
International Journal of Statistics and Probability; Vol. 4, No. 1; 2015
ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

Flexible Bivariate Binary Models for Estimating the Efficacy of

Phototherapy for Newborns with Jaundice
Giampiero Marra1 & Rosalba Radice2

1 Department of Statistical Science, University College London, UK
2 Department of Economics, Mathematics and Statistics, Birkbeck, University of London, UK

Correspondence: Rosalba Radice, Department of Economics, Mathematics and Statistics, Birkbeck, University of
London, Malet Street, London WC1E 7HX. Tel: 44-20-7631-6795. E-mail: r.radice@bbk.ac.uk

Received: October 31, 2014 Accepted: November 30, 2014 Online Published: December 19, 2014

doi:10.5539/ijsp.v4n1p46 URL: http://dx.doi.org/10.5539/ijsp.v4n1p46

Abstract

In this work we analyse the efficacy of phototherapy (treatment) on the probability of being hyperbilirubinemic
(outcome) in infants. A realistic quantification of the relationship between treatment and outcome can be chal-
lenging for various reasons. First, the probability of interest might be too small. Second, confounding unmeasured
variables may exist which can bias the efficacy of phototherapy at preventing significant hyperbilirubinemia. Third,
relationships between covariates and the outcome variable may exhibit non-linear patterns that, if not accounted
for, can bias the relationship of interest. One way of dealing with the second and third issues is to use a semipara-
metric recursive bivariate probit model. To address the first issue as well, we explore an extension of this model
which accounts for the fact that being hyperbilirubinemic can be regarded as a rare event. The proposed approach
combines the marginal distributions of treatment and outcome using copulae, and uses asymmetric link functions
to deal with rare outcome events. The main features underpinning the use of asymmetric link functions within
semiparametric bivariate binary models are discussed.

Keywords: asymmetric link function, recursive bivariate binary model, jaundice, phototherapy efficacy, regression
spline, unmeasured confounding

1. Introduction

Although jaundice in newborns is common and generally benign, very high total serum bilirubin (TSB) levels can
injure the newborn’s central nervous system (Maisels et al., 2001). This is known as hyperbilirubinemia. For this
reason, TSB levels in jaundiced newborns are followed and sometimes treated with phototherapy if they are at risk
of rising to or have already reached potentially dangerous levels. The American Academy of Pediatrics (AAP)
has published guidelines that suggest TSB levels at which phototherapy is recommended for term and late preterm
newborns (Maisels et al., 2004). However, no randomized trials have quantified the efficacy of this intervention
at the TSB levels at which they are currently recommended. A randomized trial of phototherapy is difficult to do
because relevant outcomes, such as a TSB level exceeding the AAP’s threshold for exchange transfusion, are rare,
and because there are ethical obstacles to randomizing newborns not to receive a therapy recommended by the
AAP (Newman et al., 1999, 2004).

Another issue with quantifying the efficacy at preventing significant hyperbilirubinemia in infants is the presence
of unmeasured confounding variables. For example, because continuing exclusive breastfeeding is a risk factor for
subsequent hyperbilirubinemia, phototherapy is generally more indicated and therefore might be more commonly
used in infants continuing to breastfeed exclusively (Kuzniewicz et al., 2008). Thus, it is expected that the effect of
not having breastfeeding data might confound the relationship between phototherapy and the outcome, by causing
the effect of phototherapy to be falsely high.

To account for the problem of unmeasured confounding, the recursive bivariate probit model (RBPM) may be
used (Heckman, 1978). A recent application of RBPM to estimate the efficacy of phototherapy for newborns with
jaundice has appeared in Newman et al. (2012). In brief, this approach assumes that the two observable binary
variables (outcome and treatment) are manifestations of a corresponding pair of unobserved, correlated, bivariate
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normal latent variables, with the manifest variable taking on a value of one if the latent variable is positive and zero
otherwise.

The use of RBPM is, however, subject to criticism as it makes the assumptions of bivariate normality, pre-specified
form of covariate effects and symmetry of link functions. Marra & Radice (2011) introduced an extension of
RBPM which relaxes the assumption of pre-specified covariate-response relationships using penalized splines.
Recently, Radice et al. (2013) also relaxed the assumption of bivariate normality using copula functions. These
generalizations gave rise to the semiparametric copula RBPM (SCRBPM). A potential issue with SCRBPM is that
the assumption of symmetric link functions is maintained. This means that when the event of interest is rare (as in
this case) SCRBPM, as any other modeling approach based on symmetric link functions, will tend to underestimate
the probability of interest (Czado & Santner, 1992; Chen et al., 1999). There are many ways to obtain asymmetric
links; see, for instance, the recent work by Bazan et al. (2013), and references therein. One of them considers the
cumulative distribution function (cdf) of an asymmetric distribution. A very popular example is the complementary
log-log link which comes from the cdf of the Gumbel distribution. Alternative links can be obtained using the cdfs
of the Weibull and log-normal distributions. In these cases, the cdf is completely specified and it does not depend
on any unknown shape parameter. Also, no relationship between these cdfs and the usual symmetric links are
established. On the contrary, links derived from cdfs which depend on an unknown shape parameter have been
proposed by Prentice (1976), Aranda-Ordaz (1976) and Bazan et al. (2013), for example. These links are skewed
logit and probit and include the logit and probit links as special cases. The cdf of the generalized extreme value
distribution can also be employed for this purpose (Wang & Dey, 2010).

Building on the work by Radice et al. (2013), we explore a modification of SCRBPM which uses asymmetric links
for the marginal distributions of the two model equations. Specifically, we employ a skew probit link using the
standard skewnormal distribution by Azzalini (1985). We opted for this link as it includes the probit link as special
case and has desirable mathematical properties.

2. The Proposed Model and Its Main Features

Consider a pair of random variables (y1i, y2i) (treatment and outcome, respectively) for i = 1, . . . , n, where yvi ∈
{0, 1}, v = 1, 2, and n is the sample size. The observed yvi can be viewed as determined by a latent continuous
variable y∗vi such that yvi = 1(y∗vi > 0), where 1 is the indicator function. We assume that

y∗vi = ηvi + ϵvi, ϵvi ∼ SN(ξv),

where

η1i = uT
1iα1 +

K1∑
k1=1

s1k1 (z1k1i), (1)

η2i = ψy1i + uT
2iα2 +

K2∑
k2=1

s2k2 (z2k2i), (2)

and ϵvi follows a standardised skew normal (SN) distribution with shape parameter ξv ∈ R. Note that our develop-
ment also allows ϵvi to follow either a power normal (PN) or a reciprocal power normal (RPN), for instance; more
details are given in the Appendix. Parameter ψ quantifies the effect of the treatment on the outcome on the scale
of η2i, uT

1i is defined as
(
1, u12i, . . . , u1P1i

)
and corresponds to the ith row of U1 = (u11, . . . ,u1n)T , the n × P1 model

matrix containing P1 parametric terms (e.g., intercept, dummy and categorical variables), α1 is a coefficient vector,
and the s1k1 are unknown smooth functions of the K1 continuous covariates z1k1i. Similarly, uT

2i =
(
1, u22i, . . . , u2P2i

)
is the ith row vector of the n × P2 model matrix U2 = (u21, . . . ,u2n)T , α2 is a parameter vector, and the s2k2 are
unknown smooth terms of the K2 continuous regressors z2k2i. The svkv (zvkvi) are subject to the centering (identifi-
ability) constraint

∑n
i=1 svkv (zvkvi) = 0, v = 1, 2, kv = 1, . . . ,Kv (Wood, 2006). η1i and η2i can also include smooth

terms interacted with some predictor(s) and smooth functions of two or more covariates (e.g., Wood, 2006).

2.1 Smooth Function Representation

An effective way of representing smooth functions of continuous variables is the regression spline approach (e.g.,
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Eilers & Marx, 1996). Specifically,

svkv (zvkvi) =
Jvkv∑
j=1

βvkv jbvkv j(zvkvi) = Bvkv (zvkvi)Tβvkv ,

where the bvkv j(zvkvi) are known basis functions, the βvkv j are parameters, Jvkv is the number of spline bases used to
represent svkv (·), Bvkv (zvkvi)T is the ith vector of dimension Jvkv , defined as

{
bvkv1(zvkvi), bvkv2(zvkvi), . . . , bvkv Jvkv

(zvkvi)
}
,

and βvkv is the corresponding parameter vector. The cases of smooth terms multiplied by some covariate(s) and
of smooths of more than one variable follow a similar construction. Several choices for the basis functions are
possible and include low rank thin plate regression splines, B-splines and cubic regression splines (e.g., Ruppert
et al., 2003; Wood, 2006). Linear predictors (1) and (2) can, therefore, be written as η1i = uT

1iα1 + BT
1iβ1 and

η2i = ψy1i + uT
2iα2 + BT

2iβ2, where BT
vi =

{
Bv1(zv1i)T , . . . ,BvKv (zvKvi)T

}
and βT

v = (βT
v1, . . . ,β

T
vKv

). After defining
X1i = (uT

1i,B
T
1i)

T and X2i = (y1i,uT
2i,B

T
2i)

T , we have η1i = XT
1iδ1 and η2i = XT

2iδ2 where δT
1 = (αT

1 ,β
T
1 ) and

δT
2 = (ψ,αT

2 ,β
T
2 ).

2.2 SN
The probability density function (pdf) and cdf of the standard SN distribution are given as

fSN (ϵvi, ξv) = 2ϕ(ϵvi)Φ(ξvϵvi), FSN (ϵvi, ξv) = Φ(ϵvi) − 2T (ϵvi, ξv),

where T (·, ·) denotes the Owen’s T function and ξv ∈ R. A reflection of SN can be obtained by using the result
FSN (ϵvi, ξv) = 1 − FSN (−ϵvi,−ξv) (Azzalini, 1985).

Note that FSN (−ϵvi, ξv) , 1−FSN (ϵvi, ξv) because FSN (ϵvi, ξv) is not symmetric. Also, if ξv = 0 then FSN (ϵvi, ξv) =
Φ(ϵvi), that is the standardised skew normal distribution reduces to a standardised normal distribution. Using the
latent variable representation of the response, we have that

P(yvi = 1) = P(y∗vi > 0) = P(ηvi + ϵvi > 0) = P(ϵvi > −ηvi) = 1 − P(ϵvi ≤ −ηvi). (3)

If ϵvi ∼ SN(ξv) then (8) is
P(yvi = 1) = 1 − FSN (−ηvi, ξv) = FSN (ηvi,−ξv),

whereas if ϵvi ∼ SN(−ξv) then (8) becomes

P(yvi = 1) = 1 − FSN (−ηvi,−ξv) = FSN (ηvi, ξv).

The distribution of SN is positively or negatively asymmetric in agreement with the sign of ξv (Azzalini, 1985).
Figure 1 shows the shape of the cdfs and pdfs of SN for different values of ξv. From the curves, it is evident that
SN allows the probability of a binary variable to approach zero at different rates than it approaches one depending
on the values of ξ and η. If ξ = 0 then SN yields a classic probit curve.

2.3 Copula representation and log-likelihood function

Given some marginal cdfs, it is possible to define the joint cdf of event (y1i = 1, y2i = 1) by using the copula
representation (Sklar, 1959, 1973)

P(y1i = 1, y2i = 1) = C(P(y1i = 1),P(y2i = 1); θ),

where C is a two-place copula function and θ is an association parameter measuring the dependence between
P(y1i = 1) and P(y2i = 1). A nice feature of the copula approach is that the marginal distributions may come
from different families. Also, choosing the marginal distributions and modeling the dependence between them
can be treated as two separate but related issues. The families considered are Clayton, Frank, Gaussian, Gumbel,
Joe and Student-t, as well as rotated versions (90, 180 and 270) of the Clayton, Gumbel and Joe copulas; see the
table and figures in Radice et al. (2013) for these copulas’ definitions and illustrations. Nelsen (2006) provides a
comprehensive overview of copulas and their properties.

48



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 1; 2015

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

η

F
(η

)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

η

f(
η
)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

η

F
(η

)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

η

f(
η
)

Figure 1. Cumulative distribution and probability density functions of SN Description: The first row displays the
functions for ξ = 0, 0.4, 0.6, 4, 8, whereas the second row for ξ = −8,−4,−0.6,−0.4, 0, when using different

values of η. The grey curves correspond to ξ = 0.

The log-likelihood function of the model can be written as

ℓ =

n∑
i=1

{
y1iy2i logP(y1i = 1, y2i = 1) + y1i(1 − y2i) logP(y1i = 1, y2i = 0)

+(1 − y1i)y2i logP(y1i = 0, y2i = 1) + (1 − y1i)(1 − y2i) logP(y1i = 0, y2i = 0)
},

where P(y1i = 1, y2i = 0) = P(y1i = 1) − P(y1i = 1, y2i = 1), P(y1i = 0, y2i = 1) = P(y2i = 1) − P(y1i = 1, y2i = 1)
and P(y1i = 0, y2i = 0) = 1 − [P(y1i = 1) + P(y2i = 1) − P(y1i = 1, y2i = 1)

]
.

2.4 Treatment Effect

In our case, the aim is to investigate how the treatment changes the expected outcome. In other words, the interest
is in the effect of y1i on P(y2i = 1|y1i), which in practice can be calculated using the commonly used average
treatment effect in the specific sample at hand (SATE; Imbens, 2004). Assuming that P(yvi = 1) = FSN (ηvi,−ξv),
SATE is defined as

SATE(δ,X) =
1
n

n∑
i=1

P(y2i = 1|y1i = 1) − P(y2i = 1|y1i = 0),

where

P(y2i = 1|y1i = 1) =
C
(
FSN (η1i,−ξ1), FSN (η(y1i=1)

2i ,−ξ2); θ
)

FSN (η1i,−ξ1)
, (4)

P(y2i = 1|y1i = 0) =
FSN (η(y1i=0)

2i ,−ξ2) − C
(
FSN (η1i,−ξ1), FSN (η(y1i=0)

2i ,−ξ2); θ
)

1 − FSN (η1i,−ξ1)
, (5)

η
(y1i=r)
2i represents the linear predictor evaluated at y1i = r where r is equal to 1 or 0, δ contains all the model

parameters and X = (x1| . . . |xn)T with xi defined as (XT
1i,X

T
2i)

T . SATE(δ,X) can be estimated using SATE(δ̂,X),
whereas a confidence interval for it can be obtained using posterior simulation as explained in Section 4. If we use
different marginal probability models then expressions (4) and (5) have to be changed accordingly.
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3. Parameter Estimation

As pointed out by Azzalini & Arellano-Valle (2013), extra care must be taken when designing an algorithm to
estimate the coefficients of a model that involves a link function which depends on a shape parameter. Here, the
authors propose to penalize the shape parameter in estimation. We follow a similar idea and use a ridge penalty
approach to penalize the shape parameters in our model.

Let us denote the copula log-likelihood as ℓ(δ), where δT = (δT
1 , δ

T
2 , θ, ξ1, ξ2). Because θ is bounded in most copula

cases, we replace θ with θ∗ (see the table in Radice et al. (2013)). The use of δT
∗ = (δT

1 , δ
T
2 , θ∗, ξ1, ξ2) will ensure

that in optimization δ∗ ∈ Rp, where p is the total number of parameters. To avoid overfitting, which is likely to
happen when a model includes smooth components, we employ in estimation the (second-order roughness) penalty
term

∑2
v=1
∑Kv

kv=1 λvkv

∫ {
s′′vkv

(zvkv )
}2

dzvkv , where the λvkv are smoothing parameters controlling the trade-off between
fit and smoothness (e.g., Ruppert et al., 2003; Wood, 2006). Because regression splines are linear in their model
parameters, the overall penalty can be written as βT Sλβ where βT = (βT

1 ,β
T
2 ), Sλ =

∑2
v=1
∑Kv

kv=1 λvkv Svkv and the Svkv

are positive semi-definite known square matrices. Expressions for the bvkv j(zvkvi) needed to represent the smooth
terms and the respective Svkv can be found in Ruppert et al. (2003) and Wood (2006). The ridge penalties for the
shape parameters are simply given by ξ2

1 and ξ2
2 . The function to maximize is

ℓp(δ∗) = ℓ(δ∗) −
1
2

(
βT Sλβ + ξ2

1 + ξ
2
2

)
, (6)

where βT Sλβ+ ξ2
1 + ξ

2
2 = δ

T
∗ S̃λδ∗ with S̃λ = diag(0T

P1
, λ1k1 S1k1 , . . . , λ1K1 S1K1 , 0

T
P2
, λ2k2 S2k2 , . . . , λ2K2 S2K2 , 0, 1, 1) and

0T
Pv
= (0v1, . . . , 0vPv ). Note that in (6) we need to assume that λT = (λ1k1 , . . . , λ1K1 , λ2k2 , . . . , λ2K2 ) is known; joint

estimation of δ and λ via maximization of (6) would clearly lead to λ̂ = 0, which is not practically useful (e.g.,
Wood, 2006). Building on the approach described in Radice et al. (2013), estimation of δ and λ is achieved in two
steps which are iterated until convergence:

step 1 For a given parameter vector value δ[a]
∗ and holding the smoothing parameter vector fixed at λ[a], find an

estimate of δ∗ using the trust region Newton approach:

min
p

ℓ̆p(δ[a]
∗ ) def
= −
{
ℓp(δ∗[a]) + pT g[a]

p +
1
2

pTH [a]
p p
}

so that ∥p∥ ≤ r[a],

δ∗
[a+1] = arg min

p
ℓ̆p(δ[a]

∗ ) + δ[a]
∗ ,

where, at iteration a, g[a]
p = g[a] − S̃λ[a] δ̂[a]

∗ , H [a]
p = H [a] − S̃λ[a] , g[a] is made up of g[a]

1 = ∂ℓ(δ∗)/∂δ1|δ1=δ
[a]
1

,

g[a]
2 = ∂ℓ(δ∗)/∂δ2|δ2=δ

[a]
2

, g[a]
3 = ∂ℓ(δ∗)/∂θ∗|θ∗=θ[a]

∗
, g[a]

4 = ∂ℓ(δ∗)/∂ξ1|ξ1=ξ
[a]
1

and g[a]
5 = ∂ℓ(δ∗)/∂ξ2|ξ2=ξ

[a]
2

, and the

Hessian matrix has a 5 × 5 matrix block structure with (r, h)th element H [a]
r,h = ∂

2ℓ(δ∗)/∂δr∂δ
T
h |δr=δ

[a]
r ,δh=δ

[a]
h

,
r, h = 1, . . . , 5, where δ3 = θ∗, δ4 = ξ1 and δ5 = ξ2. ∥ · ∥ denotes the Euclidean norm and r[a] represents the
radius of the trust region. At each iteration, ℓ̆p(δ[a]

∗ ) is minimized subject to the constraint that the solution
falls within a trust region with radius r[a]. The proposed solution is then accepted or rejected and the trust
region expanded or shrunken based on the ratio between the improvement in the objective function when
going from δ[a]

∗ to δ[a+1]
∗ and that predicted by the quadratic approximation; see Nocedal & Wright (2006) for

full details. Note that, near the solution, the trust region Newton algorithm typically behaves as a Newton
algorithm. As pointed out by Nocedal & Wright (2006), this approach usually works better than classic
optimization methods.

step 2 For a given smoothing parameter vector value λ[a] and holding the main parameter vector value fixed at
δ[a+1]
∗ , find an estimate of λ:

λ[a+1] = arg min
λ

Vu(λ) def
=

1
ň
∥z+,[a+1] − A[a+1]

λ z+,[a+1])∥2 − 1 +
2
ň
γtr(A[a+1]

λ ), (7)

where ň = 4n, z+,[a+1] =
√

W[a+1]z[a+1],
√

W[a+1] is the square root of a block diagonal matrix made up
of W[a+1]

i with (r, h)th element −∂2ℓ(δ∗)i/∂ηri∂ηhi|ηri=η
[a+1]
ri ,ηhi=η

[a+1]
hi

, r, h = 1, . . . , 4, η3i = ξ1, η4i = ξ2, z[a+1]
i is

X̃iδ
[a+1]
∗ +W−1,[a+1]

i d[a+1]
i , d[a+1]

i =

{
∂ℓ(δ∗)i/∂η1i|η1i=η

[a+1]
1i

, . . . , ∂ℓ(δ∗)i/∂η4i|η4i=η
[a+1]
4i

}T
, X̃i = diag

{
XT

1i,X
T
2i, 1, 1

}
,
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with X1i and X2i defined in Section 2.1, X̃ =
(
X̃1| . . . |X̃n

)T
, A[a+1]
λ =

√
W[a+1]X̃(X̃T W[a+1]X̃+Šλ)−1X̃T

√
W[a+1]

is the hat matrix, Šλ = diag(0T
P1
, λ1k1 S1k1 , . . . , λ1K1 S1K1 , 0

T
P2
, λ2k2 S2k2 , . . . , λ2K2 S2K2 , 1, 1), tr(A[a+1]

λ ) represents
the effective degrees of freedom (ed f ) of the penalized model (e.g., Wood, 2006), and γ is a tuning parameter
which can be increased from its usual value of 1 to obtain smoother models (Kim & Gu, 2004). Function
Vu(λ) can be regarded as an approximate Akaike information criterion (AIC) (Wood, 2006). A similar ap-
proach has been employed in a related context by Radice et al. (2013) and Marra & Radice (2011) to which
we refer the reader for more details. Note that quantities needed to construct the working linear model are
efficiently set up by using sparse algebra. In addition, the working linear model quantities in (7) are con-
structed for a fixed value of θ∗, hence keeping the dimensionality of the problem to the lowest possible. This
is sensible because this parameter is not either penalized or specified as function of a linear predictor whose
components may need to be penalized.

4. Model Selection and Confidence Intervals

Model selection can be achieved using the AIC which, in our case, is AIC = −2ℓ(δ̂∗) + 2ed f , where the log-
likelihood is evaluated at the penalized parameter estimates and ed f = tr(Âλ̂).

For the construction of confidence intervals, we use the Bayesian covariance matrix Vδ∗ = −H−1
p which has been

shown to produce intervals with close to nominal coverage probabilities as opposed to its frequentist counterpart
(Marra & Wood, 2012). As explained, for instance, in Wood (2006) and Radice et al. (2013), another advantage of
using a Bayesian result for interval construction is that intervals for non-linear functions of the model coefficients
(e.g., SATE) can be conveniently obtained by simulation from the posterior distribution of δ∗. This can be achieved
as follows:

step 1 Draw nsim random vectors from N(δ̂∗, V̂δ∗).
step 2 Calculate nsim simulated realizations of the function of interest. Let us assume that a Gaussian copula is

employed and that the function of interest is SATE(δ,X) where δT = (δT
1 , δ

T
2 , θ = tanh(θ∗), ξ1, ξ2). We then

have nsim simulated realizations δsim,1, . . . , δsim,nsim and hence SATEs.
step 3 Using the nsim realizations of SATE calculate the lower, (ς/2), and upper, 1 − ς/2, quantiles.

nsim can be set to 1000 as the 3 steps are relatively inexpensive to run, whereas the significance level is usually set
to 0.05. Note that an approximate confidence interval for SATE could also be obtained using the delta method in
Radice et al. (2013).

5. Analysis of Photoherapy Data

5.1 Data

The aim is to estimate the efficacy of phototherapy in newborns with jaundice. Following previous studies, we
considered 20731 infants born in 12 Northern California Kaiser Permanente Medical Care Program hospitals from
1 January 1995 to 31 December 2004 whose birth weight was at least 2000 grams and whose gestational age at
least 35 weeks, with TSB levels within 3 mg/dL of the AAP’s phototherapy threshold.

The data includes the following variables:

• Binary outcome variable (threshold) indicating the cross of the AAP exchange transfusion threshold
within 48 hours of the qualifying TSB.

• Binary treatment variable (phototherapy) representing the receipt of hospital phototherapy within 8 hours
of the qualifying TSB.

• Measured confounders:

– Infant age:

∗ age1=1 if infant age < 24 hrs and 0 otherwise;
∗ age2=1 if infant age 24 < infant age < 48 hrs and 0 otherwise;
∗ age3=1 if infant age 48 < infant age < 72 hrs and 0 otherwise;
∗ age4=1 if infant age 72 < infant age < 96 hrs and 0 otherwise;
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∗ age5=1 if infant age > 96 hrs and 0 otherwise.

– Birth weight in grams (weight, continuous variable)

– Gestational age in weeks (gest, continuous variable).

– Gender (gender), binary variable (gender=1 if male, 0 otherwise).

– Qualifying TSB level:

∗ TSB1=1 if −3 < TSB < −2 and 0 otherwise;
∗ TSB2=1 if −2 < TSB < −1 and 0 otherwise;
∗ TSB3=1 if −1 < TSB < 0 and 0 otherwise;
∗ TSB4=1 if 0 < TSB < 1 and 0 otherwise;
∗ TSB5=1 if 1 < TSB < 2 and 0 otherwise;
∗ TSB6=1 if 2 < TSB < 3 and 0 otherwise.

5.2 Model Specification

The linear predictors for the phototherapy and threshold equations were specified as

η1i = α10 + α11age2 + α12age3 + α13age4 + α14age5 + α15gest + α16gender + α17TSB2 + α18TSB3

+ α19TSB4 + α120TSB5 + α121TSB6 + s11(weight),
,

η2i = α20 + ψphototherapy + α21age2 + α22age3 + α23age4 + α24age5 + α25gest + α26gender

+ α27TSB2 + α28TSB3 + α29TSB4 + α210TSB5 + α211TSB6 + s21(weight),
,

where s11 and s21 are the unknown smooth functions described in Section 2.1. The smooth components were
represented using penalized thin plate regression splines with basis dimensions equal to 10 and penalties based
on second order derivatives (Wood, 2006). The non-linear specification for weight arises from the fact that this
covariate is likely to affect P(phototherapy = 1) and P(threshold = 1) non-linearly. gest was included as
a parametric component because it did not have enough unique covariate values to justify the use of a smooth
function. Regarding the use of link functions, we considered the probit and skew normal links for each copula
model mentioned in Section 2.3.

6. Results

For each fitted model the AIC, estimated θ and estimated SATE are reported in Tables 1, 2 and 3. The results for
the model cases that did not achieve convergence are not reported. Specifically, for the models with probit margins
and 90 and 180 degrees rotated Clayton copulas and 270 degrees rotated Gumbel copula, the algorithm failed
to find a solution. For the models with skew normal margins and Frank, Student-t, 180 degrees rotated Clayton
copula, 270 degrees rotated Gumbel copula, not-rotated Joe and 270 degrees rotated Joe copula, the algorithm did
not converge. Numerical problems sometimes arise when the model employed is not appropriate to fit the data at
hand.

The model with lowest AIC is the 180 degrees rotated Gumbel copula with skew normal margins, although other
copula models with very similar AIC values are good candidate as well. The findings are consistent with the in-
terpretation that babies who are less likely to receive phototherapy are at lower risk of being hyperbilirubinemic.
In other words, unmeasured confounding (e.g., breast feeding) is negatively associated with both the probabil-
ity of receiving photherapy and the probability of being hyperbilirubinemic. The estimated θ for Gumbel180,
3.03(2.06, 5.06), suggests that unmeasured confounding is present. The estimated SATE is −0.78 (−1.23,−0.59).
The result is consistent with the interpretation that the probability of being hyperbilirubinemic decreases by 0.78%
when a baby receives photherapy as compared to a baby who does not receive it. When comparing the estimated
results among all the models two points are worth noting. First, with some exceptions (e.g., the 270 degrees ro-
tated Clayton copula, 90 degrees rotated Gumbel and Joe copulas), the estimated SATE appears to be robust to
different margins and copula specifications. Second, the estimated θ are similar for the models whose AIC values
are reasonably close to each other, whereas for the models which are not supported by the data the estimates vary
considerably.
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Table 1. AIC values for the copula models with probit and skew normal margins

Margins
Probit Skew normal

C
op

ul
a

Gaussian 20219.64 20213.52
Frank 20220.76 -
Student-t 20215.53 -
Clayton0 20214.33 20214.34
Clayton90 - 20224.10
Clayton180 - -
Clayton270 20223.51 20221.34
Gumbel0 20222.07 20219.84
Gumbel90 20223.07 -
Gumbel180 20216.39 20213.19
Gumbel270 - -
Joe0 20222.07 -
Joe90 20223.45 20222.63
Joe180 20214.21 20214.22
Joe270 20222.07 -

Table 2. Estimated θ (and confidence interval) obtained from the fitted copula models with probit and skew normal
margins

Margins
Probit Skew normal

C
op

ul
a

Gaussian 0.87 (0.69,0.95) 0.88 (0.73,0.95)
Frank -2.44 (-5.29,0.53) -
Student-t -0.46 (-0.83,0.18) -
Clayton0 3.04 (1.63,5.62) 2.34 (0.77,8.15)
Clayton90 - -
Clayton180 - -
Clayton270 -0.31 (-8.47,-0.01) -0.35 (-8.52,-0.02)
Gumbel0 1 (1,Inf) 0.75 (0.61,0.85)
Gumbel90 -1.2 (-4.07,-1.02) -
Gumbel180 3.03 (2.06,5.06) 3.05 (2.09,5.08)
Gumbel270 - -
Joe0 1 (1,Inf) -
Joe90 -1.33 (-9.74,-1.02) - 1.31 (-9.70,-1.00)
Joe180 3.93 (2.49,6.61) 3.90 (2.46,6.57)
Joe270 -1 (-Inf,-1) -
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Table 3. Estimated SATE (and confidence interval) obtained from the fitted copula models with probit and skew
normal margins

Margins
Probit Skew normal

C
op

ul
a

Gaussian -0.77 (-1.24,-0.64) -0.81 (-1.55,-0.53)
Frank -0.78 (-0.99,-0.58) -
Student-t -0.78 (-0.99,-0.53) -
Clayton0 -0.78 (-1.23, -0.64) -0.78 (-1.24,-0.63)
Clayton90 - -0.76 (-0.97,135.80)
Clayton180 - -
Clayton270 -1.06 (-1.45, 0.83) -1.08 (-1.40,-0.84)
Gumbel0 -0.76 (-0.99, -0.59) -0.81 (-1.65,-0.52)
Gumbel90 -0.96 (-1.28,-0.77) -
Gumbel180 -0.77 (-1.18,-0.62) -0.78 (-1.23,-0.59)
Gumbel270 - -
Joe0 -0.76 (-0.99, -0.59) -
Joe90 -1.13 (-1.48,-0.89) -1.16 (-25.11,-0.06)
Joe180 -0.79 (-1.20,-0.64) -0.79 (-1.15,-0.64)
Joe270 -0.76 (-0.99,-0.59) -
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Figure 2. Estimated smooth components for the continuous variable weight in the phototherapy equation
(eq.1) and threshold equation (eq.2)

Description: These were obtained by using the rotated 180 degrees Gumbel copula with skew normal margins.
Results are on the scale of the respective linear predictors. Grey shades represent 95% confidence intervals and the
‘rug plot’, at the bottom of each graph, is used to show the covariate values.

Figure 2 shows the estimated smooth components for the phototherapy and threshold equations. The effect
of weight is non-linear for the treatment equation suggesting that the propensity of receiving phototherapy first
decreases and then increases as weight increases. As for the outcome equation the pointwise confidence intervals
for the smooth function of weight suggest that weight does not have a linear or non-linear effect.

54



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 1; 2015

Table 4. Estimated coefficients of the measured confounders obtained from the fitted 180 degrees rotated Gumbel
copula model with skew normal margins

eq.1 eq.2

TSB2 0.04∗ 0.16
TSB3 0.14∗∗∗ 0.54∗∗∗

TSB4 0.27∗∗∗ 0.81∗∗∗

TSB5 0.37∗∗∗ 1.21∗∗∗

TSB6 0.54∗∗∗ 1.56∗∗∗

gender 0.04∗∗∗ 0.12∗∗

gest −0.04∗∗∗ −0.15∗∗∗

age2 −0.19∗∗∗ −0.17
age3 −0.42∗∗∗ −0.74∗∗∗

age4 −0.72∗∗∗ −1.19∗∗∗

age5 −0.67∗∗∗ −1.12∗∗∗

Decription: (eq.1) refers to the phototherapy equation and (eq.2) to the threshold equation. ∗∗∗, ∗∗, ∗ and
indicate significance at 0.001, 0.01, 0.05 and 1.

For completeness, Table 4 reports the estimated parametric coefficients for Gumbel180 with skew normal mar-
gins. As the qualifying TSB level increases the propensity of receiving phototherapy and that of being hyper-
bilirubinemic increase. Male babies are more likely to receive phototherapy and to be at higher risk of being
hyperbilirubinemic. By increasing gestational age, both the propensity of receiving phototherapy and that of being
hyperbilirubinemic decrease. Finally as age increases babies are less likely to receive phototherapy and less likely
to be hyperbilirubinemic.

7. Discussion

The use of asymmetric link functions in the context of recursive bivariate models estimating the efficacy of pho-
totherapy for newborns with jaundice has been explored. The skew probit link approach by Azzalini (1985) has
been employed. We also explored the use of power probit and reciprocal power probit links. The choice of these
link functions has been driven by the fact that they include the probit link as special case and have desirable prop-
erties. Our approach can also be employed for modeling jointly two imbalanced binary responses with a focus on
predictive performance, for instance.

The approach has been applied to a study where the aim was to quantify the efficacy at preventing significant
hyperbilirubinemia in infants. Results showed that phototherapy significantly decreases the probability of being
hyperbilirubinemic. Also, our empirical findings suggest that the estimated quantity of interest (SATE) is robust to
relaxing the assumption of symmetric links.

Appendix

The pdf and cdf of the standard power normal (PN) distribution, denoted in our context by ϵvi ∼ PN(ξv), are given
as

fPN (ϵvi, ξv) = ξv[Φ(ϵvi)]ξv−1ϕ(ϵvi), FPN (ϵvi, ξv) = [Φ(ϵvi)]ξv ,

respectively, where ϕ(.) and Φ(.) are the pdf and cdf of the standard normal distribution, and ξv > 0. A new random
variable can be defined such that

FRPN (ϵvi, ξv) = 1 − [Φ(−ϵvi)]ξv and fRPN (ϵvi,ξv ) = ξv[Φ(−ϵvi)]ξv−1ϕ(ϵvi).

In this case ϵvi ∼ RPN(ξv) denotes the standard reciprocal PN distribution. The name comes from that fact
that FRPN (ϵvi, ξv) = 1 − FPN (−ϵvi, ξv). Therefore, the standard PN and standard RPN distributions are distinct
although closely related because one is the reflection of the other.

Note that FPN (−ϵvi, ξv) , 1−FPN (ϵvi, ξv) or FRPN (−ϵvi, ξv) , 1−FRPN (ϵvi, ξv) because FPN (ϵvi, ξv) and FRPN (ϵvi, ξv)
are not symmetric. Also, if ξv = 1 then FPN (ϵvi, ξv) = FRPN (ϵvi) = Φ(ϵvi). See Bazan et al. (2010) for full details.
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Using the latent variable representation of the response, we have that

P(yvi = 1) = P(y∗vi > 0) = P(ηvi + ϵvi > 0) = P(ϵvi > −ηvi) = 1 − P(ϵvi ≤ −ηvi). (8)

If ϵvi ∼ PN(ξv), then (8) becomes

P(yvi = 1) = 1 − [Φ(−ηvi)]ξv = 1 − FPN (−ηvi, ξv) = FRPN (ηvi, ξv),

whereas if ϵvi ∼ RPN(ξv) then (8) is

P(yvi = 1) = 1 − {1 − [Φ(ηvi)]ξv } = {1 − FRPN (−ηvi, ξv)} = FPN (ηvi, ξv).
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Figure 3. Shape of the cdfs and pdfs of PN (top row) and RPN (bottom row) for different values of ξv

As explained by Gupta & Gupta (2008), the PN density is unimodal and is skewed to the right if ξv > 1 and to the
left if 0 < ξv < 1. On the other hand, by considering the reciprocal formulation, the RPN density is also unimodal
and is skewed to the left if ξv > 1 and to the right if 0 < ξv < 1. Figure 3 shows the shape of the cdfs and pdfs of
PN and RPN for different values of ξv. From the curves, it is evident that PN and RPN allow the probability
of a binary variable to approach zero at different rates than it approaches one depending on the values of ξ and η.
When ξ = 1, PN and RPN yield a classic probit curve.
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