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Abstract

We propose a protocol for countering the effects of dephasing in quantum state transfer over a noisy
spin channel weakly coupled to the sender and receiver qubits. Our protocol, based on performing
regular global measurements on the channel, significantly suppresses the nocuous environmental
effects and offers much higher fidelities than the traditional no-measurement approach. Our proposal
can also operate as a robust two-qubit entangling gate over distant spins. Our scheme counters any
source of dephasing, including those for which the well established dynamical decoupling approach
fails. Our protocol is probabilistic, given the intrinsic randomness in quantum measurements, but its
success probability can be maximized by adequately tuning the rate of the measurements.

1. Introduction

Over the last decade there have been several proposals for exploiting the natural time evolution of many-body
systems for short-range quantum communication between separated registers of a quantum network [ 1, 2].
Only recently the first experimental realizations of quantum state transfer through time evolution of many-body
systems have been achieved in NMR [3], coupled optical fibers [4] and cold atoms in optical lattices [5, 6]. One of
the major challenges in the realization of all quantum processes is dephasing, which destroys the coherent
superpositions of states and results in classical mixtures [7]. The origin of dephasing is the random energy
fluctuations induced on qubit levels by random magnetic and electric fields in the environment. Dynamical
decoupling [8], as an open-loop control technique, has been developed to overcome dephasing through
performing regular instantaneous control pulses [9] and has been very effective in designing long-time memory
cells [10] and quantum gates [11]. Nevertheless, the dynamical decoupling technique is only effective for static
(or very slow time-varying) random fields, such as the hyperfine interaction in solid state quantum dot qubits
[12]. In particular, when the fluctuations in qubit levels are time dependent or in the case of Markovian
decoherence, explained by a master equation, dynamical decoupling fails to compensate decoherence effects in
the system [13].

In a simple quantum state transfer scenario with a uniform spin chain, the evolution is dispersive and thus
the quality of transport decreases by increasing the size [ 1]. Hence, to realize perfect state transfer, spin chains
with engineered couplings were proposed [14], and some modifications may also allow them to operate
independently of their initialization [15] (see [16] for a detailed review on perfect state transfer). One may also
get arbitrary perfect state transfer in uniform chains using dual-rail systems [17], d-level chains [18] or arrays of
prime number of qubits [19, 20]. In free fermionic systems, one gets arbitrarily high fidelities by engineering the
two boundary couplings [21]. Alternatively, one may use intermediate spins as interaction mediators between a
sender and a receiver which are off-resonant from the channel by either using weak couplings [22] or strong local
magnetic fields [23]. In these scenarios the intermediate spins are only virtually populated [22, 23] and the
dynamics is governed by an effective Hamiltonian between the two ending spins which offers perfect state
transfer in the absence of dephasing.

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. A spin channel with uniform couplings J, under the effect of local dephasing, is weakly coupled to the sender and receiver
qubits. Regular collective measurements on the channel counters the effect of dephasing resulting in high transmission fidelities.

Projective measurements are essential elements of quantum technologies, for example for teleportation [24],
measurement-based quantum computation [25], entangling macroscopic atomic ensembles [26], many-body
state engineering [27] or entanglement generation between superconducting qubits within a meter of distance
[28]. In particular, for cold atoms in optical lattices, nondemolition quantum measurements have been
proposed for the creation and the detection of spin—spin correlations [29]. In such systems, quantum
measurements can also be combined with the natural time evolution to engineer complex quantum states [27],
as well as quantum communication in spin chains [30, 31]. Furthermore, continuous measurements leading to
quantum Zeno effect [32, 33] can be used to totally or partially freeze the evolution of the system and even
suppress decoherence, namely by restricting the coherent evolution to a reduced Hilbert space [34, 35] or by
preventing unstable states from decaying [36].

In this paper, we show how global measurements, performed regularly on the spin channel, can counter the
effect of dephasing, even in scenarios where dynamical decoupling fails, offering high transmission fidelities.
Our mechanism uses measurement as a mean for purification of the system, and thus countering the effect of
dephasing, without entering the Zeno zone in which the dynamics is frozen.

2.Model

Let us consider a uniform spin chain (our channel) in which spins are labelled from 2 to N — 1, where Nis even,
with the interacting Hamiltonian of the following form

N-2

Hun=7), {a,fo';“ + a;akﬁl}, (1)
k=2

where J is the exchange coupling and o} and o are the Pauli spin ladder operators acting on site .

The channel is initialized in the ferromagnetic state |04,) = |0, O, ..., 0), in which all spins are aligned. Two
extra spins, i.e. qubits 1 and N, are located at both ends of the channel. At t =0 these two qubits are suddenly
coupled to the ends of the channel, as shown in figure 1, via the following Hamiltonian

Hy =J'(ofo; + 070} + G i0n + on-10%), ©)

where J' is the boundary spin couplings to the channel, and throughout this paper it is assumed to be much
smaller then the spin couplings in the channel, namely ] " &« J.The total Hamiltonian of the system is thus
H = Hg, + Hj. Qubit 1 encodes the state to be sent, and is initialized in an arbitrary (possibly unknown) state
[1bs) = cos(0/2)|0) + €' sin(6/2)|1), and qubit N, the receiver spin, is initialized in the state |0). So, the initial
state of the whole system can be written as

p(0) = o) (¥

® ® 0)(0]. (3

0ch> < 0ch

Generally the channel is not well isolated from the environment and might be disturbed by the effect of
surrounding fluctuating magnetic or electric fields, which induce random level fluctuations in the system which
then result in dephasing. For fast and weak random field fluctuations, one can get a master equation [7] for the
evolution of the system as
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N-2

p(H = —ilH, p®1 + 7Y {oip®oi - p® }, @)

k=2

where the first term in the right hand side is the unitary Schrédinger evolution and the second term is the
dephasing which acts on the channel qubits with the rate «y. To see the quality of the quantum state transfer, one
may compute the density matrix of the last site by tracing out the other spins

on(®) = Trep® = & ) (v ] 5)

where Tr 5 means tracing over all spins except qubit N, and ¢, is the super-operator determining the linear
relationship between the input and the output of the channel. Then one can compute the fidelity of the output as
F(0, ¢5 t) = (5] py(H)|1s). In order to have an input-independent parameter, one can compute the average
fidelity with respect to all possible input states on the surface of the Bloch sphere as

Fav () = fF(o, &; 1)dQ, (6)

where df? is the normalized SU(2) Haar measure. A straightforward calculation shows that in the master
equation (4) in which the total magnetization is conserved, the average fidelity can be written as [37]

1 1 1
Fa(t) = = + ZFX(¢) + _Fcoh 1. 7
() >t () 3 () (7)
where

Foe(e) = (1] & 1) (1111),
Foh (e) = | 01 & 110) (11111) . ®

While Fe*(t) quantifies how well this channel can transmit classical excitations, the parameter F<°" (¢) accounts
for the quantum coherence preservation of the channel. In particular we are interested in a special time t = #,,, at
which the average fidelity peaks for the first time F5Y = F? (¢,,,).

3. Effective Hamiltonian (y = 0)

In the case of no dephasing, where v = 0, the total energy of the system is conserved and for the specific choice
of J' < J the channel is only virtually populated during the evolution. Nevertheless, these virtual excitations in
the channel mediate an effective Hamiltonian between the qubits 1 and N, which can be computed using
adiabatic elimination

H. = ]e(crfoif + Ufoﬁ), %)
where
12
Je = (—l)N/2]7 (10)

is the effective coupling between the qubits 1 and N mediated through the channel. The effective Hamiltonian is
valid only when the coupling ]’ is much smaller than the energy gap of the channel which then implies

Wi

J < =. 11

N amn
Throughout this paper we always work in this regime. Interestingly, for those chains where the coupling J'
satisfies this criterion, the effective Hamiltonian is independent of N, apart from an irrelevant sign which has no
effect for transport properties. Considering the effective Hamiltonian H.,, one can easily show that in the absence
of dephasing (i.e. v = 0) the average fidelity in equation (7) takes the form of

(1 + |sin(}et)‘)2
§+ 6 '

The average fidelity thus reaches its maximum, i.e. F;; = 1, at the time

E, = (12)

_ T
2%

Moreover, if the qubit N'is not initialized in |0) then the unitary evolution of the system, governed by the free
fermionic Hamiltonian Hy, performs a two-qubit entangling gate at t = t,,, essential for universal quantum
computation [38], between the qubits 1 and N.

(13)

Im

3



NewJ. Phys. 17 (2015) 103041 A Bayatand Y Omar

Fexc(t) 1 FCOh(t) 1
08 /\@ s/ (b)

06 /7N — 06 /,/’ RENRY
PR - - =1=0.02J A
o4 1 LY 04r N e
\ \
02 ./{/ \ PR\ 02/ LY/
L/ d . ,
0 500 1000 1500 2000 2500 00 500 1000 1500 2000 2500
Jt Jt
Ft | \
()0.9 ©f o8]\
08 [/ 06
fos
0rf £ N 04
A N
4 N /
06(/ R WASRN I ¥,
7,7 BRIN
05 > 0
0 500 1000 1500 2000 2500 0 002 004 006 008 0.1
Jt TN

Figure 2. Different fidelities versus time for various dephasing rates yin a chain of length N= 12 with J' = 0.05]: (a) F&*<(¢); (b)
Feoh(£); (c) F¥ (t). (d) The maximum fidelities as functions of the dephasing rate in a chain of length N = 12.

It is worth mentioning that, since J, is much smaller than J, the reduction to an effective two-qubit system
comes at the price of significantly increasing time operations and decreasing the energy gap (and thus thermal
stability). This may lead to a significant experimental challenge, but some systems with large exchange coupling
(like composite systems [39]), or those with large coherence times (e.g. cold atoms in optical lattices), can be
ideal venues for the realization of such effective dynamics. In fact, high order processes in optical lattices,
described by an effective Hamiltonian, have already been realized [40] for counting the atom numbersina
Coulomb-blocked-like scenario. Moreover, a more advanced scheme, based on effective higher order
tunnelings, for state preparation, gate operation and particle transfer has been proposed in [41].

4. Effect of dephasing (y = 0)

In the presence of dephasing, namely nonzero v, the energy is no longer conserved and thus the excitations can
leak from qubit 1 to the channel leading to imperfect transfer between the sender and receiver qubits. In

figures 2(a)—(c) the fidelities Fe*(¢), F<°P (t) and F* (¢) are plotted respectively as functions of time for different
values of yin a chain of N = 12. As the figures clearly show, by increasing the dephasing rate the quality of
transmission goes down for all the fidelities. To see how destructive dephasing is, in figure 2(d) we plot the
maximum fidelities F&, Fo" and F2, at t = t,, when their first peak occurs, as functions of the dephasing rate
7, in a chain of length N = 12. As the figure shows, the fidelities all decay exponentially with dephasing rate , as
expected for the master equation (4).

5.Regular measurements (7 = 0)

We now consider a series of global projective measurements on the qubits of the channel at regular time intervals
in the absence of dephasing (i.e. ¥ = 0). The corresponding projection operators are

>

M, = 0ch> <0ch
M =1- M, (14)

where I'stands for identity. If the outcome of the measurement is M, (i.e. the channel is found in | 0,)) then the
measurement is regarded as successful, otherwise the protocol fails.

To see how the measurements affect the transfer mechanism, we assume that global projective
measurements are performed regularly on the channel, at time intervals of 7. Immediately after the k’th
successful measurement, the state of the system is

4
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Figure 3. The average fidelity versus time in a chain of length N = 12 for zero dephasing (i.e. v = 0). The time intervals between
subsequent measurements are: (a) 7 = 6/J;(b) 7 = 7/J;(c) 7 = 10/]; (d) 7 = 20/]. While the upper panels are inside the Zeno
zone, corresponding to slow dynamics, the lower panels are outside that region and thus show faster dynamics.

MofT[P(k_l)]Mo
Tr { MoﬁT[p(k’l)]Mo } )

15)

where in this iterative equation p©® = p(0), and all k consecutive measurements are assumed to be successful.
The probability of successful measurement at iteration k is

p@>::Tr{A%§T[p“*U]Ah}.

In fact, since the whole protocol fails even if a single measurement yields M as its outcome, it makes sense to
define the probability of success at the optimal time t,,, as the product of all consecutive probabilities until then as

(16)

j
Py = Hp® suchthat: jr<tn <G+ DT (17)
k=1

After the successful measurement at iteration k, the evolution of the system follows the equation (4) with the
initial state p(®).

Avery high measurement rate, i.e. 7/t,, < 1, freezes the dynamics due to the quantum Zeno effect [32]. To
see this effect more clearly, we consider a system of length N = 12 without dephasing (i.e. ¥ = 0) and plot the
average fidelity versus time for different values of 7in figures 3(a)—(d). As it is evident from these plots, the
dynamics is slow for small 7 (high rate of measurement) and it becomes faster by increasing 7 (decreasing the
measurement rate).

To have a better insight about the Zeno effect, in figure 4(a) the transfer time ¢,,,, at which the fidelity peaks, is
depicted as a function of 7. As the figure clearly shows, for small 7 the time #,, is very large, which indicates that
the dynamics is practically frozen as predicted by the Zeno effect. By increasing 7, the optimal time ¢, decreases
and eventually oscillates around t,,, = 7 /(2] ), determined by the effective Hamiltonian (9). The transition
between the Zeno and non-Zeno dynamics is determined by two time scales: (i) the time interval between two
subsequent measurement, namely 7; (ii) the time scale needed for virtually exciting the channel, namely ~1/J,
which can only happen with verylow probability. As it is evident from figure 4(a), the transition from Zeno to
non-Zeno zone happens when 7 ~ 1/J’. For smaller values of 7 system enters the Zeno regime and for larger
values of 7 the dynamics of the system is not frozen and our protocol can be applied. The number of projective
measurements during the transfer time is simply determined by ¢,,,/7. In figure 4(b) the success probability P,
is plotted as a function of 7, which is zero in the Zeno regime and rises by increasing 7 and clearly shows
resonance behaviour such that, for specific values of 7, the Py, is almost one, meaning that all the consecutive
measurements are successful.

Indeed, in the absence of dephasing there is no point in performing regular measurements on the system, as
the effective Hamiltonian already achieves perfect state transfer. However, our analysis in this section provides
the foundation for the next section in which the operation of regular measurements compensates the destructive

5
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Figure 4. (a) The optimal time Jt,,, versus measurement time J7 for chains of length N = 6 and N = 12 without dephasing. (b) The
probability of success Py, versus measurement time J7 in a chain of length N = 12. In both figures J " =0.05].
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Figure 5. Comparison of the average fidelity (as a function of time) in the no-measurement scenario with the case of our measurement
protocol (the latter, for two values of 7), in a chain of length N = 12. The dephasing rate is: (a) v = 0.02]; and (b) v = 0.04]. The
improvement in fidelity by performing measurements is very evident in the figures.

effect of dephasing. Furthermore, the nature of the oscillations in Py, is analysed and discussed in section 7,
where we solve analytically the case of a short chain oflength N = 4.

6. Tackling dephasing with measurements

As previously discussed, by increasing the dephasing rate  the average fidelity decays exponentially (see

figure 2(d)). Performing regular measurements may improve the fidelity as it purifies the system by projecting
the channel into a pure state |0«,). This is indeed the case, as we show in figures 5(a) and (b), where we plot the
the average fidelity F,,(¢) as a function of time for two different values of y respectively. In each of these figures,
the dynamics without measurement is compared with the case of our measurement strategy, namely for two
different measurement time intervals 7. As the figures clearly show, the attainable fidelity significantly improves
by performing measurements. The jumps in the fidelity curves are due to the purification after each successful
measurement.

In figure 6(a) we show how the maximum average fidelity FZ;, varies with the measurement time 7in a chain
oflength N=12 and 7 = 0.02, for which the no-measurement scenario gives F5' = 0.84. As the figure shows,
by performing regular measurements, the fidelity can go over 0.995 and shows oscillatory resonance features by
varying 7 without going below 0.98. In figure 6(b) the probability of success Py, is plotted versus 7. As the figure
shows, in the Zeno zone (i.e. very small 7) Py, is very small, but then rises quickly and eventually fluctuates
around an asymptotic value (here around 0.4). In figures 6(c) and (d) the same quantities are plotted for the same
chain but now with v = 0.04, in which the no-measurement scenario gives F/ ~ 0.75. As the figure shows Fyy
can again be larger than 0.99, with the price that Py, is going down to ~0.2. The results evidently show that
performing regular measurements improves the fidelity significantly with the price paid for Py,.. In particular,
from figures 6(b) and (d) we can see that a very few (~4) measurements are enough to improve the fidelity above
0.99inachain of N=12.

In order to see how the average fidelity Fy, scales with the dephasing rate -y, we fix the length N and the
measurement time 7and plot F as a function of yin figure 7(a). As it is clear from this figure, by choosing

6
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Figure 6. The maximum average fidelity F& and the probability of success Py, as functions of J7 for a chain of N= 12 with J' = 0.05]
for: (a) and (b) v = 0.02]; and (c) and (d) v = 0.04/. In all these figures the transfer time remains almost the same as equation (13)
which will be ¢,,, >~ 2007.
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Figure 7. (a) and (b): the maximum average fidelity Fy, and the probability of success Pg, as functions of /] for chains of length
N=6and N=12with J/ = 0.05], and with the measurement time fixed to J7 = 150 allowing for four measurements as
Jtm == 2007 is determined by equation (13).

T = 150/] (i.e. allowing only four measurements during the evolution), the average fidelity stays very high
(~0.86) even for very strong dephasing v = 0.1] showing a significant improvement in comparison with the
no-measurement scenario, for which FY ~ 0.6. In figure 7(b) we plot the success probability P, versus the
dephasing rate -, for the same chains and measurement time 7, which shows that increasing dephasing reduces
the chance of success, as expected. Naturally, achieving a very high fidelity has a price in terms of Py, but our
protocol offers high fidelities for reasonable probabilities of success.

To finalize our analysis we also study the performance of our protocol for different chain lengths N. In
figure 8(a) we plot F; as a function of N for two values of ywhen 7 is fixed. This figure shows that the maximum
average fidelity decays very slowly by increasing N, though, as expected, its decay becomes faster by increasing
the dephasing rate . In figure 8(b) the success probability Py, is depicted versus N for the same dephasing
parameters, which shows steady decay by increasing length. Similarly to the fidelity, the probability of success
also decreases by increasing .

Finally, note that our proposed mechanism is robust against several imperfections, including imprecise
measurement timings as well as other types of decoherence. It is worth mentioning that when the effective two-
spin Hamiltonian is valid (i.e. when the condition in equation (11) is satisfied) the channel is only virtually
populated. This means that the proposed protocol works even if the measurement time 7 is not tuned properly
or varies from one measurement to another.

Apart from dephasing, the system might be affected by more complex noises which do not conserve the
number of excitations. Mathematically this means that the Lindblad operators in the master equation (4) may

7



10P Publishing

NewJ. Phys. 17 (2015) 103041 A Bayatand Y Omar
v 1 0.9
m o 08 (b)
0.98 0.7
0.6
0.5
0.961 | —o—1=0.02J 0.4
——1=0.04J 0'3
0.94 0.2
0.1
0.92 0
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
N N
Figure 8. (a) and (b): the maximum average fidelity F; and the probability of success Py, versus N for dephasing rates of v = 0.02]
and vy = 0.04/ with J’ = 0.05] when the measurement time is fixed to J7 = 150 allowing for four measurements as Jt,, ~ 2007 is
determined by equation (13).

include other Pauli operators such as o%, etc. In fact, such operators may induce an excitation in the channel,
which then results in failure of the measurement. However, our protocol will still be applicable, but the
probability of success Py, will decrease. In order to have a higher probability of success for such noises, one has
to use smaller values of 7 (but still not within the Zeno zone).

7. Understanding the resonances in the success probability Py,

In order to illuminate the nature of the oscillatory behaviour of the probability of success Py, in time, we
consider anisolated (i.e. ¥ = 0) short chain of four spins (N = 4) which can be solved analytically. In the single
excitation subspace, the eigenvalues and eigenvectors of the system are

|E1> el ol - |4>, E = —af,

|E2>:O<|1>—|2>—|3>+04|4>, E, — J—af,
2(a? +1)
IE.) o) +12) —13) —al4) B =—(1— o),

J2(a2 + 1)
|E4> _ |1> + « |2> + « |3> + |4> B = OJ/, (18)

where Egand |E;), for k = 1, 2, ..., 4, are the eigenvalues and eigenvectors of the Hamiltonian respectively,
and |k) represents an excitation | 1) at site k while the other sites are all in |0) . Moreover, the dimensionless
parameter «v is defined as

J+ 2 + 472

o= 19
2 (19)
By initializing the whole system in the state |[¥'(0)) = |1), one can compute the time evolution of the system in
later times as
4
W(t)) = e [W(0)) = Soe | Ey) (Eil1). (20)
k=1
The probability of finding the channel (here, sites 2 and 3) in the state |0, ) after performing one projective
measurement is
PO =1(E®) P + (4] (@) P e2))
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By inserting the exact form of the eigenvectors from equation (18) in the dynamics of equation (20) one gets

1+ a* + 2a2 cos[(] — 2a]’)t]

P = (22)
(02 +1)°
These results are valid for all values of J'. However, as previously discussed, we are interested in the limit of
J' < J.Inthislimit, o diverges as J/J’ and, by using a simple algebra, one can show that
7
lim p®» =1 — g sinz(k). (23)
Lo ] 2 2

7

This clearly shows that the probability of success in measurement is always very close to 1, with an additional
oscillatory term. At certain times, when sin(Jt /2) = 0, the probability p(")is exactly 1. Another interesting fact
is that the frequency of oscillations is determined by J, which allows for several oscillations within the transfer
time t, ~ J'%/].

This simple and exact analysis of a chain with four spins provides a good insight into the resonances that we
observe in Py, for longer chains. Of course, for large chains the probability of success cannot be explained by a
simple function like equation (23), but qualitatively the physics remains the same. The success probability of the
protocol Py, can be optimized by a judicious choice of the measurement time 7.

8. Proposal for experimental realization

One possible implementation of our proposed protocol could be realized with cold atom arrays in optical
lattices. In such systems, two counter propagating laser beams create a regular potential with tuneable barriers,
which can create a Mott insulator phase of atoms with exactly one particle per site [42]. In the limit of high on-
site energy compared with the tunneling rate, the interaction between atoms is effectively modeled by a spin
Hamiltonian [43]. Recently, local spin rotations and measurements [44, 45] together with time resolved
dynamics [45] have been experimentally achieved. New advances in single site resolution in optical lattices [45]
made it possible to realize local rotations and measurements on individual atoms. Furthermore, the propagation
of a single impurity spin [5] and magnon bound states [6] in a ferromagnetic spin chain have recently been
experimentally realized. In spite of all these advances in optical lattices, there are still a few challenges which have
to be overcome in order to realize our scheme, including local manipulation of the Hamiltonian and high fidelity
atom detection. Nevertheless, the trend of the technology shows that these challenges could be overcome in a
near future.

In order to realize our protocol, one has to first create the two impurities at the ends of a uniform spin chain.
Initially the barriers between the atoms are high, i.e. there is no interaction, and all atoms are prepared in state
|0). Thanks to the local addressability of individual atoms with the single site resolution [45], this can be achieved
by superimposing two extra potential wells, highly localized on the boundary sites, on the optical lattice potential
[46] as shown in figure 9(a). Further rotations on the first atom can create an arbitrary state for the first qubit. To
realize such rotations, without affecting the neighboring qubits, one may apply a weak magnetic field gradient
[44], or use a focused laser beam [45] to split the hyperfine levels of the target atom. Then, a microwave pulse—
tuned only for the target qubit—operates the gate locally, as it has been realized in [44, 45]. When the
initialization is accomplished, the interaction between the atoms is switched on through lowering the barriers
and the dynamics starts. For spin measurements in the channel, one can use the technique in [44]. According to
that approach, state | 1) is coupled to an excited state through an intense perpendicular laser beam whose
radiation pressure pushes the atom out of the lattice. This leaves the site empty if its atom is in state | 1), and full if
the atom is in state |0}, as shown schematically in figure 9(b). This can then be checked by global fluorescent
imaging. The conclusion of the protocol, i.e. the final readout of the last qubit, is just another spin measurement.
Itis worth mentioning that the measurement process is relatively slow, during which the system may evolve. In
order to avoid this, one has to raise the barriers between the neighboring atoms to stop the dynamics and then
perform the measurement. When the measurement is accomplished, one has to lower the barriers again to
restore the dynamics.

9. Concluding remarks

We have proposed a protocol based on regular global measurements to protect a quantum spin channel, weakly
coupled to the sender and receiver qubits, from the nocuous effects of dephasing. In fact, our measurement-
assisted quantum communication protocol offers much higher transmission fidelities than the traditional no-
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Figure 9. (a) A possible implementation of our protocol using an optical lattice setup. The particles corresponding to the sender and
receiver qubits feel a deeper potential (and thus a weaker interaction) due to an extra laser beam focused on those sites. (b) For the spin
measurements, an intense focused laser beam is coupled to the atomiclevel | 1), and the radiation pressure forces the atom out of the
lattice if it is in that state. A subsequent fluorescent picture of the lattice will show whether the site is empty or full and the measurement
is accomplished.

measurement approach. This has the price that the process becomes probabilistic, but the probability of success
can be maximized by tuning the rate of the measurements.

The success probability of our protocol oscillates with a frequency depending on the coupling of the channel
Hamiltonian. And the quantum state transfer time is determined by the coupling of the effective Hamiltonian,
which is much weaker than the channel couplings. This actually allows for several maxima in the success
probability before the transfer is accomplished.

Itis worth emphasizing that our proposed protocol works even for time-varying noise and for Markovian
dephasing (modelled by a Lindbladian master equation), for both of which the well established dynamical
decoupling approach fails. Furthermore, our proposal can also counter the effects of more complicated
decoherence effects including those which create excitations in the channel through Lindblad operators like o".
Of course, these terms lower the probability of success in our mechanism as it is more likely to find an excitation
in the channel.
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