Clustering genes of common
evolutionary history

Kevin Gori', Tomasz Suchan?, Nadir Alvarez?, Nick Goldman"" and Christophe Dessimoz'?34°"

"European Molecular Biology Laboratory, European Bioinformatics Institute,
Wellcome Trust Campus, Hinxton, CB10 1SD, UK
2Department of Ecology and Evolution, Biophore Building, UNIL-Sorge, University of Lausanne,
1015 Lausanne, Switzerland
3Department of Genetics, Evolution & Environment and Department of Computer Science,
University College London, Gower St, London, WC1E 6BT, UK
“Centre for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland

°Swiss Institute of Bioinformatics, Biophore, 1015 Lausanne, Switzerland

*Correspondence : goldman@ebi.ac.uk; c.dessimoz@ucl.ac.uk

Abstract

Phylogenetic inference can potentially result in a more accurate tree using data from multiple
loci. However, if the loci are incongruent—due to events such as incomplete lineage sorting or
horizontal gene transfer—it can be misleading to infer a single tree. To address this, many
previous contributions have taken a mechanistic approach, by modelling specific processes.
Alternatively, one can cluster loci without assuming how these incongruencies might arise. Such
“process-agnostic” approaches typically infer a tree for each locus and cluster these. There are,
however, many possible combinations of tree distance and clustering methods; their
comparative performance in the context of tree incongruence is largely unknown. Furthermore,
because standard model selection criteria such as AIC cannot be applied to problems with a
variable number of topologies, the issue of inferring the optimal number of clusters is poorly
understood. Here, we perform a large-scale simulation study of phylogenetic distances and
clustering methods to infer loci of common evolutionary history. We observe that the
best-performing combinations are distances accounting for branch lengths followed by spectral
clustering or Ward’s method. We also introduce two statistical tests to infer the optimal number
of clusters and show that they strongly outperform the silhouette criterion, a general-purpose
heuristic. We illustrate the usefulness of the approach by (i) identifying errors in a previous

phylogenetic analysis of yeast species and (ii) identifying topological incongruence among



newly sequenced loci of the globeflower fly genus Chiastocheta. We release treeCl, a new

program to cluster genes of common evolutionary history (http:/qit.io/treeCl).

Introduction

Molecular phylogenetic methods infer the evolutionary history of homologous sequences. The
techniques of molecular phylogenetics were developed in the analysis of individual protein
sequences (Neyman 1971; Kashyap and Subas 1974), but due to the modern abundance of
sequencing data it is increasingly common to infer trees by jointly analysing sequences from
multiple loci (Delsuc et al. 2005). By considering more data, multilocus analyses are expected to
deliver better-resolved and less biased inferences by averaging out uncertainty over a greater

amount of data (Pamilo and Nei 1988).

There are a number of methods for multilocus phylogenetic analysis (Bininda-Emonds et al.
2002; de Queiroz and Gatesy 2007; Liu et al. 2009). Many of these proceed by inferring the
single evolutionary tree that best fits the entire data set. Such “averaging” over multiple loci
presumes that these loci share a common evolutionary history. However, when a data set
comprises multiple loci, the trees derived from individual loci have the potential to be
incongruent (Jeffroy et al. 2006). A key question here is whether incongruence results from
sampling error, or if it indicates a real underlying difference in the evolution of distinct genomic
loci. If we build a single summary tree from multiple loci we are implicitly assuming the former:

that each locus is a noisy estimate of the same underlying tree.

Alternatively, we might expect different regions of a genome to have different histories (Leigh,
Lapointe, et al. 2011), due to a variety of processes such as horizontal gene transfer (HGT),
hybridisation, incomplete lineage sorting (ILS) and recombination. If we believe such processes
have occurred, then we should expect that the trees derived from different loci could be
incongruent with one another. Consequently, “summary” trees inferred from the entire data set
may be only partially representative or, in the worst case, not representative of the evolution of
any locus. Because this is a systematic error, rather than noise, we cannot expect it to be
reduced by adding more data (Philippe et al. 2011). If we believe there is real heterogeneity in
the evolutionary process that produced the genomes, and incongruence is an indication of this,
then we should look for ways of partitioning multilocus data into groups that are related by the
same history (Bull et al. 1993; Huelsenbeck et al. 1994; Cunningham 1997; Waddell et al.
2000).

Many methods dealing with incongruence make explicit assumptions about its biological basis.
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Such “mechanistic” approaches have been developed to model HGT (Hallett and Lagergren
2001; Dessimoz et al. 2008; Abby et al. 2010), ILS (Rannala and Yang 2003; Heled and
Drummond 2010), recombination (Kosakovsky Pond et al. 2006), gene duplication (GD) (Chen
et al. 2000; Boussau et al. 2013), and combinations of processes such as combined ILS/GD
models (Bansal et al. 2010; Doyon et al. 2010; Szo6llési and Daubin 2012). However,
mechanistic approaches can be computationally prohibitive, and may not be robust to other

unmodelled sources of incongruence.

We focus our attention on an alternative class of methods that we will describe as
“process-agnostic’. These aim to detect the existence and extent of any significant
incongruence within a data set, without relying on any assumptions about its biological basis.
Existing process-agnostic approaches take the form of statistical tests of incongruence (Planet
2006; Leigh, Lapointe, et al. 2011) and clustering approaches relying on partitioning data sets
into groups that are cohesive and self-similar (Nye 2008; Leigh, Schliep, et al. 2011).

Nye's Tree of Trees (2008) summarises the phylogenetic similarities among genes as another
tree, termed a meta-tree, where a tip corresponds to a tree derived from multilocus data, and an
internal node represents the consensus of its child trees. The meta-tree is inferred from
inter-tree Robinson-Foulds (1981) distances using an algorithm analogous to neighbour-joining
(Saitou and Nei 1987).

Similarly, Conclustador (Leigh, Schliep, et al. 2011) uses inter-tree distances as a basis for
clustering. Trees are compared using a novel Euclidean distance among bipartitions weighted
by bootstrap support, and for clustering Leigh et al. use a version of the k-means algorithm and
a spectral clustering method (Kaufman and Rousseeuw 1987; Zelnik-Manor and Perona 2004).
A conceptually similar method is PhyBin (Newton and Newton 2013), which can either identify
genes with topologically identical trees or perform hierarchical clustering on the

Robinson-Foulds distance matrix between every tree.

Statistical binning (Mirarab et al. 2014) uses a graph-based algorithm to divide a set of genes
into a number of approximately equal-sized bins of phylogenetically compatible genes (Warnow
1994). This has been used as a preprocessing step, with the bins subsequently used as input
for coalescent species tree estimation; binning is shown to reduce run times, and to increase

accuracy in the presence of ILS (Mirarab et al. 2014).

BUCKy (Ané et al. 2007; Larget et al. 2010) uses a Bayesian probabilistic framework to
estimate a gene-to-tree map that assigns each gene to one of the (2n - 3)!! possible unrooted

trees on n taxa (Felsenstein 2004). A Dirichlet process prior (Ferguson 1973; Antoniak 1974) is
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used to determine the total number of distinct trees represented by the gene-to-tree map.

These methods have in common that they each adopt a specific clustering procedure. There
are, however, many potential distance measures and clustering algorithms, and we know almost
nothing about their relative performance in identifying genes that share common evolutionary
histories under plausible biological scenarios. For instance, the Robinson-Foulds distance used
in Tree of Trees ignores any difference in branch lengths among trees, yet these might provide
useful information in the context of ILS; the Dirichlet process prior in BUCKYy tends to result in
uneven cluster sizes (Ané et al. 2007), yet this might be suboptimal in the context of
recombination. Furthermore, the problem of determining the optimal number of clusters remains

poorly understood, with methods providing no, or only generic, solutions.

Here, we present a survey of clustering methods to partition multilocus data sets into groups
with consistent underlying phylogenies. Our aims are to investigate whether this is a viable
approach to use to partition multilocus data in an evolutionarily meaningful way, and to measure
the relative effectiveness of each method. Specifically, we test combinations of three distance
measures between trees (table 1) and seven well-established clustering algorithms (table 2) on

simulated and empirical sequence data.

We also introduce two likelihood ratio tests for inferring the optimal number of clusters. We test
them extensively through simulations and show that they accurately recover the true number of

clusters and outperform the silhouette criterion, a general-purpose heuristic.

We apply the best combination of tree distance, clustering method and stopping criterion to two
empirical data sets: alignments of 344 loci in 18 yeast taxa (Hess and Goldman 2011), and of

176 loci of 306 taxa derived from 7 species of Chiastocheta genus globeflower flies.

The analyses were carried out using our new open source software package, treeCl, freely

available at http://qit.io/treeCl.

Results

The clustering approach investigated here takes a set of sequence alignments (one alignment
per locus), and from them describes a partition of the data that divides the alignments into
non-overlapping subsets, each subset containing loci sharing a common phylogenetic history.
Throughout this paper we will describe such a division as a partition, and the resulting subsets

as clusters. The approach is a three-step pipeline (Figure 1). First, we infer a separate
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phylogenetic tree for each input sequence alignment. Second, we gauge the level of
evolutionary similarity among loci by measuring distances between pairs of trees. Third, we
apply a clustering algorithm on the distances to generate a set of clusters. The number of
clusters is either a fixed value decided a priori, or inferred from the data using tests introduced

below.

Input Data Single-locus trees Inter-tree distances Clustering

Infer trees Calculate Y, Run clustering
distances algorithm

}

Figure 1: Overview of the clustering process. From left to right: input alignments are read; trees
are inferred from the alignments; inter-tree distances are computed and used as the basis for
clustering. Further procedures are used to re-estimate one tree for each cluster and to choose
the optimal number of clusters—see text for details.

In the following, we describe the results of a series of simulation experiments designed to
explore the parameter space of the tree clustering approach and choose the most effective
combinations of methods. We assess different stopping criteria for choosing the best-supported
number of clusters from the data, again using simulation. Finally, we present the application of

our method to data sets of yeast orthologs and of Chiastocheta genus globeflower flies.

Performance of the combinations of distance metrics and clustering

methods.

Combinations of clustering methods (table 1) and distance metrics (table 2) were tested on

simulated data over a range of conditions, described in Materials and Methods (table 3).

We investigated the performance of combinations of distance metrics and clustering methods
for a fixed and known number of clusters. To assess the accuracy of each resulting partition, we
computed the difference between the true partition (known from simulation) and the inferred

partition using variation of information, an information-theoretic measure of the difference
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between two partitions of the same set (Meila 2007). A variation of information value of zero is
obtained when the two partitions are the same, and increasing positive values are obtained for

partitions that are increasingly different.

Our results are summarised in Figure 2. In terms of distance metrics, the performance using the
Euclidean and geodesic distances is considerably better than Robinson-Foulds. Of these two,
the geodesic distance performs marginally better than Euclidean. These conclusions hold for
both skewed and uniform cluster size distributions, for the small and large data sets
(Supplementary Figures 1-3), and for scenarios simulating both ILS (using nearest-neighbour

interchange rearrangements) and HGT (using subtree prune-and-regraft).

In terms of clustering methods, the performance is worst using the simpler hierarchical
methods—single-linkage, complete-linkage and average-linkage. Hierarchical clustering using
Ward’s criterion is more successful, but the best-performing methods are those involving
embedding the distance matrix in a coordinate space: spectral and multidimensional scaling
(MDS). However, MDS, as well as k-medoids, shows erratic behaviour in some of the scenarios
tested (Supplementary Figures 1-3), and these were not considered for further analyses.
Summarising these observations, the combination of Euclidean or geodesic distances with
spectral or Ward clustering seem to provide consistently the best overall performance across

various conditions tested here. These combinations were used in our further analyses.
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Figure 2: The relative performances of combinations of distance metric (varying over columns of panels)
and clustering methods (shown by the colours of the lines), as measured by the variation of information
metric (y-axes; higher values show a larger departure from the correct solution). Lines show the mean
value obtained from 1000 replicates, and the error bars show the standard error of the mean. Rows
correspond to the experiments with a partition of uniformly-sized clusters (A—C) and those with a partition
of clusters of skewed sizes (D—F). In each individual panel, the x-axis represents the number of NNI/
rearrangements separating the underlying clusters, so that increasing values along this axis correlate with
the clustering problem becoming easier.

Performance of methods for determining the number of clusters

So far we have investigated performance with a known number of clusters, but this is typically
unknown. To infer it, we devised two special-purpose likelihood ratio test procedures using
empirical distributions of the test statistic: one a distribution derived from the input data via
permutation, and the other derived via a parametric bootstrap resampling procedure (see
Materials and Methods). We also compared these to a general-purpose “silhouette” criterion
(Rousseeuw 1987). For a single point the silhouette value is the ratio of the mean of the
distances to all other points in its cluster to the mean of the distances to all points in the nearest
cluster. The silhouette score for the entire partition is the mean of these ratios over all points in

the data set. The optimal number of clusters is inferred as the value for which the silhouette
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score is maximised.

For clarity, we first describe the results for a single set of sequences (one problem instance)
before presenting our aggregate results. Given a problem instance, we repeat the clustering
procedure with a varying number of clusters and compute the overall partition likelihood for
each. Because specifying a greater number of clusters provides more freedom for the model to
fit the data, the likelihood is expected to increase: this is generally what we observe. However,
as in all likelihood ratio tests, the key consideration is by how much the likelihood must increase
to warrant using the more complex model. To tackle this we generate empirical distributions of
the likelihood increase from pseudo-replicate data derived from the data present in the instance,
through the permutation and parametric bootstrap procedures described in Materials and
Methods. The likelihood increase from the original data is compared to the expected increase

from the empirical distribution to determine significance (Figure 3; Supplementary Figure 4).

A Permutation test B Parametric bootstrap
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Figure 3: Comparison of the criteria used to determine the number of clusters on a single
problem instance—in this example, data simulated for 60 loci belonging to 4 clusters, each of
size 15, with the clusters’ trees separated by 1 SPR. As the proposed number of clusters
increases, the likelihood increases, which is expected because of the greater number of free
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parameters in the model. (A) Permutation test: the improvement in likelihood for each additional
cluster (red curve) is significantly greater than that observed for permuted data sets (green dots
show the distribution of values over 100 permutations) until the comparison between 4 and 5
clusters is reached, correctly implying that the use of 4 clusters is optimal. (B) Parametric
bootstrap test: again, the improvement for each additional cluster (red curve) is significantly
greater than that for data sets simulated for one fewer cluster (blue dots) until the true number
of clusters (4) has been reached. (C) Silhouette score: the general-purpose silhouette stopping
criterion has its maximum at the true value of 4. We note that in this instance, comprising a
single data set from one simulation design, the three methods agree on the true answer.

Let us now consider the results over multiple problem instances. We simulated data sets using
the procedure corresponding to the “small uniform” setup (see Materials and Methods,
sub-section “Simulating data sets with incongruence” for details), with two levels of difficulty: we
generated 100 data sets from trees separated by 1 SPR move (referred to as “difficult”), and
100 separated by 5 SPR moves (“moderate”). Each data set was analysed under the four
combinations of Euclidean or geodesic distances with spectral or Ward’s method clustering.

This resulted in a total of 800 problem instances.

To investigate the overall performance of the three stopping criteria, we first consider the
aggregate results for all 400 “difficult” and 400 “moderate” problem instances, i.e. 100 each
under all four combinations of distance metric and clustering procedure (Figure 4). For both the
“difficult” and “moderate” cases the distribution of the number of clusters chosen is centred on
the true value, 4, for all three criteria. However, in the “difficult” case, the distributions of the
permutation and bootstrap tests are much tighter than the silhouette score, indicating that these
two stopping criteria make correct calls more often. The results are consistent in the “moderate”
case, although the differences between criteria are smaller, with all of them making many more

correct calls (see also Supplementary Figure 5, E-H).
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Figure 4: Aggregate results for 400 “difficult” problem instances (left) and 400 “moderate”
instances (right). The true number of clusters is 4. In both sets, our new stopping criteria
(permutation and bootstrap) perform better than the general-purpose silhouette method.

We also considered the performance of the stopping criteria separately for the different distance
metrics and clustering methods. In terms of distance metrics, we see little difference between
geodesic and Euclidean distances. In contrast, we observe that all three stopping criteria
perform noticeably better in combination with spectral clustering than with Ward’s method
(Supplementary Figure 5). This is particularly the case for our two new criteria (permutation and

bootstrap), which outperform the silhouette by a greater margin on the spectral clustering runs.

Dealing with incomplete occupancy across loci

In the simulations considered so far, we have covered cases in which there has been no
missing data. When analysing real data, we cannot guarantee that all loci will be present for all
taxa. The effect that missing data have on our method is that we are required to compare trees
with different leaf sets, a circumstance for which distance metrics have not been defined. A
simple measure to counteract this is to prune trees to the intersection of their taxon sets, and

then measure the distance between these reduced trees.

To assess the impact of incomplete occupancy on our approach’s ability to infer the correct
clusters, we generated additional simulated data sets containing a varying proportion of
randomly selected missing genes (see Materials and Methods) and analysed the data using the

best combination of distance measure and clustering method (geodesic distances and spectral
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clustering). With missing data, when the number of clusters is known in advance, the true
partition of the data is recovered with high accuracy (measured by variation of information) as
long as the clusters are separated by a few topological rearrangements—even when data is
sparse (Figure 5A). When clusters are not well separated—differing by just 1 or 2
SPRs—sparseness has a detrimental effect on accuracy. Both of the permutation and bootstrap
stopping criteria show high accuracy when inferring the number of clusters, strongly

outperforming the silhouette (Figure 5B; Supplementary Figure 6).
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Figure 5: (A) Distance of the spectral clustering of geodesic distances from the “true” clustering
for varying levels of taxon occupancy. Just as with complete groups, partial groups converge to
the correct assignment as the distance between clusters increases. When clusters differ from
the underlying species tree by 3 SPRs or more, the effect of incomplete occupancy on
performance is very slight. (B) Effect of incomplete taxon occupancy on cluster number
selection criteria. Non-parametric permutation and parametric bootstrap recover the true number
of clusters (4) in more than 90% of cases. The clusters were separated by 3 SPRs, and each
locus had 40% mean taxon occupancy, which corresponds to the point on panel (A) indicated
by the grey arrow.

Application to empirical data

We applied the best combination of distance measure (geodesic distance), clustering method

(spectral clustering) and stopping criterion (permutation test) to two empirical data sets.
Yeast data set
The first empirical data set consists of 344 curated orthologous sets of genes from 18

ascomycetous yeast species, which was previously used to infer a species phylogeny robust to

11



inter-gene heterogeneities (Hess and Goldman 2011). Applying our method to this data set
resulted in a partition of the 344 loci into three clusters (Supplementary Figure 7). The clusters
are of unequal sizes: there is a large cluster, consisting of 307 loci, and two small clusters
containing 26 loci and 11 loci. Although the numbering of clusters produced by treeCl has no
special meaning, for clarity ‘cluster 1’ will consistently refer to the cluster of 307 loci, and ‘cluster

2’ and ‘cluster 3’ to the clusters of 26 and 11 loci, respectively.

Despite the high degree of incongruence among trees estimated from individual loci, the overall
species tree relating these yeasts has been well-studied, and has been established with little
controversy (Dujon 2010). This species tree can be seen as the tree on the left in figure 6, which
is also the cluster tree derived from cluster 1. The trees on the right of figure 6 are the cluster

trees inferred for clusters 2 and 3.
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Figure 6: Phylogenetic trees inferred from the three clusters found in the yeast analysis with treeCl. The
tree on the left is that inferred from the largest cluster of 307 loci. This matches the established species
tree for these 18 species of yeast. The taxa highlighted in red (S. kudriavzevii) and blue (S. kluyveri) are
those that are found on long branches in the trees inferred from clusters 2 and 3 (shown respectively
right, upper, and right, lower). In these trees the branches leading to S. kudriavzevii (in cluster 2) and
S. kluyveri (in cluster 3) have been truncated to so as to fit reasonably on the plot. Their full lengths are as
indicated. Otherwise, branch lengths can be determined by the scale bars shown (all equal scales).
Branch support measures were calculated using approximate Bayes (aBayes). Where aBayes branch
supports are less than the maximum possible value of 100% their values are indicated by a number to the

right of the branch.

The tree for cluster 2 yields nearly the same topology as that for cluster 1, with the sole
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modification that S.kudriavzevii appears basal to, rather than within, the Saccharomyces sensu
stricto clade. Branch lengths are also modified in the cluster 2 tree: minor changes aside, note

that the branch leading to S. kudriavzevii is very much longer than in the cluster 1 tree.

A similar observation can be made of the inferred tree from cluster 3. In this case, it is
S. kluyveri that is incorrectly placed relative to the species tree, again with a very long branch.
The cluster 3 tree also differs from the cluster 1 tree in the arrangement of the clade consisting
of the species K. walltii, A. gossypii, K. lactis, the clade to which S. kluyveri belongs in the other
two trees. The cluster 3 tree is also the only one for which the branch support values, as
measured using approximate Bayes, are below 100%. The lowest branch support, 81%, is
found within the rearranged K. waltii, A. gossypii, K. lactis clade. With this exception, the
remaining branches all show greater than 95% approximate Bayes branch support, even though
there is incongruence among the loci underlying these trees. However, this may not necessarily
be a strong case for these topologies being correct, as it has been suggested that

concatenation tends to inflate branch support values (Larget et al. 2010; Weisrock et al. 2012).
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Figure 7: Visualisation of application of treeCl to the yeast data set. The scatterplot shows the embedding,
by multidimensional scaling, of the geodesic distances between the 344 trees. Three clusters were found
by spectral clustering: red circles indicate the largest cluster, with 307 members; the 37 remaining loci are
indicated by blue triangles (cluster 2) and green squares (cluster 3). Loci belonging to the first, largest
cluster are tightly grouped and yield the correct species phylogeny, whereas trees belonging to the
second and third clusters are disparate and all have odd and inconsistent phylogenies as a result of
incorrectly called orthology (see text for full details).

As an attempt to visualise the distribution of the individual locus trees we embedded them in two
dimensional space using multidimensional scaling (Figure 7). In this representation,cluster 1
appears as a very tight cluster of points in the centre of the figure, while clusters 2 and 3 are
more diffuse. Although clusters 1 and 3 appear to overlap, keep in mind that while it may seem
to be difficult to assign these clusters on the basis of this figure, the actual clustering is done in
a higher dimensional space and using a different coordinate transform than the one visualised
here. What can be noted from this figure is that all members of clusters 2 and 3 are positioned
relatively large distances away from cluster 1, which suggests that these clusters consist of loci

for which the underlying tree distances are large, when measured from those loci from cluster 1.
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To try to understand the source of incongruence in the smaller clusters, we examined the
sequences associated with the long branch in the gene tree associated with each of their 37
loci. They each included one particularly long terminal branch, but none of the single-locus
topologies matched the ones inferred for cluster 2 or cluster 3 as a whole. The 37 trees are
reproduced in Supplementary Figure 8. Reciprocal best hit analyses of these sequences with
S. cerevisiae indicate that they were erroneously classified as orthologs (Supplementary Table
1). We thus conclude that the major source of incongruence in this 344 gene yeast data set is
derived from erroneous orthology calling, particularly involving the S. kudriavzevii and
S. kluyveri genomes. In this example, treeCl has identified 307 loci that support the species
tree; of 37 that do not, it has detected two clusters, one primarily consisting of cases where the
S. kudriavzevii gene has been misannotated and one where S. kluyveri misannotations are
similarly implicated. Even for these two clusters, the inferred phylogeny agrees fully or very

nearly with the species tree, aside from the position of the primary misannotated species.

Given the “outlier” nature of the loci identified in the small cluster, we also applied a specialised
outlier detection package, kdetrees (Weyenberg et al. 2014). Remarkably, with geodesic
distances, it identified the exact same 37 loci as outliers (Supplementary Figure 9). This
provides additional evidence that these 37 loci should indeed be excluded in the inference of the

species tree.
Chiastocheta data set

The globeflower flies, genus Chiastocheta, are pollinators and seed parasites of the plant
species from the Trollius genus (Ranunculaceae) (Pellmyr 1992; Suchan et al. 2015).
Chiastocheta have a recent origin, with most diversification events occurring less than ca. 1.6
million years ago, and their phylogenetic relationships are uncertain (Després et al. 2002;
Espindola et al. 2012). Particularly, only two globeflower fly species were found to be

phylogenetically supported using mitochondrial markers (Espindola et al. 2012).

RAD-sequencing of 306 samples from 7 European Chiastocheta species (25 C. dentifera
individuals, 48 C. inermella, 52 C. lophota, 34 C. macropyga, 70 C. rotundiventris, 36
C. setifera, 41 C. trollii) collected across their whole ranges yielded a data matrix of 5574
orthologous sets of sequences (loci), containing in total 253866 variable, and 81379 parsimony
informative sites. Because of inherent technical limitations of RAD-sequencing, the majority of
these loci had sparse coverage over the individuals. To focus on the phylogenetically most
informative loci, we disregarded loci present in fewer than 100 individuals. This resulted in a

matrix of 176 loci (i.e., 10.2% of the overall number of loci identified). Each locus contained, on
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average, 44.2% of the taxon set.

Application of treeCl (with geodesic distance, spectral clustering, and permutation test stopping
criterion) identified eight clusters. However, the plot of the likelihood improvement against the
number of clusters (Figure 8) is not smooth: most of the improvement is obtained by increasing
the number of clusters up to four and by increasing it from five to six; in contrast, adding a fifth
or seventh cluster only moderately improves the fit. Thus, a cautious interpretation of this
analysis is that there are at least four distinct clusters of loci. This conclusion is also supported

by the parametric bootstrap criterion (Supplementary Figure 10).
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Figure 8: Likelihood improvement gained when partitioning the Chiastocheta data into
increasing numbers of clusters (red points). Resampled distributions (boxplots) were generated
using the permutation procedure. The number of clusters selected by the stopping criterion is
indicated by the vertical dashed line. For 2—8 clusters the improvement is statistically significant;
increasing to 9 clusters is not.

The trees inferred for the four clusters (Figure 9) substantially differ, both in topology and branch

lengths. In particular, many of the deep relationships are well-resolved but different across
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clusters, suggesting genuine differences in the history of the loci. However, with very few
exceptions, each species forms a distinct monophyletic group. This is consistent with
well-documented differences in genital morphology across most of these species (Després et al.
2002). With greater data available, phylogeny and morphology now agree. Furthermore, the
even cluster size distribution (cluster sizes of 29, 58, 42 and 47 loci) suggests that the method is
not simply finding groups that consist of one or two outliers. The greatest departure from
monophyly is shown in the group consisting of 29 loci. In this group the majority of the
representatives of species C. lophota are found at the base of a clade that also contains
C. macropyga, C. trollii, C. setifera and C. inermella. For partitions into greater numbers of
clusters than four, we observe at least one tree in which species monophyly is largely absent
(Supplementary Figure 11), which may indicate that likelihood improvements gained when
clustering into more than four groups are due to fitting to the noise in the data, extracting loci
with weak or conflicting signal. In this case, attempting to visualise the individual locus trees in

two dimensional space does not yield informative results (Supplementary Figure 12).

Overall, the picture that emerges from the analysis confirms the existence of seven distinct
species in the Chiastocheta genus, but implies that the branching order among them varies
substantially across loci. Such variation is suggestive of ILS, particularly as six of the seven
species (except C. rotundiventris) are thought to have radiated more or less synchronously
(Espindola et al. 2012). To rigorously test this hypothesis, future work could assess the fit of this

data under a mechanistic model of ILS.
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Figure 9: Trees obtained when clustering RAD-seq data from globeflower flies of the genus
Chiastocheta. The tfrees are drawn to scale, and are rooted at their midpoint, as the outgroup is
unknown. Leaves are coloured according to species membership. Branch support is indicated
as follows: branches with support values below 0.9 are collapsed into multifurcations; those with
support in the range 0.9-0.95 are coloured grey; those with support >0.95 are coloured black.
Support values are calculated using approximate Bayes (Anisimova et al. 2011).

Discussion

In this study, we investigated clustering multi-locus data sets into evolutionarily similar groups
based on their inferred phylogenies. This work is motivated by the observation that phylogenetic
incongruence among loci can arise through various evolutionary processes, in which case a
single tree is insufficient to describe the disparate processes underlying the data. At the other
extreme, reporting one tree for each locus suffers from the drawbacks of single-locus
phylogenetics—lack of signal, sampling error, unrepresentativeness—and in addition it is
difficult to interpret a large and unwieldy collection of trees. By clustering loci, we allow the
possibility that a meaningful representation be given by some intermediate number of trees,
each capturing a common evolutionary history for some of the loci. We do this in a
process-agnostic way, in that we do not seek to view our observations through the lens of any
particular mechanism. This may lose inferential power in the case where organisms have
evolved mainly through a process that we fail to model explicitly, but has the advantage that we
will not bias the analysis by imposing mathematical models inappropriate for the processes that

have occurred.

To investigate the performance of this approach, we assessed combinations of different
distance metrics and clustering methods using simulation. Overall, Euclidean and geodesic
distances, which take branch lengths into account, performed better than Robinson-Foulds
distances. Spectral clustering and Ward’s method gave the best clusters, most reliably over the
range of simulations analysed. We note that two methods—MDS and k-medoids—are
successful in many cases, but produce some anomalous results in which performance becomes

worse as the problems become easier (Supplementary Figures 1D, 2A, 3E).

We introduced new statistical tests to determine the best-supported number of clusters, and
compared them to a general-purpose cluster assessment statistic. In simulation the new
measures outperformed the general-purpose criterion. If we look at the results from the “difficult”
case, it seems that all criteria have a tendency to be conservative and underestimate the
number of clusters (Figure 4, Supplementary Figure 5). We consider this a valuable feature; it is
more parsimonious to erroneously infer too few rather than too many clusters. When moving

from simulated data to a real data set of 344 orthologous groups from yeast (Hess and Goldman
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2011), subtle errors in orthology inference could be detected and corrected. This highlights the
high potential of the approach for quality control in multilocus phylogenetic analyses.
Furthermore, the unexpected nature of the errors observed in that data set is a good illustration
of the flexibility of process-agnostic methods for detecting incongruence. The examination of a
large data set of Chiastocheta flies demonstrates that our method is applicable to data sets of
the scale that is routinely produced by high-throughput sequencing approaches such as

RAD-seq, and not only to more artificial simulations.

The range of methods and conditions investigated in this study is considerable, but inevitably
not exhaustive. There are other distance metrics and clustering methods not tested here. These
were omitted mainly for reasons of being too numerous for their inclusion to be practical. Some
were not considered because they overlapped closely with metrics and methods that were
considered: for instance, kernel PCA is a coordinate transformation procedure that could have
been used in a similar way to spectral embedding and multidimensional scaling; however, it is
largely analogous to spectral embedding (Ng et al. 2002) and initial investigation showed it to
give very similar results. Other clustering methods such as Markov Clustering (Enright et al.
2002), DBScan (Ester et al. 1996) and Affinity Propagation (Frey and Dueck 2007) were not
investigated as they provide no means to specify the number of clusters they return, which is a
property we specifically wanted so we could test our stopping criteria. Similar concerns led to us
to exclude such distance measures as Quartet Distance (Estabrook et al. 1985) or Matching
(Lin et al. 2012) as they provide discrete topology-only measures similar to Robinson-Foulds.
Tree edit measures such as the subtree prune-and-regraft distance are highly computationally
difficult to calculate (Bordewich and Semple 2005) and so were not investigated. This method
may become tractable with the advent of fast approximation algorithms (Chung et al. 2013;
Whidden et al. 2013).

We tested our method under a range of simulation criteria. However, the combinatorics of the
range of parameters that can be varied are such that it was not possible to test them all. This
also limits the degree to which we can test whether tuning certain clustering procedures might
improve their performance (for instance, the number of dimensions to embed the inter-tree
distances in when using MDS). Likewise, many biological phenomena leading to incongruence
were not investigated (including variation in rate of evolution across genes and between taxa;
differential duplication and loss between species within gene families; etc.). Nevertheless, we
think that the variety of problems studied, and in particular the range of levels of difficulty, are
enough to provide convincing evidence that process-agnostic clustering methods can work

effectively and give useful results.

The clustering methods investigated in this work are also applicable to data sets with incomplete
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‘occupancy” among species, such as the one obtained for Chiastocheta flies by RAD
sequencing, a technique that is typically prone to having a large proportion of missing data.
Indeed, our simulations suggest that as long as the clusters are separated by a few topological
moves, occupancy as low as 40% incurs negligible performance degradation. Likewise, the new
stopping criteria introduced in this study cope well with sparse data matrices, in contrast to the

general-purpose silhouette method.

It is unclear how sensitive the method is to the quality of the inferred single-locus trees. Inferring
these is the first step in our analyses, and all further steps proceed as if the trees are correct;
the distance matrix is calculated based on these initial trees, which are not re-estimated. To
improve our approach we could introduce a cycle in our algorithm in which the single-locus trees
are re-estimated based on parameters estimated while inferring the cluster trees, and the
distance matrix and cluster assignments updated. However, this is likely to be computationally
expensive. Another possibility is to incorporate measures of phylogenetic uncertainty—such as

the bootstrap—into the distance estimation and the clustering step.

Practically, however, the amount of computation required to apply distance metrics and
clustering methods to whole-genome-scale data poses a challenge. For instance, calculating
geodesic distances takes time of order O(n*) (Owen and Provan 2011), where n is the number
of leaves in the tree, while Euclidean and Robinson-Foulds distances can be computed in linear
time (Pattengale et al. 2007). There is also the burden of pruning trees to their overlapping taxa.

These factors could prove prohibitive in the case of very large trees. Whatever the details of the

m

distance calculations, they must be performed (z) times, where m is the number of loci in the
data set. Clustering the resulting m x m distance matrix using any spectral technique—requiring
eigen decomposition—takes time of order O(m®). This burden can be reduced by applying an
approximation such as the Nystrém method (Fowlkes et al. 2004), which produces
approximations to the eigenvalues and eigenvectors from a reduced input set, reducing the
number of pairwise tree distance comparisons required. We have demonstrated that the
relatively efficient Euclidean distance and Ward’s method for hierarchical clustering produce
good results, and may thus be preferred in large data sets. In the work carried out in this paper,

by far the largest amount of time is spent in tree inference; this remains the bottleneck.

We applied our method to two empirical data sets, one from yeasts and one from Chiastocheta
flies. Both data sets show a high degree of phylogenetic incongruence, although this is likely to
be for different reasons: misannotated orthology for the yeast data set, and ILS for
Chiastocheta. Due to its process-agnostic nature, we were able to apply our method in the

same way to both data sets, and learn something about the incongruent signals in the data. This

20


https://paperpile.com/c/Bviogo/omJk
https://paperpile.com/c/Bviogo/S6qn
http://chart.googleapis.com/chart?cht=tx&chl=m%20%5Cchoose%202
https://paperpile.com/c/Bviogo/Y6aZ

allows us to identify the likely processes at play, and prioritise different types of follow-up
analysis—stringent orthology identification in the first case, and analysis under a mechanistic
ILS model in the second. In this way our process-agnostic is complementary, rather than in

opposition, to mechanistic models of incongruence.

Looking ahead, it seems clear that the assumption in multi-locus phylogenetics that all loci are
derived from the same tree is too strong, and should be relaxed. Partitioning model parameters
is commonplace (e.g. Hess and Goldman 2011; Lanfear et al. 2012); tree-topology partitioning

is a logical next step.

Materials and Methods

In the following subsections, we first describe the components of this clustering process in more
detail, including the various distance and clustering algorithms investigated in this study. Next,
we describe a partition likelihood quality score that we use to compare the performance of
combinations of distances and clustering methods, and introduce new tests to infer the optimal
number of clusters in a data set. Finally, we describe the simulated and empirical data used in
our analyses. The analyses were carried out using our treeCl software, which is available as an

open source python package (http:/qit.io/treeCl).

Input data

The input data are a set of multiple sequence alignments, one per locus being examined. The

sequences can be of nucleotides or proteins.

Tree inference

In principle, any method of tree estimation can be used. We use maximum likelihood (ML)
estimation of phylogenies, which is statistically robust (Felsenstein 2004) and enables us to use
a likelihood criterion for cluster membership comparisons and cluster number decisions. For
each locus, we infer the ML phylogenetic tree using the Phylogenetic Likelihood Library (PLL)
(Flouri et al. 2015).

In the experiments described in this paper, we use PLL'’s full ML estimation with tree search. We
use either the GTR model (Tavaré 1986) for nucleotide data, or the WAG model (Whelan and
Goldman 2001) for proteins, coupled with a gamma distributed model of rate variation with 4

discrete categories (Yang 1994), and the RAXML search strategy (Stamatakis 2014).
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Inter-tree distances

Once the tree for each locus has been estimated, their similarities are assessed according to a
particular distance metric. We have investigated three distance measures: Robinson-Foulds
(Robinson and Foulds 1981), Euclidean (Kuhner and Felsenstein 1994) and geodesic (Billera et
al. 2001) (table 1). With a set of m trees we compute all m(m-1)/2 pairwise distances. We
implemented the tree distance algorithms in C++ and Python. The geodesic distance algorithm
used is that of Owen and Provan (2011). Source code is available from

https://pypi.python.org/pypi/tree_distance/0.0.6.

Distance measure Features incorporated
Robinson-Foulds Topology

Euclidean Branch lengths

Geodesic Topology and branch lengths

Table 1: Distance metrics investigated

Missing data

For pairwise tree comparisons when taxon sets differ, the trees are pruned to the taxa they have
in common. Distances are calculated on the resulting reduced trees. In the case that the
intersection of taxon sets contains fewer than four taxa—the minimum number required that can

produce a tree with at least one internal edge—the distance is taken to be zero.

Clustering

The resulting distance matrix is used as the input for a clustering algorithm. We have
investigated seven such algorithms, detailed in table 2. Each algorithm presumes that the
required number of clusters is known in advance; we investigate approaches for choosing the
optimal number of clusters below. All methods work directly on the distance matrix, except the
coordinate transform methods. These transform the distance matrix into the coordinates of a set
of points, then use k-means to perform the final clustering step. k-means is not suitable for use

directly on a distance matrix.

Clustering method Type Implementation
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Single-linkage Hierarchical Fastcluster (Millner 2013)
Complete-linkage Hierarchical Fastcluster
Average-linkage (UPGMA) Hierarchical Fastcluster
Ward’s method Hierarchical Fastcluster

Spectral Clustering

(using k-means for the final
clustering step)

Coordinate transform

Spectral
implementation in
(after  Zelnik-Manor
Perona 2004)

clustering: custom
treeCl
and

k-means: Scikit-learn
(Pedregosa et al. 2011)

Multidimensional
(MDS) + k-means

scaling

Coordinate transform

Custom implementation in
treeCl (after Torgerson 1952)

k-medoids

Partitioning around medoids

C Clustering Library
(de Hoon et al. 2004)

Table 2: Clustering methods investigated
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Partition likelihood for assessing clustering

In order to assess partitions, which may be obtained from different clustering approaches, we
describe the ‘partition likelihood’. This can be used as a quality score to assess the best

combination of distance and clustering method.

Each cluster comprises a subset of the loci, and is a collection of genes putatively sharing a
common evolutionary history. Hoping to benefit from a more robust evolutionary inference by
combining the data from homogeneous sources, we therefore concatenate the alignments of the
member loci and infer the ML tree using the same model as for the individual loci. The

log-likelihood is calculated for each cluster tree conditioned on the concatenated cluster

alignment. The partition log-likelihood, F"”, is the sum of all optimal cluster log-likelihoods, and is
in effect the maximum log-likelihood under a model where the genes within each cluster share a
common evolutionary history and evolutionary dynamics, but there are no constraints that

different clusters share any evolutionary parameters.

Choice of number of clusters

The number of clusters, k, can take any integer value in the interval [1, m], where m is the
number of loci in the data set. Let us consider the case of choosing between k and k+1 clusters.
This is equivalent to choosing between the hypotheses that the loci are sampled from k
evolutionary trees, or k+1 evolutionary trees. These form our null and alternative hypotheses,
respectively. The alternative hypothesis is able to recapitulate the null model, and therefore the
hypotheses are nested. To illustrate that the alternative hypothesis nests the null, consider that
if two of the trees associated with clusters in the alternative model are identical it is equivalent to
the case that those clusters are combined, decreasing the effective number of clusters by one

and reproducing the null. We can thus calculate the partition log-likelihood of each hypothesis,

¢ ¢ : : deali Ap =L i
k and “k+1, and the increase in log-likelihood, =% = "k+1 k.

With nested hypotheses, 2AL s asymptotically chi-squared-distributed, with the number of
degrees of freedom corresponding to the difference in the number of parameters between the
null and alternative hypotheses (Wilks 1938). However, counting parameters proves difficult in
this case: the extra parameters in the alternative hypothesis include an inferred tree topology,
and tree topology parameters are difficult to quantify (Goldman 1993). This means we cannot
specify which chi-squared distribution we should use for our test. This also precludes the

application of information criteria such as the AIC or BIC (Akaike 1974; Schwarz 1978).
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Alternatively, we can estimate the distribution of A by repeatedly calculating Ak values from
new data sets generated under the null hypothesis. Such a procedure does not require that the
difference in degrees of freedom be known or even that the hypotheses be nested. We devised
two such procedures: a non-parametric permutation test, in which the new data sets are
produced by randomising the original data, and a parametric bootstrap test, in which new data
sets are generated via simulation. These permit us to compare whether k+1 clusters are
statistically supported over k clusters, and we apply such tests successively for k = 1, 2, 3, ...
and use the stopping criterion that k* clusters are taken to be optimal where k* is the smallest

value of k for which k+1 clusters are not statistically supported over k clusters.
Permutation test

The permutation test generates a new data set from the input data set by permuting the
columns of all the multiple sequence alignments—the alignments are concatenated, the
columns are shuffled, and the concatenated alignment is broken back up into individual
alignments of the same lengths as the original ones. The effect of this is to uniformly distribute
the columns over the data set, removing any between-locus incongruence that might form the
basis for clustering. These resampled data are analysed twice: into k clusters and k+1, and we

calculate Ak. The whole permutation procedure is repeated 100 times to estimate the

distribution of &k

Note that it would be conceptually preferable to permute the columns such that a distribution of
loci among exactly k underlying trees is preserved (as per the null hypothesis). However, we
have not found a good way to do so. Thus, we implicitly assume that the distribution of the
improvement in likelihood from k to k+1 is the same whether the true number of clusters is 1 or

k. Our extensive simulations suggest that this approximation works well in practice.
Parametric bootstrap

As a parametric alternative to the non-parametric permutation test, we use simulation to
generate new data sets using parameters estimated during the analysis of the original data.
After the analysis, each locus belongs to one of k clusters, and is therefore associated with one
of k cluster trees. In the simulated data set, each locus is simulated along its associated cluster
tree, using evolutionary model parameters estimated in the analysis. Alignment length and gap
positions are duplicated from the initial data (Goldman et al. 1998). Consequently, the data is
simulated under the null hypothesis that loci evolved along k underlying trees. The simulated

data are clustered and separately analysed with k clusters and with k+1 clusters to calculate the

increase in the partition log-likelihood, Ak, This “parametric bootstrap” procedure is repeated
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for 100 data sets to estimate the distribution of k. The simulation code makes use of the

Bio++ libraries (Guéguen et al. 2013).

Simulating data sets with incongruence

The simulated data used in this study were generated to represent evolutionary histories with
incongruent phylogenies. Consequently, generating the simulated data involved three stages:
(i) deciding on the number of taxa, clusters, loci, and distribution of loci into clusters; (ii) for each
cluster, generating an evolutionary tree; (iii) for each locus, simulating sequences along its

cluster’s tree.
Number of taxa, clusters, loci, and distribution of loci into clusters

We produced data sets according to four scenarios with varying numbers of taxa, loci, clusters,

and distribution of loci among these clusters, as described in table 3.

Name Taxa Clusters | Loci Distribution of loci into clusters
Small uniform | 20 4 60 15, 15,15, 15

Small skewed | 20 4 60 5,10, 15, 30

Large uniform | 40 6 90 15, 15, 15, 15, 15, 15

Large skewed | 40 6 90 5,5,10, 10, 20, 40

Incomplete 50 4 60 15, 15, 15, 15

occupancy

Table 3: Attributes of the four simulated data set scenarios with incongruence used to test combinations
of distance metric and clustering method, and the scenario used to test the effect of incomplete
occupancy.

Generating cluster trees

All cluster trees are derived from an underlying ‘species tree’. For each data set, we simulated a
random species tree using a Yule pure speciation model (Yule 1925), implemented in Dendropy
(Sukumaran and Holder 2010).

To generate incongruent cluster trees, we started from this species tree and applied sequences
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of random rearrangements of potential biological relevance. The type of rearrangements was
either nearest-neighbour interchange (NNI) or subtree prune-and-regraft (SPR). NNI makes
local rearrangements, such as those that might be found as a result of ILS. SPRs were used to
make rearrangements involving branches at a greater separation within the tree, consistent with

the kind of rearrangements observed in HGT (e.g. Galtier 2007).

We applied a predetermined number of rearrangements to the underlying tree for any given
data set. This number was varied to control the ‘difficulty’ of the data set, i.e. the expected
difficulty for a clustering method to reproduce the correct partition of the data. A data set with a
small number of rearrangements is derived from cluster trees that are more similar to each other
than one with a large number of rearrangements, and therefore represents a more difficult case.
The number of rearrangements we used ranged from 1 to 10; beyond 10 NNIs or SPRs the
underlying trees were so different that all clustering strategies performed so well that there was

no distinction between them.

Combining the four scenarios from the previous section with the two rearrangement types and
ten difficulty levels yields 80 different parameterisations that describe the attributes of the data

sets we generate.
Simulating data sets for testing combinations

For each parameterisation we generated 1000 replicate data sets according to the following

process:

l. Randomly generate an ultrametric species tree according to the Yule process.

Il. For each cluster, apply a sequence of random tree rearrangements to the species tree to
generate the cluster tree. The species tree is reset at the end of the sequence of
rearrangements, so that it is identical for each cluster prior to the rearrangements being
applied. The rearrangements are either NNI or SPR. The branches at which these
operations are applied are selected randomly according to the following procedure: the
tree length, L, is the sum of all branch lengths. A line (0, L) can be interpreted as all the
branches in the tree laid end-to-end. A random value drawn from U(O, L) gives us both a
randomly selected branch—according to the branch segment it falls in—and a position
on that branch.

Ill.  Draw a set of branch lengths for the cluster trees: inner branch lengths are set to values
drawn from Gamma(shape=0.67, scale=0.16), terminal branch lengths to values drawn
from Gamma(shape=0.54, scale=0.48). These distributions were fit to the branch lengths

inferred for the yeast data set.
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IV.  Simulate alignments from each cluster tree according to the distribution of loci into
clusters. Protein sequences were simulated using ALF (Dalquen et al. 2012), using the
WAG model of substitution (Whelan and Goldman 2001) with 4 categories of gamma
distributed rates (¢=1); (Yang 1994). Sequence lengths were drawn from a gamma
distribution with shape=1.772 and scale=279.9. These parameters were estimated from
the distribution of alignment lengths of the yeast data set (see section Empirical Data,
Yeasts).

V.  Sequences were removed from the alignments with probability (1 - occupancy).

Empirical data
Yeasts

After validating the performance of our method under the controlled conditions of simulation, we
investigated its performance on a data set of 344 orthologous groups from 18 yeast species
(Hess and Goldman 2011). We analysed protein sequences using the WAG model (Whelan and
Goldman 2001). The loci were clustered based on geodesic distances and spectral clustering,

with the number of clusters determined by parametric bootstrap.
Chiastocheta

The second data set consisted of the RAD sequences obtained from Chiastocheta flies (Diptera:
Anthomyiidae) collected across their whole European range. Samples were genotyped using a
modified ddRAD protocol (Peterson et al. 2012; Mastretta-Yanes et al. 2015). De novo locus
assembly was performed using the pyRAD 2.0 package (Eaton 2014), with read clustering
similarity threshold of 75%, both on within- and among-sample level. Other parameters were set
as follows: all nucleotides with Phred quality lower than 20 were treated as unknown bases, and
reads with more than 4 unknown bases were removed from the data set; possible paralogs
were removed by filtering out the loci that had more than five heterozygous positions per locus
within individuals, more than 10 heterozygotes per nucleotide position among samples, and the
loci for which more than two alleles were present per individual. In total 273 individuals were
sequenced, with 33 technical replicates. For the purpose of this study, only high coverage loci
(i.e. present in at least 100 samples) were retained. This resulted in a matrix of 176 loci across
306 samples. Phylogenetic analysis was performed using the GTR model + 4 categories of
Gamma distributed rates across sites. Clustering parameters were Geodesic distances, spectral
clustering, and the number of clusters was estimated using the non-parametric permutation test

stopping criterion.
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Data available for download

Simulation data and results from ms. sections ‘Performance of the combinations of distance
metrics and clustering methods’, ‘Performance of methods for determining the number of
clusters’ and ‘Dealing with incomplete occupancy across loci’, and the alignments and trees for
the original loci and for the optimal clusters for the yeast (344 loci; 3 clusters) and Chiastocheta
(176 loci; 4 clusters) data sets, are available for  download from

http://www.ebi.ac.uk/goldman-srv/treeCl.
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Supplementary Figure 1: Small data set, SPR rearrangements. Panels show the relative performances
of combinations of distance metric (varying over columns of panels) and clustering methods (shown by
the colours of the lines), as measured by the variation of information metric (y-axes), which is a measure

obtained when comparing the inferred solution with the true solution (higher values show a larger
departure from the correct solution). Lines show the mean value obtained from 1000 replicates, and the
error bars show the standard error of the mean. Rows correspond to the experiments with a partition of
uniformly-sized clusters (A—-C) and those with a partition of clusters of skewed sizes (D—F). In each
individual panel, the x-axis represents the number of SPR rearrangements separating the underlying
clusters, so that increasing values along this axis correlate with the clustering problem becoming easier.
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Supplementary Figure 2: Large data set, SPR rearrangements. Panels show the relative performances
of combinations of distance metric (varying over columns of panels) and clustering methods (shown by
the colours of the lines), as measured by the variation of information metric (y-axes), which is a measure
obtained when comparing the inferred solution with the true solution (higher values show a larger
departure from the correct solution). In each individual panel, the x-axis represents the number of SPR
rearrangements separating the underlying clusters.
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Supplementary Figure 3: Large data set, NNI rearrangements. Panels show the relative performances
of combinations of distance metric (varying over columns of panels) and clustering methods (shown by
the colours of the lines), as measured by the variation of information metric (y-axes), which is a measure
obtained when comparing the inferred solution with the true solution (higher values show a larger
departure from the correct solution). In each individual panel, the x-axis represents the number of NNI
rearrangements between underlying clusters.
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Supplementary Figure 4: Comparison of the criteria used to determine the number of clusters on a single
problem instance with true number of clusters equal to four. The simulation scenario is the same as in
Figure 3, however this figure shows an instance for which the criteria do not all agree on the number of
clusters. (A) Permutation test: the improvement in likelihood for each additional cluster (red curve) is
significantly greater than that observed for permuted data sets (green dots show the distribution of values
over 100 permutations) until the comparison between 4 and 5 clusters is reached, correctly implying that
the use of 4 clusters is optimal. (B) Parametric bootstrap test: again, the improvement for each additional
cluster (red curve) is significantly greater than that for data sets simulated for one fewer cluster (blue dots)
until the true number of clusters (4) has been reached. (C) the silhouette score, a general-purpose
stopping criterion, has its maximum at a value of 3. In this instance, the newly devised methods give the
correct answer, while the general purpose silhouette criterion underestimates the number of clusters.
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Supplementary Figure 5: Distributions of the number of clusters found for 100 “difficult” problem
instances, analysed under the four combinations of spectral / Ward’s method clustering and Euclidean /
geodesic distances. In every instance the true number of clusters is 4. In each separate case the
special-purpose permutation and bootstrap methods outperform the general-purpose silhouette method at
selecting the correct number of clusters. When wrong, all methods tend towards underestimation rather
than overestimation. Spectral clustering outperforms Ward’s method clustering, and geodesic distances
slightly outperform Euclidean.
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Supplementary Figure 6: The performance of criteria for determining the number of clusters, with sparse
data. Four examples are shown, for two levels of occupancy (40 and 60%; rows), and two levels of cluster
separation (1 and 3 SPRs; columns). Occupancy is expressed as a percentage; 40%, for example,
means that each taxon was included in any particular locus with probability 0.4.
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Supplementary Figure 7: Stopping criteria applied to yeast dataset. The top-most panel shows the result
of applying the permutation-based (non-parametric) variant of the stopping criterion to the yeast dataset.

The lower panel shows the result of applying the parametric bootstrap variant of the stopping criterion.
Both variants suggest that the data should be partitioned into three clusters.
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Supplementary Figure 8: Phylogenetic trees for the 37 yeast loci discovered to have erroneous orthology,
with the non-orthologous sequences highlighted as red dashed lines.
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Supplementary Figure 9: Application of kdetrees to the yeast dataset. The scatterplot in the left panel
shows the kernel density estimate for each tree. The order of the trees along the x-axis is arbitrary with
respect to cluster membership, rather being derived from the alphabetical ordering of the names of the
loci. The right panel shows a histogram of the kernel density scores. In both panels, the outliers are
coloured blue.
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Supplementary Figure 10: Likelihood improvement gained when partitioning the Chiastocheta data into
increasing numbers of clusters (red points), using the parametric bootstrap criterion. The number of
clusters selected by the stopping criterion is indicated by the vertical dashed line. Compared with the
permutation test (Figure 8), the parametric bootstrap procedure yields a much larger variance in the
likelihood improvement. Examination of the data reveals that this is due to the shallowness of some
cluster trees, which makes it challenging for treeCl to identify the optimal clusters under both the null and
alternative hypotheses. However, the conclusion (at least 4 clusters) is consistent with that of the

permutation test.
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Supplementary Figure 11: A tree obtained from one of the clusters when partitioning Chiastocheta loci into

5 clusters. The species are no longer monophyletic.
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Supplementary Figure 12: Embedding of chiastocheta trees using classical multidimensional scaling. With
the exception of three outliers, the trees form two groups that are clearly separated by the first principal
coordinate. However, this separation is not indicative of the cluster structure detected by treeCl using
spectral clustering. Classical multidimensional scaling can be distorted when the input distances are not
Euclidean (Torgerson 1952, Gower and Legendre 1986). In this case, non-Euclidean distances may arise

from missing species' sequences for some loci potentially causing violations of the triangle equality
amongst the inter-locus tree distances.
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Orthologous Group

Misannotated Species

Best hit in S. cerevisiae

YBLO80C Saccharomyces kudriavzevii YMR219W
YBR094W Saccharomyces kudriavzevii YLR357W
YBR290W Saccharomyces kudriavzevii YLR114C
YCRO068W Saccharomyces kudriavzevii YJR107W
YDL043C Saccharomyces kluyveri YDLO51W
YDL104C Saccharomyces kudriavzevii YKRO038C
YDRO023W Saccharomyces kluyveri YHRO11W
YDR448W Saccharomyces kluyveri YFRO37C
YELO53C Saccharomyces kudriavzevii YOLO080C
YFR051C Saccharomyces kudriavzevii YPL259C
YGL236C Saccharomyces kudriavzevii YBLO98W
YHR019C Saccharomyces kudriavzevii YCR024C
YHRO20W Saccharomyces kudriavzevii YERO87W
YHRO024C Saccharomyces kudriavzevii YLR163C
YHRO75C Saccharomyces kudriavzevii YLR133W
YHR201C Yarrowia lipolytica YMRO052C-A
YJLO25W Saccharomyces kluyveri YDR285W
YJLO54W Saccharomyces kudriavzevii YBL052C
YJLO71W Saccharomyces kudriavzevii YPR185W
YJR141W Saccharomyces kudriavzevii YLRO19W
Pichia stipitis YNL144C-like

YKLO60C Saccharomyces kudriavzevii YERO043C
YKR038C Saccharomyces kluyveri YDL104C
YLR209C Saccharomyces kluyveri YLRO17W
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Pichia stipitis YLRO17W
YMR224C Saccharomyces kudriavzevii YALO35W
YNL219C Saccharomyces kudriavzevii YGL142C
YNL232W Saccharomyces kudriavzevii YBL052C
YNL256W Saccharomyces kudriavzevii YPLO70W
YNL325C Saccharomyces kudriavzevii YNL106C
YNRO029C Saccharomyces kudriavzevii YPL009C
YOLO005C Candida tropicalis YNL113W
Pichia guilliermondii YNL113W
YOLQ97C Saccharomyces kudriavzevii YGR185C
YOR125C Saccharomyces kudriavzevii YERO86W
YOR201C Saccharomyces kudriavzevii YLRO51C
Saccharomyces kluyveri YLRO51C
YPL188W Saccharomyces kudriavzevii YKRO56W
YPL244C Saccharomyces kudriavzevii YELOO4W
YPR025C Saccharomyces kudriavzevii YNL025C
Saccharomyces kluyveri YNLO25C
YPR118W Saccharomyces kudriavzevii YKR026C

Supplementary Table 1: Summary of erroneous orthology discovered in the yeast data set. The first
column gives the orthologous group to which the sequences from the species in the second column were

assigned. The third column gives the gene name of the best BLAST hit in S. cerevisiae.
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