance, in Calabrese and Osmetti (2013), depending on the value of 7, several
special cases can be recovered; e.g., when 7 — 0 the GEV random variable follows a Gumbel
distribution and its cumulative distribution is the log-log function (Agresti, 2002).

Moving on to the right hand side of equation (1), as explained in the previous section, the

assumption of linear or pre-specified covariate-response relationships may be restrictive in ap-



plications. Therefore, we replace a+ 0, Bjaj; with a+ 30, fj(x;:), where the f;(-) are un-
known one-dimensional smooth functions of the continuous covariates x;;. The smooth terms
are represented using the regression spline approach (Eilers and Marx, 1996; Ruppert et al.,
2003; Wood, 2006). Specifically, f;(x;;) is approximated by a linear combination of known
(e.g., cubic or thin plate regression) spline bases, by (z;;), and unknown regression parameters,
vjk- That is, fj(x;) = Z,ﬁl Yjkbrk(z;:), where K is the number of basis functions. In other
words, calculating by(z;;) for each observation point and k yields K; curves encompassing
different degrees of complexity which multiplied by some real valued parameters v;;, and then
summed give an estimated curve for the smooth component (see Ruppert et al. (2003) for a
more detailed introduction). Smooth terms are typically subject to identifiability centering
constraints such as > | f;(x;;) =0 Vj (Wood, 2006).

The use of both a GEV link and smooth components leads to

[—In(PD;)] " —1 Y
- =a+> filzs) =, (3)
j=1
where 7; can be written as B with B] = [1,by(z1:), .., br, (@1), - -+, bi(Tpi), - - -, bre, (25)]

and 87 = (&, Vi1, -, ViKys -+ Wpls - - - » Vpk, ). This represents the BGEVA model that will be
employed in Section 5. For our case study, a more general additive predictor was not deemed
to be required. It is worth mentioning, however, that the R package bgeva (Calabrese et al.,
2013) supports the inclusion, for instance, of parametric terms (i.e., binary and categorical
predictors), of terms obtained by multiplying one or more smooth components by some pre-
dictor(s), and of smooth functions of two or more continuous covariates (see Wood (2006) for
details on these alternative specifications). Of course, B; and & would have to be modified
accordingly but this is a minor change. Finally, note that model (3) is only defined for those

observations for which 1+ 77; > 0 (e.g., Calabrese and Osmetti, 2013).



4.1 Parameter estimation

In model (3), replacing the smooth terms with their regression spline expressions yields es-
sentially a parametric model whose design matrix includes spline bases. This means that a
BGEVA model can be estimated by maximum likelihood (ML). However, classic ML estima-
tion of (3) is likely to result in smooth function estimates that are too rough to be useful for
empirical analysis (e.g., Ruppert et al., 2003). This issue can be overcome by penalized ML,
where the use of penalty matrices allows us to suppress that part of smooth term complexity
which has no support from the data (e.g., Ruppert et al., 2003; Wood, 2006). Specifically, each
smooth has an associated penalty, 'ijSj'yj, where 'ij = (V1,---,7k;) and S; is a positive
semi-definite square matrix of known coefficients measuring the roughness of the j** smooth
component; for instance, the second-order roughness measure for a univariate spline penalty
evaluates [{f”(z;)}?dz;. The formulas for the by(x;;) and S; depend on the type of spline
basis employed and we refer the reader to Ruppert et al. (2003) and Wood (2006) for these
details.

For a fixed value of 7, the BGEVA model is estimated by maximization of
12
j=1

where

n

08) = =1+ m0) 77+ (1= yi) {1 — exp[—(1 + ;) "]}, m; = B] 4.

=1

Penalized log-likelihood (4) is essentially maximized iterating
ol — gla (gl — 8,)71(S,6l — gyl (5)

until convergence, where a is the iteration index, Sy = diag(0, \1Sy,...,A,S,) (when the



additive predictor is specified as in (3)),

U(d) = 9Us) _ Xni {%(1 ) (1 - yz-)exp[—(l +rn) YA )T } B;

9 I L — exp[—(L + 773,)~1/7]
and
_exp[—2(1 + ) YT+ ) F expl—(1 4 m,) YT (1 4 )2 r
«7(5) = -|— Z _ 2 - _ _ N—1/7
aaaa s (1 — exp[—(1 + 71;)~Y/7]) 1 — exp[—(1+ 7m;) /7]

exp[—(L 4+ 7n;) " "](1 + 7)(1 + Tm)Q—%
1 —exp[—(1+ 7n;)~/7]

} (1—y)— (L+7)(1+70,)" " y;| BIB,.

In practice, we use the more efficient and safe trust region algorithm, which is based on (5)
(Nocedal and Wright, 2006).

The A; are smoothing parameters controlling the trade-off between fit and smoothness,
and in the above optimization problem they are fixed to some values. This is because joint
estimation of A = (A1,..., ;) and 0 via maximization of (4) would clearly lead to over-
fitting since the highest value for £,(d) would be obtained when A = 0. In fact, A should be
selected so that the estimated smooth components are as close as possible to the true func-
tions. Automatic multiple smoothing parameter selection can be achieved in several ways; see
Ruppert et al. (2003) and Wood (2006) who provide excellent overviews. Here, we elected to
use a generalization of the approximate unbiased risk estimator (UBRE, Craven and Wahba,

1979). Specifically, A is the solution to the problem
. 1 9 2
minimize —|[VW(z —X9)|* — 1+ —tr(Ax) wrt. A, (6)
n n

where VW is a weight diagonal matrix square root, z; = B] 8% + W[;.%di, d;, = 00(8);/0n;,
Wi = —0%0(8);/0n;i0n;, Ax = B(BTWB+S,) 'B™W is the hat matrix, B = (B],...,B])T
and tr(Ay) the estimated degrees of freedom (edf) of the penalized model. (Superscript [al
has been suppressed from d;, z; and W; to avoid clutter.) The working linear model quan-

tities are constructed for a given estimate of §, obtained from a trust region iteration. (6)
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will then produce an updated estimate for A which will be used to obtain a new parameter
vector estimate for . The two steps, one for § and the other for A, are iterated until conver-
gence. Problem (6) is solved employing the approach by Wood (2004) which can evaluate the
approximate UBRE and its derivatives in a way that is both computationally efficient and
stable.

As for the tail parameter in the GEV link, it is in principle possible to estimate jointly 7
and 6 by maximizing (4). As shown by Smith (1985), however, in a certain range of values of
7 the usual regularity conditions for the ML estimator of this parameter do not hold. For this
reason, we propose fitting as many BGEVA models as the number of a set of sensibly chosen
values of 7 and select the model that yields the best empirical predictive performance. In our

case study, this proved to be a practical and effective means of handling this parameter.

4.2 Confidence intervals and p-values

Inferential theory for penalized estimators is complicated by the presence of smoothing penal-
ties which undermines the usefulness of classic frequentist results (e.g., Wood, 2006). As
shown in Marra and Wood (2012), reliable point-wise confidence intervals for the terms of a

model involving penalized regression splines can be constructed using
S|y-N(8, Vs), (7)

where y refers to the response vector, 4 is an estimate of & and Vs = (=T +Sx)~!. The struc-
ture of Vg is such that it includes both a bias and variance component in a frequentist sense, a
fact that makes such intervals have close to nominal coverage probabilities (Marra and Wood,
2012). Given (7), confidence intervals for linear and non-linear functions of the model param-

eters can be easily obtained. For instance, for fj(xﬂ) these can be obtained using

Fi(@) SN (f5(20), Bji(w6) TV e, Byi(0)),

11



where V. is the sub-matrix of Vs corresponding to the regression spline parameters asso-
ciated with j smooth term, and By;(2;)" = [b1(x), ..., bk, (x;;)]. For parametric model
components, such as binary and categorical predictors, using (7) is equivalent to using classic
results because such terms are not penalized.

For smooth components, point-wise confidence intervals cannot be used for variable selec-
tion (e.g., Ruppert et al., 2003, Chapter 6). For this purpose, p-values can be employed. To
construct them, we need the distribution of the f;, where f; = [f;(x;1), fi(zj2), ... ,fj(:cjn)]T.
As shown by Wood (2013), in the context of extended generalized additive models, fj SN (5, Vi)
where Vg = B;(x;)V;,B;(x;)" and Bj(x;) denotes a full column rank matrix such that
fj = Bj(x;)7;. It is then possible to obtain approximate p-values, for testing the hypothesis
f; = 0, based on

AT
_ TR A2
T, =5 Vi ol

where Vg_ is the rank r; Moore-Penrose pseudo-inverse of Vg, which can deal with rank
deficiencies. Parameter r; is selected using the established notion of edf employed in (6).

Because edf is not an integer, it can be rounded as follows (Wood, 2013)
floor(edf;) if edf; < floor(edf;) + 0.05

r;y =
floor(edf;) +1  otherwise

5 Case Study

The Ttalian SME sector is the largest in the EU, with 3,813 million of SMEs (EC, 2012). The
vast majority of Italy’s SMEs are micro-firms with less than 10 employees. In fact, Italy’s
share of micro-firms in all businesses, at 94.6%, exceeds the EU-average (92.2%). Recovery
from the financial crisis has been much weaker than that in other EU countries, and SMEs

have been the hardest hit companies.
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5.1 Data

The empirical analysis is based on annual data for the period 2006 — 2011 for 50, 160 Italian
SMEs. The data are from AIDA-Bureau van Dijk, a large Italian financial and balance sheet
information provider. The time horizon considered here is of some interest as it includes the
financial crisis of 2008.

The definition of SME by the European Commission is adopted. That is, a business must
have an annual turn-over of less than 50 million of Euros and the number of employees must not
exceed 250 (http://ec.europa.eu/enterprise/policies/sme/facts-figures-analysis/sme-definition /index.htm)
In this work, default is intended as the end of the SME’s activity, that is the status in which
the SME needs to liquidate its assets for the benefit of its creditors. In practice, we consider
a default to have occurred when a specific SME enters a bankruptcy procedure as defined by
the Italian law.

Following Altman and Sabato (2006), we applied choice-based or endogenous stratified
sampling, where data are stratified based on the values of the response. Specifically, we
drew randomly observations within each stratum defined by the two categories default and
non-default, and considered all the defaulted firms. We then selected a random sample of non-
defaulted SMEs (over the same years of defaults) to obtain a default percentage in our sample
that was as close as possible to that for Italian SMEs, which is around 5% (Cerved-Group,
2011). Choice-based sampling makes observations dependent. Since the sample size is high,
according to the super-population theory of Prentice (1986), we assume that ours is a ran-
dom sample (e.g., Altman and Sabato, 2006). We excluded firms for which information on
accounting characteristics is not available.

Financial ratio analysis uses specific formulas to gain insight into a company and its oper-
ations. The main measures based on the balance sheet are the financial strength and activity
ratios. The former provide information on how well a company is able to meet its obligations
and how it is leveraged. This gives investors an idea of the financial stability of the company

and its ability to finance itself. Activity ratios focus mainly on current accounts and show how
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well a company manages its operating cycle. These ratios provide insight into the operational
efficiency of the company.

Before fitting the models, we carried out a multicollinearity analysis and discarded vari-
ables with a variance inflation factor larger than 5 (Greene, 2012, pp. 257-258). As a result,
we considered the 21 continuous covariates: number of employees, turnover per employee,
long and medium term liabilities/total assets, current ratio, leverage, liquidity ratio, sol-
vency ratio, banks/turnover, return on sales, return on equity, added value per employee,
turnover /staff costs, return on shareholders’ funds, return on capital employed, stock turnover
ratio, profit per employee, average remuneration per year, pre-tax profit margin, cost of em-

ployees/turnover, total liquid funds and debt/equity.

5.2 Model fitting results

We employed the BGEVA model, logistic additive regression as well as log-log additive regres-
sion as it is a well known alternative to the logistic model. Computations were performed in the
R environment (R Development Core Team, 2013) using the package bgeva (Calabrese et al.,
2013) which can be used to fit the three models. The predictor specification was consistent
with that shown in (3). Smooth components were represented using penalized thin plate
regression splines with basis dimensions equal to 20 and penalties based on second-order
derivatives (Wood, 2006). Using fewer or more spline bases did not lead to tangible changes
in the results reported below and in the next section. Figure 1 shows the PD function of the
BGEVA model (obtained from equation (3)) for 7 equal to —0.25, 0.001 (corresponding to the
log-log response curve) and 0.25. The skewness and approaching rate to 1 and to 0 depend on
7. Compared with the log-log curve, for a negative value of 7 the PD of the BGEVA model
approaches 0 slowly but 1 more sharply. Viceversa when 7 is positive. Since in the context of
our case study we need a curve which approaches 1 rapidly, negative values for 7 are the ob-
vious choice. For the BGEVA model, values of 7 in the set (—1.00, —0.75, —0.50, —0.25) were

tried out. The best empirical predictive performance was produced for 7 = —0.25 (see next
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section). Using a finer grid of values and extending their range did not lead to improvements

in terms of prediction.

1.0

0.8
I

PD function of BGEVA model
0.4

0.0

Figure 1: PD function of the BGEVA model for 7 = —0.25 (black solid line), 7 = 0.001 (grey line) and
7 =0.25 (grey dashed line).

After applying a backward selection procedure at the 5% significance level, using the p-
value definition discussed in Section 4.2, only the 12 variables shown in Table 1 were kept. This
selection result was consistent across all models. Some of the covariate effects are reported in
the parametric part of the BGEVA model since their smooth function estimates were linear
(i.e. their edfs were all equal to 1). For the other explanatory variables, the estimated smooths
exhibit edfs considerably greater than 1 and are displayed in Figure 2.

As discussed in Calabrese and Osmetti (2013), if the estimated coefficient of a covariate
is positive, an increase in its value will result in a decrease in the estimated PD, holding
constant all the other variables. Viceversa when the coefficient is negative. The leverage
result in Table 1 is consistent with financial theory. Firms with higher levels of debt are more
subject to interest rate volatility, hence must produce higher financial returns to balance the
risk associated with their financial structure (Majocchi and Zucchella, 2003). Turnover/staff

costs shows a negative relationship with P D which is coherent with Ciampi and Gordini (2008)
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Variable names of parametric model part | Estimate | Std. Error | z value | p-value
Intercept -1.675 2.926e-02 | -57.247 | < 2e-16
Leverage 0.001 4.642e-04 2.700 | 0.006943
Turnover /staff costs 0.004 1.061e-03 | 3.428 | 0.000607
Profit per employee -0.009 1.126e-03 | -7.697 | 1.39e-14
Cost of employees/turnover 0.004 8.835e-04 4.902 | 9.46e-07
Total liquid funds 0.001 1.231e-06 | 117.892 | < 2e-16
Variable names of smooth terms Edf Est.rank Chi.sq | p-value
Long-medium term liabilities/total assets 5.42 6 124.70 | < 2e-16
Solvency ratio 7.82 8 123.78 | < 2e-16
Banks/turnover 3.29 4 37.33 | 1.54e-07
Added value per employee 4.72 5 21.64 | 0.000613
Return on shareholders’ funds 7.84 8 106.09 | < 2e-16
Return on capital employed 7.81 8 71.22 | 2.81e-12
Stock turnover ratio 6.91 7 92.48 | < 2e-16

Table 1: Parametric and smooth component summaries obtained from applying the BGEVA model to a sample
of Ttalian SMEs (2,384 defaulters and 45,296 non-defaulters) for the period 2006 — 2011. Full details on the
calculation of the test statistic for the smooth terms are given in Section 4.2.

who considered turnover per employee. A striking result could be that profit per employee is
positively related to the likelihood of being a defaulted SME. This may be due to government’s
tax inspection on firms which announce a loss on the accounting year. To avoid inspection,
SMEs in Italy, similarly for example to Turkey (Arslan, 2009), usually attempt to avoid
reporting a loss through manipulations on their activities out of their main operations. Cost
of employees/turnover shows a negative relationship with PD which is not in agreement with
the literature as well as expectations. A coherent result is obtained by Ciampi and Gordini
(2008) for total personnel costs/added value and by Fantazzini and Figini (2009) for personnel
expenses/sales, which show a positive relationship with PD. We suspect that the difference
between our result and those obtained in the literature is due to the increasing fiscal pressure
on the labor market in Italy for SMEs since the financial crisis (Eurostat, 2012). To explain the
negative relationship between total liquid funds and PD, we refer to an interesting European
Commission paper by Ferrando et al. (2007). Here, liquid funds are higher if there is a higher
probability of a shortage of funds in the future that could be due to financial distress in SMEs.

As for the plots in Figure 2, in line with the interpretation for the parametric components,
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Figure 2: Smooth component estimates of the 7 (out of 12) continuous variables that exhibit a non-linear
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plot, at the bottom of each graph, is used to show the covariate values. The numbers in brackets in the y-axis

f(.,7.82)

f(.,4.72)

f(.,7.81)

-05 05

-0.5

-2.5

-1

|

80 100

Solvency ratio

3

T ! T f T T
0 100 200 300 400 500

Added value per employee

f ! ! T f T f
-100 O 100 200 300 400 500

Return on capital employed

captions are the estimated degrees of freedom (edf) of the smooth curves.

17



if the estimated smooth function of a covariate is increasing then the estimated PD decreases,
and viceversa. An interesting result is obtained for bank loans/turnover. For low values of
this covariate the relationship to PD is negative: for low debt loans, bank loans increase
SME’s solvency. When the debt load is too high, an increase in bank loans to an SME
results in a slight (perhaps not significant) increase in the PD. Instead, Ciampi and Gordini
(2008) found a positive relationship between bank loans/turnover and PD. Alternatively,
Altman and Sabato (2006) considered short term debt/equity book value to model PD and
found an inverse relationship. On the contrary, Fantazzini and Figini (2009) showed that short
term debt has a positive influence on P D, which is consistent with expectations. These results
are not all in agreement. This is probably because these authors modeled covariate effects
assuming linearity whereas we employed smooth functions which allowed us to estimate flexibly
such effects. Another interesting result is obtained for long-medium term liabilities/total
assets: for low values this variable shows an inverse relationship to PD which then becomes
positive for high covariate values. When the ratio is higher than 0.7, the estimated curve is
slightly increasing although the confidence intervals are wide and hence it is not possible to
be conclusive. The fact that the positive impact of long-medium term liabilities/total assets
is overall dominant may justify the results obtained by some authors who found a positive
impact assuming linearity (e.g., Arslan, 2009).

For values of added value per employee lower than about 200 thousands of Euros, the
relationship to PD is negative and coherent with expectations as well as the results obtained
by Calabrese and Osmetti (2013) and Ciampi and Gordini (2008). For high values of this
covariate, Figure 2 shows a positive relationship, although the confidence intervals are wide
and contain the case of an inverse relationship as well. A few analyzes have included return
on capital employed as an explanatory variable in scoring models for SMEs (e.g., Toyli et al.,
2008). This covariate shows a negative relationship with the likelihood of being a defaulted
SME, except for high covariate values where the confidence intervals are so wide that many

interpretations are plausible. As for the other variables, a clear interpretation can not be
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provided and further research is needed. The estimates of the parametric and smooth compo-
nents obtained by applying the logistic and log-log additive models (not reported here) did not

differ significantly from each other and are in agreement with those presented in this section.

5.3 Empirical predictive performance

In this section, we compare the predictive performance of the BGEVA, logistic and log-log
additive models. Predictive accuracy can be assessed using the Mean Squared Error (MSE)
and Mean Absolute Error (MAE) based on observed default and predicted PD. Scoring
models with lower MSE and MAE should forecast defaults and non-defaults more accurately.
However, it is the identification of defaulters that is a pivotal aim for banks’ internal scoring
models. In fact, it is much more costly to classify an SME as a non-defaulter when it is a
defaulter than to classify it as a defaulter when it is not. If a defaulted firm is classified as a
non-defaulter by the scoring model, then the bank will give a loan. If the borrower becomes
defaulted, then the bank may lose the whole or a part of its credit exposure. On the contrary,
when a non-defaulter is classified as a defaulter, the bank only loses interest on loans. We,
therefore, computed the MAE and MSE only for defaulted SMEs and denote them by MAE™
and MSE™. We also calculated the area under the curve (AUC) index (Hand et al., 2001) and
H-measure (Hand, 2010), using the R package hmeasure with a severity ratio of 0.01 for the
H-measure. Scoring models with higher AUC and H-measure can forecast defaults and non-
defaults more accurately. Note that the H-measure overcomes the drawbacks of AUC when
the class sizes and classification error costs are extremely unbalanced (Hand, 2009, 2010),
which is especially true for credit scoring applications.

To avoid sample dependency, models were validated on observations that were not included
in the sample used to estimate the model. Specifically, we used out-of-sample and out-of-time
tests. In the former, the models were estimated using all observations in 2006 — 2011 but a
randomly drawn control sample of size corresponding to the 10% of all observations. In the

latter, we analyzed the models’ performance for different sample sizes and default horizons.
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Type of control sample | measure | BGEVA | log-log | logistic
MAE® | 0.754 | 0.791 | 0.889
Out-of-sample MSE*+ | 0.626 | 0.660 | 0.795

H 0.184 | 0.050 | 0.018
AUC 0.682 | 0.680 | 0.811
MAE® | 0837 | 0.849 | 0.883
Out-of-time 2009 MSE+ | 0.741 | 0.754 | 0.786

H 0.136 | 0.052 | 0.020
AUC 0.697 | 0.692 | 0.809
MAE* | 0.770 | 0.798 | 0.881
Out-of-time 2010 MSE+ | 0.620 | 0.657 | 0.783

H 0.081 | 0.078 | 0.020
AUC 0.722 | 0.722 | 0.811
MAE® | 0843 | 0.862 | 0.894
Out-of-time 2011 MSE+ | 0.763 | 0.781 | 0.804

H 0.050 | 0.027 | 0.030
AUC 0.619 | 0.599 | 0.808

Table 2: Forecasting accuracy measures for out-of-sample and out-of-time exercises obtained from applying
the BGEVA, log-log and logistic additive models. Default horizon is of one year.

This was achieved in two ways. In the first case, models were fitted using data from the
intervals 2006 — 2010, 2006 — 2009 and 2006 — 2008 and their predictive accuracy evaluated
on SMEs belonging to 2011, 2010 and 2009, respectively. In the second case, we estimated
the models using data for the period 2006 — 2008 and tested them on SMEs belonging to
2009 — 2010 and 2009 — 2011. The estimation period of 2006 — 2008 was chosen because it
was characterized by an economic growth in Italy which was then followed by a decline after
2008.

Table 2 reports the values of MAE™, MSE™, AUC index and H-measure for the out-of-
sample and out-of-time exercises when the default horizon is of one year. The MAE™ and
MSE™ for the BGEVA model are lower than those for the log-log and logistic additive models.
The AUC of the BGEVA and log-log models are lower than that of logistic regression in all
control samples. However, as pointed out earlier, AUC is not reliable when the class sizes
and classification error costs are unbalanced (Hand, 2009, 2010), case in which the H-measure

is more appropriate (Hand, 2010). The H-measure for BGEVA is higher than that of its
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Type of control sample measure | BGEVA | log-log | logistic
MAE™ 0.848 0.862 | 0.882
Two years: 2009 — 2010 | NSE+ | 0.746 | 0.760 | 0.785

H 0.188 0.066 | 0.019
AUC 0.712 0.711 | 0.811
MAE™ 0.832 0.845 | 0.881
Three years: 2009 — 2011 | \qp+ 0.724 0.740 0.783

H 0.190 0.067 | 0.019
AUC 0.713 0.714 0.811

Table 3: Forecasting accuracy measures for out-of-sample and out-of-time exercises obtained from applying
the BGEVA, log-log and logistic additive models. Default horizons are of two and three years.

competitors in all control samples. Increasing the default horizon does not lead to different
conclusions (see Table 3). The forecasting periods considered here are important since the
effects of the financial crisis on Italian SMEs have been strong in 2009, where the number of
defaulted Italian SMEs in the sample was very high (701), and decreased in 2010 and 2011
(429 and 124, respectively).

Our analysis suggests that the accounting-based BGEVA model has a superior predictive
performance in identifying defaulted SMEs than that of its traditional alternatives. Since
identification of defaulters is crucial for banks, the proposed tool could be employed as their

internal scoring model to identify defaulted SMEs.

6 Concluding remarks

We introduced a scoring model to forecast defaulted SMEs. Since lending to SMEs is risky
and because they play a crucial role in the economy of many countries, we would expect the
BGEVA model to be generally useful for analyzing SMEs.

The proposed approach is based on a penalized likelihood estimation framework where the
link function is allowed to be asymmetric (through the use of the quantile function of a GEV
random variable) and the functional dependence of the response on continuous covariates is

flexibly determined from the data (through the use of penalized regression splines). The de-
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velopments discussed in this article are implemented in the R package bgeva (Calabrese et al.,
2013) which can be particularly attractive to researchers and practitioners who wish to fit
BGEVA models.

Our proposal and its competitors were applied to data on 50,160 Italian SMEs for the
period 2006 — 2011. The empirical results confirmed that the first main advantage of the
BGEVA model lies in its superior performance in forecasting defaulted SMEs for different
default horizons. The second is the relaxation of the linearity assumption which was not
clearly supported by the data.

Banks and financial institutions could improve their internal assessments and efficiency by
using BGEVA models in that they can better identify defaulted SMEs and can shed light on the
nature of the relationships between response and SME characteristics. It would be interesting
to explore the impact that non-random sample selection (Banasik and Crook, 2007) has on
bankruptcy prediction of SMEs and future research will look at the possibility of extending

the BGEVA model to account for selection bias.
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