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Abstract 
Most proteins assume different conformations to perform their cellular functions. This 
conformational dynamics is physiologically regulated by binding events and post-translational 
modifications, but can also be affected by pathogenic mutations. Atomistic molecular dynamics 
simulations complemented by enhanced sampling approaches are increasingly used to probe the 
effect of mutations on the conformational dynamics and on the underlying conformational free 
energy landscape of proteins. In this short review we discuss recent successful examples of 
simulations used to understand the molecular mechanism underlying the deregulation of 
physiological conformational dynamics due to non-synonymous single point mutations. Our 
examples are mostly drawn from the protein kinase family. 
 
Introduction 
 
Proteins are dynamic macromolecules and their function is often dependent on their motions and 
conformational flexibility [1]. Recent high-resolution structural studies using X-ray 
crystallography, Cryo-EM and NMR have given direct evidences of how protein plasticity and 
dynamic behavior is crucial for their function [2–4]. This is particularly true in signaling proteins 
such as protein kinases that react to allosteric stimuli such as ligand or protein binding and post-
translational modifications by switching to an active conformation and starting a signaling cascade 
that eventually controls the activity and fate of cells [5,6]. The current consensus is that the 
conformational switch is made possible due to an ensemble of different conformations being 
accessible to the protein, which moves on a complex conformational landscape [7,8]. 
The substitution of one or more amino acids of a protein due to pathogenic non-synonymous 
mutations, may affect the conformational free energy (FE) landscape and alter the equilibrium 
between different conformations in an analogous way to physiological allosteric signals. Thus, 
mutations can also have an impact on the conformational transitions necessary for protein-protein 
interactions and small molecule binding [7–10]. Due to these dramatic effects, even single-point 
non-synonymous mutations of signaling proteins can lead to the development of several diseases 
and are often associated with cancer [11,12]. In this respect, understanding how mutations affect 
the conformational landscape of proteins (and their function) is an important step in predicting the 
effect of genetic mutations arising from genome-wide screening and in designing effective 
personalized therapies of complex multi-factorial diseases [13].  
Oncogenic and drug-resistant mutations may affect the equilibria of the various conformations 
assumed by these proteins [17], leading to a global change in the conformational dynamics that is 
not easily captured by static crystal structures [18]. Atomistic molecular dynamics (MD) 
simulations, which are able to fully capture the dynamical nature of the proteins, are thus an 
increasingly useful tool in complementing structural data and understand the effect of the mutations 
on the conformational free energy landscape. As they provide a full atomistic description of the 



system and its dynamics, MD have been frequently described as a computational microscope [14–
17].  However, MD have been limited by the accessible timescales. Typically an MD simulation 
lasts up to a few microseconds. This issue, which is commonly known as the “timescale problem”, 
prevents a statistically meaningful observation of conformational changes in conventional MD. 
Recently, the development of special-purpose hardware, such as Anton [18,19], and of new 
algorithms specifically aimed at enhancing the sampling of MD and solving the time-scale 
problem, made it possible to analyze in great detail the effects of mutations on the conformational 
landscape of biomolecules. An in-depth review of enhanced-sampling MD techniques is beyond 
the scope of the current review. In the reconstruction of conformational free energy landscapes of 
biomolecules, four types of algorithms (alone or in combination) are often used: 1) methods based 
on multiple replicas of the system such as parallel tempering or Hamiltonian replica exchange 
[20,21]; 2) methods based on the reconstruction of the free energy profile along an optimal path 
connecting different states, such as milestoning [22], transition path sampling [23] or the path 
collective variables [24]; 3) methods that enhance the sampling and reconstruct the free energy 
profile along a set of relevant coordinates (collective variable or CV) such as umbrella sampling 
[25], Targeted Molecular Dynamics (TMD)[26],  Metadynamics and its many derivatives [24,25]; 
4) swarms of MD trajectories and Markov State Models [27]. Here we report on recent success in 
the molecular understanding of the effect of pathogenic mutations on the conformational landscape 
of protein kinases (one of the most important and studied drug target families) through long or 
enhanced-sampling atomistic MD simulations. 
 
Oncogenic Mutations  
 
The regulatory proteins encoded by oncogenes and tumor suppressor genes play a fundamental role 
in the onset and progression of cancer [28]. Simulations helped the understanding of the molecular 
mechanism of oncogenic mutations in these crucial proteins, clarifying their mode of action in 
oncoproteins, such as Ras [29] and various protein kinases and in tumor suppressor genes such as 
p53 [28]. 
 
A prominent example is the Epidermal Growth Factor Receptor (EGFR), a tyrosine kinase that, due 
to its role in cancer, is one of the most studied signaling proteins . EGFR is a cell-surface receptor 
involved in the regulation of key cellular processes [30]. Single-point mutations in EGFR, such as 
L858R (see Figure 1) are among the most frequently observed in lung carcinoma [31]. In-vitro 
experiments appear to suggest that EGFR mutants are more active than the wild type [32,33] 
Several computational studies have addressed the molecular mechanism by which these mutations 
affect the complex EGFR regulation, complementing the abundant experimental data. Dixit and 
Verkhivker [26] simulated the activation of EGFR WT and of the L858R mutant. During 
activation, in EGFR, as in most protein kinases, the long activation loop (A-loop) assumes an 
extended configuration (see Fig. 1). The authors used TMD to shift the loop from the inactive to 
the active conformations. In the simulations, they observed a two-step mechanism. First the 
functionally important αC-helix is repositioned to assume an active-like conformation.  



 
Figure 1. The structure of EGFR (cyan, active state), B-Raf (green, semi-active) and Abl (red, 
inactive) are shown with oncogenic and drug resistant mutations indicated by yellow spheres. The 
A-loop is open and fully extended in the active structure and closed in the inactive one. The 
important αC-helix is highlighted in purple. 
 
The authors concluded that the mutation appear to stabilize the active state, by aiding the 
assembling of the so-called hydrophobic spine, and the transition of the αC-helix. Wan and 
Coveney [34] performed long multiple-replica MD simulations of wild-type and L858R EGFR 
starting from active and inactive crystal structures. They observed that, while both the A-loop and 
the αC-helix have fluctuations similar to the rest of the protein in the active state, their mobility 
changes significantly in the inactive one: the A-loop appears more flexible, while the αC is 
considerably more rigid. Analyzing the distribution of orientations of the αC-helix, the authors also 
discovered large orientational rearrangements in the active state. L858R changes this distribution 
and generates alternative orientations of the helix that increase the cavity between the kinase two 
lobes, thus easing the A-loop transition by removing sterical constraints. In agreement with 
previous reports, the authors suggest that while the inactive state of EGFR is energetically favored, 
L858R disturbs the equilibrium and favors the inactive-to-active transition, while promoting the 
appearance of intermediate states with different orientations of the αC-helix.  
Using the special-purpose computer Anton [18,19] Shan and co-workers were able to assess the 
effect of L858R mutations with very long MD simulations [35]. The authors found that, starting 
from the active structure, the αC helix tends to shift to the inactive αC conformation (αC-out). 
Moreover, they observed that the transition is always accompanied by a loss of structural integrity 
of the αC-helix. The partial disorder of this region is confirmed by X-ray structures showing 
unresolved and high B-factor residues in this area. Accordingly, they propose a three-state energy 
landscape for the EGFR monomeric form in which the active state of EGFR is marginally stable 
and the newly discovered disordered state is the most favorable one, followed by the inactive 
structure. As EGFR full activation is achieved only upon dimerization, when the large lobe of an 
“activator” protein interacts with the small lobe of a “receiver” kinase, they also suggest that 
ordering of the αC region, located at the EGFR receiver interface, might occur upon dimerization. 
Interestingly, simulating the asymmetric EGFR dimer, the authors were able to show that the 
ordering of the interface region stabilizes the dimer complex. When simulating the L858R mutant, 
Shan and coworkers found that the transition from the αC-in active conformation to the αC-out still 
happens, but is considerably slower. As proposed in Ref. [26], the authors also reported that 
stabilization of the αC-in active conformation is the main effect of the Leu858 substitution. 
Comparing the simulations with H/D experiments, they also concluded that the stabilization of the 



active structure is at the expenses of the disordered state, which agrees with the higher propensity 
of L858R to form dimers. Notwithstanding the remarkable achievements of long MD 
smimulations, the lack of sufficient sampling prevented the reconstruction of the complete 
conformational free energy landscape of EGFR.  
This was addressed by Sutto and Gervasio [36], who used a large-scale Parallel Tempering 
Metadynamics [37] (PTMetaD) simulation, a combination of metadynamics [38,39] and Parallel 
Tempering [20] (PT). The computed free energy landscape of EGFR (see Figure 2) shows that the 
most populated basin in the WT corresponds to the inactive (Src-like) structure, with the A-loop 
folded onto itself in a closed conformation. A basin with an αC-helix partially disordered, as 
observed by Shan et al., is also populated. In agreement with previous reports, the active state was 
infrequently visited during the simulations of EGFR WT. Interestingly, the authors observed that 
the L858R mutant populates the active state, even if the most stable state is represented by a “semi-
closed” ensemble of conformations, somehow in-between the active and inactive states.  In 
agreement with Shan et al., a suppression of the αC-helix disorder, aiding the formation of the 
dimer, is also reported. 
 

 
Figure 2. Free energy surfaces for the active-to-inactive transition of EGFR and B-Raf. The 
inactive (left, A-loop closed) and active (right, A-loop open) of EGFR are reported for reference. 
The salt-bridges used as collective variable in EGFR are reported onto the two structures. 
Oncogenic mutations (as L858R, shown with a purple sphere) shift the population towards more 
active-like structures.  
 
The free energy landscapes reported in Ref. [36], thus, seem to reconcile the results reported in the 
literature for which several different intermediates, with different orientations and partial disorder 
of the αC-helix, were observed.  
The importance of the transitions of the αC-helix from the inactive “out” conformation to the active 
αC-helix “in” conformation and its stability was also confirmed by a recent paper by Ruan & 
Kannan [40] who combined cell-based assays with simulations to study the effect of the oncogenic 
R776H mutant. They report that the R776H mutant increases affinity for dimerization by 
stabilizing the αC-helix of the acceptor protomer in an “in” conformation. 
Albeit fully converged free energy landscapes of WT and mutant proteins provide a quantitative 
and exhaustive picture of the effect of the mutations, they require lengthy and expensive 
simulations. A promising alternative is to run a few standard MD trajectories to probe the local 
dynamics and complement the information with an analysis of the protein energetics. With this 



approach it was possible to relate the flexibility changes observed in the EGFR G719S oncogenic 
mutant with specific functional effects [41]. 
 
Another oncogenic kinase of great biomedical interest due to its involvement in melanoma is B-
Raf. By using enhanced-sampling MD simulations, Marino et al. [42] recently described the effect 
of a widespread cancer-causing mutation in the B-Raf kinase domain. The authors run extensive 
PTmetaD simulations, 1.9 µs for each of the 36 replicas used, of the WT and the V600E mutant 
(see Figure 1), a mutation often associated to melanoma. From the reconstructed free energy 
surfaces (see Figure 2) the authors found that, at odds with what observed for EGFR [36], the most 
stable free energy basin for WT B-Raf does not correspond to an inactive-like state. The 
representative structures appear to have an A-loop in an intermediate state that was termed “semi-
active”. The inactive (αC-out) conformation is also explored in the WT simulation. These 
observations are in agreement with the reported importance of the asymmetric dimer formation in 
the full activation of WT B-Raf [43,44]. The B-Raf V600E mutant, which is known to be less 
dependent on dimerization to be fully active, is predicted to have an effect on the conformational 
free energy landscape similar to the one observed for the EGFR oncogenic mutants [42]. V600E 
shifts the equilibrium towards the active-like structure, increasing even further the energy penalty 
of the inactive one.  
In a related paper Jambrina et al. used Markov state models to quantify the effect of 
phosphorylation of the N-terminal acidic (NtA) motif on RAF homo- and hetero- dimerization 
[45]. Their extensive analysis, corroborated by experimental evidence, shows the importance of 
NtA phosphorylation on the stability of the dimer and explain the importance of a conserved Trp 
residue (W450) on transactivation and dimer formation. 
Finally we will discuss the interesting mode of action of a common oncogenic mutation of 
phosphatidylinositol 3-kinase alpha (PI3Ka), H1047R, which results in enzymatic over-activation. 
By using a combination of MD simulations and experiments it was shown that the mutation 
abolishes the auto-inhibitory role of the C-terminal tail in the protein, enhances protein-membrane 
binding, and changes the conformation of His917, the key residue for hydrolysis  [46]. 
 
 
Drug Resistant Mutations 
The emergence of drug resistant mutations is one of the main challenges in the treatment of several 
diseases. Understanding how a drug-resistant mutation interferes with the binding of drugs, without 
adversely affecting its function is thus of great importance. Computational studies have been 
devoted to understanding the effect of drug resistant mutations on proteins implicated in several 
diseases, ranging from HIV protease [47,48] and reverse transcriptase [49] to porins in bacteria 
[50], neuraminidase in influenza virus [51] and protein kinases in cancer. The changes to the 
conformational landscape caused by drug resistance mutations were recently analyzed in great 
details for the Abl tyrosine kinase [10] (see Figure 2). A chromosomal translocation, originating 
the infamous Philadelphia chromosome, leads to the over-activation of Abl in chronic myeloid 
leukemia (CML) [52,53]. The discovery of the potent inhibitor Imatinib revolutionized the 
treatment of CML [54]. Unfortunately, the emergence of drug resistant mutation in Abl can render 
the drug ineffective. While some mutations are located near the drug-binding site and prevent the 
binding of Imatinib, several others are located in distant regions of the catalytic domain and act 
allosterically. Lovera and coworkers [10], who have previously proposed that Imatinib specificity 
in different kinases is due to the different stability of the inactive, so-called “DFG-out”, 
conformation [55], studied five Abl mutants whose mechanism of action is unknown, or debated. 
Using long Parallel Tempering Metadynamics [37] simulations, the authors were able to describe 
the complex changes to the free energy landscape, affecting two important conformational 
transition in protein kinases. Indeed, not only do the mutations affect the equilibrium between the 
inactive “DFG-out” conformation, that binds Imatinib, and the main inactive conformation (“DFG-



in”), but also the reciprocal stability of the activation loop open and closed conformations. In 
particular, the simulations revealed that for some mutants, like H396P and E279K, the “DFG-out” 
conformation is significantly destabilized, thus changing the affinity of the drug. Other mutations, 
however, as the famous “gatekeeper” mutation T315I [56], have little effect on the DFG transition 
and, instead, mainly act on equilibrium between the inactive structure(s) and the active one and 
have an effect on the binding kinetics by changing the dynamics of the G-loop. By favoring the A-
loop open, active-like, structure, the mutations still reduce the population of Abl molecules able to 
bind Imatinib. A similar effect of the A-loop conformation was also observed  in EGFR [36] and in 
FGFR [57]. The T790M mutation in EGFR (see Figure 1), which is the analogous of the Abl 
“gatekeeper” mutation, was shown to have a dramatic effect on the free energy landscape, 
stabilizing the active A-loop open state and to have some degree of cooperativity with the L858R 
mutation. Similarly, the V561M gatekeeper mutation was shown to have a significant effect on the 
conformational energy landscape of FGFR1, another receptor tyrosine kinase playing an important 
role in cancer [57]. The computed free energy surfaces show a significant population shift towards 
an active-like extended A-loop conformations. 
 
Conclusions. Non-synonymous single-point mutations often have a significant effect on the 
conformational free energy landscape of regulatory proteins such as protein kinases. Atomistic MD 
simulations complemented by enhanced sampling algorithms, free energy methods and energetic 
analysis are an increasingly important and powerful tool in understanding the molecular 
mechanisms underlying such changes and in quantifying the effect of the changes in excellent 
agreement with experimental results. These methods are thus able to complement the 
crystallographic and spectroscopic results in a number of ways and will most probably play a 
prominent role in predicting the effect of mutations in personalized medicine. 
 
Acknowledgements. This work was supported by the Engineering and Physical Sciences Research 
Council [Grant EP/M013898/1]. 
 
References 
 

1.  Karplus M, Kuriyan J: Molecular dynamics and protein function. Proc. Natl. Acad. Sci. 

U. S. A. 2005, 102:6679–85. 

2.  Fischer N, Konevega AL, Wintermeyer W, Rodnina M V., Stark H: Ribosome dynamics 

and tRNA movement by time-resolved electron cryomicroscopy. Nature 2010, 466:329–

333. 

3.  Tzeng SR, Kalodimos CG: Protein dynamics and allostery: An NMR view. Curr. Opin. 

Struct. Biol. 2011, 21:62–67. 

4.  Yang H, Luo G, Karnchanaphanurach P, Louie T-M, Rech I, Cova S, Xun L, Xie XS: 

Protein conformational dynamics probed by single-molecule electron transfer. Science 

(80-. ). 2003, 302:262–266. 

5.  Cohen P: Protein kinases — the major drug targets of the twenty-first century? Nat. 

Rev. Drug Discov. 2002, 1:309–315. 

6.  Cohen P: The origins of protein phosphorylation. Nat. Cell Biol. 2002, 4:E127–E130. 

7.  Tsai C-J, Nussinov R: A unified view of “how allostery works”. PLoS Comput. Biol. 2014, 



10:e1003394. (··) “A perspective on the numerous studies and theories involving allostery 

and its connection to structural ensembles. A comprehensive view is developed that 

addresses the thermodynamics and structural determinant of allosteric communication.” 

8.  Miyashita O, Onuchic JN, Wolynes PG: Nonlinear elasticity, proteinquakes, and the 

energy landscapes of functional transitions in proteins. Proc. Natl. Acad. Sci. USA 2003, 

100:12570–12575. 

9.  Winkler DG, Johnson JC, Cooper JA, Vojtek AB: Identification and Characterization of 

Mutations in Ha-Ras That Selectively Decrease Binding to cRaf-1. J. Biol. Chem. 1997, 

272:24402–24409. 

10.  Lovera S, Morando M, Pucheta-Martinez E, Martinez-Torrecuadrada JL, Saladino G, 

Gervasio FL: Towards a Molecular Understanding of the Link between Imatinib 

Resistance and Kinase Conformational Dynamics. PLoS Comput Biol 2015, 

11:e1004578. (··) “A comprehensive study on the effect of drug resistant mutations on the 

conformational landscape of Abl tyrosine kinase.” 

11.  Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR: 

A census of human cancer genes. Nat. Rev. Cancer 2004, 4:177–183. 

12.  Stratton MR, Campbell PJ, Futreal PA: The cancer genome. Nature 2009, 458:719–724. 

13.  Saladino G, Gervasio FL: New Insights in Protein Kinase Conformational Dynamics. 

Curr. Top. Med. Chem. 2012, 12:1889–1895. (·) “Computational studies aimed at furthering 

the understanding of how conformational transition are involved in protein kinase regulation 

are reviewed.” 

14.  Lee EH, Hsin J, Sotomayor M, Comellas G, Schulten K: Discovery through the 

computational microscope. Structure 2009, 17:1295–306. 

15.  Sotomayor M, Schulten K: Single-molecule experiments in vitro and in silico. Science 

2007, 316:1144–1148. 

16.  Dror RO, Dirks RM, Grossman JPP, Xu H, Shaw DE: Biomolecular simulation: a 

computational microscope for molecular biology. Annu. Rev. Biophys. 2012, 41:429–52. 

17.  Malmstrom RD, Kornev AP, Taylor SS, Amaro RE: Allostery through the computational 

microscope: cAMP activation of a canonical signalling domain. Nat. Commun. 2015, 

6:7588. 

18.  Shaw DE, Bowers KJ, Chow E, Eastwood MP, Ierardi DJ, Klepeis JL, Kuskin JS, Larson 

RH, Lindorff-Larsen K, Maragakis P, et al.: Millisecond-scale molecular dynamics 

simulations on Anton. In Proceedings of the Conference on High Performance Computing 

Networking, Storage and Analysis - SC ’09. ACM Press; 2009:1. 



19.  Shaw DE, Grossman JP, Bank JA, Batson B, Butts JA, Chao JC, Deneroff MM, Dror RO, 

Even A, Fenton CH, et al.: Anton 2: Raising the Bar for Performance and 

Programmability in a Special-Purpose Molecular Dynamics Supercomputer. In SC14: 

International Conference for High Performance Computing, Networking, Storage and 

Analysis.  2014:41–53. 

20.  Hansmann UHE: Parallel tempering algorithm for conformational studies of biological 

molecules. Chem. Phys. Lett. 1997, 281:140–150. 

21.  Sugita Y, Okamoto Y: Replica-exchange multicanonical algorithm and multicanonical 

replica-exchange method for simulating systems with rough energy landscape. Chem. 

Phys. Lett. 2000, 329:261–270. 

22.  West AM a, Elber R, Shalloway D: Extending molecular dynamics time scales with 

milestoning: example of complex kinetics in a solvated peptide. J. Chem. Phys. 2007, 

126:145104. 

23.  Bolhuis PG, Chandler D, Dellago C, Geissler PL: Transition path sampling: throwing 

ropes over rough mountain passes, in the dark. Ann. Rev. Phys. Chem. 2002, 53:291–318. 

24.  Branduardi D, Gervasio FL, Parrinello M: From A to B in free energy space. J. Chem. 

Phys. 2007, 126:054103. 

25.  Torrie GM, Valleau JP: Nonphysical sampling distributions in Monte Carlo free-energy 

estimation: umbrella sampling. J. Comp. Phys. 1977, 23:187–199. 

26.  Dixit A, Verkhivker GM: Hierarchical modeling of activation mechanisms in the ABL 

and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase 

activation by cancer mutations. PLoS Comput. Biol. 2009, 5:e1000487. 

27.  Chodera JD, Noé F: Markov state models of biomolecular conformational dynamics. 

Curr. Opin. Struct. Biol. 2014, 25:135–144. 

28.  Steen HB: The origin of oncogenic mutations: where is the primary damage?. 

Carcinogenesis 2000, 21:1773–6. 

29.  Grant BJ, Gorfe AA, McCammon JA: Ras Conformational Switching: Simulating 

Nucleotide-Dependent Conformational Transitions with Accelerated Molecular 

Dynamics. PLoS Comput. Biol. 2009, 5:e1000325. 

30.  Roskoski R: The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. 

Res. 2014, 79:34–74. 

31.  Sharma S V, Bell DW, Settleman J, Haber D a: Epidermal growth factor receptor 

mutations in lung cancer. Nat Rev Cancer 2007, 7:169–181. 

32.  Yun CH, Boggon TJ, Li Y, Woo MS, Greulich H, Meyerson M, Eck MJ: Structures of 



Lung Cancer-Derived EGFR Mutants and Inhibitor Complexes: Mechanism of 

Activation and Insights into Differential Inhibitor Sensitivity. Cancer Cell 2007, 

11:217–227. 

33.  Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J: An allosteric mechanism for 

activation of the kinase domain of epidermal growth factor receptor. Cell 2006, 

125:1137–49. 

34.  Wan S, Coveney P V: Molecular dynamics simulation reveals structural and 

thermodynamic features of kinase activation by cancer mutations within the epidermal 

growth factor receptor. J. Comput. Chem. 2011, 32:2843–52. 

35.  Shan Y, Eastwood MP, Zhang X, Kim ET, Arkhipov A, Dror RO, Jumper J, Kuriyan J, 

Shaw DE: Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and 

promote receptor dimerization. Cell 2012, 149:860–870. (··) “Long multi-µs MD 

simulations on the special-purpose machine Anton are combined with experiments to 

understand the effect of mutations on the structure and dynamics of EGFR” 

36.  Sutto L, Gervasio FL: Effects of oncogenic mutations on the conformational free-energy 

landscape of EGFR kinase. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:10616–21. (··) “The 

conformational free energy landscape of the EGFR kinase and its mutants is obtained using 

parallel tempering simulations combined with Metadynamics, revealing the molecular 

mechanism of cancer-causing and drug-resistance-inducing mutations.” 

37.  Bussi G, Gervasio FL, Laio A, Parrinello M: Free-energy landscape for beta hairpin 

folding from combined parallel tempering and metadynamics. J. Am. Chem. Soc. 2006, 

128:13435–41. 

38.  Laio A, Parrinello M: Escaping free-energy minima. Proc. Natl. Acad. Sci. U. S. A. 2002, 

99:12562–6. 

39.  Laio A, Gervasio FL: Metadynamics: a method to simulate rare events and reconstruct 

the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 2008, 

71:126601. 

40.  Ruan Z, Kannan N: Mechanistic Insights into R776H Mediated Activation of Epidermal 

Growth Factor Receptor Kinase. Biochemistry 2015, 54:4216–25. 

41.  Paladino A, Morra G, Colombo G: Structural Stability and Flexibility Direct the 

Selection of Activating Mutations in Epidermal Growth Factor Receptor Kinase. J. 

Chem. Inf. Model. 2015, 55:1377–1387. 

42.  Marino KA, Sutto L, Gervasio FL: The Effect of a Wide-spread Cancer-causing 

Mutation on the Inactive to Active Dynamics of the B-Raf Kinase. J. Am. Chem. Soc. 



2015, 137:5280–5283. (··) “The free energy landscape for the activations of B-Raf WT and 

the oncogenic mutant V600E is obtained with Parallel Tempering Metadynamics. Based on 

the free energy landscapes, a new mode of action was proposed for the mutations reconciling 

different mechanisms previously proposed in the literature.” 

43.  Jambrina PG, Bohuszewicz O, Buchete N-V, Kolch W, Rosta E: Molecular mechanisms of 

asymmetric RAF dimer activation. Biochem. Soc. Trans. 2014, 42:784–790. 

44.  Hu J, Stites EC, Yu H, Germino EA, Meharena HS, Stork PJS, Kornev AP, Taylor SS, Shaw 

AS: Allosteric activation of functionally asymmetric RAF kinase dimers. Cell 2013, 

154:1036–46. (·) “The mechanism of activation of RAF kinases is discussed, showing the 

prominent role of dimerization and of the assembly of the hydrophobic spine. ” 

45.  Jambrina PG, Rauch N, Pilkington R, Rybakova K, Nguyen LK, Kholodenko BN, Buchete 

N-V, Kolch W, Rosta E: Phosphorylation of RAF Kinase Dimers Drives Conformational 

Changes that Facilitate Transactivation. Angew. Chemie Int. Ed. 2015, 

doi:10.1002/anie.201509272. 

46.  Gkeka P, Evangelidis T, Pavlaki M, Lazani V, Christoforidis S, Agianian B, Cournia Z: 

Investigating the structure and dynamics of the PIK3CA wild-type and H1047R 

oncogenic mutant. PLoS Comput. Biol. 2014, 10:e1003895. 

47.  Zhang J, Hou T, Wang W, Liu JS: Detecting and understanding combinatorial mutation 

patterns responsible for HIV drug resistance. Proc. Natl. Acad. Sci. 2010, 107:1321–

1326. 

48.  Wang W, Kollman PA: Computational study of protein specificity: The molecular basis 

of HIV-1 protease drug resistance. Proc. Natl. Acad. Sci. 2001, 98:14937–14942. 

49.  Rodríguez-Barrios F, Balzarini J, Gago F: The molecular basis of resilience to the effect 

of the Lys103Asn mutation in non-nucleoside HIV-1 reverse transcriptase inhibitors 

studied by targeted molecular dynamics simulations. J. Am. Chem. Soc. 2005, 127:7570–

7578. 

50.  Groot BL De, Zachariae U, Kutzner C, Grubmüller H, de Groot BL, Zachariae U: 

Computational electrophysiology: the molecular dynamics of ion channel permeation 

and selectivity in atomistic detail. Biophys. J. 2011, 101:809–17. 

51.  Woods CJ, Malaisree M, Pattarapongdilok N, Sompornpisut P, Hannongbua S, Mulholland 

AJ: Long Time Scale GPU Dynamics Reveal the Mechanism of Drug Resistance of the 

Dual Mutant I223R/H275Y Neuraminidase from H1N1-2009 Influenza Virus. 

Biochemistry 2012, 51:4364–4375. 

52.  Lin J, Arlinghaus R: Activated c-Abl tyrosine kinase in malignant solid tumors. 



Oncogene 2008, 27:4385–91. 

53.  Hantschel O, Superti-Furga G: Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat. 

Rev. Mol. Cell Biol. 2004, 5:33–44. 

54.  Deininger M, Buchdunger E, Druker BJ: The development of imatinib as a therapeutic 

agent for chronic myeloid leukemia. Blood 2005, 105:2640–53. 

55.  Lovera S, Sutto L, Boubeva R, Scapozza L, Dölker N, Gervasio FL: The different 

flexibility of c-Src and c-Abl kinases regulates the accessibility of a druggable inactive 

conformation. J. Am. Chem. Soc. 2012, 134:2496–9. (··) “The different affinity of Imatinib 

for the tyrosine kinases Abl and Src is explained calculating the free energy landscape for 

the DFG-flip transition to the drug-bound conformation.” 

56.  Gibbons DL, Pricl S, Kantarjian H, Cortes J, Quintás-Cardama A: The rise and fall of 

gatekeeper mutations? The BCR-ABL1 T315I paradigm. Cancer 2012, 118:293–9. 

57.  Bunney TD, Wan S, Thiyagarajan N, Sutto L, Williams S V., Ashford P, Koss H, Knowles 

M a., Gervasio FL, Coveney P V., et al.: The Effect of Mutations on Drug Sensitivity and 

Kinase Activity of Fibroblast Growth Factor Receptors: A Combined Experimental 

and Theoretical Study. EBioMedicine 2015, 2:194–204. 

 


