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Abstract
Wepropose a protocol for countering the effects of dephasing in quantum state transfer over a noisy
spin channel weakly coupled to the sender and receiver qubits. Our protocol, based on performing
regular globalmeasurements on the channel, significantly suppresses the nocuous environmental
effects and offersmuch higherfidelities than the traditional no-measurement approach.Our proposal
can also operate as a robust two-qubit entangling gate over distant spins. Our scheme counters any
source of dephasing, including those forwhich thewell established dynamical decoupling approach
fails. Our protocol is probabilistic, given the intrinsic randomness in quantummeasurements, but its
success probability can bemaximized by adequately tuning the rate of themeasurements.

1. Introduction

Over the last decade there have been several proposals for exploiting the natural time evolution ofmany-body
systems for short-range quantum communication between separated registers of a quantumnetwork [1, 2].
Only recently the first experimental realizations of quantum state transfer through time evolution ofmany-body
systems have been achieved inNMR [3], coupled opticalfibers [4] and cold atoms in optical lattices [5, 6]. One of
themajor challenges in the realization of all quantumprocesses is dephasing, which destroys the coherent
superpositions of states and results in classicalmixtures [7]. The origin of dephasing is the random energy
fluctuations induced on qubit levels by randommagnetic and electric fields in the environment. Dynamical
decoupling [8], as an open-loop control technique, has been developed to overcome dephasing through
performing regular instantaneous control pulses [9] and has been very effective in designing long-timememory
cells [10] and quantum gates [11]. Nevertheless, the dynamical decoupling technique is only effective for static
(or very slow time-varying) random fields, such as the hyperfine interaction in solid state quantumdot qubits
[12]. In particular, when the fluctuations in qubit levels are time dependent or in the case ofMarkovian
decoherence, explained by amaster equation, dynamical decoupling fails to compensate decoherence effects in
the system [13].

In a simple quantum state transfer scenario with a uniform spin chain, the evolution is dispersive and thus
the quality of transport decreases by increasing the size [1]. Hence, to realize perfect state transfer, spin chains
with engineered couplings were proposed [14], and somemodificationsmay also allow them to operate
independently of their initialization [15] (see [16] for a detailed review on perfect state transfer). Onemay also
get arbitrary perfect state transfer in uniform chains using dual-rail systems [17], d-level chains [18] or arrays of
prime number of qubits [19, 20]. In free fermionic systems, one gets arbitrarily highfidelities by engineering the
two boundary couplings [21]. Alternatively, onemay use intermediate spins as interactionmediators between a
sender and a receiver which are off-resonant from the channel by either usingweak couplings [22] or strong local
magnetic fields [23]. In these scenarios the intermediate spins are only virtually populated [22, 23] and the
dynamics is governed by an effectiveHamiltonian between the two ending spinswhich offers perfect state
transfer in the absence of dephasing.
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Projectivemeasurements are essential elements of quantum technologies, for example for teleportation [24],
measurement-based quantum computation [25], entanglingmacroscopic atomic ensembles [26], many-body
state engineering [27] or entanglement generation between superconducting qubits within ameter of distance
[28]. In particular, for cold atoms in optical lattices, nondemolition quantummeasurements have been
proposed for the creation and the detection of spin–spin correlations [29]. In such systems, quantum
measurements can also be combinedwith the natural time evolution to engineer complex quantum states [27],
as well as quantum communication in spin chains [30, 31]. Furthermore, continuousmeasurements leading to
quantumZeno effect [32, 33] can be used to totally or partially freeze the evolution of the system and even
suppress decoherence, namely by restricting the coherent evolution to a reducedHilbert space [34, 35] or by
preventing unstable states fromdecaying [36].

In this paper, we showhow globalmeasurements, performed regularly on the spin channel, can counter the
effect of dephasing, even in scenarios where dynamical decoupling fails, offering high transmission fidelities.
Ourmechanismusesmeasurement as amean for purification of the system, and thus countering the effect of
dephasing, without entering the Zeno zone inwhich the dynamics is frozen.

2.Model

Let us consider a uniform spin chain (our channel) inwhich spins are labelled from2 to N 1,- whereN is even,
with the interactingHamiltonian of the following form

H J , 1
k

N

k k k kch
2

2

1 1{ } ( )å s s s s= +
=

-
+

+
- -

+
+

where J is the exchange coupling and ks
+ and ks

- are the Pauli spin ladder operators acting on site k.
The channel is initialized in the ferromagnetic state 0 0, 0, , 0 ,ch∣ ∣ñ = ¼ ñ inwhich all spins are aligned. Two

extra spins, i.e. qubits 1 andN, are located at both ends of the channel. At t= 0 these two qubits are suddenly
coupled to the ends of the channel, as shown in figure 1, via the followingHamiltonian

H J , 2N N N NI 1 2 1 2 1 1( ) ( )s s s s s s s s= ¢ + + ++ - - +
-

+ -
-

- +

where J ¢ is the boundary spin couplings to the channel, and throughout this paper it is assumed to bemuch
smaller then the spin couplings in the channel, namely J J .¢  The totalHamiltonian of the system is thus
H H H .Ich= + Qubit 1 encodes the state to be sent, and is initialized in an arbitrary (possibly unknown) state

cos 2 0 e sin 2 1 ,s
i∣ ( )∣ ( )∣y q qñ = ñ + ñf and qubitN, the receiver spin, is initialized in the state 0 .∣ ñ So, the initial

state of thewhole system can bewritten as

0 00 0 0 . 3s s ch ch( ) ∣ ∣ ( )r y y= Ä Ä ñá

Generally the channel is not well isolated from the environment andmight be disturbed by the effect of
surrounding fluctuatingmagnetic or electric fields, which induce random levelfluctuations in the systemwhich
then result in dephasing. For fast andweak random fieldfluctuations, one can get amaster equation [7] for the
evolution of the system as

Figure 1.A spin channel with uniform couplings J, under the effect of local dephasing, is weakly coupled to the sender and receiver
qubits. Regular collectivemeasurements on the channel counters the effect of dephasing resulting in high transmissionfidelities.
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where thefirst term in the right hand side is the unitary Schrödinger evolution and the second term is the
dephasingwhich acts on the channel qubits with the rate γ. To see the quality of the quantum state transfer, one
may compute the densitymatrix of the last site by tracing out the other spins

t Tr t , 5N N t s s( ) ( ) ( )⎡⎣ ⎤⎦r r x y y= =

whereTr Nmeans tracing over all spins except qubitN, and tx is the super-operator determining the linear
relationship between the input and the output of the channel. Then one can compute the fidelity of the output as
F t t, ; .Ns s( ) ∣ ( )∣q f y r y= á ñ In order to have an input-independent parameter, one can compute the average
fidelity with respect to all possible input states on the surface of the Bloch sphere as

F t F t, ; d , 6av ( ) ( ) ( )ò q f= W

where dW is the normalized SU(2)Haarmeasure. A straightforward calculation shows that in themaster
equation (4) inwhich the totalmagnetization is conserved, the average fidelity can bewritten as [37]

F t F t F t
1

2

1

6

1

3
. 7av exc coh( ) ( ) ( ) ( )= + +

where

F t

F t

1 1 1 1 ,

0 0 1 1 . 8

t

t

exc

coh

( ) ∣ [∣ ∣]∣

( ) ∣ [∣ ∣]∣ ( )

x

x

= á ñá ñ

= á ñá ñ

While F texc ( ) quantifies howwell this channel can transmit classical excitations, the parameter F tcoh ( ) accounts
for the quantum coherence preservation of the channel. In particular we are interested in a special time t tm= at
which the average fidelity peaks for the first time F F t .m

av av
m( )=

3. EffectiveHamiltonian ( 0g = )

In the case of no dephasing, where 0,g = the total energy of the system is conserved and for the specific choice
of J J¢  the channel is only virtually populated during the evolution.Nevertheless, these virtual excitations in
the channelmediate an effectiveHamiltonian between the qubits 1 andN, which can be computed using
adiabatic elimination

H J , 9N Ne e 1 1( ) ( )s s s s= ++ - - +

where

J
J

J
1 10N

e
2

2

( ) ( )= -
¢

is the effective coupling between the qubits 1 andNmediated through the channel. The effectiveHamiltonian is
valid only when the coupling J ¢ ismuch smaller than the energy gap of the channel which then implies

J
J

N
. 11( )p¢ 

Throughout this paper we alwayswork in this regime. Interestingly, for those chains where the coupling J ¢
satisfies this criterion, the effectiveHamiltonian is independent ofN, apart from an irrelevant signwhich has no
effect for transport properties. Considering the effectiveHamiltonianHe, one can easily show that in the absence
of dephasing (i.e. 0g = ) the average fidelity in equation (7) takes the formof

F
J t1

3

1 sin

6
. 12av

e

2( )( )
( )= +

+

The average fidelity thus reaches itsmaximum, i.e. F 1,av
m = at the time

t
J2

. 13m
e

( )p
=

Moreover, if the qubitN is not initialized in 0∣ ñ then the unitary evolution of the system, governed by the free
fermionicHamiltonianHI, performs a two-qubit entangling gate at t t ,m= essential for universal quantum
computation [38], between the qubits 1 andN.
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It is worthmentioning that, since Je ismuch smaller than J, the reduction to an effective two-qubit system
comes at the price of significantly increasing time operations and decreasing the energy gap (and thus thermal
stability). Thismay lead to a significant experimental challenge, but some systemswith large exchange coupling J
(like composite systems [39]), or thosewith large coherence times (e.g. cold atoms in optical lattices), can be
ideal venues for the realization of such effective dynamics. In fact, high order processes in optical lattices,
described by an effectiveHamiltonian, have already been realized [40] for counting the atomnumbers in a
Coulomb-blocked-like scenario.Moreover, amore advanced scheme, based on effective higher order
tunnelings, for state preparation, gate operation and particle transfer has been proposed in [41].

4. Effect of dephasing ( 0g ¹ )

In the presence of dephasing, namely nonzero γ, the energy is no longer conserved and thus the excitations can
leak fromqubit 1 to the channel leading to imperfect transfer between the sender and receiver qubits. In
figures 2(a)–(c) thefidelities F t ,exc ( ) F tcoh ( ) and F tav ( ) are plotted respectively as functions of time for different
values of γ in a chain ofN= 12. As the figures clearly show, by increasing the dephasing rate the quality of
transmission goes down for all thefidelities. To see howdestructive dephasing is, infigure 2(d)weplot the
maximumfidelities F ,m

exc Fcohm and F ,m
av at t tm= when their first peak occurs, as functions of the dephasing rate

γ, in a chain of lengthN= 12. As thefigure shows, thefidelities all decay exponentially with dephasing rate γ, as
expected for themaster equation (4).

5. Regularmeasurements ( 0g = )

Wenow consider a series of global projectivemeasurements on the qubits of the channel at regular time intervals
in the absence of dephasing (i.e. 0g = ). The corresponding projection operators are

M

M I M

0 0 ,

, 14

0 ch ch

1 0 ( )

=

= -

where I stands for identity. If the outcome of themeasurement isM0 (i.e. the channel is found in 0ch∣ ñ) then the
measurement is regarded as successful, otherwise the protocol fails.

To see how themeasurements affect the transfermechanism,we assume that global projective
measurements are performed regularly on the channel, at time intervals of τ. Immediately after the k′th
successfulmeasurement, the state of the system is

Figure 2.Different fidelities versus time for various dephasing rates γ in a chain of lengthN= 12with J J0.05 :¢ = (a) F t ;exc ( ) (b)
F t ;coh ( ) (c) F t .av ( ) (d)Themaximumfidelities as functions of the dephasing rate γ in a chain of lengthN= 12.
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M MTr
, 15k
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x r
=

t

t

-
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where in this iterative equation 0 ,0 ( )( )r r= and all k consecutivemeasurements are assumed to be successful.
The probability of successfulmeasurement at iteration k is

p M MTr . 16k k
0

1
0{ } ( )( ) ( )⎡⎣ ⎤⎦x r= t

-

In fact, since thewhole protocol fails even if a singlemeasurement yieldsM1 as its outcome, itmakes sense to
define the probability of success at the optimal time tm as the product of all consecutive probabilities until then as

P p j t jsuch that: 1 . 17
k

j
k

suc
1

m ( ) ( )( ) t t= P < +
=

After the successfulmeasurement at iteration k, the evolution of the system follows the equation (4)with the
initial state .k( )r

Avery highmeasurement rate, i.e. t 1,mt  freezes the dynamics due to the quantumZeno effect [32]. To
see this effectmore clearly, we consider a systemof lengthN= 12without dephasing (i.e. 0g = ) and plot the
average fidelity versus time for different values of τ infigures 3(a)–(d). As it is evident from these plots, the
dynamics is slow for small τ (high rate ofmeasurement) and it becomes faster by increasing τ (decreasing the
measurement rate).

To have a better insight about the Zeno effect, infigure 4(a) the transfer time tm, at which thefidelity peaks, is
depicted as a function of τ. As the figure clearly shows, for small τ the time tm is very large, which indicates that
the dynamics is practically frozen as predicted by the Zeno effect. By increasing τ, the optimal time tmdecreases
and eventually oscillates around t J2 ,m e( )p= determined by the effectiveHamiltonian (9). The transition
between the Zeno and non-Zeno dynamics is determined by two time scales: (i) the time interval between two
subsequentmeasurement, namely τ; (ii) the time scale needed for virtually exciting the channel, namely J1 ,~ ¢
which can only happenwith very low probability. As it is evident from figure 4(a), the transition fromZeno to
non-Zeno zone happenswhen J1 .t ~ ¢ For smaller values of τ system enters the Zeno regime and for larger
values of τ the dynamics of the system is not frozen and our protocol can be applied. The number of projective
measurements during the transfer time is simply determined by t .m t Infigure 4(b) the success probability Psuc
is plotted as a function of τ, which is zero in the Zeno regime and rises by increasing τ and clearly shows
resonance behaviour such that, for specific values of τ, thePsuc is almost one,meaning that all the consecutive
measurements are successful.

Indeed, in the absence of dephasing there is no point in performing regularmeasurements on the system, as
the effectiveHamiltonian already achieves perfect state transfer. However, our analysis in this section provides
the foundation for the next section inwhich the operation of regularmeasurements compensates the destructive

Figure 3.The average fidelity versus time in a chain of lengthN= 12 for zero dephasing (i.e. 0g = ). The time intervals between
subsequentmeasurements are: (a) J6 ;t = (b) J7 ;t = (c) J10 ;t = (d) J20 .t = While the upper panels are inside the Zeno
zone, corresponding to slowdynamics, the lower panels are outside that region and thus show faster dynamics.
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effect of dephasing. Furthermore, the nature of the oscillations inPsuc is analysed and discussed in section 7,
wherewe solve analytically the case of a short chain of lengthN= 4.

6. Tackling dephasingwithmeasurements

As previously discussed, by increasing the dephasing rate γ the average fidelity decays exponentially (see
figure 2(d)). Performing regularmeasurementsmay improve the fidelity as it purifies the systemby projecting
the channel into a pure state 0 .ch∣ ñ This is indeed the case, as we show infigures 5(a) and (b), wherewe plot the
the average fidelity Fav(t) as a function of time for two different values of γ respectively. In each of thesefigures,
the dynamics withoutmeasurement is comparedwith the case of ourmeasurement strategy, namely for two
differentmeasurement time intervals τ. As thefigures clearly show, the attainable fidelity significantly improves
by performingmeasurements. The jumps in thefidelity curves are due to the purification after each successful
measurement.

Infigure 6(a)we showhow themaximumaverage fidelity Favm varies with themeasurement time τ in a chain
of lengthN= 12 and 0.02,g = for which the no-measurement scenario gives F 0.84.m

av = As thefigure shows,
by performing regularmeasurements, thefidelity can go over 0.995 and shows oscillatory resonance features by
varying τwithout going below 0.98. Infigure 6(b) the probability of success Psuc is plotted versus τ. As thefigure
shows, in the Zeno zone (i.e. very small τ)Psuc is very small, but then rises quickly and eventually fluctuates
around an asymptotic value (here around 0.4). Infigures 6(c) and (d) the same quantities are plotted for the same
chain but nowwith 0.04,g = inwhich the no-measurement scenario gives F 0.75.m

av  As thefigure shows Favm
can again be larger than 0.99, with the price that Psuc is going down to∼0.2. The results evidently show that
performing regularmeasurements improves thefidelity significantly with the price paid for Psuc. In particular,
fromfigures 6(b) and (d)we can see that a very few (∼4)measurements are enough to improve the fidelity above
0.99 in a chain ofN= 12.

In order to see how the average fidelity Favm scales with the dephasing rate γ, wefix the lengthN and the
measurement time τ and plot Favm as a function of γ in figure 7(a). As it is clear from this figure, by choosing

Figure 4. (a)The optimal time Jtm versusmeasurement time Jt for chains of lengthN= 6 andN= 12without dephasing. (b)The
probability of success Psuc versusmeasurement time Jt in a chain of lengthN= 12. In bothfigures J J0.05¢ = .

Figure 5.Comparison of the average fidelity (as a function of time) in the no-measurement scenariowith the case of ourmeasurement
protocol (the latter, for two values of τ), in a chain of lengthN= 12. The dephasing rate is: (a) J0.02 ;g = and (b) J0.04 .g = The
improvement infidelity by performingmeasurements is very evident in thefigures.

6

New J. Phys. 17 (2015) 103041 ABayat andYOmar



J150t = (i.e. allowing only fourmeasurements during the evolution), the average fidelity stays very high
(∼0.86) even for very strong dephasing J0.1g = showing a significant improvement in comparisonwith the
no-measurement scenario, for which F 0.6.m

av  Infigure 7(b)we plot the success probability Psuc versus the
dephasing rate γ, for the same chains andmeasurement time τ, which shows that increasing dephasing reduces
the chance of success, as expected. Naturally, achieving a very highfidelity has a price in terms ofPsuc, but our
protocol offers highfidelities for reasonable probabilities of success.

Tofinalize our analysis we also study the performance of our protocol for different chain lengthsN. In
figure 8(a)weplot Favm as a function ofN for two values of γwhen τ is fixed. This figure shows that themaximum
average fidelity decays very slowly by increasingN, though, as expected, its decay becomes faster by increasing
the dephasing rate γ. Infigure 8(b) the success probability Psuc is depicted versusN for the same dephasing
parameters, which shows steady decay by increasing length. Similarly to the fidelity, the probability of success
also decreases by increasing γ.

Finally, note that our proposedmechanism is robust against several imperfections, including imprecise
measurement timings as well as other types of decoherence. It is worthmentioning that when the effective two-
spinHamiltonian is valid (i.e. when the condition in equation (11) is satisfied) the channel is only virtually
populated. Thismeans that the proposed protocol works even if themeasurement time τ is not tuned properly
or varies fromonemeasurement to another.

Apart fromdephasing, the systemmight be affected bymore complex noises which do not conserve the
number of excitations.Mathematically thismeans that the Lindblad operators in themaster equation (4)may

Figure 6.Themaximumaverage fidelity Favm and the probability of success Psuc as functions of Jt for a chain ofN= 12with J J0.05¢ =
for: (a) and (b) J0.02 ;g = and (c) and (d) J0.04 .g = In all these figures the transfer time remains almost the same as equation (13)
whichwill be t 200 .m p

Figure 7. (a) and (b): themaximumaverage fidelity Favm and the probability of successPsuc as functions of Jg for chains of length
N= 6 andN= 12with J J0.05 ,¢ = andwith themeasurement time fixed to J 150t = allowing for fourmeasurements as
Jt 200m p is determined by equation (13).
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include other Pauli operators such as ,s+ etc. In fact, such operatorsmay induce an excitation in the channel,
which then results in failure of themeasurement. However, our protocol will still be applicable, but the
probability of success Psuc will decrease. In order to have a higher probability of success for such noises, one has
to use smaller values of τ (but still not within the Zeno zone).

7.Understanding the resonances in the success probabilityPsuc

In order to illuminate the nature of the oscillatory behaviour of the probability of success Psuc in time, we
consider an isolated (i.e. 0g = ) short chain of four spins (N= 4)which can be solved analytically. In the single
excitation subspace, the eigenvalues and eigenvectors of the system are

E E J

E E J J

E E J J

E E J

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 1
, ,

2 1
, ,

2 1
, ,

2 1
, , 18

1
2

1

2
2

2

3
2

3

4
2

4

( )

( )

( ) ( )

( )

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ( )

a a

a
a

a a

a
a

a a

a
a

a a

a
a

=
ñ - ñ + ñ - ñ

+
= - ¢

=
ñ - ñ - ñ + ñ

+
= - ¢

=
ñ + ñ - ñ - ñ

+
= - - ¢

=
ñ + ñ + ñ + ñ

+
= ¢

where Ek and E ,k∣ ñ for k 1, 2, , 4,= ¼ are the eigenvalues and eigenvectors of theHamiltonian respectively,
and k∣ ñ represents an excitation 1∣ ñat site kwhile the other sites are all in 0 .∣ ñ Moreover, the dimensionless
parameterα is defined as

J J J

J

4

2
. 19

2 2

( )a =
+ + ¢

¢

By initializing thewhole system in the state 10 ,∣ ( ) ∣Y ñ = ñ one can compute the time evolution of the system in
later times as

t E E 1e 0 e . 20Ht

k

E t
k k

i

1

4
i k∣ ( ) ∣ ( ) ( )åY ñ = Y ñ =-

=

-

The probability offinding the channel (here, sites 2 and 3) in the state 0ch∣ ñafter performing one projective
measurement is

p t t1 4 . 211 2 2∣ ∣ ( ) ∣ ∣ ∣ ( ) ∣ ( )( ) = á Y ñ + á Y ñ

Figure 8. (a) and (b): themaximumaverage fidelity Favm and the probability of successPsuc versusN for dephasing rates of J0.02g =
and J0.04g = with J J0.05¢ = when themeasurement time isfixed to J 150t = allowing for fourmeasurements as Jt 200m p is
determined by equation (13).
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By inserting the exact formof the eigenvectors from equation (18) in the dynamics of equation (20) one gets

p
J J t1 2 cos 2

1
. 221

4 2

2 2

( )
( )

( )( )
⎡⎣ ⎤⎦a a a

a
=

+ + - ¢

+

These results are valid for all values of J .¢ However, as previously discussed, we are interested in the limit of
J J .¢  In this limit,α diverges as J J ¢ and, by using a simple algebra, one can show that

p
J

J

Jt
lim 1

4
sin

2
. 23

0

1
2

2
2

J
J

( )( ) ⎜ ⎟⎛
⎝

⎞
⎠= -

¢
¢

This clearly shows that the probability of success inmeasurement is always very close to 1, with an additional
oscillatory term. At certain times, when Jtsin 2 0,( ) = the probability p 1( ) is exactly 1. Another interesting fact
is that the frequency of oscillations is determined by J, which allows for several oscillations within the transfer
time t J J .m

2~ ¢
This simple and exact analysis of a chainwith four spins provides a good insight into the resonances thatwe

observe inPsuc for longer chains. Of course, for large chains the probability of success cannot be explained by a
simple function like equation (23), but qualitatively the physics remains the same. The success probability of the
protocol Psuc can be optimized by a judicious choice of themeasurement time τ.

8. Proposal for experimental realization

One possible implementation of our proposed protocol could be realizedwith cold atomarrays in optical
lattices. In such systems, two counter propagating laser beams create a regular potential with tuneable barriers,
which can create aMott insulator phase of atomswith exactly one particle per site [42]. In the limit of high on-
site energy comparedwith the tunneling rate, the interaction between atoms is effectivelymodeled by a spin
Hamiltonian [43]. Recently, local spin rotations andmeasurements [44, 45] together with time resolved
dynamics [45] have been experimentally achieved. New advances in single site resolution in optical lattices [45]
made it possible to realize local rotations andmeasurements on individual atoms. Furthermore, the propagation
of a single impurity spin [5] andmagnon bound states [6] in a ferromagnetic spin chain have recently been
experimentally realized. In spite of all these advances in optical lattices, there are still a few challenges which have
to be overcome in order to realize our scheme, including localmanipulation of theHamiltonian and highfidelity
atomdetection. Nevertheless, the trend of the technology shows that these challenges could be overcome in a
near future.

In order to realize our protocol, one has tofirst create the two impurities at the ends of a uniform spin chain.
Initially the barriers between the atoms are high, i.e. there is no interaction, and all atoms are prepared in state
0 .∣ ñ Thanks to the local addressability of individual atomswith the single site resolution [45], this can be achieved
by superimposing two extra potential wells, highly localized on the boundary sites, on the optical lattice potential
[46] as shown infigure 9(a). Further rotations on the first atom can create an arbitrary state for the first qubit. To
realize such rotations, without affecting the neighboring qubits, onemay apply a weakmagnetic field gradient
[44], or use a focused laser beam [45] to split the hyperfine levels of the target atom. Then, amicrowave pulse—
tuned only for the target qubit—operates the gate locally, as it has been realized in [44, 45].When the
initialization is accomplished, the interaction between the atoms is switched on through lowering the barriers
and the dynamics starts. For spinmeasurements in the channel, one can use the technique in [44]. According to
that approach, state 1∣ ñ is coupled to an excited state through an intense perpendicular laser beamwhose
radiation pressure pushes the atomout of the lattice. This leaves the site empty if its atom is in state 1 ,∣ ñ and full if
the atom is in state 0 ,∣ ñ as shown schematically infigure 9(b). This can then be checked by globalfluorescent
imaging. The conclusion of the protocol, i.e. the final readout of the last qubit, is just another spinmeasurement.
It is worthmentioning that themeasurement process is relatively slow, duringwhich the systemmay evolve. In
order to avoid this, one has to raise the barriers between the neighboring atoms to stop the dynamics and then
perform themeasurement.When themeasurement is accomplished, one has to lower the barriers again to
restore the dynamics.

9. Concluding remarks

Wehave proposed a protocol based on regular globalmeasurements to protect a quantum spin channel, weakly
coupled to the sender and receiver qubits, from the nocuous effects of dephasing. In fact, ourmeasurement-
assisted quantum communication protocol offersmuch higher transmission fidelities than the traditional no-
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measurement approach. This has the price that the process becomes probabilistic, but the probability of success
can bemaximized by tuning the rate of themeasurements.

The success probability of our protocol oscillates with a frequency depending on the coupling of the channel
Hamiltonian. And the quantum state transfer time is determined by the coupling of the effectiveHamiltonian,
which ismuchweaker than the channel couplings. This actually allows for severalmaxima in the success
probability before the transfer is accomplished.

It is worth emphasizing that our proposed protocol works even for time-varying noise and forMarkovian
dephasing (modelled by a Lindbladianmaster equation), for both of which thewell established dynamical
decoupling approach fails. Furthermore, our proposal can also counter the effects ofmore complicated
decoherence effects including thosewhich create excitations in the channel through Lindblad operators like .s+

Of course, these terms lower the probability of success in ourmechanism as it ismore likely tofind an excitation
in the channel.
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