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Background 

Heckman-type selection models are potentially applicable in many contexts in epidemiology, 

particularly where the assumption of missing at random is not realistic. This approach has been 

applied to estimating HIV prevalence from nationally representative household surveys where rates 

of refusal to test are often high. A drawback of existing methods to control for selection on 

unobserved factors is that they typically rely on strong parametric assumptions. 

 

Methods 

We introduce a novel approach for relaxing joint normality in selection models. We apply this 

method to estimating HIV prevalence in the 2007 Zambian Demographic and Health Survey where 

21% of men and 20% of women refuse to test, and using interviewer identity as the selection 

variable which predicts consent to test but not HIV status, we show how to allow for non-linear 

association between the participation and outcome equations using copula functions.  

 

Results 

HIV prevalence estimates are similar irrespective of the structure of the association between 

consenting to test and HIV status. For men, our estimation indicates a population HIV prevalence of 

21%, compared to 12% among those who consent to test. For women, the corresponding figures are 

20% and 16%.  

 

Conclusions 

Existing results indicating the presence of selection bias in the estimation of HIV prevalence for men 

and women in Zambia are robust to relaxing the assumption of joint normality. As misspecification 

results in inconsistent estimates, future research involving selection models to account for missing 

data should routinely conduct sensitivity analyses for alternative functional forms using this 

approach.  
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Missing data is a common problem in epidemiological studies, and the mechanisms through which 

this missingness occurs can have an important impact on resulting estimates (Hernan et al., 2004). 

Therefore, in general the treatment of missing values requires careful consideration in order to 

minimise the potential for selection bias to affect results. One area which is particularly affected by 

this issue is the field of HIV research, due to the extent of attrition and missing information, and 

concerns surrounding the fact that individuals must actively choose whether to participate in HIV 

testing in order to be present in surveys. HIV status is more likely to be associated with social stigma 

and desire for confidentiality than other more routine parts of questionnaires, or even other 

biomarker data collection (e.g. Hosseinzadeh et al., 2012). Methods accounting for selection which 

are robust to the assumption of missing at random, such as Heckman-type estimators, are therefore 

highly suited to this context; however they typically require a strong set of assumptions. We 

introduce a novel methodology for improving the practical implementation of this approach, and 

demonstrate the methodology by estimating HIV prevalence whilst accounting for missing data.  

This is an important policy-relevant and instructive application, as despite being the “gold standard” 

source of data for HIV prevalence estimation (Boerma et al., 2003), nationally representative 

household surveys commonly suffer from high rates of refusal to participate in HIV testing. If HIV 

prevalence among respondents who refuse to test differs from respondents who take the test, 

estimates solely based on the former will be biased. Recent research suggests that respondents may 

refuse to test if they have knowledge of their HIV status (Floyd et al., 2013; Bärnighausen et al., 

2012; Reiners and Eaton, 2009). This has important implications for complete case analysis (i.e., only 

using information on individuals without missing data) and imputation models, which require that 

data are missing at random. Because HIV status is not observed among those who refuse to test, 

neither of these approaches is robust to systematic selection effects on unobserved factors (Donders 

et al., 2006). Rates of refusal to test for HIV can be substantial; e.g. up to 37% in the Demographic 

and Health Surveys (Hogan et al., 2012). Similar levels of refusal to participate in HIV testing can also 

occur in research. In a recent review of RCTs with an HIV outcome, Harel et al. (2012) found 26% 

missing HIV status data on average. 

One potential solution to this problem is the adoption of Heckman-type selection models which can 

provide consistent estimates of the parameter of interest, even when missing data are 

systematically related to some unobserved characteristic of the individual (Heckman, 1979); Vella, 

1998), such as HIV status itself. Due to their robustness to selection on unobserveables, these 

models have a potentially wide set of applications in epidemiology, especially where the untestable 

assumption of missing at random is unlikely to hold. However, their use in practice is affected by the 

fact that the implementation of this approach typically depends on two key assumptions. The first is 

the existence of an appropriate exclusion restriction or selection variable; a variable which predicts 

participation but not the outcome. Elements of survey design and implementation are often present 

in datasets in epidemiology, and are potential candidates if they are plausibly uncorrelated with the 

characteristics of the individual (Bärnighausen et al., 2011b). For example, in the case of HIV 

prevalence estimation, interviewer identity represents a plausible candidate for a variable which 

predicts consent to test but not HIV status. Previous research which has adopted this methodology 

has found evidence for selection bias in some contexts (Bärnighausen et al., 2011a; Hogan et al., 

2012; McGovern et al., 2013; Clark and Houle, 2012a; Reniers et al., 2009), which is in contrast to 

results obtained from imputation, where the results are almost always very close to the complete 

case analysis (Hogan et al., 2012; Mishra et al., 2008). This is not a surprising finding if selection is 
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mainly taking place on unobserved characteristics. In addition, both the original formulation 

(Heckman, 1979), and  previous literature in this context have relied on relatively strong parametric 

assumptions for identification.  While the assumption of joint normality for characterising the 

relationship between consenting to test and HIV status is convenient and tractable, it is a serious 

limitation (Puhani, 2000). Arpino et al. (2013) note the importance of parametric assumptions in 

implementing the Heckman (1979) approach in the specific context of HIV prevalence estimation, 

and highlight this as an important drawback of this method. Results from selection models may not 

be robust to the particular choice of distribution, and therefore it is important to be able to evaluate 

the sensitivity of conclusions from this approach to alternative assumptions.  

If both these conditions are met, the conventional bivariate probit estimated by maximum likelihood 

is consistent and asymptotically efficient. However, if the true distribution of the error terms does 

not meet the assumption of joint normality, results are likely to be inconsistent (De Luca, 2008). 

Simulation studies have indicated that HIV prevalence estimates from selection models may be 

sensitive to violations of this assumption (Clark and Houle, 2012b), however to date there is little 

evidence in practice, despite the growing literature on the use of Heckman selection models in 

epidemiological research. While Hogan et al. (2012) use a semi-nonparametric selection model 

based on Hermite polynomial expansions (De Luca, 2008; Gallant and Nychka 1987), the intercept is 

not identified in their model and so they do not estimate HIV prevalence per se.  

As outlined in Geneletti et al. (2011), it is particularly important to evaluate the robustness of results 

obtained from surveys involving missing data due to the fact that we never observe the true HIV 

status of those who refuse consent. Therefore, the underlying assumptions in the analytic model are 

generally not possible to test, and the implementation of selection models can therefore be viewed 

as a sensitivity analysis to adjust for potential bias using alternative sets of assumptions about the 

underlying mechanisms causing data to be absent. If it can be demonstrated that the results from 

the particular method adopted are invariant to a variety of different assumptions, this lends 

credibility to the conclusions, and indicates that the extent of bias adjustment required is not just a 

function of the model imposed by the researcher. The lack of a flexible and practical method for 

evaluating the robustness of selection models to parametric assumptions is likely an important 

impediment to wider use of this approach.   

This aim of this paper is to describe and illustrate a means of determining the sensitivity of results 

from selection models to alternative ways of characterising the functional form of the association 

between outcome and participation equations. We introduce and demonstrate a methodology for 

relaxing the assumption of joint normality in Heckman models that allows for non-linear association 

between participation (here, HIV testing) and the outcome of interest (here, HIV status). We show 

how copula functions can be used to define the dependence of the selection process by adapting the 

method of Marra and Radice (2013b) to a sample selection model context. We evaluate the 

robustness of estimates of HIV prevalence in Zambia which have indicated the presence of selection 

bias in previous research.  Given the potential applicability of this approach to other contexts, we 

provide the computer code for this method in order to make this approach easily accessible to 

researchers working with surveys containing missing data. Methods 

We begin by modelling consent for HIV testing in the context of a bivariate probit with two latent 

variables. Both consent to test and HIV status are considered simultaneously, an approach based on 



5 
 

the adaptation of the original Heckman estimator (Heckman, 1979) for binary outcomes by Dubin 

and Rivers (1989). For a survey of the literature, see Vella (1998).   

Consent to test is given by: 

𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖
∗ = 𝑋𝑖𝛽 + 𝑍𝑖𝛼 + 𝑢𝑖, 𝑖 = 1, … 𝑛   (𝟏) 

𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖 = 1 𝑖𝑓 𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖
∗ > 0, 𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (2) 

The observed consent for person 𝑖 is the observed outcome arising from a latent variable 𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖
∗, 

measuring the respondent’s propensity to test. 𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖 is a dummy variable indicating acceptance 

to test, while 𝑋𝑖  is a 𝑝 × 1 vector representing observed individual level characteristics with 

associated parameter vector 𝛽, 𝑍𝑖  is a 𝑘 × 1 vector of dummy variables representing the interviewer 

identity (the selection variable or exclusion restriction) with associated parameter vector 𝛼, and 𝑢𝑖 is 

a random error term. Although in theory identification can be achieved through non-linearity, in 

practice the performance of selection models requires at least one selection variable to be present 

in the participation equation but not the outcome equation (Madden, 2008). In this case interviewer 

identity predicts consent to test but is assumed not to enter into the HIV equation directly.     

The equation for the HIV status 𝐻𝐼𝑉𝑖 of individual 𝑖 is: 

𝐻𝐼𝑉𝑖
∗ = 𝑋𝑖𝛾 + 𝜀𝑖      (𝟑)  

𝐻𝐼𝑉𝑖 = 1 𝑖𝑓 𝐻𝐼𝑉𝑖
∗ > 0,   𝐻𝐼𝑉𝑖 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     (𝟒) 

𝐻𝐼𝑉𝑖 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖 = 1, 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     (𝟓) 

where 𝛾 is a parameter vector and 𝜀𝑖  is a random error term. The structural assumption used in each 

of the studies which adopt selection models to estimate HIV prevalence (listed above) is that the 

error terms in both equations (𝑢𝑖, 𝜀𝑖)  are normally distributed with means equal to zero, variances 

equal to one and correlation coefficient 𝜌; that is the joint distribution of (𝑢𝑖, 𝜀𝑖) is given by 

𝐹2(𝑢𝑖, 𝜀𝑖) = Φ2(𝑢𝑖, 𝜀𝑖) where Φ2 is the standardized bivariate normal cumulative distribution 

function (cdf). This model can be fitted using classic maximum likelihood.  

In order to allow for non-linear associations between the consent and HIV status equations, we 

model the dependency of the error terms in the two equations using copulas. These are functions 

that connect multivariate distributions to their one dimensional margins, such that if 𝐹 is a two-

dimensional cdf with one-dimensional margins (𝐹1(𝑦1), 𝐹2(𝑦2)), then there exists a two-dimensional 

copula 𝐶 such that 𝐹(𝑦1, 𝑦2) = 𝐶(𝐹1(𝑦1), 𝐹2(𝑦2); 𝜃), where 𝑦1 and 𝑦2 (in our case 𝐶𝑜𝑛𝑠𝑒𝑛𝑡 and 

𝐻𝐼𝑉) are two random variables and 𝜃 is an association parameter measuring the dependence 

between the two marginals (e.g. Trivedi and Zimmer, 2007).  A substantial advantage of the copula 

approach is that the marginal distributions may come from different families. This construction 

allows researchers to consider marginal distributions and the dependence between them as two 

separate but related issues. If the theoretical rationale for selection bias in this context is correct 

(namely that HIV positive individuals are refusing to test on the basis of knowledge of their HIV 

status), we would expect a value of 𝜌 which is less than 0. In addition, results from the standard 

Heckman selection model also indicate the presence of negative correlation between testing and 

HIV status. Therefore, we consider the copulas which allow for at least some negative association. 
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These are the:  (Gaussian (𝐶𝑔), which is equivalent to the standard bivariate normal probit model; 

Frank (𝐶𝑓); 90 and 270 degrees rotated Clayton (𝐶𝑐90
, 𝐶𝑐270

); and Student-t (𝐶𝑡)). Each of these 

copula functions are reported in Table 1, and also illustrated in Figure 1. While the Gaussian, Frank 

and Student-t copulas are symmetric, we also consider the use of the rotated Clayton copulas which 

allow for stronger negative dependence in the tails of the distribution. The 90 and 270 degrees 

rotated versions can be obtained using (e.g., Brechmann and Schepsmeier, 2013): 

𝐶90 = 𝐹2(𝑦2) − 𝐶(1 − 𝐹1(𝑦1), 𝐹2(𝑦2); 𝜃)     

𝐶270 = 𝐹1(𝑦1) − 𝐶(𝐹1(𝑦1), 1 − 𝐹2(𝑦2); 𝜃)     

These forms of dependence are particularly applicable in the context of HIV prevalence estimation 

as we might expect respondents with a strong negative score on the latent test variable to be of 

particularly high risk of being HIV positive. For example, this would be the case if respondents were 

refusing to test largely on the basis of their HIV status. Other copula functions which allow for 

asymmetric negative dependence in the tails of the distribution, such as 90 and 270 degrees rotated 

Gumbel and Joe copulas, could be employed. We did not employ these versions because they 

capture the tail dependence in a similar way to the Clayton, hence producing very similar estimates 

(e.g. Marra and Radice, 2013b). 

[TABLE 1 HERE] 

[FIGURE 1 HERE] 

In the current sample selection context, the data identify the three possible events (𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖 =

1, 𝐻𝐼𝑉𝑖 = 1), (𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖 = 1, 𝐻𝐼𝑉𝑖 = 0) and (𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖 = 0), with probabilities  

𝑃(𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖 = 1, 𝐻𝐼𝑉𝑖 = 1) = 𝑝11𝑖 = 𝐶(Φ(𝛽 + 𝑍𝑖𝛼), Φ(𝑋𝑖𝛾); 𝜃)     

𝑃(𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖 = 1, 𝐻𝐼𝑉𝑖 = 0) =  𝑝01𝑖 = Φ(𝑋𝑖𝛽 + 𝑍𝑖𝛼) − 𝑝11𝑖       

𝑃(𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖 = 0) =  𝑝0𝑖 = 1 − Φ(𝑋𝑖𝛽 + 𝑍𝑖𝛼)      

where Φ is the cumulative distribution function of a standardized normal.  

The log-likelihood function is therefore 

ℓ(𝜹) = ∑ 𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖 × 𝐻𝐼𝑉𝑖

𝑛

𝑖=1

log( 𝑝11𝑖) + 𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖 × (1 − 𝐻𝐼𝑉𝑖) log ( 𝑝01𝑖)

+ (1 − 𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑖) log ( 𝑝0𝑖)     (𝟏𝟏) 

where 𝛿T = (𝛽T, 𝛼T, 𝛾T, 𝜃).   

Model (1-5) based on the joint normality assumption of the error terms is fitted by maximization of 

(11), employing a trust region algorithm which uses the analytical gradient and Hessian of the model 

(Marra and Radice, 2013a). The implementation used here proved to be more stable than the 

standard approaches (e.g., Newton-Raphson) adopted in the literature to estimate likelihood-based 

models.  



7 
 

We assess the degree of association between the consent and HIV status equations using a non-

parametric measure of rank (Kendall’s Tau, 𝜏), which is more appropriate in the context of copulas 

than the correlation coefficient (𝜌) as the dependence modelled by copulas is typically non-linear. 𝜏 

can be interpreted in the same manner as 𝜌 in the sense that it ranges between -1 and +1, therefore 

if individuals who refuse to test are more likely to be HIV positive, we would expect to see a value of  

𝜏 which is less than 0. As the copula models are estimated in a maximum likelihood framework, we 

evaluate model fit using information criteria (specifically, the Bayesian Information Criteria, BIC). 

We use data from the Zambian Demographic and Health Surveys from 2007 (which are publically 

accessible from http://www.measuredhs.com). We adopt the same explanatory variables and 

specification as Hogan et al (2012), the code for which is freely available online from 

http://hdl.handle.net/1902.1/17657. As outlined in model (1), interviewer identity enters into the 

consent equation as a series of dummy variables, one for each interviewer. As some interviewer 

fixed effects are collinear with other variables in the model (there is some matching of interviewers 

on gender, region and language in the Demographic and Health Surveys), interviewers with less than 

50 interviewees or those with interviewer effects which are collinear are combined into a single 

category in order to achieve convergence. We focus on estimating selection models for individuals 

who refused to consent to test, as opposed to respondents who have missing HIV data due to non-

contact, as there are relatively few of these individuals compared to those who refuse, and 

Bärnighausen et al. (2011a) find that their inclusion in the model has little impact on HIV prevalence 

estimates. Although the focus on respondents who refuse is sufficient for demonstrating the 

methodology we propose, it could also be applied to respondents who were not contacted. Table 2 

illustrates the composition of the analysis sample for men and women separately; we stratify all 

analyses by sex. Excluding non-contacts, of the eligible 6,416 men, 1,318 (21%) declined to take a 

HIV test. Of the eligible 7,025 women in the survey, 1400 (20%) declined to take a HIV test. Table 2 

also illustrates the HIV prevalence estimate based on the complete case analysis (i.e. only those 

respondents with a valid HIV test), which is estimated to be 13% for men and 17% for women. 

All our estimates of HIV prevalence are weighted and take account of complex survey design. 

Statistical analyses were performed in the R environment version 3.01 (R Foundation for Statistical 

Computing, Vienna, Austria), using the package SemiParBIVProbit (Marra and Radice, 2013c) which 

implements the copula maximum likelihood approach to fit model (1-5). 

[TABLE 2 HERE] 

Results  

Table 3 presents estimates for the rank association between consenting to test and HIV status 

(Kendall’s Tau) for each of the four copula models employed, along with the corresponding 95% 

confidence intervals, which account for clustering at the level of the Demographic and Health Survey 

cluster. A measure of model fit is also presented in the final column of table 3 (the Bayesian 

Information Criteria). Although this measure is not adjusted for clustering, this is unlikely to affect 

the preferred ordering of the models (Dziak and Li, 2006). For men, there is support for the 

hypothesis of selection bias, with a negative association for each of the copula models, with the 

confidence interval for 𝜏 excluding zero in each case. The 𝜏 of -.53 for the normal model corresponds 

to a 𝜌 (correlation coefficient) of -.73. On the basis of BIC, the model with the best fit is the 𝐶𝑐270. 

http://www.measuredhs.com/
http://hdl.handle.net/1902.1/17657
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For women, the measure of association between testing and HIV status is also negative, although 

the association is less strong than for men, with the 95% confidence intervals in most models 

including zero. The 𝜏 of -.19 in the normal model corresponds to a 𝜌 of -.3. On the basis of BIC, the 

preferred copula specification for women is 𝐶𝑡. 

Table 4 gives the corresponding HIV prevalence estimates. The point estimates for all copula models 

for men are similar, ranging from 20-22%, with the preferred model (C.270 copula) indicating a 

population HIV prevalence of 21% (with a corresponding confidence interval of 20%-22%). This is in 

contrast to an estimate of 13% based only on those with a valid HIV test (table 2). 

As with men, the HIV prevalence estimates for women are not sensitive to the choice of functional 

form for describing the marginal distributions, with HIV prevalence estimates between 18% and 

20%.  The result for the preferred copula model (𝐶𝑡) is 20% (with a confidence interval of 19%-21%). 

The population HIV prevalence estimated using women with a valid HIV test is 17% (table 2). 

[TABLE 3 HERE] 

[TABLE 4 HERE] 

Discussion 

Heckman-type selection models are potentially attractive for application in a wide variety of 

contexts in epidemiology, due to the fact that they allow for the recovery of consistent estimates 

even when data are not missing at random, such as when respondents systematically select out of 

HIV testing on the basis of knowledge of HIV status. However, their practical use has been limited by 

the strong assumptions required for their implementation (Puhani, 2000). This paper outlines a 

novel means of relaxing the commonly used parametric assumptions, and illustrates the approach 

using household surveys which incorporate HIV testing in their data collection. 

Our method provides estimates of HIV prevalence which account for selection bias, but which do not 

rely on the assumption of joint normality for identification. In the specific context of the empirical 

application presented as an illustration of the methodology, this paper demonstrates the robustness 

of previous findings, and enhances the credibility of conclusions from selection models by 

demonstrating that identification does not rely on a specific functional form for HIV prevalence 

estimation in Zambia.  

By demonstrating that existing results indicating the presence of selection bias in HIV prevalence 

estimation are robust to alternative assumptions regarding the association between testing and HIV 

status, this paper illustrates the value of Heckman-type selection models, particularly in relation to 

the potential alternative means of dealing with missing data. For example, imputation models have 

been found to produce results which are almost identical to the complete case analysis of 

respondents who have a valid HIV test (Hogan, 2012; Mishra et al., 2008; Zaidi et al., 2013) 

Therefore, this paper provides further evidence that the requirements for using imputation models 

(i.e. that the data are missing at random, Donders et al., 2006) may be unrealistic in the context of 

HIV prevalence estimation in household surveys where non-response is often substantial. We 

reiterate the finding that imputation models and complete case analysis cannot provide unbiased 

estimates when respondents select into testing on the basis of some unobserved characteristic (such 

as HIV status).  
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However, our main contribution is that we introduce a flexible and practical method for relaxing the 

structural assumption generally adopted in these models, which can be easily applied in a variety of 

contexts with missing data where selection models are potentially relevant, and will be particularly 

applicable if the missingness has a high probability of being non-ignorable. By weakening the 

parametric assumptions required to implement these models, we believe this makes the selection 

methodology even more viable as alternative to the assumption of missing at random, which is also 

strong and generally untestable. This method can be used to evaluate the sensitivity of results from 

selection models to alternative assumptions, which is important for allowing the researcher to draw 

conclusions about whether bias adjustment is required that are not dependent on a specific set of 

assumptions (Geneletti et al., 2011). Although we find that results are unaffected in our application, 

this is unlikely to be the case generally.  

With this in mind, the methodology we outline is easily implemented in standard statistical software 

due to the SemiParBIVProbit package, which is publically available for the R environment 

(http://cran.r-project.org/web/packages/SemiParBIVProbit), and we provide the code for all the 

analysis discussed in this paper. Research based on selection models should routinely provide an 

investigation of the sensitivity of results to relaxation of the bivariate normality assumption due to 

the potential bias associated with incorrect specification of functional form (De Luca, 2008), not only 

in the specific context of HIV prevalence estimation, but also in other empirical applications which 

deal with the treatment of missing data. This is easily achieved with the approach we develop in this 

paper. An additional advantage of our approach is that it provides a means of identifying the most 

appropriate model in terms of information criteria. 

There are a number of important avenues for future research. Further analysis should focus on 

establishing the validity of the other main assumption underlying the estimation of HIV prevalence in 

the presence of non-response, namely the exclusion restriction or selection variable, i.e. whether 

interviewers are related to the HIV status of respondents. While it is plausible that interviewer 

identity is a function of survey design, and not related to individual level characteristics, this is 

difficult to prove conclusively. As we never observe the HIV status of respondents who refuse to test, 

future research should aim to establish whether estimates based on selection models can be 

supported with objective external data, such as mortality records (Nyirenda et al., 2010), or RCTs 

where interviewers or incentives are allocated at random and can therefore be used as exclusion 

restrictions which are known not to affect HIV status. 

There are also a number of other methodological issues to be addressed with selection models for 

estimating HIV prevalence. The use of interviewer fixed effects requires the pooling of interviewers 

who conduct few interviews, prevents the use of bootstrap standard errors and confidence intervals 

(Chiburis et al., 2012), and can result in convergence problems with certain models (Clarke and 

Houle, 2012b). On-going work aims to establish an alternative means of introducing interviewer 

identity into selection models (McGovern et al., 2013).       

Finally, given the increasing focus on treatment-as-prevention in HIV research and policy, it is likely 

that the coverage and frequency of HIV testing will need to increase. Therefore, the issue of non-

response bias will become increasingly important, especially if refusal to test is systematically 

related to prior testing or knowledge of HIV status. Moreover, knowledge of HIV status, and 

therefore the potential for selection bias in prevalence estimation, is likely to increase with the roll-

http://cran.r-project.org/web/packages/SemiParBIVProbit)
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out of programmes focusing on treatment-as-prevention (Korenromp et al., 2013). Methods which 

allow for adjustment of results for selection bias are also likely to become increasingly important in 

this context. The development of appropriate methodologies to enable the researcher to make as 

few assumptions as possible when implementing the model of interest, and testing whether the 

conclusions are robust to alternatives is an important aim. The exposition of the use of copula 

functions in this context is one advance in that direction. 
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Tables 

Table 1 Definition of Copula Functions 

Copula 𝐶(𝐹1(𝑦1), 𝐹2(𝑦2); 𝜃) 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛: 𝐶𝑔 

 
Φ2(Φ−1(𝐹1), Φ−1(𝐹2); 𝜃) 

𝐹𝑟𝑎𝑛𝑘: 𝐶𝑓 

 
−𝜃−1ln (1 +

(𝑒−𝜃𝐹1−1)(𝑒−𝜃𝐹2−1)

(𝑒−𝜃−1)
) 

𝐶𝑙𝑎𝑦𝑡𝑜𝑛: 𝐶𝑐 
 (𝐹1

−𝜃 + 𝐹2
−𝜃 − 1)−1 𝜃⁄  

𝑆𝑡𝑢𝑑𝑒𝑛𝑡: 𝐶𝑡 
 

t2𝑣(t𝑣
−1(𝐹1), t𝑣

−1(𝐹2); 𝜃) 
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Note to table 1: t2𝑣(. , . ; 𝜃) denotes the cdf of a standard bivariate Student-t distribution with 

correlation coefficient 𝜃 and 𝑣 degrees of freedom. t𝑣
−1 denotes the inverse univariate Student-t 

distribution function with 𝑣 degrees of freedom. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Summary Statistics for Zambia DHS 2007 

 
Men 

 
% 

  
N % 

HIV Prevalence 12 
 

Consented to HIV Test 5,098 79 

95% CI LL 11 
 

Refused HIV Test 1,318 21 

95% CI UL 13   Total 6,416 100 

      

      

 
Women 

 
% 

  
N % 

HIV Prevalence 16 
 

Consented to HIV Test 5,625 80 

95% CI LL 15 
 

Refused HIV Test 1,400 20 

95% CI UL 17   Total 7,025 100 

Note to table 2: HIV prevalence estimates are based on analysis of respondents who have a valid HIV 

test and are adjusted for complex survey design. Non-contacts are excluded. 
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Table 3 Measures of Association between HIV Testing and HIV Status (Men and Women in Zambia 2007) 

 
Men 

 
Women 

  Kendall’s Tau 95%CI LL 95%CI UL BIC   Kendall’s Tau 95%CI LL 95%CI UL BIC 

Normal -0.53 -0.77 -0.12   10,667.20  
 

-0.19 -0.48 0.12   12,327.57  

Frank -0.58 -0.73 -0.22   10,662.66  
 

-0.17 -0.43 0.17   12,327.83  

Student-t  -0.53 -0.79 -0.07   10,669.87  
 

-0.19 -0.51 0.18   12,328.66  

Clayton 90 -0.31 -0.77 -0.04   10,671.94  
 

-0.13 -0.58 -0.01   12,327.94  

Clayton 270 -0.71 -0.83 -0.56   10,661.00    -0.27 -0.74 -0.04   12,327.57  

Note to table 3: Estimates are presented for selection models based on the maximisation of model 

(11), and the copula functions defined in table 1. The exclusion restriction is a series of fixed effects 

for interviewer identity. Additional control variables include urban setting, region, interview 

language, ethnicity, religion, marital status, high-risk sexual behaviour in the past year, condom use 

at last sex, sexually transmitted disease in the past year, tobacco and alcohol use, knowing someone 

with AIDS, willingness to care for a family member with AIDS, and having had a previous HIV test as 

per Hogan et al. (2012). Non-contacts are excluded. Confidence intervals are adjusted for clustering 

at the level of the Demographic and Health Survey cluster. 
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Table 4 HIV Prevalence Estimates (Men and Women in Zambia 2007) 

 
Men 

 
Women 

  HIV Prevalence 95%CI LL 95%CI UL   HIV Prevalence 95%CI LL 95%CI UL 

Normal 21 20 22 
 

19 18 20 

Frank 21 20 22 
 

18 17 19 

Student-t  22 20 23 
 

20 19 21 

Clayton 90 20 18 21 
 

19 18 21 

Clayton 270 21 20 22   18 17 19 

Note to table 4: HIV prevalence is based on individuals who have a valid HIV test and predicted HIV 

status from selection models based on the maximisation of model (11), and the copula functions 

defined in table 1. Estimates are presented for selection models based on the maximisation of model 

(11), and the copula functions defined in table 1. Additional control variables include urban setting, 

region, interview language, ethnicity, religion, marital status, high-risk sexual behaviour in the past 

year, condom use at last sex, sexually transmitted disease in the past year, tobacco and alcohol use, 

knowing someone with AIDS, willingness to care for a family member with AIDS, and having had a 
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previous HIV test as per Hogan et al. (2012). Non-contacts are excluded. Estimates are adjusted for 

complex survey design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Illustration of Modelling Dependence Using Copulas 
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