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Everything flows, nothing stands still. (The only constant is change.)

Heraclitus of Ephesus (c.535 BC - 475 BC)
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There is no point expending time and effort developing a model if it is based on data

that is out of date. Many models require large amounts of data from a variety of

heterogeneous sources. This data is subject to frequent and unannounced changes. It

may only be possible to know that data has fallen out of date by reconstructing the

model with the new data but this leads to further problems. How and when does the

data change and when does the model need to be rebuilt? At best, the model will need

to be continually rebuilt in a desperate attempt to remain current. At worst, the model

will be producing erroneous results.

The recent advent of automated and semi-automated data-processing and analysis tools

in the biological sciences has brought about a rapid expansion of publicly available data.

Many problems arise in the attempt to deal with this magnitude of data; some have

received more attention than others. One significant problem is that data within these

publicly available databases is subject to change in an unannounced and unpredictable

manner. Large amounts of complex data from multiple, heterogeneous sources are ob-

tained and integrated using a variety of tools. These data and tools are also subject to

frequent change, much like the biological data. Reconciling these changes, coupled with

the interdisciplinary nature of in silico biological experimentation, presents a significant

problem.

We present the ExperimentBuilder, an application that records both the current and

previous states of an experimental environment. Both the data and metadata about

an experiment are recorded. The current and previous versions of each of these exper-

imental components are maintained within the ExperimentBuilder. When any one

of these components change, the ExperimentBuilder estimates not only the impact

within that specific experiment, but also traces the impact throughout the entire ex-

perimental environment. This is achieved with the use of keyword profiles, a heuristic

tool for estimating the content of the experimental component. We can compare one

experimental component to another regardless of their type and content and build a

network of inter-component relationships for the entire environment.

Ultimately, we can present the impact of an update as a complete cost to the entire

environment in order to make an informed decision about whether to recalculate our

results.

http://www.ucl.ac.uk/
http://www.cs.ucl.ac.uk/
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Chapter 1

Introduction

There are many reasons for requiring data, specifically the latest version of the data.

In many cases, we have become infatuated with the need for newest data1. There is

no interest in using old data, especially if the data is known to be out of date. But

there are many cases where old data is just as up-to-date and relevant today as when

it was published. But how can we know when data becomes out of date? Sometimes

people are kind enough to tell us, either explicitly or by supplying us with a new edition.

Normally, they provide a updated version and leave us to find it. Occasionally, they are

even less generous and change their original data without informing us or making any

announcement at all. This can cause significant problems especially if we have already

used the original data and, unbeknown to us, our work has become out of date.

So, how can we deal with these unannounced changes? We can regularly update our

work with a fresh edition irrespective of any changes that may or may not exist in

the data. Many systems today employ a ’constant refresh’ or dynamic methodology,

retrieving the latest data as per user request. But this can be very wasteful, especially

if the data remains unchanged for long periods of time. And if we have used the data in

complex and time-intensive ways, the matter worsens. We may have already conducted

a string of experimentation, each based on the one before and ultimately leading back

to the original data. We can not simply update the data on a whim, but we must also

make sure that our data is valid2; a string of experiments, no matter how complex or

cumbersome to repeat, is useless if invalidated. There is a fine balance to be achieved

when updating an experimental environment with dangers on both sides. Erring on the

1One has only to witness the sums of money paid by financial institutions to locate themselves ever
closer, both logically and physically, to city stock exchange hubs to get market information that bit
quicker.

2We refer to data as being invalid with respect to the particular hypothesis or request on the data.
It is, perhaps, more accurate to refer to the results and/or model as out-of-date or inconsistent with an
available, but as far unused, experimental resource.

13



Introduction 14

side of caution, you may spend all your time needlessly updating but ignoring these

changes may cause your model and your results to become out of date.

Clearly, there are occasions where it is wise to update and those when it is not. It

depends on the nature of the change and how much this change will affect your results.

Unfortunately, it is often difficult to identify this effect without re-running your exper-

iments and actually measuring it. An experienced scientist may have a feel for how a

datasource change may affect their results but this is likely to be inaccurate, difficult for

most, and nearly impossible for all but the simplest of experimental environments.

Our research aims to reduce this area of divination, giving the experimenter a real-world

cost of updating their experiments based on a comprehensive knowledge of the change

that has occurred based on a complete analysis of the entire experimental environment.

During this chapter, we describe our motivation for this research. We describe arguably

the single most important contribution to genomic and proteomic biology of the last 30

years, namely the Human Genome Project (HGP). We briefly describe the history of

the HGP, illustrating some of the problems arising from the project that finally lead to

our research question. We conclude the introduction chapter with a concise description

of our contribution to the research question posed below. The second chapter describes

the key areas of identified related material, detailing their importance and significance

to our own research. Chapter 3 provides a detailed analysis of a test case, identified

as requiring change management. We present the Hashed Data Model in chapter 4,

our first approach at tracking changes in biological datasets. Chapters 5 and 6 describe

our change management framework, encapsulated in the ExperimentBuilder and the

various tracking algorithms that we have created and implemented in order to facilitate

change and impact tracking throughout an entire experimental environment. Chapter 7

describes the evaluation of our solutions to the research question, both the HDM and

the ExperimentBuilder, and our conclusions are presented in chapter 8.

1.1 Motivation

Since the presentation of the double helical structure of DNA by Watson and Crick in

1953, the pace of related scientific and biological research has increased at an exponential

and often alarming pace. Following this cracking of the genetic code, the fields of

genomics and proteomics were born and quickly established as independent but related

disciplines. During the 1970-1980s, Fred Sanger cemented the idea of genomics by

sequencing the first complete genome of a single virus. Since that milestone, his group
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has established many techniques for sequencing, genome mapping, data storage and

bioinformatic analyses.

From there on, the Human Genome Project HGP set about identifying and mapping the

20-25,000 genes of the human genome. The project ran from 1990 to 2000 whereupon it

released a working draft of the entire human genome. The HGP was a vital step in the

development of medicines, especially for conditions related to human genetics. Consid-

ering the hopes that were placed on the HGP, including over-zealous anticipations from

many prominent scientific figures, little by comparison came to immediate fruition. The

problem was that although the mapping had been completed, there was a fundamental

lack of understanding of the genome and its constituent parts. The tools to derive un-

derstanding of the genome had largely been ignored, favouring the development of tools

and techniques to quicker map the remaining parts of the genome 3. Some believed,

perhaps strangely, that the mapping alone of the human genome would herald a new

era of biological discovery.

It is too easy to identify the failings of such a large and ambitious project, especially

with the benefit of hindsight and it is unfair to overstate the shortcomings of the HGP

when clearly so much has been achieved through its existence. Many mapping techniques

were conceived and improved over the course of the project including many controversial

strategies4. As the HGP continued, it drove forward surrounding areas of research that

were required advancement in order to support the progressing requirements. Many

requirements related directly to the enormity of the data that needed to be stored and

managed. This presented several problems for the data management community. The

volumes of the data were not specifically problematic; many databases are required

to hold large quantities of data. But when you consider the amounts of data being

appended and modified on an often daily basis, the presentation requirements of the

data and, given the public nature of the repository, the storage and management of the

data becomes anything but trivial.

Much, if not all, the emphasis of the HGP was aimed at the mapping of the human

genome. Genomic data was added to the project as quickly as possible, largely driven by

the desire to identify and patent certain valuable genes but also by an equally powerful

and conflicting desire; to freely distribute the human genome to the public. Ultimately,

the pioneers of free access to the genome succeeded and in March 2000, the then US

president, Bill Clinton, announced that patents could not be taken against the human

genome and the information should be freely available to all researchers. The pace that

3Ironically, considering the primary objective of the HGP was to understand the genetic makeup of
the human species.

4We refer to Craig Venter’s whole genome shotgun sequencing technique, which had already been
used to sequence bacterial genomes of up to six million base pairs in length.
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the human genome was assimilated later proved problematic. There were and still are

many mistakes, discrepancies and even duplicates within the genomic sequence. This is

true for various reasons ranging from simple mistakes in the mapping of the sequences

to more complex situations. Sometimes, the same gene would be sequenced by two or

more researchers and then published to the repository. In some cases, due to differences

in method or metadata, these submissions would be identified as different, creating

phantom genes.

Much research has been devoted to addressing these problems, particularly from the

areas of computer science and software engineering. There are numerous opportunities

for enhancing and improving the processes involved in genomic and proteomic experi-

mentation and arguably the most significant factor to address is the management of the

biological data used during experimentation. Most research, initially at least, aimed at

dealing with the vast volumes of data being employed but as experiments became more

complex and required access to multiple datasources, the community needed to address

the problem of significant heterogeneity between datasources. In the rush to amass the

data and provide mechanisms to present it to the public, there had been very little

effort dedicated to ensuring any kind of standardisation5. Most datasources, therefore,

possessed differing data formats even when describing the same data6.

As these datasources were being appended, modified and annotated, researchers were

conducting experiments based on these constantly evolving resources. Due to the changes,

experiments would need to be re-run in order to reflect the most current state of the

data. When you consider environments where experimental results are reused for further

experimentation and there exist many nested levels of experimentation, a change at the

original source data can cause havoc when attempting to reflect the current state of the

data. In many cases, updates in the source data are not propagated and this causes

inaccuracies in the experimental environment and the experimental results. Frequent

changes to the experimental environment are even harder to manage as they often occur

frequently and with no prior warning. An unannounced change can cause results to differ

from one moment to the next with very little evidence of the cause of the difference.

In comparison to other areas of research in biological data, the management of biological

data change has largely been ignored. A detailed analysis of a biological experimental

environment is required with particular focus on the elements that can change. It is

not only the data that is subject to change. Today, biologists employ a multitude of

tools and methods in order to achieve the desired result and these too are subject to

change. The experimental environment can be very complex and when a change occurs,

5With some notable exceptions; MIAME - Minimum Information About a Microarray Experiment.
6The same gene can be represented differently in different datasources, although the data is inherently

identical.
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it is imperative to know where the change has originated, how it affects the cooperating

experimental components and how these changes can impact any existing results.

1.2 Problems with Biological Data

Biological data has three primary characteristics that render change management prob-

lematic; high volume, disparate heterogeneous sources, and the complexity of the as-

sociated semantic data. Although the first two have received considerable attention

[61][51], comparatively little effort has been made in managing the semantic complexity

in relation to the ongoing change.

Of all the scientific disciplines, biology has one of the most complex information struc-

tures with respect to the concepts, data types and algorithms [35] and the richness

of the metadata[69]. Its richness and diversity provide many challenges for biological

sciences, computational sciences and information technology. Definitions for the data

must represent the degree of complexity within the substructure and relationships of the

data and ensure that no information is lost during the biological data modelling. The

data model must reflect several key points; multiple levels of schema complexity, the

data relationships and the hierarchy and structure of the data points themselves. The

variability of the data is high, therefore requiring flexible handling of data types and

values.

There exists a substantial amount of biological data stored in a variety of formats in a

multitude of heterogenous systems. Accessing the relevant data, combining data sources

and coping with their distribution and heterogeneity is a very difficult task. Data systems

frequently overlap in the data types between organisms or genome projects. This requires

additional efforts during recombination and data integration of these geographically

dispersed, heterogeneous, complex biological databases is a key research area [98]. One

of the principal issues of data integration is the data format. Many current biological

databases provide data in flat files which are poor data exchange formats. Worse still,

each biological database has a different format, making the integration of such datasets

difficult and time-consuming.

Biological database schemas change at a highly rapid pace and in most relational and

object database systems, it is not possible to significantly extend the schema. Rather

than incrementally and dynamically extending the schema, scientific databases such as

GenBank release a new version of their database reflecting the new schema. This

can sometimes be transparent to the user but it can often cause problems nonetheless.

Changes in database schema should not, by definition of its semantic nature, affect the
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meaning of the data, although it can significantly impede the ability of the scientist

to quickly establish impact to their results, requiring them to accommodate the new

schema in their in silico experimental environment.

One issue arising from the use of biological data stems from the nature of the users of

such data. Many, if not most, of the users of biological data will be biologists. Such

biologists will likely have at least a basic familiarity with databases and their methods for

interaction but the main goal will be centered on a biological hypothesis. The interface

should therefore present the database to the user in a manner appropriate to the problem

being addressed whilst reflecting the underlying data structures. A simple fact, although

certainly not representing all, is that most biologists will either not know or not care

about internal data structures or schema design and this can cause problems, especially

when a change to these areas is required. These problems are generally addressed at

the presentation level of the database with many providers opting for a user-friendly,

transparent web interface. The transparency of such interfaces can also often cause

problems at the point of a schema change, especially for power users, where the change

is not properly documented or has been hidden.

Biologists access the databases using queries. The definition and representation of com-

plex queries is extremely important for biologists and the average user will not be able

to manage this without assisting tools. These tools are usually bespoke and provided as

part of the web interface for the user and, therefore, often differ between databases but

these aspects alone do not convey the full extent of the problems associated with biologi-

cal data. The problems with biological data become unique when considering semantics.

One of the distinctions of biological data with respect to other types of scientific data,

is the complexity and variety of the experiments that yield the data. These charac-

teristics hold influence over the data generated, but are often not recorded completely

in the metadata. Representations of the same data and, indeed, the same or similar

experiments by different biologists will most likely be recorded differently. Due to the

similarity of the experiments and in spite of the designer differences, common points

can be found and queried to understand the connections between apparently unrelated

concepts.

1.3 Experimental Design

Consider the actions and behaviour of a computational scientist working with biological

data. In order to begin experimentation, the scientist will have access to some form of

database. This may be a locally-held dataset, a private collaborative effort containing

experimental results or a public data repository. Once the scientist has obtained the
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data, it may need to be wrapped to become compatible with the current form of ex-

perimentation. Discounting the possibly numerous layers of manipulation that may be

required to prepare the data, the scientist will choose an experimental method7 with a

set of suitable parameters.

As experimentation continues, the results grow and the scientist will require a log of com-

pleted experimentation phases. Further experimentation should be conducted based on

the results from previous experiments and the log should be capable of representing

this. Inevitably, the log will swell. Eventually, the information required to complete a

single phase of experimentation will increase to the point where productivity is reduced.

Changes can occur to the experimental design upon consideration of the results. Param-

eters may be tweaked, third-party tools may be updated or altered. These experimental

details should be maintained as the results obtained are directly dependant on them.

The cycle of experimentation continues. But what happens when the original data

source is updated to a new version? The large biological data repositories, from which

the data is obtained, currently have no way of dynamically reflecting changes, updates,

additions or deletions. They therefore, release flat files from time to time, representing

one complete version. The scientist will want to know whether the data they have used

during experimentation has been affected by the update and, more importantly, whether

the affected data will affect their previous results. Based on their estimates of the impact

to their results, the scientist will choose whether or not to recompute their results.

1.4 The Need for Component Tracking

When considering the provenance of biological experimentation, the history of the data

is obviously very important. It is imperative to have detailed information about where

the data came from and how it has changed over time to understand how results may be

affected by change. However important the understanding of the data that feeds exper-

imentation, we must also understand the nature of the other biological components that

enable and aid the experimental process. A change or update in one of the experimental

components is just as capable of affecting the results.

The tracking of data from one version to the next manifests its own challenges and our

research aims to provide some answers but there are many areas of research aimed solely

at the tracking of data, even for data as complex as ours. To address the tracking of

biological experiments, we must first understand the nature of the biological problems

being solved as well as the processes that are involved in the cycle of experimentation.

7We define an experimental method as a transformation of experimental data from one state to
another.
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We should not understate the importance of all the processes that form biological exper-

imentation, including all data transformation tools, methods and post-processing tools

and these components can change unpredictably and sometimes transparently. Each

time they are used for an experiment, they may be configured differently and these con-

figurations may affect the output (i.e., the results). They should therefore be recorded.

It is the complexity of biological experimentation that requires a unique solution and

this requires the tracking of all the components involved.

This presents some interesting problems. We can easily picture how data can affect

results. If you change the input data, you will obviously affect the output data. The

nature of these impacts depend on several factors. The quantity, frequency and severity

of the changes will constitute the bulk of the impact but there are other, more subtle

factors. Output impacts cannot be estimated simply by analysing the input data, or

any other inputs for that matter. A dataset may change by a factor of 0.5, meaning that

half of the data has changed in value but what does this factor mean to the results? It

could be naively concluded that if the inputs change by a factor of 0.5, then the outputs

can be estimated to be impacted by a similar factor. This may well be a good estimate,

as it is often the case that inputs directly impact the outputs with a linear factor but

this will certainly not hold true for all scenarios.

We must also consider the topological importance of a dataset. Topological importance

refers to the near ubiquitous scenario where some areas of a dataset hold more impor-

tance to a particular line of experimentation than others. The experiment may actually

only use a small fraction of the input data and we refer to that fraction as having a

greater topological weight. Perhaps one column is particularly important and the rest

of the dataset is required only for historical purposes. The experimental processes and

methods may, and most likely will, not use the dataset evenly. It is therefore important

to know not only how the dataset has changed as a whole but also where the changes

have taken place within the dataset and how the areas of topological importance affect

the experimentation.

In conclusion, we must identify the topological importance of each dataset in the same

way that we must establish a topological importance amongst all components (including

datasets) as components will not all contribute equally to an experiment. In order to

correctly establish the impact of a change, we must possess the following information;

the nature of the change8, the location of the change within a component in order to

establish the topological weight, and the topological importance of the component within

the experimental environment.

8The nature of the change refers to some information regarding how an item has changed from one
state to another.
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1.5 Managing Changing Biological Data

Most data in publicly available biological databases changes in an unpredictable and

unannounced manner. Large amounts of complex data from multiple, heterogeneous

sources are obtained and integrated using a variety of tools and these data and tools are

subject to frequent change. It is the very nature and characteristics of these changes

that require specific management and representation. The need for genomic information,

spurred on by the quest to complete the mapping of the human genome, required a new

kind of database. These databases were intended not only for public access but also to

allow widespread data submission, the aim being to accrue as much data as quickly as

possible. The side-effects of the new style data-consuming databases have been numerous

and have attracted much research. These effects range from standardisation problems

to erroneous or duplicate entries.

Over time, these databases are added to or amended and their content naturally changes,

representing a significant problem. If the submission process is open, there is no way

of knowing how the database is changing from one moment to the next as data can be

added at any time. Not only does the database change unpredictably over time but with

open submission, there can also be problems with the existing data. The quality require-

ments of the submitted data to some publicly available databases have been deliberately

lowered in order to allow the rapid assimilation of data. Data quality had, in the past

for many databases, been left to the conscience of the individual scientist. Erroneous

data inevitably crept into the databases, exacerbated perhaps by the commercial incen-

tives and the voracity of the public attention drawn by the level of contribution to the

genome projects. But it is not fair to imply that the levels of erroneous data were due

solely to overly competitive scientific work and rushed results. Errors occur everywhere

regardless of intent or efforts to eradicate them. The problems lie as much with the data

warehouses that accept the erroneous data as with the scientists that produce them.

With such high volumes of data accepted on a daily basis, there are obvious difficulties

enforcing rigid error-detection. Moreover, many errors are undetectable by considering

the data alone, requiring more specialised methods.

The database resulting from the above situation is subject to frequent and unannounced

change, both from the continual and unhindered addition of data and the retrospective

repairing of existing data. Due to the frequency of the changes, most databases are not

capable of reflecting these changes immediately and due to the large volume of changes,

they cannot be individually highlighted. Most database providers overcome this by

releasing versions of their database, usually as flat files over a period of time. This

provides users with a way of binding their results to a specific release of the database

thus identifying the set of required components with which to recreate their results.
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In other areas of research, this problem has been addressed with the use of versioning.

Versioning helps the user track changes to documents or other files and allows the user

to investigate previous iterations of work as well as the ability to roll back to them.

This traditional view of versioning has served its purpose well for documents or other

types of textual file tracking but lacks a degree of control for the application of biological

experimentation.

A problem occurs with the work and results that have already been obtained. When a

data provider releases a new version, how will this new version and the changes therein

affect the previous work? There must be a mechanism for detecting changes in the

new version. One change can hold more significance than another, however, and this

depends entirely on the nature of the results and the experiments that yielded them. We

must then estimate if and how these changes affect the results, the significant changes

identified and the insignificant ignored. We can then estimate the impact that the

significant changes have on our previous work. We do not want to have to recompute

our results every time there is a new version of each datasource. Rather, we would like

to be able to estimate the impact that a new version generates and, analysing these

changes within a given threshold, decide whether to recompute results or not.

But why hasn’t this problem been addressed before now? As we have already mentioned,

the focus for the data providers has been the assimilation, management and improvement

of the data. The focus of specialist data warehousers is the integration and fixing or

cleaning of this data and the focus of the scientist is to assess the data and incorporate

it into their work. All the stakeholders concern themselves primarily with the access

and use of the latest version of the data, whatever the consequence of using that latest

version may be. Indeed, the issue of database versioning and the updating of results

is one that plagues bioinformaticiens. Until now, they have been left to deal with this

problem themselves and to use their judgement to resolve the update requirement. With

this in mind, consider the fact that the majority of bioinformatic workers come from

either a biological or medical discipline with little or no previous software engineering

experience. Couple this with their focus on achieving results and it becomes obvious

why the provenance of the data and tools to deal with the fluctuating experimental

components are of lower priority.

1.6 The Contribution

It is preferable to have complete knowledge of each and every experimental component

from its initial value to the current state as well as every iteration between. This may or

may not be possible. We can comprehend the management of a dataset including every
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previous version with all the metadata involved over the lifetime of that dataset. Each

tuple and column can be encapsulated into a data model. Each data item in the row or

column can change at any time and it is clear how these changes are represented in the

dataset. In this way, monitoring change in datasets is relatively straight-forward. When

considering the implications of using a software application as part of the experimental

environment, monitoring change becomes much more complex. The applications avail-

able are as various as the experiments themselves and while a commercial off-the-shelf

(COTS) product may have clear and transparent version iterations, it may be less ob-

vious for the more obscure community-driven tools. It may be impossible to derive the

differences between versions, let alone understand how these differences may affect your

work.

Bespoke components are easier to deal with. If the application has been developed

in-house, changes can be identified and announced in a manner befitting the level of

communication within the individual working environment. There may even be a way

of directly modelling what has been changed. For most other applications, especially

COTS products, the application logic is sealed and the researcher must rely on the

developer to tell them what has changed. In such a scenario, we must use information

about the component to describe what has changed. We can identify various aspects

of the product and record this metadata as a description of the persistent state of

the product. We could then pursue our own model for managing change based on

the component metadata rather than the component itself. Recording the component

metadata is not as accurate as encapsulating the component itself and the success of

this approach depends heavily on the metadata selected from the component as well as

the sensitivity placed on each feature.

Having adequately recorded each component, we must then describe how each affects

another. This is no easy feat considering the potential heterogeneity between compo-

nents. There can also be situations where components of differing types can impact

one another. Specifying these impacts is certainly not trivial. Comparing datasets of

different source and function is difficult enough; consider the problems when comparing

datasets against third-party tools or computational methods. We need a way of making

these comparisons in order to successfully model the experimental environment. Seem-

ingly disparate components can exhibit profound and sometimes serious impacts on one

another. Conversely, obviously similar components can bear no actual relation to one

another. We can hypothesise which components are related but this will rarely be ac-

curate for more complex component environments. Occasionally, the impacts can be so

small and subtle that only the researchers directly involved will be aware of them. Spec-

ifying each and every impact by hand is obviously a very inefficient way of describing

environmental impact and, for large environments with many components, will usually
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be too time-consuming. It is clear, however, that some impacts will need direct user

input.

It is important to carefully balance the level of user interaction and system automation in

order to make the process of change management as useful and, conversely, as painless

as possible. We aim to provide a change management system that allows users to

model experimental environments and the impact relationships therein. We must do

this with sufficient accuracy to enable impact tracking that can estimate propagated

component change. The application will employ a conjoined user/machine strategy to

define component relationships. In other words, the change management application will

be able to estimate inter-component relationships and then allow user input, if necessary,

to tweak any inaccuracies in that estimation.

We have discussed the need for component tracking along with the inherent problems and

we have introduced the idea of using component metadata rather than encapsulating

the actual component. If the component metadata and interactions are going to be

recorded correctly, there must be a coherent, persistent environment within which to

model the experiments and the construction of this environment constitutes a major

factor for the success of this research. Not only should the in silico environment provide

an adequate abstraction of the real experimental environment, but it must allow the

continuation of this abstraction, propelled by the scientist so they may continue their

own experimentation. The experimental environment must therefore allow user-input

as well as being user-friendly.

There are pre-existing systems that record experimental design and flow and some of

these are described in section 2.5.2. Some of these systems have the benefit of workflow

re-enactment, referring to the fact that they have the ability to record experimental

workflow and then recompute the experiments automatically without user-interaction

at some later point. Although there are advantages to this approach, there are also

some key disadvantages including the requirement that the workflow components are

confined to those supported by the specific workflow enactment system. This will limit

many bioinformaticiens who are required to write their own software as these bespoke

programs will not fit into a conventional workflow problem9.

By removing the capability of workflow re-enactment, we have removed the ability to

automatically recompute our experiments. We do, however, allow for the entry of be-

spoke components regardless of format or standards and they behave in exactly the same

way as any other component and, more importantly, can be measured against any other

component.

9At least if they do fit, they will not be eligible for re-enactment.
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1.7 Summary of the Contribution

We summarise our research contribution below;

• Problem Definition We introduce the idea of biological data and experiment

versioning with a clear definition of related problems that lead ultimately to our

research question.

• Background Assimilation A comprehensive and thorough examination of all

the relevant background, together with an extensive review of existing related

technologies.

• Analysis of an Existing Case Study An extensive analysis of an existing exper-

imental environment containing a wide variety of biological data and experimental

components detailing the interactions and impacts therein. This case study is

an example of the requirement for change management and as validation for our

change management framework.

• The Hashed Data Model A light-weight, abstracted representation of experi-

mental data that, while simple to implement, enables change tracking at varying

granularities as well as semantic differentiation of data.

• The ExperimentBuilder A complete model for an in silico experimental en-

vironment, encapsulating all required aspects of experimentation into a single,

manageable framework, allowing investigation and integration of multiple experi-

mental components.

• Implementation of the Change Management Framework A selection of

change tracking and impact propagation methodologies integrated into the Exper-

imentBuilder to track changes in our experimental environment and determine

the real-world cost of updating any affected components.
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Background

In chapter 1, we described our research question in response to an identified problem

with current experimental processes. We briefly covered some of the basic background to

the research and some of the problems already encountered. In the following chapter, we

expand the background with a comprehensive review of the literature surrounding our

work. We begin by describing some aspects of biological data, the primary data type for

our research, followed by a description of some current versioning techniques in section

2.2. In section 2.3, we describe some existing examples of scientific data versioning as

well as analysis of their respective limitations for our purpose. Section 2.4 presents some

related work on ontologies and the semantic web and section 2.5 describes some current

tools for describing data provenance.

2.1 Biological Data

The following section describes the organisational structure of some of the databases,

repositories and warehouses involved in the storage and management of biological and

medical data.

2.1.1 Organisational Characteristics

Sequence data is most commonly modelled as a succession of letters that represent the

primary structure of the molecule or strand. Deoxyribonucleic acid (DNA) is a nucleic

acid describing the genetic material of all living organisms and some viruses. DNA

sequences consist of four nucleotide bases found in DNA, adenine (A), cytosine (C),

guanine (G) and thymine (T). Sequences are typically derived from an organism (the

raw biological material) via a process referred to as DNA Sequencing. Other types of

26



Background 27

biological sequences include protein sequences (or amino acid sequence) which describe

the order in which amino acid residues appear in the chain in the protein or peptide.

The key participants of genomic and proteomic data warehousing are detailed below.

2.1.1.1 Genomic Data

There are three principal stakeholders in the collection, storage, curation and presenta-

tion of genomic information (the National Center for Biotechnology Information

(NCBI), the European Molecular Biology Laboratory (EMBL), and the DNA

Data Bank of Japan(DDBJ)). The three members of the International Nucleotide

Sequence Database Collaboration (INSDC)1, thanks largely to their exchange pol-

icy, have assimilated over 100 gigabases of sequence data, representing both the indi-

vidual genes and complete genomes of over 165,000 organisms. The synchronisation of

the three members is maintained with a set of guidelines, published by the International

INSDC Advisory Committee, consisting of a common definition for the database fea-

ture tables. These guidelines regulate the content and the syntax of the database entries

and specify a Document Type Definition (DTD)2.

The National Center for Biotechnology Information (NCBI)3, was established

in 1988 under the National Institute of Health (NIH) as a national resource for

molecular biology information. Among other activities, the NCBI creates and main-

tains public databases, conducts research in computational biology, develops software

tools for analysing genomic data and aids in the dissemination of biomedical information.

The primary aim of the NCBI is to aid the understanding of fundamental molecular and

genetic processes that control human health and disease. This is achieved with the cre-

ation of automated systems for storing and analysing knowledge about molecular biology,

biochemistry and genetics; facilitating the use of such databases and software by the re-

search and medical community; coordinating efforts to gather biotechnology information

both nationally and internationally; and performing research into advanced methods of

computer-based information processing for analysing the structure and function of bi-

ologically important molecules4. GenBank is the NIH’s genetic sequence database

consisting of an annotated collection of all the publicly available DNA sequences to-

talling over 37 billion bases [5][92].

The European Molecular Biology Laboratory (EMBL)5 conducts basic research

in molecular biology, aiming to provide essential services to its member states. EMBL

1INSDC, http://insdc.org
2For further information on INDSC syntax formats, please refer to section 2.1.2.
3NCBI, http://www.ncbi.nlm.nih.gov/
4From the NCBI mission statement - http://www.ncbi.nlm.nih.gov/About/glance/ourmission.htm
5EBI, http://www.ebi.ac.uk/embl/
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also endeavours to provide high-level training for scientists at all levels. Together with

the development of new instrumentation for biological research, EMBL seeks to further

the fundamental understanding of the basic biological processes in model organisms.

The European Bioinformatics Institute (EBI) is a non-profit organisation, which

forms part of EMBL. The purpose of the EBI is to provide freely-available data and

bioinformatics services to all areas of the scientific community in a way that promotes

scientific progress. It aims to contribute to the advancement of biology through basic

investor-driven research in bioinformatics. As part of the EMBL, the EBI also provides

training to scientists and aims to disseminate relevant technologies to industry. Modern

technologies have provided a vast amount of information on a variety of living organisms.

There is a danger of being overcome by the size and complexity of this data resulting

in the persistent requirement to collect, store and curate the information in ways that

allow efficient retrieval and exploitation. The EBI aims to fulfill this important task.

The National Institute of Genetics (NIG)6 was established in 1949 and acts as an

inter-university research institute promoting collaboration and participation in graduate

education. The NIG also serves as the center for a range of genetic resources, including

the DNA Data Bank of Japan (DDBJ)7. The DDBJ is a nucleotide sequence

database that collects, annotates and then releases the original and authentic DNA

sequence data. The DDBJ aims to only release the sequence data after annotation.

Given the large amounts of data deposited and the time it takes to provide sufficient

annotation, there exists a significant backlog. This has prompted the DDBJ to explore

new ways of annotating DNA sequences.

The Sanger institute8 is a genomic research institute set up in 1992 that employs large-

scale sequencing, informatics and analysis of genetic variation to increase understanding

of gene function in health and disease. Responsible for sequencing over a third of the

human genome itself, the Sanger Institute concentrates largely on human health. The

Cancer Genome Project uses human genome sequences together with high-throughput

techniques to identify cancer-critical genes [91]. It is worth mentioning the Human

Genome Project (HGP), although it is already covered in section 1.1, as an example

of a large scale, genomic collaboration involving the assimilation of data from disparate

public submission. Many of the problems and characteristics of biological data that we

describe here can be exemplified within the HGP.

6NIG, http://www.nig.ac.jp/index-e.html
7DDBJ, http://www.ddbj.nig.ac.jp/
8The Sanger Institute, http://www.sanger.ac.uk/
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2.1.1.2 Protein Data

Proteomics, first termed in 1997, is the large-scale study of proteins in order to establish

their structure and functionality[1][8]. A proteome refers to the entire complement of

proteins produced by an organism or system[95]. The proteome will change to reflect

the requirements of the host cell at any particular time.

The Plasmodium Genome Resource (PlasmoDB)9 is part of an NIH/NIAID

(National Institute of Allergy and Infectious Diseases) funded bioinformatics

resource center to provide Apicomplexan database resources10. PlasmoDB is the official

database of the Plasmodium falciparum Genome Database (PFDB) consortium

incorporating both finished and draft sequence data as well as annotation emerging from

Plasmodium sequencing projects. PlasmoDB currently houses information from five

parasite species and provides tools for cross-species comparisons [3].

The Protein Information Resource (PIR) was established in 1984 by the National

Biomedical Research Foundation (NBRF) to aid the identification and interpreta-

tion of protein sequence information supporting both genomic and proteomic research.

Multiple protein databases and analysis tools have been made freely available to the

scientific community including the Protein Sequence Database (PSD) and the first

international database, PIR-International [96]. In 2002, the PIR, along with its

international partners11, were awarded a grant from the NIH to create UniProt, a

single worldwide database containing protein sequences and function, by merging the

PIR-PSD, Swiss-Prot and TrEMBL databases.

Swiss-Prot12, created as a PhD project in 1986 and developed by the SIB and the

EBI, is a curated protein sequence database that endeavours to provide a high level

of annotation such as protein function, structure and post-translational modifications.

Each protein entry provides an interdisciplinary overview of relevant information bring-

ing together experimental results, computed features and conclusions[10].

The Protein Data Bank (PDB), established in 1971, is a repository for the 3D struc-

tural data of large biological molecules and is overseen by the Worldwide Protein

Data Bank. The PDB provides support in various areas of structural biology and

many journals and funding agencies require the submission of structural data to the

PDB before application. The Human Protein Reference Database (HPRD)13

9PlasmoDB, http://plasmodb.org
10The Apicomplexa are a large group of unicellular, parasitical protists[43].
11EBI and the Swiss Institute of Bioinformatics (SIB)
12Swiss-Prot, http://www.expasy.ch/sprot/
13HPRD, http://www.hprd.org/
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represents a centralized platform to visually depict and integrate information pertain-

ing to domain architecture, post-translational modifications, interaction networks and

disease association for each protein in the human proteome[58]. All the information in

HPRD has been manually extracted from the literature by expert biologists who read,

interpret and analyze the published data[58].

There are a multitude of protein structure databases. Proteopedia is a collaborative,

3D wiki-style encyclopaedia of proteins, highlighting functional sites and ligands[50].

The Macromolecular Structure Database (MSD) is a European collaboration for

the collection, curation, management and distribution of data about the macromolecular

structure of a protein. Derived from the PDB, it was conceived as a single access point

for protein and nucleic acid structures and related information[11].

The Biomolecular Interaction Network Database (BIND)14 is a database de-

signed to store the complete description of protein to protein interactions, molecular

complexes and pathways[2]. The Database of Interacting Proteins (DIP) catalogs

experimentally determined interactions between proteins, combining information from

a variety of sources to create a consistent set of protein to protein interactions[97].

2.1.1.3 Other Data Organisations

The National Biological Information Infrastructure (NBII) was established as a

result of a 1993 report [75] recommending the development of a national biotic resource

information system to coordinate information about biodiversity and ecosystems. Cur-

rently, the NBII concentrates on increasing the access to data and information on the

national biological resources. The NBII links diverse, high quality databases, informa-

tion products and analytical tools maintained by the partners, government contributors,

academic institutions, non-governmental organisations and private industry. In a nut

shell, the NBII works on new standards, tools and technologies that make it easier to

find, integrate and apply biological resource information[79].

The Kyoto Encyclopaedia of Genes and Genomes (KEGG), initiated in 1995

by the Japanese Human Genome Programme, consists of a collection of online

databases warehousing data on genomes, enzymatic pathways and biological chemicals[55].

KEGG can be considered to be a ”computer representation” of the biological systems

and the database can be utilised for modelling and simulation as well as the browsing and

retrieval of data[54]. The MetaCyc database contains information on experimentally

determined metabolic pathways. It can be used to computationally predict metabolic

pathways of organisms from their sequenced genomes and contains extensive data on

14BIND, http://binddb.org
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individual enzymes, describing their structure, cofactors, activators and inhibitors as

well as other information[56].

2.1.2 Data Formats

There are many different data formats and to mention all is beyond the scope of this

document. We shall discuss the data formats considered to be most important and

primary to this research.

Sequence formats are the way in which biological data such as amino acids, proteins and

DNA sequences are recorded in a computer file. Sequence formats always consist of a set

of ASCII characters and are arranged in such a way as to represent aspects of the data

such as the ID, name, comments, etc. To submit data to a database, that data must be

in the same format that the particular database expects to receive. There are numerous

sequence formats in the biological domain, too many to discuss their differences here

but, in general, each database will have its own sequence format. A sequence does not

strictly require any sort of identification but most will have a header that contains at

least one form of an ID, usually at the top of the sequence. Figure 2.1 illustrates part

of a single sequence entry in the FASTA format.

Figure 2.1: A single UniProtKB/Swiss-Prot entry in Fasta format15.

Some formats, such as Genetics Computer Group (GCG), plain and Staden must

contain only one sequence per file. Other sequence formats can hold multiple sequences

in one file, either concatenated or in an aligned set of sequences. EMBL-formatted

sequence files can contain several sequences, each starting with an identifier line(ID),

followed by further annotation lines. The start of the sequence is marked with ”SQ”

and the end of the sequence is marked with ”//”. A sequence file in FASTA format
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can also contain multiple sequences but marks the beginning and end of each sequence

differently. A GenBank sequence separates its multiple sequences differently still.

Some databases such as GenBank, EMBL and DDBJ share similar data formats,

albeit with different headers. In order to achieve transparency between them, they have

introduced a syntax called INSDSeq consisting of the letter sequence of the amino acid

sequence as well as the letter sequence for the nucleotide bases in the gene or decoded

segment.

Microarrays have been one of the most important breakthroughs in experimental life

sciences. They allow snapshots to be made of gene expression levels at a particular

genomic stage16. Microarray data can be accessed through Array Express17, a pub-

lic repository for microarray-based gene expression data. Although in the past, much

progress had been made and many significant results had been derived from microarray

studies, the major limitation for this technology was the lack of standards for present-

ing and exchanging the microarray data [12]. The Minimum Information About a

Microarray Experiment (MIAME) format describes the minimum amount of infor-

mation necessary to ensure that the microarray data can be easily verified and enable

the unambiguous interpretation and reproduction of such data[12].

The effective and efficient delivery of health care requires accurate and relevant clinical

information. The storage of clinical information has traditionally been limited to paper,

text or digitised voice. A computer cannot easily manipulate data in these formats.

Clinical terminologies are also large, complex and diverse with respect to the nature of

medical information that has been collected over the past 130 years of the discipline.

There are numerous schemes which have proved successful in supporting the collation

and comparison between collections,but it is also hard to reuse schemes for purposes

other than for what they were originally developed and this causes the proliferation

of even more schemes. Galen and the open source version OpenGalen[76] provide a

formal model of clinical terminology in an attempt to address these problems.

Mass spectrometry is a powerful analytical technique used to identify unknown com-

pounds and quantify known components, even in very minute quantities. It is also used

to establish the structure and chemical properties of molecules. Mass spectrometry can

be used to sequence biopolymers such as proteins and oligosaccharides, determine how

drugs are used by the body and perform forensic analyses such as chemical identifica-

tion to determine drug abuse18. Due to the large amounts of information that can be

generated by mass spectrometry, computers are essential, not only to control the mass

16Sourced from http://www.ebi.ac.uk/Databases/microarray.html
17Array Express, http://www.ebi.ac.uk/microarray-as/ae/
18Athletic steroid abuse among others.
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spectrometer but for spectrum acquisition, storage and presentation. Tools are available

for spectral quantitation, interpretation and compound identification via online spectral

libraries.

2.1.3 Biological Data Management

Over the past 25 years, biology and biological research has become largely dominated

by what is referred to as the genomic era. It was originally believed that the mapping

of the human genome alone would herald a new world of discovery for the life sciences.

By the time of its completion, relatively little had been uncovered due to the lack of

understanding of the genome. Arguably, this is still very much the case today. Large

amounts of proteomic and genomic data have been collected into data warehouses, but

there is still a lot to be done to enable its full understanding. The volume of the data

presents a significant part of the problem and much research has been devoted to the

problems of biological data and its management. Section 2.1.3 aims to present the most

significant advances in these areas.

2.1.3.1 Data Access

There are a number of data sources from which scientists and researchers may wish to

retrieve and access biological data, some of which have already been mentioned but there

are many others[82]; RefSeq, Molecular Interactions Database (MINT), IntAct,

NCBI Taxonomy, Gene Ontology (GO), LocusLink, Entrez Gene, Homolo-

Gene and many more.

Generally, there are three types of biological database. The primary databases, such

as Swiss-Prot or GenBank, contains information about the sequence or structure

alone. A secondary database contains information that has been derived from a primary

database. These include, amongst others, the Structural Classification of Pro-

teins19 (SCOP) database developed at Cambridge University, CATH20, a hierarchical

classification of protein domain structures database developed at the University College

London (UCL), and PROSITE21, a database of protein domains, families and func-

tional sites developed at the Swiss Institute of Bioinformatics. Composite databases

combine data from a variety of different primary database sources, often with heteroge-

nous data formats, eliminating the need for searching through multiple resources. Raw

data is extracted from multiple primary databases, converted into composite database

19SCOP, http://scop.mrc-lmb.cam.ac.uk/scop/
20CATH, http://www.cathdb.info/
21PROSITE, http://www.expasy.ch/prosite/
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format (data integration), the discrepancies and errors are removed (data cleaning)

and the data is enriched with information from relevant literature or from experimental

results (data annotation)[61].

Most biological data management is conducted within specialist composite bioinformatic

databases and are loosely referred to as data warehouses. These specialist bioinformatic

databases contain detailed information such as functional and structural properties and

expert-enriched information essential for the in-depth analysis of relevant data[61] and

can be regarded as a subject-oriented, integrated, non-volatile, expert-interpreted collec-

tion of data in support of biological data analyses and knowledge discovery[80]. This level

of detail is usually lacking in the primary databases such as Swiss-Prot or GenBank,

which instead must concentrate on the volume of data. Specialist data warehouses gen-

erally exhibit several preferred characteristics; increased detail of annotation, cleaner

data, integrated data from multiple sources, integrated searches, and specific analysis

tools.

2.1.3.2 Data Integration

Data integration of geographically dispersed, heterogenous and complex biological databases

is a key research area [98]. Amongst the most common problems are integrity, consis-

tency, redundancy, connectivity, expressiveness and updatability[7] and BIOZON en-

deavours to address these problems, offering biologists new knowledge resources. Data

integration consists of wrapping data sources and either loading the retrieved data into

a data warehouse or returning it to the user. Wrapping a data source refers to the

retrieval of data from a source and translating it to a common integrated format[64].

One of the principle issues of data integration remains the data format. Ideally, a simple

self-describing format is best but many biological databases still provide data in flat files

which are poor data exchange formats. Worse still, as we saw in section 2.1.2, each bio-

logical database often uses a proprietary format and tools must be created to deal with

the heterogeneity. Bio2X[98] is a system that gets around this problem by converting

the flat file data into highly hierarchical XML data using rule-based machine learning

techniques.

A wide variety of biological experimental techniques are available from the classic method-

ologies to modern high-throughput techniques such as gene expression microarrays.

Looking to the future, more and more disparate methods will be developed, contin-

ually pushing integrative technologies and driving research in this area. The Multi-

source Association of Genes by Integration of Clusters (MAGIC) is a general
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framework that uses formal Bayesian reasoning to integrate heterogeneous types of high-

throughput biological data[89]. There have been many other systems designed for the

specific purpose of biological data integration but the problem of seamlessly integrating

data whilst taking into account source content metadata, source-access cost, and query

evaluation remains[64].

The EnsMart system[57][39] is a self-contained addition to the Ensembl software and

data that provides a generic data warehousing system for fast and flexible access to

biological datasets as well as integration with third-party data and tools. EnsMart

is a system capable of organising data from individual databases into a single query-

optimised system. The generic nature of EnsMart allows the integration of data in

a flexible, efficient, unified and domain-independent manner[57] and one of the noted

benefits of the EnsMart system is the ability to engineer your own version of the system

with very little informatics expertise. This is useful when using data and queries not

explicitly offered by the datasource, and especially important in light of the increasing

interdisciplinary nature of this research area.

Data Cleaning involves the detection and removal of errors from data in order to im-

prove the quality of the data. For some time data cleaning, as an identifiable implemen-

tation was ignored and there was very little peer-reviewed information on data cleaning

techniques[90]. Recently, it has received more attention and for good reasons. The qual-

ity of data can deteriorate or simply require data cleansing for many reasons. Data may

be conceived in a poor state and therefore require cleaning immediately. More often,

data cleaning is applied to data that has undergone some transformation. For exam-

ple, when multiple databases are integrated in data warehouses or federated database

systems, there is often a need for data cleaning due to databases containing differently

represented redundant data. The same data is represented in both integrating databases,

however the data is represented with slight differences (spelling, word-order, etc.) and

the merging tool regards the two data items as two individual items. Data cleaning

tools are used to provide accurate and consistent data, consolidating different data rep-

resentations and elimination of duplicate information[18]. Furthermore, data cleaning is

imperative in excluding spurious genotyping results[65]. Bio-Ajax in one such frame-

work which uses existing data cleaning techniques in order to improve data quality in

biological information systems[48].

2.1.3.3 Data Annotation

Data annotations are semantically rich metadata applicable to a particular application

domain that help further clarify features of interest [6], which are the very data items
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that the user wants to annotate[37]. Examples of data annotations include comments,

descriptions, definitions, notes and error messages and they are usually attached to

specific parts of the dataset, often in the form of Web accessible documents[37]. There

is often the requirement for bespoke annotation application due to the unsuitability of

the metadata schema employed by most relational databases [6].

A data annotation can also be a statement about the quality or correctness of an item

of data. As such, it is important that this information is preserved as the data changes

and new versions are created. DBNotes is a relational database system that pre-

serves data annotations through transformations and querying, retaining the dataset

provenance[21]. Data annotation has been widely recognised as a invaluable tool and, as

such, has been implemented in many large-scale projects, including the International

Nucleotide Sequence Database Collaboration (INSDC) where the Third Party

Annotation (TPA) project collects and presents high-quality annotation of nucleotide

sequence[22]. Annotation can be added to features of interest by those who are not

necessarily responsible for the submission, requiring only high-quality data, resulting

from experimental and inferred analysis, discussed and provided through peer-reviewed

publications.

The Distributed Annotation System (DAS) is a client-server, open-source project

used to share and collect genomic annotation information from a number of remote

servers to a single local point[28]. The DAS can allow many layers of information to

be gathered at a single point, integrating DAS annotation data from multiple sources

in a simple, single view[68]. The Otter Annotation System[81] is one example of a

manual annotation system developed as an extension of Ensembl.

2.1.3.4 Systems Biology

Systems biology is a biology-based interdisciplinary field, focussing on biological system

interactions. It is usually defined as the antithesis to the reductionist paradigm, seeking

to put together and integrate multiple complex systems into a single, understandable

and measurable environment. More specifically, systems biology concentrates on the

interactions between the components of biological systems, endeavouring to explain how

these interactions relate to the function and behaviour of that system. Given the in-

terpretation as a paradigm for obtaining, integrating and analysing complex data from

multiple experimental sources using a variety of interdisciplinary tools, systems biology

has been applicable for a number of key scientific fields including; genomics, proteomics,

transcriptomics, translatomics and interactomics.
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Systems biology often involves the development and construction of mechanistic mod-

els, mathematical models that combine theory-based methods and use computational

tools to handle the large number of parameters. Systems biology also encapsulates

the reverse-engineering and reconstruction of various systems based on the quantitative

characteristics of their component parts[26][36]. One of the major challenges for systems

biology is the involvement and engagement of specialists from different disciplines and

computer science is optimally placed for aiding this endevour[30].

2.2 Current Versioning Techniques

In the following section, we describe the history behind traditional versioning and some

of the tools that were created. But why is versioning important? Our research aims to

estimate the impact that experimental components cause through updating. Central to

this problem is ability to detect whether a component has changed and, more impor-

tantly, quantitatively analyse how the component has changed. Versioning is concerned

with change, albeit traditionally text-based change, but it is a good place to start.

2.2.1 Current Tools

There have been numerous approaches to versioning files and data and some are de-

scribed below. There were several early file systems that provided versioning, such as

the Cedar File System (CFS)[38] and 3D File System (3DFS)[62] but these sys-

tems were not transparent. That is to say, users had to manually create versions using

special commands and tools. Users of CFS had to change a copy of the file on their

local system and a file was only versioned when it was transferred to the remote server.

Unix and Unix-derivative operating systems have a long history of incorporating version

management providing tools such as the original diff and patch programs and these led

to a number of versioning tools, the most popular being Revision Control System

(RCS)[88] and Source Code Control System (SCCS)[77]. SCCS[77] was one of

the first versioning tools that stored differences between file versions as strings of deltas

to show the progress history of the file. RCS[88] supported both forward and reverse

deltas, allowing RCS the ability to either store an initial copy with subsequent changes

or store the latest copy with previous changes. The Concurrent Versioning System

(CVS)[45] is also not transparent as users have to use specific commands to control

the versioning of their files. CVS utilises a client-server architecture, whereby a client

connects to the server in order to check-out a complete copy of the project, work on this
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copy and then later check-in their changes. CVS has become quite popular in the open-

source world, largely due to its open-source development and subsequent widespread

use. Rational ClearCase22 is another versioning tool requiring specific administration

and is also relatively expensive. BitKeeper[47] was developed more recently and aims

to provide architecture to support globally distributed development. To work on a

repository, the developer must first make a complete mirror of the original repository

to work on, an idea similar to the CVS sandbox. When the developer wants to push or

check in a version back to the tree, their changes are merged with the existing versions,

which have since been pushed in from other developers.

Subversion is a version control system with a working model similar to that of CVS,

and was intended not only to replace CVS but provide a versioned network filesystem

over WebDAV (World Wide Web Distributed Architecture and Versioning)23.

Subversion versions files and directories, provides support for metadata and can effi-

ciently handle binary files. V-Grid is a framework for generating Grid data services

with versioning support from UML models that contain structural description for the

datasets and schema[63].

There has been a considerable amount of research on the versioning of XML data and

documents. For this purpose, conventional versioning tools such as RCS and SCCS are

inappropriate, due largely to the considerable computing overhead that occurs during

the retrieval of a version[20]. Moreover, neither RCS nor SCCS preserve the logical

structure of the original document and this somewhat negates the benefit of a hierarchical

document such as XML.

There are also various snapshotting tools available such as WAFL[49] and Ext3cow[72].

With the snapshot method, incremental or whole snapshots of the file system are made

periodically. When required, the entire file system can be restored from any recorded

point in history. Snapshotting makes no allowances for how often a file may change

moreover, it simply works on a discrete time period of data capture. The consequence

of this is that files which do not change regularly will be continually ’snapshotted’

regardless. Conversely a file that is being regularly updated may have updates that

are not captured with the snapshot method suggesting that it may be inappropriate for

biological data versioning. Also, snapshotting requires that an entire snapshot must be

purged if the disk space is to be reclaimed.

22Rational Clearcase, www.rational.come/products/clearcase/index.jsp
23WebDav aims to provide a standard infrastructure for asynchronous collaborative authoring across

the Internet.
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Versioning employing the copy-on-write technique24 is used by Tops-2025, VMS26,

the Elephant File System[78] and CVFS[84][86]. An ideal situation would be to have

versioning automatically integrated into the operating system. However, this has yet to

be implemented.

The techniques described above have been implemented by high-level applications or

at the filesystem level. There is an alternative technique that pushes the versioning

functionality closer to the disk by taking advantage of modern, block-level storage devices

[31]. Versioning at the block-level has several advantages over versioning at the filesystem

or application levels. Firstly, it provides a higher level of transparency and is completely

filesystem independent [31]. It also reduces complexity in the higher layers, in particular

the filesystem and storage management applications [53]. Thirdly, it off-loads expensive

host-processing overheads to the disk subsystem increasing the overall scalability of the

system [53].

However, there are some distinct disadvantages to versioning at the block level. Having

offloaded complexity from one level to another, it is still picked up somewhere and

the ramifications of this transference is unclear. The consistency of the data may be

affected with the use of the same volume as the filesystem but perhaps the most relevant

disadvantage with respect to biological data versioning is the problem of versioning

granularity. Since the data versioning is occurring at a lower system layer, information

about the content of the data and metadata is unavailable as access is only available to

full volumes as opposed to individual files.

2.2.2 Object Versioning

We must also decide the best way to deal with very large datasets. Conventional version-

ing systems are not designed to record such large datasets with so many versions. Given

the amount of biological data that may be versioned, the prospect of simply storing

multiple versions of the data as well as the associated metadata, presents a significant

challenge. This subsection aims to explore the methodology behind current versioning

techniques and describe some of the differences between various approaches.

There are two main methods for dealing with object versioning[59]. The first technique

stores versions of a particular object as complete objects and is referred to as complete

versioning. This approach is relatively easy to implement, although the waste of storage

24Copy-on-write is an optimisation technique that employs transparent concurrent use of a resource,
applying versioning techniques only when required.

25From DEC, Digital Equipment Corporation, TOPS-20 user guide (version 4), January 1980
26VMS File Systems Internals. Digital Press, 1990



Background 40

space becomes more detrimental as the number of versions increases. The second tech-

nique stores a single object and each version is maintained as a difference between the

current version and the previous version. This approach is more difficult to implement

but it is more suitable for representing data that may be subject to continuous and dy-

namic change[59]. Using this approach, changes in objects are handled using a version

management system. Each version reflects a change in the object’s attributes and/or

behaviour. Subsequent changes in the object will generate related dynamic attributes

and temporal links to the updated versions. Storage is a serious consideration given the

vast amount of biological data that may be effected by version management and this

type of version management reduces the required storage space, since the current object

is only stored once in its entirety[59].

Linear versioning is a technique where one version is stored as a complete object and the

rest of the versions are represented as iterative differences between the versions. This

approach is based on one-to-one versioning. That is to say, each parent or base object

will have only one child or derived object. Linear versioning can be classified into two

versioning strategies[59]. The first allows the current version to be calculated from the

initial base version, with the addition of the subsequent versions representing the changes

over time, and is referred to as forward oriented versioning. The second strategy stores

the current version as the base version and previous versions are calculated as differences

to the current version. This is known as backward oriented versioning[23]. The chosen

method varies greatly depending on the type of manipulation that the data is to be

subject to. Forward oriented versioning takes longer to retrieve the current object as

differences must be added to the base version to get the current version but it takes less

time to retrieve earlier versions. Backward oriented versioning provides faster access

for the newest versions. As a result, this strategy is usually more suitable for most

applications[59].

Branching is a technique where one version is stored as a complete object and all other

versions are stored as differences between that version and other versions. As all versions

are just one difference away from the current version, the branch forward versioning

strategy provides the same access time for all versions.

2.2.3 Ontology Versioning

There are large amounts of heterogeneous biological data currently available to scientists.

Unfortunately, due to its heterogeneity and the widespread proliferation of biological

databases, the analysis and integration of the data presents a significant problem. Bio-

logical databases are inherently distributed because the specialised biological expertise
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required for data capture is spread around the globe at sites where the data originates.

Biologists currently waste a great deal of time searching for available information and

in order to make the best use of this data, we need to integrate the different kinds

of information in a way that makes sense. The problem is further exacerbated by the

variations in terminology used by different researchers at different times. An ontology

provides a common vocabulary to support the sharing and reuse of knowledge. The

Open Biomedical Ontologies (OBO) library27 is a repository of controlled vocabu-

laries, which has been developed in order to provide for improved communication across

different biological and medical domains.

Ontologies are often considered as the basic building blocks of the Semantic Web as

they allow machine supported data-interpretation reducing human involvement in data

and process integration [17]. Ontologies provide a reusable piece of knowledge about a

specific domain. However, these pieces of knowledge are often not static, moreover they

evolve over time [60]. The evolution of ontologies causes operability problems, which

hamper the effective reuse. Given that these changes are occurring within a constantly

changing, decentralised and uncontrolled environment like the Internet, support is re-

quired to handle the changes. This is especially prudent with respect to the semantic

web, where computers will be using the data. Humans are, however unlikely, more likely

to spot erroneous data due to unexpected changes. One must also consider the nature,

complexity and quantity of dependencies that exist between data sources, applications

and ontologies, as changes in one area may have far-reaching effects[60].

Traditional versioning systems, for the use of text and code, enable users to compare

versions, examine changes, and accept or reject changes. An ontology versioning system,

however, must compare and present structural changes rather than changes in the text

representation of the ontology. The PROMPTDIFF ontology-versioning environment

reportedly addresses these challenges [67]. PROMPTDIFF includes an efficient version-

comparison algorithm that produces a structural diff between ontologies.

2.2.4 Schema Evolution

Schema evolution refers to the evolution of a database schema in response to changes in

the modelled structure of the data. Schema evolution affects not only the existing data

but also the derived queries, applications and embedded experimentation therein. The

traditional approach for schema evolution is to provide an open canvas for the schema

which will fit any future change but this assumption is almost always inappropriate,

27OBO, http://obo.sourceforge.net
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especially considering web information systems which, due to their distributed and co-

operative nature, are subject to even stronger change. The evolution of the database has

a strong impact on applications accessing the data, therefore there is a requirement for

accurate and smooth evolution. There have been various surveys of schema evolution

in object-oriented, relational databases[73]. Dynamic schema evolution is the ability of

the database schema to evolve by incorporating changes to its structure without loss

of existing data and without significantly affecting the day-to-day operations of the

database[73].

The evolution of a database schema raises the issue of monitoring and managing those

changes. Perhaps it is important to retain details of the previous schema versions if the

data changes often. In such cases, defining the history of the data warehouse schemata

is crucial for dependant users or applications[42]. Several schema versioning frameworks

have been developed but the application of such systems can have significant semantic

issues[44].

2.3 Scientific Data Versioning

The following section endeavours to present the current state of data versioning, specific

to the case of scientific data. We begin by looking at some current successful examples

followed by a critique detailing the unsuitability of such examples.

2.3.1 Successful Examples

This section looks at specific successful examples of scientific data versioning. Of par-

ticular importance are areas that seek to version data that is similar in structure to

biological data. During the life cycle of a piece of software, different versions may be

developed depending on the state of development and the purpose of the intended re-

lease. In order to effectively support software development, these versions as well as the

relationships between them, should be stored[27]. The different versions are likely due to

the continuing development or maintenance of that software. A specific set of versions

may be needed to fulfill the requirements for a certain release of the software. For ex-

ample, a shareware release of a software item may require a previous set of versions with

limited functionality. A beta release may require the latest set of versions, irrespective

of the level of testing undergone. The versioning of software files and projects is often

conducted by a file versioning system, such as CVS[45]. CVS utilises a client-server ar-

chitecture, whereby a client connects to the server in order to check-out a complete copy

of the project, work on the copy and then later check-in their changes. Basic software
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versioning techniques typically provide versioning of large granularity objects at the file

level, whereas it may be more useful and appropriate to version at a finer granularity

level at the object and instance level.

An interesting example of successful data versioning in a scientific domain, presented by

Barkstrom[4], involves large-scale scientific data production for NASA’s Earth observing

satellite instruments. This requires the production of vast amounts of data from a wide

variety of data sources28[4]. It is noted that while software versioning requires tracking

changes principally in the source code, versioning of the data requires the tracking of

changes in the source code, the data sources and the algorithm parameters and changes

in any of these items can induce scientifically important changes in the data[4].

Shui et al. [83] present an XML-based version management system for tracking complex

biological experiments. The framework uses generic versioning operations such as insert

and delete, and defines three more; update, move and copy in order to describe changes

in the XML-based description. The framework can store every single component of an

entire experiment in XML. A change to any component will result in a new version.

Users can then query the system to return sets of data so they can see the differences

between sets of results according to the materials used. The title of the publication [83]

reports to track complex biological experiments although the conclusion of the same

publication clearly states that the framework only tracks changes to laboratory based

data.

bdbms is an extensible prototype database management system for supporting bio-

logical data[29], extending traditional database management systems (DBMS) to

include annotation provenance tracking, data dependency tracking and content-based

authorisation for data curation, amongst other improvements. bdbms concentrates on

data annotation, in particular its provenance between versions and introduces Annota-

tion SQL (A-SQL), which allows the annotation and provenance data to be seamlessly

propagated with minimal user programming. bdbms goes some way to identifying

inter-data dependencies, highlighting the problem of data changes that cause subse-

quent invalidations[29]. bdbms presents the invalidated possibilities to the user, who

can make the decision to act or not but the user is not given any information about

the severity of the impact or the estimated cost of updating the data. The bdbms

reports that a component may have become invalidated and this may be sufficient in an

environment where detection alone is required.

28In fact, Barkstrom[4] quotes the production values at tens of thousands of files per day from tens or
hundreds of different data sources.
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2.3.2 Unsuitability of Present Techniques

When examining the unsuitability of various versioning techniques, it seems prudent

to examine the overall requirement for versioning. The benefits of versioning can be

grouped into three categories[84]; recovery from user mistakes, recovery from system

corruption, analysis of historical change and the merging of disparate work sources. The

first two items, although important in their own right, are not specifically applicable to

the problem of biological data versioning. The analysis of historical change is important

as it is specifically the history of the data that is significant to this research. Analysis

of the history can help answer questions about how a file reached a certain state [84].

For example, CVS[45] and RCS[88] keep a complete record of committed changes to

specific files. It is reasonable to assume that due to the various needs for versioning,

different tools will be suitable for different aspects of versioning.

It would take too long to explain how each of the aforementioned versioning technologies

are individually unsuitable for the versioning of biological data. It is important to first

note that, with a few noted exceptions [4] [83], the versioning technologies described

above have not been designed with the intention of versioning scientific data. It is

therefore unlikely that the versioning tools will provide a sufficient solution for the

prescribed problem. In short, current versioning technologies do not take into account

the uniqueness of biological data and the constraints that versioning such data creates.

This does not necessarily preclude these versioning tools from being used or modified

for the purpose. The unsuitability of some of the more common versioning tools are

described below.

When considering the unsuitability of a versioning tool, it is necessary to examine the

function of the tool and measure that against the required functionality to solve the

problem. In the case of biological data and the problem of versioning such data, we

must consider a scenario where multi-versioned data can be processed in a variety of

ways, producing multi-versioned results. When contemplating a problem of this kind,

it seems obvious that a traditional file-versioning technology or a snapshotting tool will

not provide the required level of flexibility. Traditional document version management

schemes, such as RCS and SCCS, are line-oriented and suffer from various limitations

and performance problems. Both RCS and SCCS may read segments that are no longer

valid for the required version[20]. Also, RCS and SCCS do not preserve the logical

structure of the original document. This makes structured-related searches on XML

documents difficult. It may require that the entire original document be reconstructed

before such a search can take place[20].
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XML versioning provides a closer match for the required purpose[20]. It is suggested

that XML document versioning provides a sufficient solution for managing the ver-

sioning of biological data experiments[83] but this approach only addresses part of the

problem by tracking the changes to the data. If biological data is to be adequately man-

aged and versioned, the semantics of the experimental process must be incorporated into

the solution. Given the self-describing nature of XML, it seems a promising method

for describing structured data.

Ultimately, there is no single technique that is completely adequate for our purpose and

this is due largely to the complexities that can exist within scientific experimentation,

in particular biological or medical. It is the definitions and the interaction between

the experimental components that contributes to the complexity and any system that

aims to provide change management must have, at minimum, the capability to fully

record the entire experimental environment along with the behaviour and relationships

in between.

2.4 Ontologies and the Semantic Web

There is a large amount of heterogeneous biological data currently available to scien-

tists but due to its heterogeneity together with the widespread proliferation of biological

databases, the analysis and integration of the data presents significant problems. Bio-

logical databases are inherently distributed because the specialised biological expertise

required for data capture is spread around the globe at the sources where the data

originates. To make the best use of this data, different kinds of information must be

integrated in a way that makes sense to biologists. As the semantic web matures, the

need for life sciences data integration grows, a problem that is further exacerbated by

the lack of widely-accepted standards for expressing the syntax and semantics of the

data[19].

Biologists currently waste a great deal of time searching for available information in

various areas of research. This is further exacerbated by the wide variations of termi-

nology used by different researchers at different times. An ontology provides a common

vocabulary to support the sharing and reuse of knowledge. The OBO ontology library29

is a repository of controlled vocabularies, which has been developed to provide improved

communication across different biological and medical domains.

29OBO: Open Biomedical Ontologies - http://obo.sourceforge.net
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2.4.1 The Gene Ontology

The Gene Ontology (GO) project[9][16] provides structured, controlled vocabular-

ies and classifications covering several domains of molecular and cellular biology. The

project is driven and maintained by the Gene Ontology Consortium whose members

work collectively and, with the help of domain experts, seek to maintain, expand and

update the GO vocabularies. Collaborations of this nature are difficult to maintain due

to geography, misunderstandings and the length of time required for standardisation

and collective agreement. The Gene Ontology (GO) project is a collaborative effort

that aims to address two aspects of information integration; providing consistent de-

scriptors for gene products in different databases and providing a classification standard

for sequences and sequence features.

The project began in 1998 as a collaboration between three model organism databases:

FlyBase (Drosophila), the Saccharomyces Genome Database (SGD) and the

Mouse Genome Database (MGD). Since then, the GO consortium has grown to

include many databases. The benefits of using GO increase as the number of partici-

pating databases increases. The GO project has grown enormously and is now a clearly

defined model for numerous other biological ontology projects that aim to achieve similar

results.

2.4.2 A Note on XML and RDF

XML (eXtensible Markup Language) and RDF (Resource Description Frame-

work) are the current standards for establishing semantic interoperability on the In-

ternet. However, XML only describes document structure. RDF better facilitates

interoperation because it provides a data model that can be extended to address sophis-

ticated ontology representation techniques[25]. XML is intended as a markup-language

for arbitrary document structure. An XML document consists of a properly nested set

of open and close tags, where each tag can have a number of attribute-value pairs. One

of the important aspects of XML is that the vocabulary is not set, but rather can be

defined per application of XML. The following example XML shows a part of a defined

ontology.

XML is foremost a means for defining grammars. Any XML document whose nested

tags form a balanced tree is a well-formed XML document. A DTD (Document Type

Definition) specifies the allowed combinations and nesting of tag-names, attribute-

names, etc. using a grammar formalism. The purpose of a DTD is to define the legal

building blocks of an XML document. It defines the document structure with a list



Background 47

Figure 2.2: The XML representation of part of a defined ontology

of legal elements. A DTD can be declared inline in your XML document, or as an

external reference.

RDF was designed by the W3C30 in order to provide a standardised definition and use

of metadata. Resource Description Framework, as its name implies, is a framework

for describing and interchanging metadata. A Resource is anything that can have a URI

(Universal Resource Indicator) such as a web page or an element of an XML document. A

PropertyType is a resource that has a name and can be used as a property. A Property is

the combination of a Resource, a PropertyType and a value. RDF is carefully designed

to have the following characteristics31:

Independence: Anyone can use RDF to invent their own types of metadata. The

PropertyType can be anything and is not domain-specific.

Interchange: RDF properties can be converted into XML.

Scalability: As RDF properties are essentially made up of three distinct parts (see

above), they are easy to handle and look up, even in large numbers. It is impor-

tant that metadata is efficiently captured. With the large amount of data, it is

important that the overhead caused by metadata is as minimal as possible.

30The World Wide Web Consortium (W3C) is an international community developing standards
to ensure the long term growth of the web. http://www.w3.org/

31According to http://www.xml.com/pub/a/98/06/rdf.html
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In particular, XML falls down on the issue of scalability. Firstly, the order in which

elements appear in an XML document is significant and can change the meaning of the

document. When it comes to semantic interoperability, XML has disadvantages and

since XML only deals with the structure of the document, there is no way of recognis-

ing or extracting semantic meaning from a particular domain of interest. The Systems

Biology Markup Language (SBML) is an XML language for representing biochem-

ical network models[30] in order to describe biochemical reaction networks. SBML is

a software-independant language for describing models that occur in many different ar-

eas of computational biology including cell signaling pathways, metabolic pathways and

gene regulation among others[52].

2.5 Data Provenance

The widespread nature of the Internet and the ease with which files and data can be

copied and transformed has made it increasingly difficult to determine the origins of a

piece of data. The term data provenance refers to the process of tracing and recording

the origins of data and its movement between databases. Provenance is not considered

a significant factor for many kinds of data but scientists focussed on the accuracy and

timeliness of the data consider the provenance of data as a big issue[14]. Provenance

allows us to take a quantity of data and examine its lineage. Lineage shows the steps

involved in sourcing, moving and processing the data [71]. In order to provide full data

provenance, all datasets and their transformations must be recorded.

In 2002, Frew and Bose [34] propose the following requirements for provenance collection;

a standard representation so lineage can be communicated reliably between systems;

automated lineage recording which is essential since humans are unlikely to record all

the necessary information manually; unobtrusive information collecting is desirable so

that current working practices are not disrupted.

Scientists are often interested in provenance because it allows them to view data in a

derived view and make observations about its quality and reliability [15]. Goble [40]

presents some notable uses for provenance;

Reliability and quality: Given a derived dataset, we are able to cite its lineage and

therefore measure its credibility. This is particularly important for data produced

in scientific information systems.

Justification and audit: Provenance can be used to give a historical account of when

and how data has been produced. In some situations, it will also show why certain

derivations have been made.
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Re-usability, reproducibility and repeatability: A provenance record not only shows

how data has been produced, it provides all the necessary information to reproduce

the results. In some cases the distinction between repeatability and reproducibility

must be made. In scientific experiments, results may be different due to observa-

tional error or processing may rely on external and volatile resources.

Change and evolution: Audit trails support the implementation of change manage-

ment.

Ownership, security, credit and copyright: Provenance provides a trusted source

from which we can procure who the information belongs to and precisely when

and how it was created.

There are three further purposes for provenance32 from the viewpoint of the scientist[99];

Debugging: Experiments may not produce the desired results. The scientist requires

a log of events recording what services were accessed and with which data.

Validity Checking: If the scientist is presented with a novel result, they may wish to

perform expensive laboratory-based experiments based on these results. Although

sure that the workflow design is valid, they may still want to check how this data

has been derived to ensure it is worthy of further investigation.

Updating: If a service or dataset used in the production of a result has changed, the

scientist will need to know what implications that change has on those results.

2.5.1 Life Sciences

Among the sciences, the field of molecular biology has generated a wealth of biological

data and is arguably one of the most sophisticated consumers of modern database tech-

nology [24]. Molecular biology supports many hundreds of public databases, but only

a handful of these can be considered to contain source data in that they receive ex-

perimental data and many of the databases actually reference themselves. This sounds

contradictory until you take into account that much of the value associated to a data

source comes from the expert curation and annotation of the data.

Most implementers and curators of scientific databases would like to record provenance,

but current database technology does not provide much help in this process as databases

are typically rigid structures and do not allow the kinds of ad hoc annotations that are

32These are not entirely exclusive to those described by Goble [40].
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often needed to record provenance [14]. There have been some attempts to formally

monitor data provenance. Query inversion is a process that attempts to establish the

origin of data by inverting the query on the output tuple but even for basic operation,

the formalisation of the notion of data provenance is a non-trivial problem [14] but

there are, however, data models where the location of any piece of data can be uniquely

described as a path[13].

One of the most significant problems associated with data provenance can be seen with

the following example33. Suppose document A cites a component of document B and

then suppose the owner of B wishes to update it, thereby invalidating the citation in

A. Whose responsibility is it to maintain the integrity of B? This is a common problem

in scientific and, in particular, biological databases. The usual procedure is to release

successive versions of a database as separate documents.

2.5.2 Workflow Enactment

It is not only the biological science domain that is concerned with data provenance.

Large-scale, dynamic and open environments such as grid and web services build upon

existing computing infrastructures to supply dependable and consistent large-scale com-

putational systems [87]. Within both scientific experiments and business transactions,

the notion of lineage and dataset derivation is of paramount importance since without

it, information is potentially worthless. There are tools that provide provenance record-

ing at an infrastructure level for service-oriented architectures such as the Grid and

web services[87] and some also propose methods that uses provenance for determining

whether previously computed results are still up to date[87].

Provenance capability in a grid or web service environment has two principal functions:

to record provenance on dataset transformations executed, e.g. during workflow enact-

ment, and to expose this provenance data in a consistent and logical format via a query

interface.

Provenance information needs to be stored with two possible solutions for storage[87].

1. Data provenance is held alongside the data as metadata.

2. Data provenance can be stored in a dedicated repository, made accessible as a Grid

or web service.

The first solution requires the holders of any such data to maintain the integrity of the

provenance records as transformations take place, and it imposes significant changes to

33Taken from [14].
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any existing data storage structures. Such a kind of provenance can be useful for a user

to remember how a result was derived, and what steps were involved. It is unclear that

such provenance can be trusted by any third party, since the data and provenance owner

has to be trusted to have recorded provenance properly.

Workflow enactment is the automation of a process during which documents, information

or tasks are passed from one participant to another for action, according to a set of

declarative or procedural rules [87]. In grid applications, this task is often performed

by a workflow enactment engine, which uses a workflow script, such as WSFL34 or

BPEL4WS35, to determine which services to call, the order to execute them in and

how to pass datasets between them.

2.5.3 myGrid and the Taverna Workbench

Grid applications require versioning services to support effective management of con-

stantly changing datasets and implementations of data processing transformations. myGrid,

as a pilot e-science project, aims to provide middleware services not only to automate

the execution of in silico experiments as workflows in a Grid environment, but also to

manage and use results from experiments [85]. The myGrid project is currently being

developed using several molecular biological scenarios. myGrid is being used to automate

complex and tedious in silico experimentation36 by wrapping each web-based analysis

tool and data resource as a web service. Within this process, often discarded intermedi-

ate results are assigned identifiers and published locally, so that they become resources

of the personal web of science [46]. If provenance information is to be shared within

myGrid, we need to overcome their heterogeneity and agree a common understanding

(or semantics) as to what the contents of each data item and service represents and the

relationships we provide between resources [99].

The following figure from Zhao [99] shows the architecture of the provenance providing

components in myGrid and how provenance data are drawn together.

This following is a quote taken from the myGrid user guide (bundled with the myGrid

download) and provides an adequate description of the Taverna workbench.

34The Web Services Flow Language (WSFL) is an XML language for the description of web
services compositions.

35Business Process Execution Language for Web Services (BPEL4WS) is a standard exe-
cutable language for specifying interactions with web services.

36Often, the mundane nature of the task means not all possible avenues are explored, because the
scientist either misses possible routes or discards apparently uninteresting results.
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Figure 2.3: Architecture for provenance generation and visualisation in myGrid.

First the user starts a workflow using the Taverna workflow workbench37.

The workbench holds organisation in- formation such as user identity, which

is passed to the workflow enactor together with input data and workflow spec-

ification. As the workflow is run, the enactor stores data (using the mySQL

RDBMS), and metadata (in a Jena RDF repository)38 corresponding to our

four views of provenance. Each resource (including person, organisation,

data and service) is assigned an LSID and made available via an LSID au-

thority implemented using an open source framework39. Client applications

can then visualize both metadata and data using the LSID protocol.

The main user interface to myGrid is the Taverna e-science workbench. Taverna

provides a language and software tools to enable the design and implementation of

workflows. In a bioinformatics context, a workflow is the entire process of collecting

relevant data, performing any number of analyses over the data and extracting biological

results. Often, in bioinformatics the result of one experiment can form the input values

of the next. Designing workflows in Taverna allows services, or bioinformatics analyses,

to be scheduled to run in series. If results are not dependent upon one another, services

can be designed to run concurrently, allowing for faster, more efficient processing.

Workflows are designed in Taverna by selecting services and inserting them into a

workflow diagram. Services are any bioinformatics applications that are available as

37Taverna and FreeFluo are both open source projects available from http://taverna. sourceforge.net
and http://freefluo.sourceforge.net

38Jena is an open source semantic web framework for Java including an RDF repository
http://jena.sourceforge.net/

39A LSID Java server stack available for download at: http://www-124.ibm.com/ developerworks/pro-
jects/lsid
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web services. More and more applications are being provided as web services, but

’legacy’ applications, either command-line tools, or simple web interfaces, can also be

transformed into web services using wrapping tools, such as Soaplab and Gowlab

respectively. This functionality means that any bioinformatics experiment that can be

conducted elsewhere, regardless of the number of different processes or data sources

required, can be run as a workflow in Taverna.

2.5.4 Data Provenance Tools

Data provenance is receiving an increasing amount of attention and this chapter de-

scribes some of the tools that are currently available. Chimera[32] is a virtual data

system for representing, querying and automating data derivation. ESSW[33] is a

nonintrusive data management infrastructure to record workflow and data lineage for

computational experiments. Tioga is a proposal to modify an existing database visu-

aliser built over POSTGRES, where user functions are registered and executed by the

Database Management System, to provide fine grained lineage: lineage is computed

from ancillary, user supplied weak inversion and verification functions. CMCS[70] is an

informatics-based approach to synthesising multi-scale chemistry information that uses

WebDAV. myGrid[85]is a high-level service-based middleware to support the construc-

tion, management and sharing of data-intensive in silico experiments in biology. Trio[94]

is a system for the integrated management of data, accuracy and lineage. Within Trio,

database views, modelled as query trees, can be supplied with inversion queries in order

to determine the source tables used for that derived data.
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Case Study

The aim of this section is to provide an analysis of an existing biological data environ-

ment. The process uses data from a private collaborative database consisting of clinical

and proteomic data from 350 patients. The data is then mined using various machine

learning techniques in order to derive patterns and relationships within the data.

We start with an overview of the example which has been illustrated as a non-structured

rich picture in figure 3.1. This is the first step for the analysis and is used to identify

the areas of interest and sub-systems present in the working example. Some of the parts

illustrated are not within the machine domain of the example but do, however, affect

the operation of the system1.

From figure 3.1, we identify five actors that interact with the system either directly

or indirectly. The scientist maintains the private collaborative database which he/she

populates with data from the patient. The scientist may also publish and submit data

to a publicly available database, which is maintained by the external administrator, or

they may use such a database to validate values from their own data. The initiator uses

the private database and, possibly, the public database to initiate the bespoke database

within the experimentation environment2. Once the relevant datasets have been ini-

tialised in preparation for experimentation, the experimenter can use one of the datasets

in an experiment. The precise nature of the experiment depends on the hypothesis,

method and parameters employed by the experimenter. Some of the generic stages are

illustrated in figure 3.1. The experiment is run creating a ClassificationExperiment ob-

ject populated with, not only the results of the experiment, but the model that has been

used to attain the results, the method used and any other parameters specific to that

1Please refer to the change and impact analyses in sections 6.2 and 6.3.
2In this case, ObjectDB is used to store and maintain the initial data and any subsequent sub-datasets.

For more information, see http://www.objectdb.com/

54
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(a) An overview of the working example.

(b) An overview of the internal workings of a ClassificationExperiment.

Figure 3.1: Analysis of the existing environment.

experiment. The ClassificationExperiment object is maintained within an experimental

database, which itself is linked to the previously-initialised sub-dataset.

3.1 Example Datasets

The dataset consists of a set of proteomic fingerprinting data generated at St. George’s

Hospital3 and the National Institute for Medical Research (NIMR). The orig-

inal format for the the data were MicrosoftTMExcel flat files. These were edited in

MicrosoftTMExcel to produce comma-separated variable (CSV) files which were then

tokenised and marshalled to create Java Data Objects (JDOs) within ObjectDB4.

ObjectDB is a powerful Object Database Management System (ODBMS) writ-

ten entirely in Java.

3St. George’s Hospital, http://www.stgeorges.nhs.uk/
4ObjectDB, http://www.objectdb.com/
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Participants were selected to form part of a clinical study at St. George’s hospital in

order to diagnose patients with tuberculosis. The dataset collection consists of data

from 349 patients, each with a set of 219 protein quantitations. There are three datasets

in the collection; the Patient dataset, the Protein dataset and a dataset metadata file.

Proteomics is the analysis of complete complements of proteins. It is concerned not only

with the identification and quantification of proteins, but also the determination of their

localisation, modifications, interactions, activities and function. Proteomics is a useful

tool for the analysis of various diseases. A disease can arise when a protein or gene is

over or under-expressed, when a mutation in a gene results in a malformed protein or

when the protein function is altered through post-translational modifications. In order

to understand the biological process and to aid disease diagnosis, the relevant proteins

can be studied directly.

There are several factors to consider when determining the validity of proteomic data.

Proteomic data, like data obtained from almost any biological experiment, is subject to

any number of external factors. A common technique for improving the reliability of a

set of data and demonstrate the validity by reducing the effects of any external variables,

is to repeat the experiment. How many times an experiment has been repeated lends

weight to the validity of the resulting data. It is also important to look at the approach

for protein quantitation in order to explain how it may impact the interpretation of any

results obtained.

3.1.1 The Patient, Protein and Metadata Classes

The Patient class contains the demographic data for each of the 350 patients in the

survey. Each patient contains 56 additional data descriptors illustrated in figure 3.2.

The data descriptors combine a set of standard test and questions which can be obtained

by relatively simple means. The Patient class contains details about a patient which

relates, directly or indirectly, to the suspected disease.

The protein class contains a protein spectrum for each of the 350 patients within the

survey. Each of the 219 protein quantitations form a select protein profile for each of

the patients. Protein quantification is the process of establishing the exact quantities

of various proteins in a given sample. There are numerous methods for determining

protein quantitation, too many to mention here. Protein determination is important for

many reasons, in particular for disease diagnosis, as the proteins involved in a particular

disease can be identified by matching known alleles to those found in a suspected sample.

Through ongoing protein determination, we can not only achieve an accurate diagnosis,

but continue to monitor protein levels to ensure a successful prognosis of the disease.
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Figure 3.2: The data descriptors for each Patient.

3.1.2 Sub-datasets

Sub-datasets are created with the purpose of investigating various hypotheses. For exam-

ple, tuberculosis and human immunodeficiency virus (HIV) are inextricably linked[66].

HIV progressively weakens the immune system, making the body vulnerable to infec-

tions such as tuberculosis. A dataset to investigate the correlation between HIV and

tuberculosis is extracted from the dataset, Patient, with the following filter;

tb_study_label == "TB" && hiv_status == "Positive"

to find those patients with tuberculosis and who are HIV positive. Use the following

filter;

tb_study_label == "TB" && hiv_status == "Negative"

to find those patients with tuberculosis and who are not HIV positive. These datasets

can then be trained and tested upon using various machine learning techniques to find

correlations in the data. Although the number of patients included in the dataset is not

large, the number of derived datasets grows considerably and the size and complexity of

the experimental environment can reach an unmanageable point. The current example

dataset has twelve sub-datasets. Figure 3.3 shows some of the derived datasets from the

dataset, Patient.
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Figure 3.3: Some of the derived datasets from Patient.

3.1.3 Dataset Characteristics

The example dataset exhibits a high level of complexity due to dependencies on both

clinical and molecular data. The semantics of the data are more difficult to identify.

There is less metadata than one might expect of a dataset of this size and type. There

is little to suggest how the data was gathered. Also, data from various experimental

techniques are present in the dataset. These include protein quantitations, chest x-

rays, baciliary loads, biopsies and Fine-Needle aspirations (FNAs), although there is

no associated metadata that describes any of the details of these tests. It is therefore

difficult to assess the error margins or validity of the data obtained.

Further metadata is generated as more datasets are derived and experimented upon.

With regards to the case of the tuberculosis-HIV correlation dataset, the following meta-

data was recorded; the algorithm, algorithm parameters (hypothesis), source and desti-

nation datasets, time and date, selected features and the feature selection method, the

kernel and kernel parameters, model criteria and validation method. For this dataset,

there are 18 classification experiments, each with differing data and metadata. This

demonstrates how the amount of data and associated metadata can multiply at a rapid

pace. How can an experimenter keep track of these multiple versions of experiments.

3.2 Current Workflow

The workflow for the case study is split into three logical parts. The first is the data

collection stage where the experimental data is gathered from a series of private col-

laborative databases. This is accomplished by a collaborative scientist that generates

and maintains the private, clinical data and an external administrator that administers

the public database. The resulting raw datasets are then collated and rebuilt to form
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new sub-datasets, corresponding to the type of required experimentation. At this point,

the experimental datasets are fed into the various computational experiments held by

the scientist. This phase of experimentation generates sets of results and deals with the

storage and administration of these results. Figure 3.4 provides an overview of the en-

tire experimental process, detailing the interactions of the three stages mentioned above.

The following sections describe these three stages in more detail.

Figure 3.4: An overview of the entire experimental process.

3.2.1 Building the Datasets

The proteomic case study contains two data and two metadata files. The data files con-

tain the patient demographics and protein mass values as described in section 3.1.1. The

Demographics dataset contains the data for individual patients, including their study

label (training or testing) and their diagnosis (TB or not TB). The Spectrum dataset

contains the mass values for 219 testing proteins and is related to the demographics

dataset by SampleID. There are two metadata files. The Descriptor file contains such
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information as field descriptors, field types and accepted input formats. There is an addi-

tional Notes file that contains general information about the datasets such as comments,

questions and notes of data modification.

The first step in the data collection process is the investigation of the patients. Us-

ing both interviewing and surveying techniques, demographic and protein data were

collected to generate the demographics and spectrum files and the metadata described

above was generated by the administrator at St. George’s Hospital.

Figure 3.5: The data files created by the collaborative scientist and the relationships
between them.

Figure 3.5 describes the data files created by the collaborative scientist and the relation-

ships between those files. Using the techniques above, the raw datasets were generated,

ready for initialisation in the experimentation process.

3.2.2 Initialising the Datasets

Having obtained the raw data required for experimentation, the experimental datasets

must be generated. Although the datasets have already undergone some refinement,

it is unlikely that they are suitable for immediate integration into the experimental

process. They must therefore pass through an initialisation process in order to create

the experimental datasets and sub-datasets.

There are several stages of dataset initialisation and these are specific to the nature of

the planned experimentation. The stages that we describe here are specific to the type

of experimentation in the case study although there may, in other cases, exist other

dataset initialisation techniques depending on the specific experiment. In any case, we

have presented a comprehensive, if not complete, set of dataset initialisation techniques.
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The first step is to encapsulate all the data about the patients into a single manage-

able dataset. The demographics and the protein mass values, linked by SampleID, are

parsed for each patient into a single dataset, named Patient. An experimental dataset

containing the dataset metadata, TBProteomicDatasetMetadata, is also generated using

the demographics, protein mass values and data descriptors.

Figure 3.6: Primary initialisation of the Experimental datasets.

Figure 3.6 describes the initialisation of the source database using the raw data obtained

in section 3.2.1. The raw data files were converted by hand from Microsoft Excel files to

tab-separated text files in preparation for parsing. The nature of the parsing separating

variable is passed to the system via the token file. A timestamp is also generated by

the system clock for the metadata dataset. The Initiator invokes the buildObjectDB()

method, parsing the raw data files creating Patient objects with the accompanying

metadata, implemented as an ObjectDB database.

ObjectDB is an object-oriented database written entirely in Java. The primary func-

tion of ObjectDB is the ability to create, integrate and manipulate Java Data Objects

(JDOs) rather than being constricted with a commercial relational database or requiring

a bespoke solution. The ObjectDB user can manage all aspects of the database with
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Java code. This has the benefit that it can easily be integrated into existing computa-

tional experimentation architectures, especially if those systems have been established

using Java.

Once the Patient dataset has been initialised, the initial study dataset is created. The

purpose of the initial study is to create sub-datasets from Patients grouped by their

surveyed study label (testing or training) and their diagnosis (TB or not TB). These

new sub-datasets, along with some initialisation variables are committed to the source

database. This is illustrated in figure 3.7.

Figure 3.7: Initialisation of the Initial Study dataset.

Various other experimental sub-datasets are created. For example, a set of four TB vs

Control datasets are generated in a process similar to that which created the initial study

above, which can be used to look for patterns for TB prediction. For the investigation

into the link between tuberculosis and HIV, the datasets can be prioritised using only

those two variables. In addition, other features can be selected or deselected depending

on what is being investigated and what data can be fed into the various machine learning

techniques. The user can specify exactly what kind of sub-datasets are required using the
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performQuery method. This method accepts two (or more) queries in order to generate

the various sub-datasets.

Biomarkers play an important role in the case study and are handled in a similar manner

to the other data inputs. A biomarker is any kind of substance that can be used as an

indicator of a biological state, namely the existence, past or present of a living organism.

Biomarkers can also be used as an indicator of a particular disease. The presence of

a certain antibody, identified by the biomarker, may indicate the presence of a disease

but more importantly, a biomarker can indicate a change in expression or state of a

particular protein associated with a particular disease. This type of investigatory work

is very important during both the diagnosis and prognosis of many diseases.

In this case study, biomarkers are imported via a tab-separated text file. The biomarker

headers are added to the case study metadata as an indication and record of the biomark-

ers that have been used and the biomarker values are added to the individual patients.

An illustration of this process can be found in figure 3.8.

Figure 3.8: The initialisation and addition of biomarkers.

3.2.3 Experimentation

The experimenter begins experimentation by running an initiating run command from

Matlab. The experimenter passes a single integer variable which represents the type of

experiment that is to be initialised. The types of available experiment in this case study
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are pre-specified, although more can be added depending on the nature of the required

experimentation. The variables for the experiment are initialised and, depending on the

experiment, the corresponding run procedure is called.

Figure 3.9: The processes involved in running a basic experiment.

The following is a description of the processes illustrated in figure 3.9. The relevant

dataset (specified in the matlab function, RUN) is retrieved and split in sample IDs and

labels. These are used to create a matlab object called dataset. The dataset is then

split or shuffled according to pre-set variables to generate the train and test sets. If the

experimenter has enabled feature selection, the mass peaks of those features are selected,

otherwise the mass peaks of all the features are selected from the metadata. The mass

peaks, together with the train and test sets are used to generate train and test matrices,

which are in turn added to the matlab dataset. This dataset object is used to create

a ClassificationExperiment java object and a hypothesis matlab object. These are then

passed to a validation process.
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3.3 The Case Study Analysis

The case study analysis falls into two main areas; an identification of the possible sources

and sites where change can occur and explicit description of the impacts that the iden-

tified changes can bring about. The results of the analysis are described in section

3.4.

3.3.1 Sources of Change

We are dealing with a system that exhibits a high degree of change over a variety of levels.

There are multiple points of possible change and there can be various consequences as

a results of those changes.

The change and impact analyses are based around the schematic analysis of the working

example carried out and described in the previous section. The changes were identified

using a working knowledge of the example and postulating the presence of possible

changes within the system. The change analysis documents the points at which changes

can occur within the system. It describes where the change occurs, the actor responsible

for the change, the reason for the change and provides a real-world example.

The purpose of the change analysis was to investigate the areas of potential change and

link those changes to a real-world example. It is not sufficient to merely claim that the

changes occur and that we must deal with them. The changes must be identified, located,

described and rooted within a real context. Only then can we begin to hypothesise

solutions to the problems.

3.3.2 Impact Flow

Having identified the sources of possible change, we can look at each change and analyse

the impacts that the change may have on the system and its component parts. This was

completed using the analysis of the working example together with the change analysis

to hypothesise the possible impacts that each change may have.

The impact analysis examines each source of change in the change analysis and describes

the impacts on the system and its actors as a result of those changes. The impacts are

measured in five categories5;

Data Impacts: The impact to the values and/or structure of the data.

5 It is important to note that, unlike the previous reports, the impacts report is not limited by the
limitations of the system that is being analysed. For example, a change that should impact the system
but doesn’t due to an implementation limitation is considered nevertheless.



Case Study 66

Metadata Impacts: The impact to the system metadata.

Performance Impacts: The impact to the performance to the system after as a result

of the change.

Safety/Security Impacts: The impact on safety or to any security policies as a result

of the change.

Resource Impacts: The computational, financial or human cost incurred as a result

of the change.

3.4 Case Study Analysis Outcomes

Within the change analysis, we identify four types of change that occur within the case

study; content, semantic, protocol and experimentation. These are described in the

following sections.

3.4.1 Content

Data can change for many reasons and this section refers to changes to the values of the

specific data points.

Over time, new data is added to existing databases. This is especially true for large,

publicly available databases where data is continually added. These additions are not

always reflected immediately as the release of updated versions remains an administrative

issue. Depending on your experimental sub-datasets and the nature of your queries,

these unannounced additions may or may not affect your results. It is important to note

that there are generally no semantic links between previous versions of the database.

Moreover, it is not possible to distinguish what results, if any, have been added. In a

similar fashion to added data, there may be data that is re-examined or refuted and

corrected. These kind of changes usually occur with no warning or explanation.

The impact of the addition of new data depends almost entirely on the queries used to

generate the experimental datasets. If the added data does not fall within the limits of

the experimental query, then clearly there will be no impact on the experiment. Consider

a scenario where the experimenter may wish to include the additional data because of its

importance even though it falls outside the limits of the original experimental query. In

such a case, it may be necessary to widen the experimental query and the implications

and impacts of this action should also be considered.
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Some samples from the data may become invalidated, either through external research or

via local experimentation. Either way, these data samples are usually removed to allow

valid experimentation to continue. In an ideal scenario, these removals or alterations

are fed back into the database higher up, although this is certainly not usual practice.

Subsequent versions, therefore, will continue to contain the invalidated samples and the

process of removing them must be repeated.

By modifying the source data, the results that have been achieved through the use of

that data immediately become out of date. This doesn’t necessarily mean that the data

has been sufficiently impacted be considered defunct, moreover it does not reflect the

most current state of the source data. The experimenter may have performed many

experimental iterations with the source data generating complex interactions between

multiple sets of results and data objects. Any data that relies, either directly or indi-

rectly, on the source data is potentially out of date.

One important problem with this type of change is that modifications are not reflected

in the metadata; there is no way of detecting whether a change has occurred. This effect

is lessened somewhat in the case of a collaborative data source where changes initiated

within the group can more easily communicated. Details of the modified results and the

reasons behind the modifications should be available. This is aided further due to the

fact that collaborative data sources are often much smaller and, therefore, it is easier to

keep track of changes.

When considering the case of automatic disease diagnosis, any modifications of the data

can present significant concerns to the validity of the experimental model. If the data

has been modified in order to correct errors, that may have an effect on the existing

results and any diagnoses that have previously been made. In such a case, it may be

very important to re-run the previous experiments in order to reflect the current state

of the data source, regardless of the cost and effort involved.

The initiator of the experimental datasets may be called upon to either create additional

experimental sub-datasets or alter an existing sub-dataset. The nature of the query to

create this dataset carries an effect on the following experimentation. During the alter-

ation of an existing sub-dataset, presumably to fix a problem with an experiment based

on that dataset, care must be paid in assessing the impact on any other dependent ex-

periments. If an effect is established, a new sub-dataset is preferred over an alteration.

The impact of the creation of sub-datasets is difficult to assess. There is no way of auto-

matically creating experimental sub-datasets and, therefore, the process requires some

human interaction. The level of this interaction depends on the nature and complexity

of the experiment as well as the availability of personnel who are qualified and familiar

enough with the experimental process to create the datasets.
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3.4.2 Semantic

Semantic changes refer to a change that is semantic in origin such as the modification

of data headings or the parameters of experimentation. Any kind of database schema

change is encapsulated in this section.

There may be good reason to alter the properties of an existing experiment in order to

correct an error, update or change a parameter or to alter the functionality or hypothesis

of the experiment. For example, the matlab run() file is an executable that contains

a long list, a catalog, of experiments from which the experimenter chooses the desired

experiment. Each experiment has its own set of parameters which are enabled during

initiation of the selected experiment. It may be necessary to change some of these, either

to correct an error or for experimental tweaking. In either case, the change will affect

future instantiations of that particular experiment and the experimenter must make

sure that the correct, or desired, parameters are in operation for each experiment to be

executed.

A change in the experimental parameters denotes a change in the way data is processed.

A change in the experimentation process will often generate an effect on the data or

results. As a consequence, experiments that have subsequently been initiated using

those results will need to be re-run in order to reflect the changes. The metadata for

any modified experiment and for any associated results will be immediately affected.

Also, this metadata should be used to track the impact of the modified process to all

results that have been spawned from that process.

There is often a significant human and computational effort in recomputing results and

this plays a large part in deciding whether to propagate the impact. The most important

aspect, arguably, is the time and effort required by an actor to recompute. This human

and computational effort must be taken in consideration just like any other regular

impact.

During experimentation, results may yield new discoveries, generating new or refined hy-

potheses and creating new direction for experiments and research. These new discoveries

may require refinement of the experimentation and may possible require the investiga-

tion of additional facets of the existing data. These additions will alter the schema of the

dataset, affecting the functionality of the existing dataset-dependent experiments. For

example, a link between tuberculosis and pneumonia may be suspected after analysis of

some recent experimentation. It may be called for the collaborative scientist to revisit

the data demographic (in this case, the patients) and test for pneumonia and then add

it to the raw data for the experimenter to incorporate into the experimental process.

We have to examine the effects of such an action to the experimental environment.
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Databases are queried in order to generate experimental datasets. These datasets are

fed into experiments to generate results. In reality, the data is fed into the experiment,

usually line by line. The data lines are then internalised within the system and ex-

perimentation continues. Under this regime, it makes no difference to the order of the

lines of data supplied. When we consider implementing a system to detect changes and,

therefore, versions of a dataset, it may cause considerable difficulty if the dataset were

reorganised. This is especially true if the order of both the columns and the tuples are

reorganised. It should make no difference to the experimentation, as exactly the same

data is being used, but it can pose a significant problem when trying to detect whether

the datasets have changed.

3.4.3 Protocol

A protocol change is generated from the running and operation of the system. This is

not a change to either the data or the implementation of that data. It refers to the

operation of a part of the system that may have an effect on another part of that, or

related, systems.

There may be cause for an actor to alter their working environment so as to cause a

change to the way data is transferred to other users of the system. As a simple example,

it may be more productive for the scientist to produce comma-separated variable files

rather than Microsoft Excel files. In such a case, this change would have to be announced

to the experimental community so that it can be accommodated for, ideally before the

change takes place. The smooth functionality of the system relies on each part having

full knowledge of how it interacts to the other parts of the system. Any changes to these

interaction should be announced in a proper and timely fashion in order to enable the

successful continuation of the experimental process.

It is unlikely that changes in policy will directly affect existing results. An explicit

requirement of a policy change should always be that it does not directly affect the

content of the data. A policy change involving the data format, however, could require

a propagation of that policy to existing results and this could cause substantial effort.

Any change to the policy is likely to be reflected in the metadata enabling policy changes

to be tracked throughout the system. It is important to consider other aspects of a policy

change. The performance of a system can be impeded or even broken by a policy change

if that change affects some previously unaffected area. For example, a policy change

adding extra levels of authentication could theoretically cause a system to pause for a

password, perhaps indefinitely if not picked up. This is especially problematic if the

policy change is unannounced.
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Protocol changes, such as the example described above, are generated and governed

internally within the experimental process. Other changes to protocol are conceived

externally and affect the experimental environment without warning. For example,

it may become necessary for the external administrator to alter the policy regarding

the access of the database. This may include changes to data formats, version-release

schedules, data-inclusion policies and metadata. Such changes occur, not frequently

usually but with a certain regularity that requires local management.

From time to time, it may become necessary to update, maintain or debug the ex-

perimental code in order for it to remain efficient and up-to-date with new, emerging

technologies. Theoretically, this should not affect the external interface for the experi-

mental methods, as the process is being improved internally. It may, however, alter the

way the experiments are performed internally and this may have affects on the results

that would be very difficult to estimate, especially if the experiment uses third-party or

sealed processes.

Code maintenance can have varied performance-related effects. Most maintenance rou-

tines aim to improve some factors of the code, some of which focus on maintainability.

Efficient maintenance can be an extremely difficult process, especially if it is done prop-

erly. The higher the emphasis on maintenance factors such as portability, readability

and low-coupling, the easier and more desirable future maintenance becomes. The dif-

ficulty in maintaining software usually relates directly to the time spent ensuring the

code is easy to maintain.

Any system that offers safety-critical operations, an automated diagnosis tool for ex-

ample, must be thoroughly tested before use. Any bugs or errors must be exposed and

corrected before the system is used to diagnose real patients. When the code for such

a system undergoes maintenance or is changed in any way, it must be retested to the

same extent as before to make sure that maintenance has not affected the system dura-

bility. Not only does this make maintenance undesirable but enforces the requirement

to manage any possible change correctly.

3.4.4 Experimentation

An experimental change occurs as part of the experimentation process such as the ad-

dition of experimental technology or the addition or removal of an existing experiment.

Over time, revelations and discoveries from results will, ideally, generate new hypotheses

and propel research in directions. This will likely require the addition of new experiments

to test these hypotheses. Each new experiment will have its own unique parameters and
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metadata. The emergence of new technology, once feasible to include, may require the

building of new experiments.

Generally, the effort required to add a new experiment is small as it does not affect the

operation of the existing experiments. It is often the case that new experiments differ

from existing experiments by parameters only. In this case, impact is low. If the new

experiment requires new technologies, the impact is greater. This obviously precludes

the effort involved in conceiving the new experiment.

There may be new machine learning techniques emerging that the experimenter would

wish to implement within the experimentation process. This could involve a re-writing

of some parts of the process-centric code. Furthermore, the experimenter will likely wish

future experiments to reflect these changes in implementation, especially if the change

is a result of a bug fix. In that case, it is desirable to rerun the previous invalidated

experiments using the new implementation.

Theoretically, the incorporation of new technology should not immediately affect the

resulting data. This depends entirely on the nature of the improvement, whether it be a

process or semantic improvement. The semantic impact, however, is more considerable

and depends on what metadata is being currently recorded. Changes and updates in

the code that do not reflect change in the data or the experimental process are unlikely

to impact the metadata.
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Hashed Data Model

4.1 Introduction

There is little point spending time and effort to develop a model if it turns out that it

is based on data which is out of date. Many models require large amounts of data from

a variety of heterogeneous sources. We have already suggested that the integration of

this data is a significant challenge, backed up by much research. But furthermore, this

data is subject to frequent and unannounced changes. It may only be possible to know

that data has fallen out of date by reconstructing the model with the new data but this

leads to further problems. How, when and why does the data change and when does the

model need to be rebuilt? At best, the model will need to be continually rebuilt in a

desperate attempt to remain current. At worst, the model will be producing result that

are out of date1. The Hashed Data Model (HDM) was conceived to manage this

state of data change.

Systems biology focuses on understanding the interactions between biological systems

through the use of high-throughput analysis, computational modelling and experimenta-

tion. Large amounts of complex data from multiple, heterogeneous sources are obtained

and integrated using a variety of tools. These data and tools are subject to frequent

change, much like other biological data. Reconciling these changes, coupled with the

interdisciplinary nature of systems biology, presents a significant problem. We require a

system that can identify changes and, if possible, describe the impact of the change on

results that have been previously computed.

The recent advent of automated and semi-automated data-processing and analysis tools

in the biological sciences has brought about a rapid expansion of publicly available data.

1A model that produces results that are erroneous as a result of being out of date, can be regarded
as being invalidated.

72
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Many problems arise in the attempt to deal with this magnitude of data; some have

received more attention than others. One significant problem is that data within these

publicly available databases is subject to change in an unannounced and unpredictable

manner.

Consider a systems biologist building a model and conducting experiments ’in-silico’. In

the event that the data used has changed, it may be important that the biologist be made

aware of this change in order to establish the impact on the results they have previously

attained. Couple this change with the experimental, protocol and other changes that

can occur, it is clear that there exists a complex environment of possible changes that

can affect the scientist’s results. Managing this change in a way that can benefit the

experimenter is a considerable problems. Some results may be more important than

others, may require more effort to repeat or may be less effected by certain changes than

other sets of results.

Chapter 4 presents the HDM in order to help e-scientists identify, track and manage

these types of change. The HDM is a tool that abstracts an experimental dataset and

metadata to a model that can be used to detect changes between versions of datasets.

The characteristics of the HDM allow the user to potentially retain a unique version of

the dataset for every single experiment.

4.2 Requirements for the Hashed Data Model

We have developed the Hashed Data Model (HDM) as a prototype to demonstrate a

first attempt at the versioning and tracking of change within a dataset. The HDM is

specified according to a set of requirements elicited through an analysis of the case study,

described in section 3. Given the prototypal nature of the HDM, the requirements were

not specified formally, or to the same extent as the ExperimentBuilder, and they are

presented below. We cover only the basics here; we describe the way the HDM is

intended to interact with the user, the main features of the system, some of the non-

functional requirements and some of the data characteristics of the HDM.

4.2.1 System Overview

We start by identifying the users of the system. As a prototype, we intend the HDM to

be used primarily by scientists who are interested in developing a change management

framework. In this respect, the significant secondary purpose of the HDM is the elicita-

tion of further requirements for a future change management application. The HDM is
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designed to be used by one scientist a time and there is no requirement for concurrency

within the HDM at this point in time.

We shall start with a brief scenario in order to identify some of the important use cases

associated with the HDM. This scenario deals with the basic concepts of generating

and comparing HDM text files2.

The scientist starts the HDM application. They enter their unique user

name and password and provide a brief description of the dataset that they

intend to use with the HDM. They also enter the filename of the dataset.

The scientist enables the HDM to use fine-grained checking and provides

a tracking factor of 5. They then click on the button, ’Generate HDM’.

the HDM verifies the username and password against an internal list and,

if verification is successful, returns to the user a textual representation of

a ”Factor 5 HDM” text file. The scientist saves this file to their personal

repository.

The scientist then brings up the HDM Comparison screen. There are two text

boxes. In the first, the scientist enters the filename of the HDM text file they

have just generated. In the second, they enter the filename of the HDM text

file of the same dataset that they generated 6 months ago. They click on the

Compare button. The HDM returns a report of this comparison detailing

the differences between the two HDM text files. The scientist digests the

report to see whether, in the last 6 months, the dataset has changed, how

much it has changed and where these changes have occurred.

Figure 4.1: A use-case diagram for the HDM prototype

2The HDM text file refers to the textual representation of a dataset version, generated by our
application.
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From the scenario above we can build a use-case diagram and this is illustrated in figure

4.1. From figure 4.1, we can see there are four distinct use cases and these are described

below.

HDM Generation

1. Scientist starts a browser session.

2. Scientist navigates to page housing the HDM prototype.

3. Scientist enters username and password and, optionally, provides a description of

the dataset being used.

4. Scientist chooses whether to enable fine-grained investigation.

5. If fine-grained investigation is enabled, then the scientist enters a tracking granu-

larity value.

6. Scientist hits Generate HDM button.

7. If the username and/or password are incorrect or cannot be found within the

internal user list the HDM Prototype will return a null result.

8. Providing the username and/or password can be found in the internal user list,

the HDM Prototype displays a textual representation of the HDM.

HDM Comparison

1. Scientist starts a browser session.

2. Scientist navigates to page housing the HDM prototype.

3. Scientist navigates to the section labelled ”HDM Comparison”.

4. Scientist chooses the HDM text file of the original (older) dataset.

5. Scientist chooses the HDM text file of the current (new) dataset.

6. Scientist hits Compare HDM button.

7. HDM Prototype displays a textual representation of the comparison of the two

HDM text files.

HDM Investigation
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1. Scientist completes either a HDM Generation or HDM Comparison scenario.

2. Scientist clicks on the section labelled ”Investigate HDM”.

3. Scientist can investigate the various properties of the HDM within a tree-like

structure and can drill up or down.

Username/Password List Management

The trigger for this use case is a change of operational requirements for

the HDM relating to either the addition or removal of a valid user of the

system. It is not worthwhile to examine the steps required in such an action

as there will be no direct functionality in the HDM Prototype to facilitate

these actions. It is important to recognise only that the HDM Prototype

contains a list of approved users and passwords and the occupants of this list

are managed by an administrator. Currently, there are plans for only one

level of security; i.e., a user has access rights or does not.

The HDM Prototype is required to provide access to users, primarily scientists, who

often do not have extensive computer experience. In order to successfully use the HDM

Prototype, users will require a basic familiarity with computers, involving but not

exceeding basic web browsing and file management skills. There is no platform-specific

experience required to use the HDM Prototype.

4.2.2 Functional and Non-functional Requirements

Under normal conditions within a requirements specification, functional and non-functional

requirements would be separated and discussed in separate sections. For the sake of

simplicity, we will discuss all the requirements together in this section. As previously

mentioned, the requirements for the HDM Prototype were not formally specified and

rather than presenting them formally, we discuss them here in order to provide a concise,

clear view of what we wanted to achieve with the HDM Prototype.

At the most basic level, there is the requirement to provide the functionality described in

the use cases in section 4.2.1. The use cases primarily elicit the functional requirements

for a specification and we shall describe some of them briefly here.

HDM Generation
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Prerequisites The user is connected to their service provider and can navigate to the

HDM Prototype; the user has a dataset (in the correct format) to generate the

HDM text file.

User Input The user enters (or browses for) the filename of the dataset for which they

wish to generate the HDM text file. The user can then decide how finely they

wish to measure the submitted dataset. The degree of granularity with which they

measure the dataset during the generation phase defines how accurately the HDM

Prototype can measure changes to the datasets during the HDM Comparison

phase. We will have a numerical granularity factor to allow the user to specify

how finely they wish to measure the dataset. At this point, the user will hit the

”Generate HDM ” button.

Response The HDM Prototype returns the HDM text file to a window in the web

browser and the user can choose to save it to their personal repository. If the user

chooses to save the HDM text file, the filename is added to the ”compare-to” text

box of the HDM Comparison section of the HDM Prototype3. As well as a text

form, the generated HDM is presented to the user in a drillable form within a

table to allow the user to investigate the HDM on a more in-depth, intuitive level.

HDM Comparison

Prerequisites Again, the user is connected to their service provider and can navigate

to the HDM Prototype; the user must have, as a minimum two HDM text files

to compare to one another. If the user has recently generated and saved a HDM

text file, that filename is automatically placed in the ”compare-to” text box of the

HDM Comparison section of the HDM Prototype.

User Input The user enters the filenames of the two HDM text files. The user has

the option of employing a comparison that takes advantage of any fine-grained

investigation measures that have been enabled on either of the HDM text files4.

The user then clicks on the ”Compare HDMs” button.

Response The HDM Prototype returns a report detailing the differences between the

two HDM text files. The accuracy of this report will depend on the granularity

of the two text files. This report is available for the user to save for their own

records. Similarly as for HDM Generation, the comparison is also available to the

user as a drillable, structured report.

3It seems reasonable to assume that if a user has just generated a HDM text file and then wishes to
perform a comparison immediately after, they will want to compare some previously generated HDM
text file (the original) to this one (the current).

4It may be necessary to de-select the option to perform a fine-grained comparison, depending on how
finely each of the HDM text files have been generated
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HDM Investigation/browsing

Prerequisites The user must have at least one HDM text file they intend to view.

User Input User either conducts a HDM Generation or a HDM Comparison or enters

the file name of the HDM text file they wish to view, whereupon the user clicks

on the ”View HDM ” button.

Response The HDM Prototype returns the generated HDM to the user in a drill-

able, structured form within a table.

There is an assumption inherit in almost all the use cases described above. We intend

to use a web platform to distribute the HDM Prototype either through a password-

protected Internet website or via a private laboratory repository. As we are building a

prototype, it in unlikely that we will have many users at a time and we are, therefore,

not including specific concurrency functionality5.

Using a browser-based service also manages the problem of hardware constraints, at least

on the part of the user who requires only a platform capable of running a browser. The

computation of the HDM Prototype takes place at the server so what of the server

requirements? It is important that the prototype does not require any kind of special

computing requirements in order to run. Fortunately, we do not foresee any problem in

this regard as the weight of computation is relatively low and should be ably handled

by any household desktop computer.

The HDM Prototype requires the presence of either a dataset, for HDM Generation, or

a HDM text file, for HDM Comparison. Needless to say, without either of these things,

there is no way of interacting with the HDM Prototype. There is no persistence

within the HDM Prototype; when a user completes an interaction with the HDM

Prototype and closes the browser window, their session is lost and any data in use is

discarded. We include this requirement in order to deal with one important aspect of

security. Users of the HDM Prototype are working with various types of data, mostly

biological or medical. Data of these types is invariably of a highly sensitive nature and,

therefore, subject to increased security. In order to persuade scientists to upload their

highly-sensitive data to our web application, something some will be unwilling to do and

most will be wary of, we must assure them that their data is secure. We will achieve this

by not retaining any kind of persistent state of the data within the HDM Prototype.

The data is uploaded, parsed and the HDM text file is returned to the user, whilst the

original dataset is immediately discarded by the HDM Prototype.

5Methods dealing with concurrency may be present in the HDM Prototype due to added function-
ality from the developmental IDE (Integrated Development Environment).
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The HDM Prototype, as its name suggests, was conceived to be a relatively simple,

light-weight application designed to be implemented as quickly as possible. As a result,

there is limited importance placed on user facilitation and the visual aspects of the

project. From the identified use cases, we can define some requirements for the HDM

Prototype. HDM Generation and HDM Comparison are distinct operations to be

implemented within the boundaries of the HDM Prototype. We can, therefore define

two distinct sections of the HDM Prototype, navigable by the user.

4.3 Building a Data Model Using Hashes

Given that the data changes with a frequency and strength that requires management

of those changes, we can conclude some requirements for a data change management

framework. Firstly, we should be able to detect whether a change has occurred or

not within the dataset. Secondly, we must be able to conclude the significance of the

detected changes. Some changes will have greater impact than others and it is important

to measure this impact in order to decide how to manage the change. Thirdly, we would

like to know the location of the change, adding to the desiderata for the significance of

the change and providing provenance information for the dataset.

Figure 4.2: Query 1 over five time periods on the same datasource.

Figure 4.2 illustrates the querying of datasources to obtain experimental datasets. A

dataset is created by querying the data source at t1 with Query 1. At some later time,

t2, we use the same query to create another dataset. We would like to know whether,

during t1 and t2, the dataset has changed. This appears to be a straightforward problem

but when we consider that from a single dataset we may possibly have thousands of

experiments, each conducted at a distinct time, we face the possibility of managing
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many versions of the same dataset. There may be many experiments querying a single

datasource, and therefore generating multiple versions, over a range of time periods.

There is considerable overhead in administering and maintaining these dataset versions

as well as providing analysis between them. The storage overhead for n versions of a

dataset of x bytes in size can be represented as xn. The computational complexity for

comparing n versions can be represented by the triangular number Tn
6.

n−1∑
k=1

k

= 1
2n(n+ 1)

(an n2 problem)

In order to detect differences within the datasets, we must compare one dataset to

another. Given the high number of experiments that can come from a single dataset,

it is possible that we may have to consider many versions of the dataset at any given

time. It is, therefore, not feasible to store a complete version of the dataset for each

experiment; consider a dataset with 10,000 dependant experiments. Are we to store

the precise details of the dataset used in each experiment, regardless of the differences

between these experimental datasets. An abstraction of each version of the dataset could

be made from which to detect change.

Hashes could be used to model the datasets. A hash is a way of creating a small digital

fingerprint of an item of data. Successful hash functions typically have two important

characteristics. The hash function should be deterministic. The same item of data, if

unchanged, should always produce the same hashed value. Secondly, any change in the

data will be very likely to produce a different hashed value. The ideal hash function has

very low collisions although these can not be removed completely.

If we apply a hash function to the entire dataset, we can look for any changes in the

dataset. A change in the hash value will depict a change, however small or insignificant.

This model will allow us to detect changes to the dataset but provides no information

about the size, location or impact of the change. The problem lies with the nature of

hash functions, which have been primarily developed for security purposes. It is generally

considered to be a positive aspect of a hash function to exhibit entirely different hashes

for data items, regardless of their degree of similarity. This aims to reduce the feasibility

of a successful comparative analysis attack on the hashed value. For the purpose of the

6More formally, a triangular number is a number obtained by adding all positive integers less than
or equal to a given positive integer n.
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HDM, we require a comparative hash function such that the degree of similarity among

datasets is mirrored by the similarity of the hash values.

By selecting important aspects of the data and recording their relationships, we can

build a model using nodes and relationships as illustrated in figure 4.3(a). Figure 4.3(a)

demonstrates how the various aspects of the dataset are used to form the HDM model7.

A textual representation of the HDM illustrated in figure 4.3(b) corresponds to the

graphical HDM representation in figure 4.3(c). In figure 4.3(c), each node of the graph

represents a hash value contained within the HDM. The structure within the HDM is

hierarchical so the hash value of each node is constructed using the node itself including

any children of the node. We can now detect the aspects of the data that have changed

and, equally as importantly, identify those aspects that have been preserved. Upon

detecting a change, owing to the hierarchy of the HDM, we can also pinpoint the node

from which the change originates.

We present the algorithm used to generate the Hashed Data Model below. This algo-

rithm was subsequently used within the HDM Prototype.

7The HDM illustrated is only an example of a possible HDM.
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The HDM Building Algorithm:

begin proc HDMBuild(md, dataset, gran) ≡
hdm := newHDM();

comment: Add generic metadata (hashed).

for each(metadata : md) do

hdm.addMetdata(Hash(metadata)); od

comment: Add dataset (hashed).

hdm.addDataset(Hash(dataset));

comment: Add hashes of columns.

for each(column : dataset) do

comment: Create a new Column().

col := newColumn();

comment: Add the column (hashed).

col.setHash(Hash(column));

for i := 1 to col.rowNumber() do

varcounter = 0;

varcolString;

comment: Add a number of rows according to the granularity.

while counter 6= gran do

colString+ = row;

counter + +;

i+ +; od

col.addRowBlock(Hash(colString)); od

comment: Add the Column to the dataset of the hdm.

hdm.getDataset().addColumn(col); od

return:hdm;

.

end

It is important to note that the HDM is primarily concerned with the detection of

changes in datasets. The latest instantiation of the prototype provides some tracking

and impact estimation. The HDM is not a complete solution for managing changing

biological data but rather provides the first step for such a framework.
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(a) Generation of HDM

(b) HDM Text File

(c) HDM Graph
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Figure 4.3: Tracking output via the HDM prototype console.

4.4 The HDM Prototype

The HDM prototype is a simple, light-weight, generic web-service that demonstrates the

workings of the Hashed Data Model. It was designed using Java Studio Creator and can

be deployed as a WAR file on a variety of Tomcat or Java’s SunAppServer 8 servers.

The purpose of the prototype is to demonstrate the workings of the HDM. Although the

initial stimulus for the HDM prototype was to provide change management for biological

and life sciences data, the HDM has been designed to accommodate data of all types.

Input is limited only by the format of the dataset. The prototype accepts data in a

tab-separated format with each row beginning a new line. The HDM works by detecting

changes in specific columns so it assumed that the first line contains the column names,

otherwise default column names are used which hold no semantic meaning.

The user submits the dataset with some sample metadata and the web service returns a

textual representation of the Hashed Data Model. An extract of this textual represen-

tation can be seen in figure 4.3(b). The signed long value next to each heading refers to

the hash value generated as part of the HDM. As the cycle of experimentation continues,

an experimenter may generate many of these HDM text files and may wish to compare

two datasets in order to detect changes. If a change has occurred, it can be investigated

in the results report illustrated in figure 4.3.
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HDM nodes that exhibit a change in their hash value also affect changes in the parent

nodes, as their hash values are determined as a sum of themselves and their child nodes.

The prototype also looks for other changes such as row and column size which can

potentially disable the change detection functions. The HDM prototype provides the

user with an adjustable level of tracking granularity for the column data. We split

the data into data windows and apply a hash function to each portion of data. We

can then determine the approximate size and location of the changes as well as their

overall impact to the column data. The benefits of this approach are determined by the

implementation of the hash and the size of the data windows. If the windows are too

large, we find the hashed values to be as defunct as before, detecting a change but giving

no information as to its size or location. If the data windows are too small, we may be

storing as many hashes as there are values in the dataset.

Upon initialisation of the HDM, the user enters a tracking granularity value, hereafter

referred to as the granularity factor. The HDM breaks each column of the dataset into

groups of rows, the group size determined by the granularity factor. The algorithm

generates an 8-bit alphanumeric character for each data group and appends it to the

HDM, forming a representation of the column data. At the point of comparison, we

can detect changes and infer details about the size and location of the change. Given

that there are a finite number of alphanumeric values available and that some are used

as special characters to mark the HDM text file, we conclude a collision probability of

around 1%.

The hashing algorithm employed within the HDM is the simple RS Hash8.

The RS Hashing algorithm:

begin proc RSHash(string) ≡
b = 378551;

a = 63689;

hash = 0;

for i := 1 to string.length do

hash := hash ∗ a+ string.charAt(i);

a := a ∗ b;
od

.

end

8A simple hash function from Robert Sedgwick’s book, Algorithms in C.
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So far, we have described how the HDM prototype manages changes that do not affect

the semantics of the dataset. Where a dataset has either gained or removed a column,

the HDM prototype will flag the change in the report but cannot detect changes in

either the gained or removed column. The order of the columns in either dataset does

not affect the operation of the prototype. Additions and removals of rows are harder to

manage. If a row is appended to the end of the dataset, the prototype simply flags a

change in the number of rows and ignores the additional row, as there is no original row

against which to compare it. A removal of a row will affect the detection and tracking

of all subsequent rows as they will become misaligned against the original dataset. The

same occurs with a dataset that has reshuffled its rows.

We originally intended to represent the Hashed Data Model in an existing XML schema,

either as a separate document or merged with the original data document, perhaps using

a XML-generation tool such as Bio2X[98]. Many data representations in XML become

unmanageably large due initially to the size of the raw data, but the problem is magnified

given the overhead in representing the data in XML format. In such situations, it may be

very useful to have HDM values of various significant portions of data in order to either

promote investigation of a certain area or deem it unnecessary. This could significantly

increase the speed of parsing and working with large sets of structured data.

The Hashed Data Model is not a complete solution for change management. It does,

however, provide a reasonably elegant and lightweight solution for detecting data change

from one version to the next. The HDM may be particularly appropriate for datasets

that change very frequently as one only has to store a single, small text file as a rep-

resentation of the version and from that, we can detect change and infer some level of

difference. But the HDM does not go far enough to support a full, complex experi-

mental environment9. In the following chapter, we present the ExperimentBuilder,

which endeavours to provide a total change management framework within a complete

experimental environment.

9Indeed, the HDM currently only handles datasets with no experimental component support planned
at present.



Chapter 5

Experimental Environment

The purpose of the experimental environment is to provide an abstraction of the real-

world environment in which a scientist may be conducting experiments. We begin by

describing the motivation for our implementation of the environment based both on

our previous work and an overview of some of the shortcomings in competing products.

Section 5.2 describes the requirements that have been derived, in part by an analysis of

the case study, but also with a view of the limitations found with the Hashed Data

Model. We describe the experimental components that our system will employ and

illustrate the requirement for multi-version components. Section 5.5.2 describes our

methodology for versioning data1. The persistence of the experimental environment,

containing multi-versioned components, was a significant challenge and our approach is

described in 5.6. Finally, section 5.7 describes the ExperimentBuilder, our application

for representing the experimental environment and the components therein. We provide

a brief overview of the main design components of the ExperimentBuilder together

with explanations of our versioning methodologies (those which have not already been

discussed) and a description of some of the key elements of the user interface.

5.1 Motivation for the Experimental Environment

The motivation for our implementation of the experimental environment is derived from

three distinct sources;

1. A comprehensive review and analysis of the case study.

2. Our previous work with the Hashed Data Model with an understanding of the

limitations.
1In this context, we refer to data in tabular formats.

87
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3. A review of the surrounding literature, in particular similar implementations with

a discussion of their respective shortcomings.

The first two items have been covered in chapters 3 and 4. The following is a brief

overview of some existing, competing strategies together with a description of their

respective shortcomings. This should help us to identify how our product should seek to

either further the functionality of such approaches or aim to provide a differing service.

We have already mentioned some of the problems associated with biological data in

chapter 2 and we shall not repeat them here. Suffice to mention that, aside from the

ubiquitous problems of the volume, heterogeneity and complexity of the data, we have

concluded that it is the complexity of the processes that generate the data that cause

significant problems when attempting to identify or estimate the impact of changes to

the data. It is the complexity of the metadata that is important for us. But let us start

nearer the beginning.

We are looking for changes in the data, so how do some existing data providers do this?

Some data providers, such as the Protein Data bank (PDB), allow access to data in flat

files2. They may also allow time-stamped snapshots of previous versions of the database

to be downloaded from the archive, however, there is no information to suggest how the

data has changed from one version to the next. Many data providers, although mainly

the smaller secondary data providers, make their data available in this way.

Larger primary data providers, such as Swiss-Prot and Ensembl, go a little further and

allow the user to inspect previous versions and view the differences between them. With

the use of a diff generator, the changes between versions are highlighted in the browser.

But this is only really useful for investigative purposes and, even then, on a very small

scale. If we experience a problem within our experiment and we are lucky enough to know

the data item that is causing the problem, then we can use this diff tool to investigate

further. This is of only limited use, especially as our experimental environment grows

and problems are dispersed over multiple nested layers of experimentation. The data

version is still without any indication of change or dependency on other data. Ensembl

complicates the issue somewhat further with the inclusion of stable identifiers for genes,

proteins, exons and others. When the data undergoes any significant change, it may

result in a dramatic change in the specific data model. In such circumstances, the

old set of IDs are completely retired and a new set are created. Given that this may

have potentially disastrous effects on any previous work, Ensembl have developed a

tool called the ID History converter which maps changes in the ID from the earliest

version to the latest.

2For the sake of simplicity, we will refer to data that is made available in a single batch as a flat file.
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The ID History converter from Ensembl, although a small data-dependant tool,

clearly highlights an identified requirement to interact between various versions of a

datasource, not just the latest.

We have already discussed the merits of the Taverna workbench for myGrid in chapter

2. It is worth mentioning Workflow Monitor; a tool, developed for Taverna 1.x,

designed to help prevent workflow decay3. Workflow decay describes the situation where

a historically successful workflow will no longer execute. The decay may be caused for

many reasons but workflows generally fail to execute due to the unavailability of one

or more component processors (web services). As a standalone tool, the Workflow

Monitor provides a useful explanation of the errors encountered by a workflow but,

more importantly raises the issue that there may be multiple causes for the breakdown

of a workflow, involving one or more of the incumbent processes.

The workflow engine from Taverna allows us to piece data and processes together to

form a repeatable experimental workflow. In fact, the workflow is only repeatable if

the data and processes do not change in a way that cause the workflow to break down.

We intend our experimental environment to manage these problems, albeit outside of

the Taverna framework. It is fair to conclude that much of the inspiration for our

implementation of the experimental environment comes from workflow engines such as

Taverna but, as you will see, we intend to do something quite different. We aim to

establish workflow, not for the purposes of re-enactment but to detect dependencies and

estimate the propagation of impact as the various workflow components evolve.

We will revisit some of these considerations in chapter 8 as we discuss the relative merits

and demerits of our approach.

5.2 Requirements for the Experimental Environment

The purpose of this section is to document and communicate the requirements that have

been elicited both from the system clients and extracted through the analysis of the

current working example. It is intended to bridge the gap from an understanding of the

case study to the presentation of the ExperimentBuilder, our solution for dealing with

the elicited requirements. Through an extensive collaborative analysis of the changes and

impacts within the working example, a set of functional and non-functional requirements

were established and are presented here.

3More information can be found at http://www.omii.ac.uk/wiki/WorkflowMonitor.
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5.2.1 Overview, Purpose and Scope

The overall purpose of the ExperimentBuilder is the creation and management of

computational in silico experiments with all predictable aspects of the experimentation.

The system runs as a Java application running in conjunction with a MySQL exper-

imental database containing the environmental data. The database can either be held

locally or on a public or private server. All aspects of the system have been designed to

be platform independent.

Experimentation often occurs as the solution for problems arising either from theoretical

hypotheses or hypotheses generated from previous bouts of experimentation. During this

pre-experimental time, there may be various and often numerous scientists, technologists

and other collaborators involved who should be accounted for during the requirements

gathering stage.

The ExperimentBuilder should allow an experimenter to create heterogeneous ex-

periments based on a variety of differing hypotheses and specify them in such a way

as to accurately model the real-world experimental environment. The primary purpose

of the ExperimentBuilder is to provide the tools necessary to construct the experi-

mental environment complete with all required parameters. The secondary purpose of

the ExperimentBuilder is provide tools to enable the management, tracking and im-

pact estimation of changes that occur within the experimental environment both during

and post-experimentation. When a change occurs within the experiment, or there is a

change to some experimental condition, a propagation of this change occurs and mani-

fests as impact throughout the dependant portions of the environment. The purpose of

the ExperimentBuilder is to monitor the experimental changes, model and estimate

the resulting impacts. It should then present the results in a way that allows experi-

menters to understand the impacts that exist within their environments along with their

respective significants.

It is worth noting that the ExperimentBuilder does not embody the experimental

processes directly. There are no technical or logical links between the Experiment-

Builder and the real life experimental environment. The ExperimentBuilder should

run along side and mimic the real life experimental environment. In this respect, the

ExperimentBuilder should contain only experimental data and metadata, making the

system a passive representation of the environment, incapable of re-enacting any stage

of the experimentation process.
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5.2.2 Scenarios

We will describe some scenarios below in order to elicit some requirements for the

ExperimentBuilder. We aim to provide a considerable amount of functionality within

the ExperimentBuilder and hope to cover most of these aspects in the three scenarios

described below.

Adding an ExperimentBuilder Component The scientist identifies an experimen-

tal component, for example a dataset4, that has yet to be added to the Experiment-

Builder. The scientist submits the component to the populator5, providing some asso-

ciated metadata and a list of specific, identified dependant components. The populator

initiates the ExperimentBuilder, restoring the individual experimental environment

of the scientist (loads it into the ExperimentBuilder). The populator then speci-

fies the addition of a new component within the ExperimentBuilder, supplying the

filename of the component along with the metadata provided by the scientist. After sub-

mitting the new component, the ExperimentBuilder provides the populator with the

opportunity to define the dependents of the new components; any existing component

within the environment that may have an impact relationship to the new component.

After making these definitions, the component is formally added to the experimental

environment.

Create an Experiment and Add a Component The scientist, conducting experi-

ments, is either observed by the populator recording the experimental details, or conveys

their experiments directly to the populator. In either case, the populator will create an

experiment within the ExperimentBuilder based on metadata about the experiment

that they have received from the scientist6. The experiment will likely contain some,

if not many, experimental components. If the populator finds a component within the

experiment that is not represented in the ExperimentBuilder environment, they must

add it first, as per the scenario above. Components are logically added to the experiment

within the ExperimentBuilder until that experiment fully represents the real-world

experiment conducted by the scientist.

Update Components and Investigate Impact At some point in time, components

will become out-of-date and new components will be available. Component updates are

identified by two main sources; the collaborator who will build a new private dataset

4In the case of datasources, a scientist may work with a collaborator who’s purpose is to generate and
manage the experimental data. It may be the collaborator who is called upon to reveal the environmental
relationships of a particular data-related component.

5For the purposes of these scenarios, we regard the scientist and the populator as two different
individuals though, in many cases, the two roles may be performed by the same person. We are,
however, specifying the role, rather than the individual actor.

6Note that the scientist has no direct involvement in the construction of the experimental environ-
ment. This is to ensure that the environment is constructed correctly and consistently.
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and flag the changes to either the scientist or directly to the populator ; or the scien-

tist will identify the changes directly through ongoing work within their experimental

environment, conveying these changes to the populator. Once the populator has been

made aware of the requirement to update, and has a copy of the updated component,

they can replace the old component with the new within the ExperimentBuilder.

The ExperimentBuilder replaces the current version of the component with the new

version so that any subsequent employment of the component will use the updated ver-

sion. The ExperimentBuilder also analyses the experimental environment searching

for uses of the component and flags these potential impacts to the populator. The Ex-

perimentBuilder presents an estimation of the cost of updating the component for

each experiment within the environment. The populator, in collaboration with the sci-

entist and perhaps the collaborator decide whether to update the experiment or not,

based on the estimated cost of doing so, provided by the ExperimentBuilder. If they

decide to update, it will likely yield different experimental results7 and these differences

are submitted to the system by the populator and the scenario begins again.

5.2.3 Use Cases

From the scenarios described in section 5.2.2, we extract several important use cases,

described here with the aid of diagrams. We present two diagrams; the first illustrates

the construction of the ExperimentBuilder environment; the second describes the

detection of change and the measurement of the resulting impact.

There is a general prerequisite for all the following use cases in that we rely on the scien-

tist having already established the real-world experimental environment. We understand

that this may change over time and there are use cases to describe this evolution but we

do not explicitly cover the construction of the environment as it strictly falls outside of

our system boundary.

Add Component

Prerequisites The real world equivalent of the experimental component has been

added to the scientist’s in silico environment. Components are added to the

ExperimentBuilder only once, so we assume that the component has not been

added already.

User Input The scientist identifies a component that has yet to be added to the Ex-

perimentBuilder. This may be required through the addition of a new com-

ponent or during the construction of the ExperimentBuilder for an existing

7Experimental results are also encapsulated as components within the ExperimentBuilder.
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Figure 5.1: A use case detailing the relationship of the real-world environment and
the in silico experimental environment.

experimental environment. The scientist passes the details, including metadata

and dependant component information, to the populator. The populator restores

the experimental environment and then defines the component within the Ex-

perimentBuilder, adding it to the environment. At the point of addition, the

populator defines the relationships between the new component and any existing

components within the environment.

Response There is no explicit response from the ExperimentBuilder other than a

confirmation of the addition and an update to the existing in silico environment.

Add Experiment

Prerequisites The scientist has created the experiment within their experimental en-

vironment and wishes to add it to the ExperimentBuilder8.

User Input The scientist passes the experimental details to the populator who initiates

and restores the appropriate ExperimentBuilder environment. The populator

8A scientist may conduct many experiments that are not included in the ExperimentBuilder as
the additions occur at the request of the scientist. It is, after all, their change management tool.
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defines a new experiment, entering details such as hypothesis, experimenter, date,

and other any other requested descriptors.

Response The ExperimentBuilder creates a shell of the experiment within the in

silico environment, ready to be populated with components from the experimental

environment.

Attach Component to Experiment

Prerequisites The experiment and the component to be added exist within the in

silico environment.

User Input Using experimental details supplied by the scientist, the populator selects

the appropriate experiment, highlighting it to be modified. The populator then

selects the component and attaches it to the experiment.

Response The ExperimentBuilder requests from the user, a value for each registered

parameter of the component being added.

Figure 5.2: A use case diagram describing the updating of an experimental component
and the resulting impact analysis.

Upload Change

Prerequisites The scientist, working within their own experimental environment, con-

tinually looks for change within their workspace. The prerequisite of this use case

is the identification of a component that either has changed or is suspected of

change and has been passed to the populator.

User Input The populator uploads the new version of the component to the Experi-

mentBuilder.
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Response The ExperimentBuilder provides the user with an Impact Estimation re-

port. This report contains three main items of information. It shows how the

change in the new component directly affects each other component that carries

a dependant impact relationship. It also shows components that are indirectly

affected by the change; i.e. components impacted by the directly affected compo-

nents and the components that are impacted further. Most importantly, it shows

the experiments that contain affected components and an estimation of how much

the results of those experiments are affected by the changed components. The

ExperimentBuilder displays this change as a real world cost to the scientist9.

9We aim to present a real world impact; i.e., one that contains an estimation of the actual effort
involved in recomputation, whether that be time, money, or machine cycles.
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Action Change

Prerequisites The scientist is presented with the Impact Estimation report.

User Input The scientist must decide, possibly considering other sources of contri-

bution such as collaborators, other scientists or managers, based on the Impact

Estimation report whether it is necessary or worth the effort required to re-run

the specified experiment. When a decision has been made, the experiment may be

re-run using the updated component.

Response The scientist indicates to the populator whether the experiment has been

updated or not, presumably passing to the populator an updated set of results.

At this point, the Experiment Builder will reflect the updated results and then

trigger a possible update for any dependant components. This generates a new

Impact Estimation report based on the update. This report is then passed to

the scientist and the update cycle continues. There may be several iterations

of this updating process and successful implementation relies, in particular, on a

streamlined relationships between scientist and populator. In many cases, these

roles would be taken by the same person, which would obviously aid this difficulty.

5.2.4 System Characteristics

The primary actor for the consideration of the ExperimentBuilder, at least chronolog-

ically, is the scientist. The scientist is responsible for the construction of the real-world

computational experiments and it is the work of the scientist that must be replicated in

the ExperimentBuilder. It may also be the responsibility of the scientist to populate

the ExperimentBuilder with experimental details or this task may be delegated to

someone else, identified as the populator. In the use cases above, we describe the scien-

tist and populator as individual roles though they may often be performed by the same

person.

The scientist may execute their experimentation with several other contributors and, in

this context, are referred to as collaborators. The ExperimentBuilder has the capa-

bility of managing multiple datasources so we must also consider the outside influences

from such datasources and the people who maintain them, referred to as administrators.

The ExperimentBuilder has been conceived as a result of an in-depth analysis of an

existing biological problem, involving primarily demographic and protein quantification

data and due to this, the ExperimentBuilder will be designed, at first, to accept data

of these types. It is imperative, however, that the ExperimentBuilder accepts other
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types of data, in particular genomic and microarray data and these forms of data will

also be accommodated within our system.

We aim to provide data support for;

• Demographic/Tabular data

• Genomic Sequence Data (multiple formats)

• Microarray Data

The main purpose of the ExperimentBuilder is to encapsulate the experimental en-

vironment in a way that allows and facilitates the tracking and investigation of change.

To this end, we must concentrate on some specific aspects of the graphical user interface

that allows investigation of the required level. A significant part of the Experiment-

Builder is the accommodation of varying types and sources of data and should provide

an interface for visualising multiple versions of a variety of datasets. The user can group,

sort and search datasets according to preference and move forward and backwards be-

tween versions of a specific dataset. And the same should be true for methods and tools

within the ExperimentBuilder.

As well as static investigation of the experimental components, the paramount reason

for the ExperimentBuilder is the investigation of change within the experimental

environment. We also, therefore, allow investigation of the impact relationships between

experimental components. In other words, by selecting a component, the user will be

able to see all related components10. We provide a view of related components together

with indications of the strength of the relationship.

We also describe experiments within the ExperimentBuilder, which can be created

and grouped according to preference. As experimental components are added to exper-

iments, the change profile of the experiment evolves, taking into account the impact

characteristics of the components that are added. Over the life of an experiment, we

expect it to change to reflect the changing requirements of the experimenter and we also

expect the ExperimentBuilder to accommodate for this dynamic. We manage the

change with a selection of tools provided by the ExperimentBuilder, which we have

identified by the extensive analysis of an existing example environment, as described in

chapter 3. The tools and main features of the ExperimentBuilder are described in

the next section.

10A related component is one that either affects the component or is affected by it.
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5.3 Main Product Features

We describe below the main features of the Experiment Builder as they would be

presented to a potential customer or user of the system.

Bespoke Component Construction Model existing components within the Exper-

iment Builder or design your own bespoke components. Any dataset or tool,

whether off-the-shelf or bespoke, can be added to the Experiment Builder. De-

fine component details, including parameters and even component code, where

applicable. Components are added once to the environment and can be grouped

or sorted, ready to be used within a single, or possibly many, experiment(s).

Multi-experiment Environments Scientists can define their environments within a

single Experiment Builder session using multiple, differing experiments. Com-

ponents can be added to experiments from repositories within the Experiment

Builder, specifying independent parameters.

Full Impact Profile for Entire Experimental Environment Every dataset, tool

and experiment is connected in the Experiment Builder, explicitly defining

how each impacts the other. Select any component and see how it relates to all

other components in the environment.

Change Tracking Make a change in one component and watch that change ripple

through the environment. Depending on the nature and strength of the change,

it will propagate through the system following a specific path. The Experiment

Builder identifies this path and estimates the impact.

Impact Estimation/Real Cost Advice The Experiment Builder provides the user

with an estimation of the impact, not only to components directly impacted by a

change, but also to components that are indirectly affected11. By measuring all the

possible impacts within a system, direct or indirect, we can provide a total impact

estimate for any given change. But the Experiment Builder goes further than

this. Rather than providing an arbitrary value associated with the impact, the

Experiment Builder provides a real-world cost of the impact as a total update

estimate1213.

11A component can be thought of as being indirectly affected if the impact reaches it via more than
one level of component relationship; a component that carries impact from a component that has been
impacted can be thought of as indirectly impacted.

12This is the real cost of updating all the required components as a result of the initial change.
13Please note that the total update estimate requires user input to estimate the real effort involved in

updating.
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Persistent Environment The Experiment Builder provides an entirely persistent

environment allowing multi-versioned datasets and tools as well as the relation-

ships between them to be persisted and restored at will. Scientists can share

environments, for example, choosing to restore only the components without the

experiments. In this way, labs with multiple scientists can work from a shared com-

ponent repository, eliminating the need for repeating identical shared components,

whilst retaining one unique experimental environment per scientist.

5.4 Modelling Experimental Components

One of the main limitations of the Hashed Data Model and its implementation was

the lack of integration with the real experimental environment. During the description of

biological data and the accompanying experimentation, several key characteristics that

pose problems for its tracking and management were highlighted. The HDM provides

a solution for data-change tracking as a light-weight cross-platform application but fails

to take into account the complexities and challenges posed by a complete and fluid

experimental environment.

To provide an accurate representation of the environment, the individual experimental

components must be modelled in such a way as to model the real environment. This is

important for two reasons. Firstly, if change and impact are to be tracked and estimated

accurately and correctly, there needs to be persistent model of the environment within

which to model and present the changes. Secondly, as the system relies on the user

entering metadata about experimental components, it is clearly preferable they they do

so within a natural and realistic environment.

Perhaps we should start by defining an experimental component. There are many aspects

of a single experiment from off-the-shelf components to bespoke scripting applications

to singular parameter changes. It is not possible to foretell the exact nature of the ex-

periments, rather we must allow experimenters to populate the environment as per their

own experimental design. We must therefore design the environment to handle differing

experimental components, affording experimenters the variation demanded from their

experimentation. We have identified a set of the most commonly occurring experimen-

tal components with which experimenters can reflect their designs. These include items

such as datasources, datasource wrappers, methods and tools.

A Datasource in the ExperimentBuilder is defined as a body of text-based data

representing information of a biological, annotational or demographic nature. In fact, the
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ExperimentBuilder will accept any data regardless of the information it represents,

as long as it is in the correct data format.

A Datasource Wrapper is any kind of tool that operates on a datasource before

the data is used in the method. Some datasources will contain data that can not, in

the present state, be used with the chosen method. In such cases, the data must be

altered in some way or another in order for it to be integrated into the experiment

correctly although it is generally accepted that the content or the meaning of the data

is unchanged.

A Method, as defined in the context of the ExperimentBuilder, is a data trans-

formation tool that takes, as input, some data and generates, as output, further data

referred to as Results. The differences between methods are vast and numerous but

each broadly conforms to the same input/output profile. The ExperimentBuilder

allows the user to specify the methods themselves, define the inputs and outputs and

tweak the parameters necessary for the specification of the method.

A Tool is defined in the ExperimentBuilder as any application or process within

the experiment that is used during any stage of the workflow either on its own or

in conjunction with any other component. A tool that is used in conjunction with a

datasource may be more aptly described as datasource wrapper rather than a tool and

the distinction in this case is left to the individual user.

Experimenters specify and add components in order to build their experiments. These

components, however, must be added in a defined manner so that experimental integrity

can be maintained. For example, we have defined an experiment so that it can contain

exactly one method. Thus the definition of an experiment14 is, principally, that it

contains one method. There are other constrictions that the experimenter must adhere

to. A tool that operates on a datasource should, in most cases, be entered as a datasource

wrapper although in some cases, it may make more sense to encapsulate the process as

a tool.

The experimental components above were conceived after careful analysis of the case

study as described in chapter 3. The case study uncovers many real avenues of possible

experimentation and these, as well as many others, are fully accommodated by the

available components provided in the ExperimentBuilder. As well as revealing the

candidates for components, we have also revealed information about the inter-component

relationships.

14This definition is confined within the boundaries of our experimental environment. We do not intend
this definition to represent all experiments.
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5.5 Multi-version Components

In the previous section, we specified several aspects of the experimental environment

and introduced the idea of modelling experimental components within that environment.

The modelling becomes considerably more complex as more versions of the components

become available. The management and application of datasets with multiple versions

is arguably the biggest consideration when designing such an experimental environment.

Indeed, one of the principal problems identified in the current experimental approach is

the proliferation, variety and frequency of unpredictable and unannounced changes to

datasets. These changes can and regularly do cause significant impact to other exper-

imental components as well as the experiment results. The experimental environment

must be able to reflect these impacts as well as provide ample support to reflect the

dynamic and fluid characteristics of the datasets.

5.5.1 Component Behaviour

Having modelled experimental components, we must prepare for the possibly many

subsequent versions that may follow. Subsequent versions of components appear for

many reasons and must be handled by our framework. Experimenters must estimate the

impact of these subsequent versions to their existing experimental setup. Should a new

version generate a significant impact, the experimenter may be faced with the prospect

of updating the experimental environment either in part or, as a worst-case scenario,

rebuild entirely from scratch. To avoid costly rebuilds, the impact must be accurately

estimated. In order to do this, the modelling of components must be accurate including

the modelling of multi-version components.

Experimental components behave differently and these differences are even more pro-

nounced when considering multi-version components. Databases, both public and pri-

vate, can change in a variety ways and some with more considerable effects than others.

The changes propagate to the experimental datasets based primarily on their individ-

ual generating queries. Changes occur in databases for many reasons. Some important

changes are highlighted in our case study described in section 3.4, but we will describe

the main sources of change here.

Data Change Changes to the data itself is the most obvious way of affecting the

resulting experimental datasets. These changes occur for many reasons and some

of these are described in section 3.4. It is important to note that it is not sufficient

to measure changes in the source database. Changes to the source database may

occur on an almost continual basis, particularly if the database is very large and/or
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accessed or contributed to by a large number of people. That does not necessarily

mean that these changes will follow on to the experimental datasets. To analyse

change in the experimental datasets, we must investigate both the source data

and the generating experimental queries. Semantic changes to the dataset, such

as changes to the dataset schema, can be more difficult to assess and manage as

there can be less associations with previous versions. For such changes, it may be

necessary to look at or employ schema evolution techniques.

Data Policies Policy change can appear anywhere at any time and usually occurs in

order to fix an existing problem. In such cases, the policy change may be welcome.

Policy changes are most disruptive when they appear unannounced, for example

within the source database or a third-party tool, causing the system to break.

A change of data format or additional authentication can easily result in system

breakdown and there is very little that can be done in order to prevent or prepare

for this. Although prevention is difficult, policy change highlights a requirement

for good debugging and error explanation so that when the system does break,

the task of bringing it back online remains as painless as possible. When policy

changes are announced in a timely fashion, warning potential users, they have far

less impact on the system integrity.

Software Updates Updates to software, both bespoke and third-party off-the-shelf

software, can cause significant disruption to the experimental environment. We

must first establish whether the update is actually worth the resulting impact. A

bespoke software update has an implied acceptance of the impact, mainly because

the update would not be taking place unless it had already been considered worth-

while. We must establish the impact of both updating the software process and

not updating the software as both scenarios can generate impact. An update to a

commercial third-party piece of software carries two considerable challenges. The

first is to discern whether the update is both critical, or at least important, for

the successful continuation of experimentation and applicable to the experimental

environment. Software updates may include many minor updates. If these updates

are not applicable to the experimentation, there is no point updating. The second

challenge is to identify the effects and impacts of not updating the software. Some

software suppliers enforce the upgrading of software with penalties for the refusal

of upgrades such as discontinuation of support or, in some cases, complete with-

drawal of the product. Software providers may attempt to complete the upgrade

process transparently and this poses a significant problem. Whenever a process

changes, the system must be rebuilt and retested to ensure correct functionality.
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Parameterisation Changes to experimental parameters can causes significant impact

to an environment, not least due to the ambiguity of effects of parameter change.

An experiment can contain any number of parameters reflecting the precise na-

ture and hypothesis of the experiment. If any of these parameters are changed,

it is unclear whether this represents a completely new experiment or simply a

tweaking of an existing experiment. It seems wise to leave this distinction to the

experimenter with an inherent knowledge of the experiments and how they should

be maintained. It does, however, present a lack of clarity when managing the

experimental environment.

Advent of New Technology Similar to the case of a software update, the advent of

new technology creates a case for updating or enabling the system to accommodate

the new advances. Whether this update is worth the resulting impact should be

evaluated by the experimenter and system administration and depends largely

on the potential benefits to the experimental processes. New technologies will

appear from time the time and it is up to the controllers of the experimental

system to determine a sensible approach to managing this advancement. Clearly

it is not efficient to rebuild and retest the system in order to incorporate every

technological advancement as soon as it becomes available. It seems prudent to

develop a long term plan of experimental environment version release, with obvious

room for manageable variation, so experimenters can retain some degree of control

over their system.

So, how do the different types of change affect the dependant components? There are

multiple observed changes and effects and different changes are likely to produce different

effects. It is, however, very likely that there are other non-observed changes and non-

observed effects present within the environment. These cannot be explicitly managed

because we have not, as yet, explicitly identified them. We must, therefore, build our

system to accommodate effects based on, but not limited to, our defined and observed

effects from the case study. Consider, also, the size of some experimental environments.

We should not expect users to document change and effect in the terms of the specific

types described above as it would be very inefficient. We require a system that manages

all types of change with the ability to measure, without prejudice to type, the estimated

impact within the environment.

How do the changes affect the experimental outcome? This is a difficult question to

answer as it usually requires specific knowledge of the individual environment. A scientist

may have some anecdotal evidence on how changes have particular effects but this is

largely inadequate. Effect and impact are hard concepts to estimate and the complexity

of the environment complicates the issue further. A small change may have a small
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Figure 5.3: Versioning methodology using DBVS.

impact but when combined with another small change, the impact may be much greater.

In addition to this, the change may not come from the directly affected component.

Change may arrive at a dependant from a component that is itself a dependant of a

changed component.

5.5.2 Modelling the data change

The HDM Prototype provides an interesting and novel way to model scientific data,

with some sample metadata, and a first step towards monitoring changes among multiple

datasets that can be generated during biological experimentation. The HDM has several

shortcomings, most notably the restriction of granularity specification and the inability

to model the complete experimental environment.

The DataBase Versioning System (DBVS) is primarily concerned with the version-

ing of data. The DBVS provides users with change-tracking for individual data items.

We have already identified the need to support multiple versions of a single dataset and

we also need the ability to investigate the changes on a fine-grained level. There are

two principal requirements for the DBVS; individual change tracking; support for mul-

tiple versions. These two requirements contradict one another with respect to storage

limitations. We require the retainment of every single change in the most economical

way.

The DBVS stores the initial dataset as a 2-dimensional array of string variables. When

subsequent datasets are loaded, the DBVS looks for changes between the two versions.

For each data point that has changed, the string representing the value is discarded

and replaced by a linked list of objects, each representing a single version. Using this
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Figure 5.4: An extract from the DBVS prototype

methodology, the retention of multiple copies of the same data are avoided, as opposed

to many traditional versioning systems, but each version can be retrieved from the same

object, encapsulating the DBVS data structure. The user can append a new version

to any previous version, taking advantage of the application’s branching capabilities.

Complete versions can be retrieved and the user can also inspect the entire history of

any particular node. Due to the nature of the methodology, the storage size of the

versioned dataset is also relatively minimal. A dataset with n datapoints at version

1 will contain n objects (at version 1, the object will be of type String). With each

subsequent version (v) that generates c changes, the model is only incremented with c

objects. Therefore, for any dataset containing n datapoints, a set of v versions with c

changes with result in n + vc objects15. It is important to note that datapoints that are

not subsequently changed, retain only one version and are not affected by the versioning

of other datapoints.

DBVS interfaces with ObjectDB, allowing the user to push and pull versions to and

from the database application.

15This example implies that c is constant between versions whereas, there is likely to be differing
numbers of changes for different versions.
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5.6 Persisting the Experimental Environment

The Java Persistence API (JPA) is a framework that allows developers to manage a

relational database from within their application code. Often considered to be the most

significant advance of the Java Enterprise Edition (Java EE 5) so far, the JPA offers

a simple, yet powerful standard for object-relational mapping (ORM). For a number

of years, enterprise Java has been using a POJO16-based programming model and the

JPA continues this trend, offering the ability to persist POJOs with little need to

significantly alter the existing object.

There are broadly three processes to consider for the persistence of the Experiment-

Builder; environmental setup, experimental design and impact estimation. The data

contained within the ExperimentBuilder falls neatly into these three categories and,

as such, are handled in three distinct ways. The user creates the experimental envi-

ronment whereupon each component is defined within the ExperimentBuilder and

added to the environment. At the point of component creation, the Experiment-

Builder extracts keywords from the component generating a keyword profile, estimates

inter-component relationships based on this profile, and then prompts the user to create

a cost profile. The final stage, although these stages do not always occur in order, is

the definition of experiments using the defined components. In the following section, we

describe these processes, in terms of the effect on persistence.

A Line of Enquiry (LOE) contains between one and many experiments but a LOE

must contain at least one single Experiment in order to qualify as a line of investigation.

The Experiment contains the various experimental attributes along with the numbers

of datasets, wrappers and tools. The user can choose whether to enter attributes for

hypothesis, description and notes but is forced to provide data for at least the title and

the date if it is not to be auto-generated.

In order to specify which components are used within an Experiment, we define a Re-

source, which refers to a particular, experimental component and is held elsewhere in

the database using;

resType Specifies whether the resource refers to a dataset, wrapper, method or tool.

resID The ID of the component in the corresponding component pool, depending on

resType.

resVersion Once we have identified the component, we must specify the version that

has been used. We cannot assume that an experiment contains the latest version

of a component as, for many reasons, it may not.

16Plain Old Java Object
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Two or more experiments may use the same component but they will likely have dif-

fering parameters, although this is also not guaranteed. Each Resource, therefore, will

hold the properties of the parameters specific the use of the component within that Ex-

periment17. There are two further attributes of Resource, attachedDatasourceNum and

attachedDatasourceVersion, that are used only when the resource represents a wrapper.

As we have already mentioned, a wrapper is a functional component that is always ap-

plied to a datasource and, for this reason, we must specify the datasource to which it is

attached.

Figure 5.5: Storing experiment details and associated components.

When a component is updated, the ExperimentBuilder flags the change as a pos-

sible requirement to update any experiments that contain the component. The user

may decide, upon consideration of the impact to their experimentation, to update the

component. We keep an UpdateRecord to record each of these updates, tagging them to

the Experiment. This provides the user with an informal audit trail for the Experiment,

showing the changes over time. Within an UpdateRecord, we describe the component

that changed, the time and degree of the change and the previous and subsequent ver-

sions of the component. We also supply a batchNumber. The batchNumber allows us to

monitor how the changes were applied to the Experiment, namely whether the updates

17The parameters are retained in a tokenised string.
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occurred sequentially over time, or were conducted as part of the same batch. This may

prove important in determining further effects as a result of the updates.

We have implemented two different methods for managing the persistence of experi-

mental components within the ExperimentBuilder, one for datasources and datasets

and another to deal with the other components such as wrappers, methods and tools18.

Figure 5.6 illustrates the persistent structure of the experimental datasets.

Figure 5.6: Persistent representation of the experimental datasets.

A significant function of the ExperimentBuilder is the version management of hetero-

geneous components. The persistence of such components, therefore, is far from trivial.

We are implementing a version-enabled persistence framework for the experimental envi-

ronment and we illustrate the structure of the persistence of version-enabled datasources

in figure 5.6. The DatasetController describes a single datasource, irrespective of any

specific version. We describe the generic metadata for a dataset, including row and

column numbers, name, time stamp and the latest version number. Note that there is

no specific content data within the DatasetController. The content for the datasource

is held within Dataset and DataItem, where each version of each data node is held

chronologically, referenced by version. For example, consider the following DataItem,

represented by the following string.

1:56, 2:65, 5:22

18This is due largely to similarities in structure, although there are significant differences in the way
the components interact within the experiment structure.



Experimental Environment 109

The premise is very simple. Each data point refers to a unique row and column value.

The first integer refers to the data point version, the second refers to the value of the

data point at the given version. The example above shows the values at versions 1, 2

and 5. Note that we do not specify values for versions 3 and 4, indicating that the data

item in question does not change from versions 2 until version 5. Using this method,

the data is represented at every version but there is no data replication, irrespective of

the versioning history of the dataset. The information in Dataset tells us which data

is related to which version but gives no information about the version itself. We use

Version to describe the versions that exist for the dataset, with versionNumber relating

to the version specified in DataItem.

Components are separated according to type and stored in a component pool. The

pools contain each of the components available within the environment and each of the

components are specified further by the version. The ExperimentBuilder provides the

user with the ability to retain the source code for each component19. The latest version

of this source representation is held within the component table (i.e., Wrapper). Each

version of the component (i.e., WrapperVersion) contains a codePatchString, which is a

delta comparing itself to the immediate subsequent neighbour, referred to as a backwards

delta.

Each component version is linked to the Component Impact Manager, which man-

ages all aspects of cost and impact for the component. Some aspects are version-specific

such as the keyword profiles, whereas some remain constant regardless of the version,

such as the cost profile. There are three main sections to the Component Impact

Manager; the KeywordProfile including the keyword exclusion list, the cost profile and

the impact descriptors. All Keywords are retained in a single table and belong either

to the KeywordProfile or the KeywordExclusionProfile, in which case, the weight and

occurrences attributes are ignored. The CostProfile contains the attributes required to

generate an accurate estimate of the costs and efforts involved in the update of the

component. An ImpactDescriptor is not attached to any single component. It speci-

fies an impact relationship between components by identifying the subject and object

component versions as well as the impactWeight of the relationship.

The ExperimentBuilder uses a single persist/restore strategy for managing the per-

sistence of the experimental environment. The default operation of both the persistence

and retrieval is to restore or persist the entire experimental environment. In addition to

this users can, should they wish, specify the parts of the database they wish to act on

by selecting the Fine Control option from the menu.

19Where applicable. Where the source code is not available, the user can use either a structured text
document to represent the component version or alternatively, use any other method for representation.
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Figure 5.7: Defining keyword profiles, cost profiles and impacts.

Figure 5.8: Fine user control of persistence in the ExperimentBuilder.

As well as choosing which parts of the database to persist or restore, users can also

switch operating databases or clear the current working database. In this way, scientists

within the same laboratory can, for example, share the same experimental environment

without access to each other’s experiments.
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5.7 The Experiment Builder

The ExperimentBuilder provides the housing for our framework for managing exper-

imental change and understanding the impacts that result from this constant state of

flux. We begin by providing an overview of the main system components and we de-

scribe some of the more important sub-systems. By the conclusion of this chapter, the

reader should have an understanding of the main components and the sub-components of

the ExperimentBuilder in order to appreciate how the tracking components integrate

with the modelling framework.

5.7.1 Design Overview

Figure 5.9 illustrates the main components of the ExperimentBuilder, without the

complexities of the full application. We describe some of the more important sub-systems

in more detail later in this chapter.

Figure 5.9: An overview of the main packages within the ExperimentBuilder.

There are broadly three subsystems within the ExperimentBuilder; the Model, in-

corporating the persistence aspect and the keyword profiling; the View which includes

the user interface and the model interaction; and the Impact which handles the version-

ing and the impact estimation for the experimental environment. These sub-systems

interact in various ways, too numerous to describe completely.
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5.7.2 The Model Package

The Model package contains the classes that describe the structure of the experimental

environment and the components therein. Within the Model package, illustrated in

figure 5.10, we can identify two related but distinct areas; the constructing experimental

components, such as the datasources and experimental tools; the experimental details

such as the experiments themselves, hypothesis and experimental resources.

Figure 5.10: A class diagram of the Model package.

The focal point for the Model package is the Experiment class. Each Experiment can

contain any number of experimental components and, conversely, the same component

can belong to any number of Experiments. Components exist within the environment

independently of any specific arm of experimentation but when a component becomes

part of an Experiment, it is customised with a bespoke set of parameters. We can

think of the pooled components as blueprints for the components which are instantiated

once added to an Experiment.

The ExperimentBuilder allows for any number of tools, wrappers or datasources can

be added to an Experiment although there it is possible to add only one method or set
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of results. There are a few special notes relating to the application of the components.

For example, a wrapper must be associated with a datasource in order to be successfully

added; a wrapper, by definition, must wrap something.

Datasources are formed by sets of DataPoints, each of which can be further defined

with a DataPointVersion that records any previous versions from the current version.

We have also defined the class, DatasetController, which serves two significant pur-

poses. Firstly, it provides the handle for a specific dataset version to any Experiment

or Wrapper, allowing only predefined access to the datasource20. The second purpose

of the DatasetController is to record the VersionTimetable for the datasource.

The VersionTimetable contains details of each individual version of the datasource

including column date, reason, column changes and impact. Although mainly for his-

torical purposes, the VersionTimetable information also tallies with the versioning

information held within DataPointVersion.

Finally, of note within the Model package is the Resource class. We have already

described how the component classes represent a blueprint for the component before

being instantiated within an Experiment. In the ExperimentBuilder, when a com-

ponent is added to an Experiment, it generates a Resource which, as well as carrying

a link to the component, contains a list of Parameters to specify the component. The

Resource object contains all the required information to specify the correct version of

the component with a complete set of parameters. Resources are generally initiated

during the persistence of the experimental environment in order to serialise the com-

ponents in an Experiment. During interaction with the ExperimentBuilder, added

components are stored in temporary component pools to prevent the need for constantly

translating between components and Resources.

5.7.3 Versioning, Keywords and Impact

This section provides a brief overview of the versioning methodologies employed in the

ExperimentBuilder. We devote chapter 6 to describing these areas in more detail but

it is important to cover the key points here as well in order to complete the picture of

the ExperimentBuilder.

The ExperimentBuilder is an application designed to handle changes to an experi-

mental environment. We also intend to provide a representation of the experimental

environment and for that reason, we must not only internally record changes to compo-

nents, we should also reflect the changes to the user. To this end, we must retain each

20For the sake of simplicity, we connect the Datasource to the Experiment in figure 5.10, whereas
it is actually the DatasetController that provides the connection for the dataset.
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and every version as we have already noted that updating a component is a user choice

that may not always be enacted. Our first endevour should therefore aim at the reten-

tion of multiple component versions with a cost-effective method for retrieving previous,

non-current versions.

Versioning is handled in two distinct ways within the ExperimentBuilder. Dataset

versioning is handled by our own Database Versioning System (DBVS), described

in section 5.5.2. The DBVS uses a brute force comparison method when encountering

a new dataset version to discover any changes. These changes are merged within the

affected data point, whilst unaffected data points remain unchanged. The DBVS retains

all versioning information about a data point without the need for generating, managing

or curating redundant data.

The ExperimentBuilder handles the other components in a more traditional way. All

parts of the current version of a component are kept in their complete form. For previous

versions, if there are any, each part of the component, with the exception of title, owner

and date, are recorded as a delta from the subsequent version. Using this method, we

establish a chain of versions from 1 to n, with version n retained in its entirety and

versions 1 to n-1 as backwards deltas from the current version.

The ExperimentBuilder can call upon any version of any component within the loaded

experimental environment and can add any of these to an Experiment21. It is clear

to see how a new version of a component may affect an Experiment that employs

a previous version of that component. We expect a new version to have a significant

relationship to the previous version and this may well be the case. We can measure this

relationship by measuring the similarity between the two versions and use the measure

to estimate the impact of any dependant experimentation. It is not only versions of the

same component that can relate to one another. Relationships can exist everywhere and

not only between components of the same type, for example a dataset can relate to a

method. There is a difficulty in defining and, more importantly, measuring a relationship

between heterogeneous components because of these differences.

Our methodology for dealing with this difficulty is referred to as keyword profiling. For

each version of a component, we generate a keyword profile, a list of descriptive terms

describing the component ordered by significance22. Once we have constructed a keyword

profile for each component version, we can search for relationships between components

21A version of a component cannot be deleted. Instead, it is marked as deprecated. A deprecated
component can no longer be added to an Experiment and any Experiment containing a deprecated
component is flagged as such. Other than the limitation of use within the environment, a deprecated
component is handled in exactly the same way as an active component.

22Significance is determined by many factors, including semantic placement of the keyword and the
number of occurrences.
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that, perhaps, we would not have otherwise identified. This can now be achieved by

looking for similarities in the keyword profiles, rather than the components themselves

to infer about the inter-component relationships. Of course, we can not estimate exactly

the nature of the relationship and the ExperimentBuilder allows the user to both

define new relationships and also tweak the estimated relationships presented by the

keyword profiling.

At this point, we build our environment, populate it with components and specify the

relationships in between. In order to make the next step and infer impact from the

observed changes, we must build a framework that can interpret the change, analyse the

relationships of the affected component and model the impact throughout the experimen-

tal environment. We have designed several methodologies to estimate the propagation

and effects of this impact and these are described full in section 6.4.

5.7.4 User Interface Design

This section describes some aspects of the graphical user interface (GUI) of the Ex-

perimentBuilder that allow the user to perform some of the actions described above.

We present aspects of the GUI that relate to environmental building and component

construction. Aspects of the GUI that relate to versioning, keyword profiling or impact

estimation are presented in chapter 6.

Figure 5.11: Datasource construction within the ExperimentBuilder.

Before beginning to model the experimentation, we establish the environment and this

requires constructing components to mirror those in the real world. There are obvi-

ous similarities in the construction of the experimental components but there are some

specific differences depending on the type of component and the ExperimentBuilder

provides the tools needed to create user-defined, unique components. Users can add

Datasources, Wrappers, Methods, and Tools to the ExperimentBuilder. Given
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the requirement to compare heterogeneous components, there are similarities in the way

that the component structure and impact relationships are presented.

The Datasources tab of the ExperimentBuilder, illustrated in figure 5.11, houses the

tools for constructing and using datasources. The ExperimentBuilder accepts data

in multiple formats. The default format for datasource entry is a generic, tab-delimited

text file. The first line of the text file must contain a list of tab-delimited column names.

This is followed by a user-limited23 number of tab-delimited data lines.

The ExperimentBuilder allows the user to upload entire datasources into the exper-

imental environment but is more suited to handling derived experimental datasets24

rather than large-scale datasources. This is due to the extensive profiling undertaken

when a component is added, to establish inter-component relationships. For very large

datasources, this can take a long time and can produce erroneous relationship estimates

as the chances of finding false relationships is greater. This is discussed in more detail

later in chapter 6.

In comparison with experimental datasets, the other components can be added either in

their entirety, if the user has the source code, or the user can generate a representation

of the component. This representation is user-defined and can use any selection of

available metadata but it facilitates the tracking of the component if a similar method

for representing components is used across for all components. In addition to a bespoke,

textual representation of the component, the ExperimentBuilder offers a user-defined

list of parameters for each version of a component.

Having defined the experimental environment, we can begin building the experiments.

Users can choose how to add experiments to the ExperimentBuilder; experiments can

be added sequentially, chronologically or, as is recommended, in a hierarchical structure

based on experimental hypothesis. The ExperimentBuilder promotes the hierarchi-

cal presentation of experiments by allowing the creation of Lines of Enquiry (LOEs).

LOEs can be nested within other LOEs in order to create a directory-structure of

experimentation. This is illustrated in figure 5.12.

Experiments can be added to any Line of Enquiry25 and once they have been defined,

the user can start adding experimental components. When a component is added, the

user specifies values to any parameters that have been defined for that component. The

parameter values are experiment-specific and the instance of the component is created

within the Experiment as a Resource, as in figure 5.10. As components are added,

23The dataset size is limited by the manageability and the performance of the ExperimentBuilder.
24We refer to datasets generated by querying larger datasources.
25The only stipulation for an experiment is that is must be added to a Line of Enquiry ; i.e., it cannot

be added to the root.
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Figure 5.12: The environmental structure as presented by the ExperimentBuilder.

the individual component dependencies are passed on to the experiment. When a change

occurs in a component, the change can affect a dependant component and if any of the

dependants exist in an experiment, then we can interpret the impact on the experiment

as an aggregated whole.

Figure 5.13: The graphical representation of a single experiment provided within the
ExperimentBuilder.
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As experiments are defined and populated with components, the visual overview of the

experiment, provided by the ExperimentBuilder, is updated to reflect the new state

of the experiment. An example of the overview can be seen in figure 5.13.



Chapter 6

Tracking Impact

6.1 Component Relationships

We can imagine with little difficulty how one component can relate to another and we

understand the need to devise methods for measuring this relationship. We can adapt

existing traditional versioning methods to deal with some aspects of simple relation-

mapping and we have employed some of these methods in the ExperimentBuilder.

These methods can be extremely effective in the right domain, but the efficacy of such

approaches diminishes when we try to apply them outside of their intended area.

In order to identify all relationships within an experimental environment, we must com-

pare components of all types. We must compare datasets to not only other datasets,

but methods and tools. But how can you compare a dataset to a method? We explore

the idea of heterogeneous comparison further in the next section. But before starting

to think how to make component comparisons, we should consider the elements that we

need to include in order to make an appropriate comparison. To define a relationship

between one component to another, we look for those elements that, when changed in

one component, cause a change in another. The nature of a change can have varied

effects on the impact on dependant components and it is this nature that we need to

record in order to accurately estimate its dependant network propagation.

There is also a significant distinction to make regarding the relationship between com-

ponents and the effect this relationship has in estimating the impact between them. A

relationship between components is a measure of the similarity between them. This

relationship can be used in order to define the likely propagation network of a change

originating at a particular component. For example, if we identify a relationship be-

tween two components, we could assign a value to this relationship of 0.1 meaning that

119
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the two components share 10% of the same or related content. It is important to clarify

that this does not mean that change in one component will result in a 10% change in

the other. It simply indicates the degree of similitude between the two components.

In order to establish how a change in one component affects a dependant component, we

must derive more information about the change itself. A change could occur in the 90%

of the component that is unrelated and in that case, there should be no impact passed

on to the dependant component. Assigning a value to a relationship can be misleading,

suggesting a degree of impact but the impact can only be determined once we have

identified and analysed the initial change. The value we provide for a inter-component

relationship is the degree of similarity only and we will explain later in this chapter how

this measurement is used in impact estimation and, more importantly, in establishing

the impact propagation network.

Figure 6.1: Specifying the relationship profile for a new component within the Ex-
perimentBuilder.

There are some logistical problems to consider for the establishment of inter-component

relationships. Some components will relate to other components coincidentally. Con-

versely, some components will relate to others despite a lack of any physical commonality.

Finding relationships in components depends heavily on the nature of the experimen-

tation and some relationships can only be identified by those who are familiar with

the experimental environment. But, we cannot rely on the user to define an entire

environment of inter-component relationships. We have only to consider the possible

relationships between, for example, ten components to realise that it would take a pro-

hibitively long time to define by hand1 and we cannot expect users to provide this level

1There are 45 possible relationships between 10 components.
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of input. We require a system that can estimate, as far as possible, the relationship of

two components, based on some internal methodology, and present this estimation to

the user who can tweak the estimate to suit their understanding of the true relationship.

Figure 6.2: The component relationships as established within the Experiment-
Builder.

The key to measuring change and tracking impact starts with the accurate identification

of the relationships between components. We must know how a component relates to

another so that we can know how a change in one will affect another. Much of the work

presented in this chapter centers on the estimation of impact and, for further propagation

of the impact, the estimation of knock-on changes that may occur as a result.

6.2 Keyword Profiling

We have described, in the previous section, some of the aspects and issues of defining

relationships between experimental components. We assumed a solution for defining

relationships in order to discuss some global issues but in this section, we describe our

methodology for identifying and defining inter-component relationship and we refer to

this technique as keyword profiling.
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We have already touched on our definition of a specific component relationship. We

define the relationship as the degree of similarity between two components. We can use

this measurement together with the change to estimate the total impact propagation

within the environment. We can not provide a definitive value for impact alone and,

therefore, can not define a static impact propagation network. Impact can only be

established once we have established a change.

So, how do we define a similarity between components. If we consider two versions of

a datasource, we can identify common places in the component that we can measure.

For example, we can measure the similarities between field names, column and row

numbers and with adequate techniques, we can measure the difference between individual

data values. We could expand these techniques to include all datasources but, given

our representation of experimental components within the ExperimentBuilder, we

need to identify and quantify relationships between all components, irrespective of type.

There are various aspects of components that need to be considered when identifying

relationships between components. Much emphasis should be placed on the content

of the component and the metadata of a component can often be an effective way of

representing content. There are, however, circumstances where the component content

will give little or no evidence to suggest a relationship between the content of another.

We must delve further by analysing the semantics of the component; the meaning of the

component and the experimental importance as defined by other similar experimental

components. We must also consider the possibility of two components that exhibit very

little or no similarity but maintain a significant experimental relationship. This scenario

is difficult to anticipate and, in most cases, this relationship must be defined by hand.

Keyword Profiling works by extracting a set of key words from a component and builds

a list, ordered by semantic importance and frequency. The technique is applied in a

slightly different way according to the type of the component but the end product is

always the same. A keyword profile for one component version can be measured against

that of any other component version. Keyword Profiling occurs when any new version

of a component is added to the ExperimentBuilder. There is no user input during

this period although the user can choose to exclude certain keywords.
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The Keyword Profile Generation Algorithm:

begin

proc generateKWP(component, exclusionList) ≡
parts[] = component.split();

for each(part : parts) do

weight := lookupWeightForPart();

extractKeywords(part, weight, exclusionList);

od

.

proc extractKeywords(source, totalWeight, exclusionList) ≡
regex := [(Punct), (Blank), (Space), (Digit), (Cntrl)];

keywords[] := source.split(regex);

singleWeight := totalWeight/keywords.length;

for each(kw : keywords) do

if (!kw.inExclusionList())and(kw ≥ minSize)
→ addKeyword(kw, singeWeight);

fi od

.

proc addKeyword(kw,weight) ≡
if (!kw.existsInProfile())

→ profile.addKeyword(kw,weight);

else

→ profile.getKeyword(kw).adjustWeight(weight);

→ profile.getKeyword(kw).incrementOccurrences();

fi

.

end

The user can define a list of words that are to be excluded from the keyword profiling.

There are two levels of user-defined keyword exclusion. There is a general keyword ex-

clusion list, containing all words that are to be disregarded during all keyword profiling.

This dictionary is likely to contain everyday linkage words that have no specific semantic

meaning or, alternatively, meaningful words that, in the context of the specific exper-

imental environment, are so common that they possess very little meaning and serve

only to distort the inter-component relationships. The user can also specify exclusion

lists for individual components. Such exclusion lists are used together with the general

exclusion list during the keyword profiling of a component, allowing the user some degree

of control over the profile in order to improve its efficacy.
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Figure 6.3: The representation of a Keyword Profile in the ExperimentBuilder.

Strings are identified from the component and added to a list of keywords, either as a

new keyword in the event of a new string or appended as an occurrence to an existing

keyword. Strings are only added as keywords if the string does not appear on any of

the relevant keyword exclusion lists. At this point, the keyword lists are normalised so

that the total weight for all keywords in a keyword profile add to one. Finally, the list is

sorted according to normalised weight and presented to the user as illustrated by figure

6.3.

Keyword profiling works in a manner dependant on the type of component. That is to

say, the keyword profile for a datasource version is constructed in a different manner to

that of a method version by virtue of the inherent differences between the components.

Datasources are broken down into three main categories; data content; data semantics

(fields, etc.); and component semantics (description, notes, etc.). Methods, tools and

wrappers are split differently according to their metadata representation, or in some

cases the actual representation. In either case, the different parts of the component are

weighted according to their perceived importance dictated by the user. For example, a

keyword that appears in the title of a component is worth more than a keyword that

appears in the bulk of the component. If it appears in both areas, there is a cumulative

effect for the keyword that grows stronger according to the frequency and positioning.

Currently, this profiling technique ignores numerical values and any string value less than

two characters in length. We ignore numerical values as they contain little in the way of

semantic information that can be measured between components. Numerical values also

contain very little interpretive value unless they are bound with the information they are

describing, which in the case of keyword profiling, they are not. We can foresee a problem
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when encountering a dataset containing mostly, or entirely, numerical values as for this

case, the keyword profile will be semantically weak. In such cases, it may be necessary

for the user to forego the keyword profiling techniques and specify the relationship by

hand. There is also the issue of using keyword profiles to detect change in components2

when the component contains largely numerical values. This is particularly troublesome

for datasets as numerical values are not represented in the keyword profile and we have

therefore implemented a user-selectable, brute-force comparison method for comparing

datasets of this type.

The keyword profile allows us to represent the content and nature of a component,

regardless of type, and measure it against the profile of any other component, therefore

determining the degree of similarity. In the following section, we go on to describe the

importance of determining this relationship and we use the keyword profile to, not only

identify the similarities between components, but characterise and represent detected

changes, estimate impact from the change and, finally, propagate the impact throughout

the experimental network.

6.3 Looking for Change

As we continue to use the ExperimentBuilder to define components, experiments and

establish the relationships therein, our environment will grow in order to mimic the

real-world experimental environment. At this stage, the environment exists in a static

state without change. The components are related to one another but until there is a

change, the environment stands still. At the point a change occurs, we can begin to use

the tools described in the following sections in order to identify, track and estimate the

resulting impact.

Changes are detected in the same way for all components. The ExperimentBuilder

detects change in a component by measuring the keyword profile of the new component

version against that of the original component version3. Profile comparison for change

detection initially works in the same way as the component relationship identification

described above. For change detection, we identify the change from one version to the

next using profile comparison and then we create a keyword profile that encapsulates

the change itself. The keyword profile of the difference between component versions, or

the delta keyword profile (dkwp)4, contains all the keywords, ordered by frequency and

semantic seniority, within the change.

2This can often normally lead to surprisingly accurate results as we shall see in chapter 7.
3Change detection in the ExperimentBuilder relies on user submission of the new component

version, or the ’suspected’ new version.
4Please refer to the following section for a description of keyword profiles and delta keyword profiles.
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What follows is a representation of the Algorithm for comparing keyword profiles and

generation of the dkwp. We combine the keyword profile comparison and the dkwp

generation here as they require similar algorithms. For the sake of simplicity, they are

included here together but in the implementation of the ExperimentBuilder, they are

not so tightly coupled.

The Algorithm for Comparing two Keyword Profiles:

begin

proc compareKWPs(kwpA, kwpB) ≡
Keyword[]hits;

Keyword[]misses;

KeywordProfiledeltakwp;

for each(keyword : kwpA) do

buildStat(keyword, kwpA);

od

for each(keyword : kwpB) do

buildStat(keyword, kwpB);

od

comparisonFactor = (hits : misses);

returncomparisonFactor;

.

proc buildStat(keyword, kwp) ≡
if (kwpB.contains(keyword))

averageWeight = (kwpA.keyword.getWeight+ kwpA.keyword.getWeight)/2;

weightDiff = diff(kwpA.keyword.getWeight, kwpA.keyword.getWeight);

hits.add(keyword, weightComb);

if (weightDiff ! = 0)

deltakwp.add(keyword, weightDiff);

else

misses.add(keyword, kwpA.keyword.getWeight);

fi

fi

.

The encapsulation of the component change, embodied in the dkwp, is important so that

we can pass the change on to dependant components and infer, with some precision, how

that change might cause impacts. These inferences are, again, achieved by comparing

keyword profiles. The dkwp is compared against the kwp of the dependant component

and the resulting comparison is interpreted by the ExperimentBuilder and presented

as impact.
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6.4 Propagating Impact

We must consider three principal terms of the change management system employed

in the ExperimentBuilder; change, impact and cost5. Components are revised,

improved or updated from one moment to the next and the transition between states

is referred to as change. A change in one component may have an effect on another

component. If it does, the resulting change in the dependant component is referred to

as the impact. There may be many impacts that occur as a result of a single change

and we can track these through a propagation network of dependant components. When

we sum the impacts that result from a single change and calculate the effort required in

updating the components, we refer to the cumulative effort as cost.

Impact is the result of an identified change. Impact can be expressed either as a value for

a specific component or as a sum of the total propagated impact as a result of a single

change; change leads to impacts, which leads to further impacts and so on. Impact

cannot be adequately described through arbitrary values however. We need to attribute

a cost to the required implementation occurring as a result of the change. That is the

true impact. We discuss our representation of cost and how it relates to change and

impact in the next section.

In order to understand how impact flows through our environment, we must revisit our

use of keyword profiles. We have already discussed the difficulties in comparing compo-

nents, in particular those components of different type. We have employed a universal

keyword profile mechanism that generates a comparable and standardised representation

of each component, allowing us to establish inter-component relationships. So, when we

refer to one component relating to another, we are really talking about the degree of

similarity between the keyword profiles for the two components. This is illustrated in

figure 6.4.

Within the ExperimentBuilder, component keyword profiles are used exclusively for

change detection, impact propagation and cost calculation. Any contextual information

about the component that is not contained within the keyword profile is not accounted

for during any of these processes.

Keyword profiles enable us to model the context of components regardless of type so they

can be measured against one another in order to identify inter-component relationships.

A delta keyword profile differs by specifying the presence or absence of a keyword as part

of a change in one component from one state to the next. We can use the component

kwps and δkwps to propagate and estimate and the impact to the total experimental

environment.
5These are our definitions and not intended to supercede or replace any existing terminology.
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Figure 6.4: Inter-component relationships and the resulting degree of similarity be-
tween keyword profiles.

The impact can only be adequately expressed if we can estimate the perceived effort

required to enact the identified change. In the following section, we describe the way

in which we encapsulate both user and environmental efforts and present them through

the ExperimentBuilder.

Given our dependence on keyword profiles to define inter-component relationships, we

should employ a change detection strategy that can take full advantage. Many com-

ponents exist in a near-constant state of change. During any one of these changes, the

component will change state from A to A’ and we can define the transitional change

as the difference between them. We are, for the moment, unconcerned with the ori-

gin or nature of the change, only its effect on the current state of the component.

Inter-component relationships are estimated by analysing the similarities between the

component keyword profiles. We can use a similar technique to look for dissimilarities

between the component states before and after the change. The result is an ordered list,

similar to that of a component profile, but instead contains the differences between one

keyword profile and another. We use this technique to embody a component change and

we refer to it as the delta keyword profile (δkwp).

A delta keyword profile (δkwp) contains, as per figure 6.5, the differences between the

kwp for components A and A’. Within the δkwp, we record those keywords present in A

and not in A’ and vice-versa. But the δkwp cannot contain only differences. We must

differentiate between additions and subtractions to the component during the update.

This is important so that we can accurately estimate how the change affects dependant

components. If the δkwp were to contain only ordered keywords, as in a regular kwp, we

could not know whether an identified keyword would represent an absence in the new

component or a presence. When a keyword is added to the δkwp, we record whether is
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it an addition or a subtraction as well as the strength and frequency as per an original

keyword profile.

Figure 6.5: Impact estimation and propagation and use of the delta keyword profile
(δkwp).

Represent a component change in the structure of a keyword profile is a particularly

useful method for determining the propagation of the impact. Not all dependant com-

ponents will be affected; there will be components that are related but, due to the

specifics of the change, are not affected. We can compare the δkwp against each depen-

dent component kwp to see if the change will, in reality, have an effect. If there is a

significant comparison between the δkwp and the kwp of the dependant component, it in-

dicates that whatever change occurred in component A, it affects parts of the component

that have also been identified as occurring in component B6. Given this information,

we can now state with some confidence that component B is affected. We can go on to

determine the effect of the change, the estimated impact and decide whether the impact

should propagate further.

If we compare the δkwp against the kwp of the dependant component B, we can estimate

the kwp for the updated version of that component, B’, illustrated in figure 6.5. Whether

the δkwp keyword is an addition or a subtraction specifies whether the keyword is added

or removed from the kwp of the newly estimated component, B’. Component B may

6Referring back to figure 6.4.
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change more or less than expected from the inter-component relationship as the degree

of impact depends on the nature of the change, represented in the δkwp. This method

allow the impact to dependant components to be more accurately modelled, basing the

propagated impact on the δkwp rather than a numerical approximation of the change.

Once we have estimated the kwp for B’, we can repeat the process for all identified de-

pendants of component B. We start, as before, by generating the δkwp for the estimated

change between B and B’. This differs slightly than before in the respect that the B’kwp

is estimated rather than explicitly known. Remember that impact propagation is use

to calculate the cost of updating. Based on this estimation, the user will then decide

whether it is worth the required effort to update. At this stage, we cannot know B’ ex-

plicitly. Consequently, as we delve further into the propagation network, the estimations

of the updated components become less accurate.

6.5 Conveying Impact with Cost

In the previous sections, we have presented our encapsulation of change and impact so

that we can identify, quantify and propagate them within the experimental environment.

We have referred to impact within the dependant network, assigning numerical values or

modelling with keyword profiles. But what do these values mean? In terms of assessing

the impact, they mean very little. We need to quantify impact in a meaningful way so

it can be used constructively within an experimental system.

We are measuring impact so we can make informed decisions about whether to update

our experimental environment by re-running experiments. Experiments may take longer

than others and some may involve many iterations of previous experimentation in order

to achieve an updated result. In the process of making the decision to update, we should

present the user not with arbitrary values but with a real world estimation of the efforts

required.

The cost profile for a component captures details about the effort required to update,

relating to the degree of change placed on the component. A cost profile is created for

a component when it is added to the experimental environment in the Experiment-

Builder. The user is prompted to enter details about the component relating to the

degree of effort required to update. The cost profile contains various details of the time

and cost of both human and machine activities required in updating the component and

this are illustrated in figure 6.6.

Cost is split into three categories; human cost, machine cost, and consumable effort.

Human cost refers to the amount of time required by the user to update the component.
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Figure 6.6: A cost profile for a single experimental component.

We make reference to the level of user required to complete the update; can the update

be completed by anyone or does it require interaction from the principal scientist? The

time of some users is more valuable than others and the cost profile attempts to capture

this by assigning an hourly unit amount to user interaction. Machine cost is measured in

terms of time alone although we include an overhead cost in order to cover any additional

costs involved. We can set the human and machine aspects of the update to run either

consecutively or concurrently and this has obvious effects on the time required for the

update. In terms of machine cost, the concurrency of the component has a significant

effect, signifying that the component and, therefore, the experiment, can be executed

concurrently with other possible experiments in the update process.

We provide a consumables section which includes any logistical time or cost involved in

actioning the update. For example, an update may require a new version of a component

to be purchased, in which case it would require a purchase cost and a delivery, download

or installation time. The final outcome for the cost profile is a description of the minimum

and maximum effort required for a component update. The cost of the component

update can be set as relative to the impact or not. For example, a small update will

require less time and cost than a much larger update. This is likely to be the case

for bespoke components that may be ’tweaked’ as part of the update but for larger

commercial products, there may be only one level of update; i.e., a complete update.

The cost of updating the component is a product of the weight of the impact and the

relative cost of the update. The ExperimentBuilder identifies a change and propagates
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the impact to the identified dependant components. The estimated impact to each

dependant component is weighed against the cost profile to produce the estimated cost

of the update. The costs of the dependant component updates are combined, taking

into account concurrencies where appropriate, and presented to the user as the total

component update cost.

The user can now decide whether to continue the update depending on their evaluation

of the estimated cost. The user can also choose to enact only certain aspects of the

update, allowing fine tuning of the update and the avoidance of weighty, expensive, or

unimportant elements of the update.



Chapter 7

Validation

This chapter describes the evaluation of the two applications developed for the purpose

of the research. The Hashed Data Model (HDM) represents a first attempt at mon-

itoring change between datasets and inferring some semantic meaning between versions.

The change management framework and the main focus of the research, encapsulated

by the ExperimentBuilder, is evaluated in section 7.2. A summary of this validation

and of the research as a whole can be found in section 8.2.

7.1 The Hashed Data Model

Chapter 4 presents the HDM designed to help e-scientists identify, track and manage

these types of change. The HDM is a tool that abstracts an experimental dataset and

metadata to a model that can be used to detect changes between versions of datasets.

The characteristics of the HDM allow the user to potentially retain a unique version of

the dataset for every single experiment.

7.1.1 Case Study Performance

With a granularity factor of one, the HDM will contain an alphanumeric representation

of every value of each column. We could theoretically record the state of each row and

detect change on an absolute basis. This cannot occur, however, as the alphanumeric

hashing will inevitably produce collisions. A sample of the tracking-enabled results can

be seen in figure 4.3. At granularities higher than one, it is not currently possible to

detect the absolute degree of change within the specified group of data values. For

example, consider a HDM with a granularity of five, where each alphanumeric hash

value represents a group of five rows of the column. Ignoring the possibility of collisions,

133



Validation 134

Figure 7.1: HDM tracking results at varying levels of uniform randomisation.

a change in one of the values within the group will affect the hash value as strongly

as a change in two, more or even all of the values. In this case the strength and the

impact of an altered alphanumeric value must be estimated. At higher granularities, the

estimation method is increasingly important in order to accurately estimate the change.

Figure 7.1 illustrates the performance of the HDM at varying degrees of granularity.

The test datasets were constructed using an algorithm generating uniformly random

changes to the dataset from between 10 and 50 percent. The current HDM algorithm

estimates change as the number of changed data blocks as compared to the total number

of data blocks (p/t). For example, a column with 100 rows at a granularity of one, will

have 100 data blocks. At a granularity of 5, it will have only 20 data blocks. As

the number of data blocks decreases, the poorer the HDM change detection algorithm

performs and the more chance a randomly altered dataset will nullify the detection

algorithm, giving results ever nearer to 100%.

We can see that at a granularity of one, the HDM change detection performs very

closely to the actual percentage change. As the granularity increases, the performance

of the HDM is reduced to a point where only very limited information of the data

change can be inferred. It is also worth noting that, regardless of the granularity, at no

point is change under-estimated. Any change, no matter how small, is detected.
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7.1.2 Limitations of the HDM

The HDM prototype can be shown to work within an existing biological domain with

real biological data but the HDM is only an initial step towards a comprehensive frame-

work for change management. In order to provide real usability for biologists, we must

add further functionality. The DBVS provides the engine for versioning the scientific

data but for a complete versioning framework, we must consider both fine and coarse-

grained investigation of the changes that can and frequently do occur.

The HDM provides an abstraction of the dataset and therefore, we can never recover

the dataset in its original form. This is a problem if we need to investigate the changes

on a fine-grained scale. Consider the HDM with a granularity factor of one. Even at

this level of granularity, we can not infer what the data values were and what they are

now. For many cases, this is an acceptable level of granularity but for very fine-grained

investigation, we envisage the addition of a versioned database system, possibly the

DBVS, containing the data sources used for model creation and in silico experimenta-

tion. The version of the dataset used can be linked to the HDM model so that upon

discovering changes in the HDM, the versioned database can be automatically queried

to return the exact nature of the changes. This will provide a level of control and a

depth of investigation simply not possible with the HDM alone.

7.2 The ExperimentBuilder

The ExperimentBuilder is the next step and the result of continued analysis of the

case study, from the Hashed Data Model. The HDM concentrates on changes to

datasets only, the HDM abstraction being unreversible losing the original form of the

data, and therein lies its main limitation. The ExperimentBuilder aims to overcome

this limitation by providing a complete encapsulation of the experimental environment,

providing change management for all the experimental components therein.

Within this section, we revisit the main features of the ExperimentBuilder, describ-

ing both the respective merits and limitations. The case study described in chapter 3

provided the stimulus for the research and, ultimately, the ExperimentBuilder and

we shall refer back to it frequently throughout this section.

7.2.1 Evaluation of the ExperimentBuilder

The evaluation of the ExperimentBuilder starts with a redress of the principal char-

acteristics of the system, providing a critical explanation of each unique facet of the
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system that enables change management. We then describe some of the problems asso-

ciated with providing change management and the degree to which these are satisfied by

the ExperimentBuilder. We discuss some of the limitations with the presentation of

results, namely the real-world costs of updating an experimental environment. Finally,

we present the performance of the ExperimentBuilder, describing the efficacy of the

keyword profiling approach.

7.2.1.1 Complex Experimental Environment

The primary requirements for the ExperimentBuilder are the construction, integra-

tion and management of experimental components. Apart from the experiments, which

can themselves be considered components, there are four types of experimental com-

ponent, established primarily from a direct analysis of the research case study. The

datasource component encapsulates a component containing any aspect of experimental

data, although a datasource should not contain any computational logic. Logic com-

ponents1 are split into three distinct groups; a wrapper representing to logic that is

explicitly attached to a datasource, a method which represents the central transforma-

tion or purpose of the experiment, and experimental tools which describe any further

steps that are required to complete the designated purpose of the experiment. Any

number of datasources, wrappers or tools can be added to the experiment but the user

must specify only one method per experiment.

Through extensive analysis of the case study, we believe that the complement of com-

ponents supplied by the ExperimentBuilder allows the construction of any kind of

required experimentation, including those identified in the case study. The representa-

tion of a component within the ExperimentBuilder is left largely to the design choices

of the user. Component source code can be incorporated directly into the Experiment-

Builder and is a logically reasonable representation for the content of some components.

The ability to specify component source code does not preclude the possibility that a be-

spoke representation of the component may be more useful. The ExperimentBuilder

allows the user to enter any desired representation for a component and this provides a

level of freedom to express the nature of the component, unavailable with source code

alone.

There are several ways in which users can enter data into the ExperimentBuilder.

With respect to the biological data, we provide several methods for data entry. The

foremost format for entering data is a regular tab-separated data string. Data items

are provided in a tab-separated text file with the first unbroken line containing column

1A logic component refers to the presence of some computational logic, programming or bundled
functionality that adds to the experiment.
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names. The heterogeneity of data sources brings several issues into focus, in particular

the varying formats that inevitably arise. Accommodating for all, or even many, of

the existing data formats is a considerable challenge, outside of the explicit scope of this

research. It is intended that, as data formats become necessary for the progression of the

experimental environment, they can be added to the application as a patch or a retro-

fit, and this has been facilitated through the modular development of the application.

Nevertheless, as well as a simple data entry, we provide data entry methods for two

specific data types; microarray and genomic2.

In section 1.4, we introduced the idea of topological importance whereby different parts

of a dataset hold varying levels of importance. The ExperimentBuilder allows the

user to define keyword weighting to an extent; the user can specify the semantic value of

various areas within the individual dataset so a keyword in one semantic area can have

a greater weighting than another in a different area. Also, users can remove keywords

from the component keyword profile if the weighting unfairly represents the component.

Keywords can be excluded from the individual component profile or from the whole

experimental environment altogether. At present, the ExperimentBuilder does not

allow the user to manually add keywords to the keyword profile. If the keyword is not

present in the component, it can not appear in the keyword profile.

As components are added to the ExperimentBuilder, they are measured, using key-

word profiling, against the existing experimental components in order to identify de-

pendencies within the environment. This is an important part in the process of change

management. An experimental environment may contain hundreds or even thousands of

experimental components, making it infeasible to manually define each inter-component

relationship and to do so would be prohibitively time consuming. The Experiment-

Builder estimates the relationship of the new component against the existing environ-

ment by automatically comparing the keyword profiles of each existing experimental

component. Based on similarities between keyword profiles, we can identify potential

dependencies for the new component. The user can specify limits for the identifica-

tion of relationships; the degree of similarity that warrants an identified relationship.

Dependencies can be specified as unidirectional, to impact to be impacted by the envi-

ronment, or bi-directional. It is generally preferred for the user to specify dependencies

as one-way, as too many bidirectional relationships can impede the efficacy of the impact

propagation algorithms.

The ExperimentBuilder allows the user to manually redefine inter-component rela-

tionships in order to rectify any discrepancies in the relationship estimation. We have

2These are in the form of in-house scripts logically outside the ExperimentBuilder and represent
the ongoing development process within the application.
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already briefly mentioned some of the limitations of keyword profiles and these are ex-

plored in more depth in section 7.2.2.2. Suffice to mention here that, under certain

circumstances, keyword profiling suffers from poor performance and the Experiment-

Builder aims to mitigate this by enabling manual redefinition. A particular limitation

of the relationship estimation occurs if an important inter-component relationship exists

but it is both unknown to the user and remains unidentified by the ExperimentBuilder

due to limitations in the keyword profile comparison algorithm. In such a case, the re-

lationship will not be identified within the experimental environment.

During development, we have not forgotten the original purpose of the Experiment-

Builder, which is to provide change management services as an addition to an existing

experimental environment. In order to adequately employ our change management

tools, we need to deliver them in an efficient and accurate environment. In response to

this, the ExperimentBuilder allows the user to represent their experiments in a way

that mimics, as closely as possible, the real world experimental environment. Within

the ExperimentBuilder, the user can define a line of enquiry, our representation of

a particular avenue of investigation. Lines of enquiry can be nested and may or may

not contain any number of experiments. In addition to being encapsulated within a

line of enquiry, an experiment must contain an experimental hypothesis to provide fur-

ther identification. The Line of Enquiry page of the ExperimentBuilder provides the

user with a complete overview of the entire in silico experimental environment. In one

view, the user can navigate between different lines of enquiry, browsing experiments and

their attached experimental components. Figure 5.12 illustrates the presentation of the

experimental environment.

7.2.1.2 A Constant State of Change

In reality, many experimental environments will undergo a near constant state of change.

To effectively model an experimental environment, the ExperimentBuilder is required

to handle both the frequency and the nature of the changes that can occur but how

well does the ExperimentBuilder handle the frequency and heterogeneity of change?

Firstly, the ExperimentBuilder can not automatically detect a change that occurs in

the real world. We have mentioned before that there are no logical or computational

links between the in silico experimental environment of the ExperimentBuilder and

the real world environment. The contents of the ExperimentBuilder are contained and

controlled directly and only by the user. This is the current state of the Experiment-

Builder, maintained by the user. In the future, we can look at directly incorporating

data or services from online Web Services, at which point, the ExperimentBuilder

may be able to dynamically react to changes in real time.
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The frequency of change, therefore, is monitored directly by the user and depends upon

the frequency of user interaction with the ExperimentBuilder. This method can lead

to inaccuracies in the ExperimentBuilder due to mistakes or omissions on the part of

the user and we have tried to mitigate this to an extent by providing pop-up reminders

for the user, prompting them to check that the experimental environment is up-to-date.

Frequency of environmental change may occur at a brisk pace and, due to the required

user interaction, the ExperimentBuilder may not remain consistently up-to-date. The

nature of the environmental change and the characteristics of the likely impact is handled

in the ExperimentBuilder by directly modelling the change itself. As we described

in the previous chapter, changes are represented using delta keyword profiles, similar

to the internal representation of the experimental components. The techniques used

within the ExperimentBuilder are described in section 6.4. Using keyword profiles, we

encapsulate the characteristics of the change directly in a format that can be compared

against the remainder of the experimental environment. Disregarding how or why a

change has occurred, we concentrate on the properties the change, abstracted to its

delta keyword profile.

The modelling of change within the ExperimentBuilder, in terms of detecting change

and implementing the versioning of affected components, is handled differently to the

propagation of those changes. Within the experimental environment, for investigative

purposes, components are versioned exactly so that each version of a component is

completely retrievable. Non-datasoure components versions are recorded using a tradi-

tional, open-source CVS method3. Datasource components are handled differently, us-

ing our own DBVS methodology, described in section 5.5.2. When a change occurs, the

ExperimentBuilder generates a keyword profile or, more accurately, a delta-keyword

profile representing the change. The delta keyword profile is used to propagate the

change to the identified dependant components, calculating the cost of the estimated

impacts and presenting it to the user but using keywords to represent components cre-

ates problems. Firstly, some keywords are naturally more important than others. We

make allowances for this in the ExperimentBuilder by assigning different weighting

to keywords, depending on their semantic significance in the component. This alleviates

rather than solves the problem. We have chosen to restrict user access in how component

keyword profiles can be altered. Given the existing user-required overhead of defining

inter-component relationships, the need for fine-grained manipulation of the individual

keyword profiles is superfluous. Users can, however, exclude keywords but cannot add

3We have used the Google diff-match-patch algorithm available at http://code.google.com/p/google-
diff-match-patch/
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or alter existing ones. If we do not exclude keywords, we find that the keyword pro-

file becomes dominated with keywords that have no semantic meaning but occur very

frequently4.

7.2.1.3 The Real Cost of Updating

A significant part of the research question is concerned with giving the user sufficient

information in order to make an informed decision whether or not to update the experi-

mental environment based on an estimated cost provided by the ExperimentBuilder.

If we are to provide a real world estimation, we need to provide the estimation in real

world terms. The ExperimentBuilder assigns a cost profile for each component, which

allows the user to specify the levels of effort required to update the various aspects of

the experimental environment. In building the cost profile, we encapsulate the effort

required to update in fiscal and temporal terms. In order to do this, the Experiment-

Builder requires specific input from the user for a description of the work process. The

cost profile is constructed with a selection of questions to the user regarding the length

of time it takes to update the component and the costs involved in doing so. Using

the answers to the questions, the ExperimentBuilder determines the minimum and

maximum levels of effort required for any given update.

If we assume that the effort required to update a component scales according to the

degree of change exhibited by it, we can determine the degree of effort required to deal

with any given size of change. This determines the real-world impact of an observed

change but the assumption can lead to inaccuracies in the calculation of effort as updates

do not often scale perfectly. The ExperimentBuilder, therefore, allows the user to

determine whether the update effort should scale or not. Many components, specifically

off-the-shelf or third party components, will have a static update effort; the compo-

nent will either be updated or not. Other components such as bespoke components or

datasources, may better suit a sliding scale of update effort calculation to represent a

component under in-house control.

We should remember that the cost profile is a subjective method for determining cost5.

The cost profile will, most likely, reflect the primary user of the ExperimentBuilder.

An experimental scientist working on their own environment might, for example, assign

a cost of zero for their own effort in order to simplify the environment6. A more complex

4We refer to keywords such as ”Yes”, ”No”, ”NA” etc.
5This is providing we have not manufactured a standardised way to enter costs for all types of user.
6The purpose of the scientist is to work on their experimental environment, therefore there is no

special attention required for an update. They may, therefore, prefer to concentrate on temporal effort
only when deciding whether to update or not.
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experimental environment may require many different people for a given update. In such

a scenario, it may be more suitable to apply a fiscal cost to the effort.

The ExperimentBuilder presents the effort to update in terms of both the time re-

quired and the estimated fiscal cost of the update. Based on the estimated cost, the

user then decides whether to update or not. The cost can incorporate both user effort

and computational effort and these are specified individually in the cost profile. We as-

sume that the environment already contains the necessary computing equipment, as the

experiment has already been carried out at least once, but we allow the user to define

the cost and required time for any additional required consumables. Machine cost can

be a considerable factor when updating as some experiments can take many hours for a

single iteration. We also accommodate the possibility that the update of one component

may or may not be run concurrently with the update of another and this property is

set by the user in the cost profile for each component. It is important to record the

concurrency of components in order to accurately estimate the cost of updating as the

ExperimentBuilder will estimate the time for a total experimental update using the

concurrency of the components therein.

7.2.2 Limitations of the ExperimentBuilder

In the preceeding section, we have described some of the benefits and limitations of the

ExperimentBuilder in order to present a balanced appraisal of our solution. Within

this section, we discuss the principal limitations of the ExperimentBuilder in more

detail. If there are processes in place to mitigate these limitations in the Experiment-

Builder, we will present them here as well. We aim to present these limitations in a

way that prompts further work and improvement and we have described the limitations

with this in mind.

7.2.2.1 Design Limitations

The origins of the ExperimentBuilder are founded from an extensive analysis of an ex-

isting environment of biological experimentation. From that analysis, we have concluded

the necessity to model four distinct groups of experimental components7; datasource,

wrappers, methods and tools. These are described in section 5.4 but how well does this

small group of descriptors encapsulate an experiment of unknown nature?

During the analysis, we established the existence of two types of experimental compo-

nent; those containing data and logic, and those containing only data. We mimic this

7We exclude the Experiment and LineOfEnquiry components from this list and concentrate on the
components that make up each Experiment
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difference within the ExperimentBuilder. The datasources are considered the pri-

mary components for any given Experiment and the change detection and impact track-

ing methodologies have been, arguably, optimised for use on datasource components.

A datasource can not contain any computing logic within the ExperimentBuilder.

We define a component containing computational logic if the component either gener-

ates results from a datasource or transforms the datasource from one state to another.

Components containing computational logic are split into three further components in

line with our analysis of the case study. The Wrapper is a tool that is applied solely to

datasources with the objective of preparing the data for use in the Experiment. Meth-

ods are defined as a transformation of one or many datasource(s) from the initial state,

or the initial state after any required wrappers have been applied, to the next state8,

representing the result of the Experiment.

The datasource, wrapper and method components are clearly defined within the exper-

imental environment provided by the ExperimentBuilder. In addition, we provide

the tool, which is used to represent any additional piece of computational logic present

within the experiment. We have deliberately weakened the structure of the experiment

by allowing the integration of any type or number of tools into the environment. This

is to ensure that experiments that exist in an unusual or non-standard form will still be

adequately modelled in the ExperimentBuilder. There is a danger that, by defining

tools, the user could introduce multiple methods9 or could apply wrappers without speci-

fying the attached datasource. In other words, they could circumvent the integrity of the

experimental structure, using tools and there is currently no implementation preventing

users from doing this.

By defining the types of experimental components allowed in the ExperimentBuilder,

we have enforced an experimental structure that, while more intuitive during investiga-

tion of the environment, in some cases may restrict the experimental duplication upon

which our in silico environment relies. To mitigate this problem, we provide the tool

component so users can specify any number of additional logic components in order to

more accurately represent their experimental environment. Misuse of the Tool compo-

nent, however, can lead to over-population of the experiment and a break-down of the

integrity of the experimental structure. Ultimately, the ExperimentBuilder requires

a prudent use of experimental components together with a sensible approach on behalf

of the user in order to successfully represent the experimental environment and get the

most out of the ExperimentBuilder.

8Note that only one Method can be used for any single experiment. If more methods are required, we
must break the Experiment into multiple single-method experiments.

9This is strictly against the experimental policy of the ExperimentBuilder.
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It is imperative that the ExperimentBuilder retains the ability to both accurately

model the real-world experimental environment and allows the environment to recre-

ated as easily as possible. Much effort has been devoted to facilitating the duplication

of the experimental environment due largely to the fact that the ExperimentBuilder

relies entirely on the user input of experimental details in order to build the in silico

environment. This brings us to the single, most significant and incontrovertible limi-

tation, namely that the ExperimentBuilder contains only experimental metadata10.

There are no links, logical or computational between the experimental environment in

the ExperimentBuilder and the real world environment. The in silico environment

of the ExperimentBuilder is created and maintained by the user and changes only in

response to user input. This has several key advantages as well as some important limi-

tations. By removing the real-world links from the ExperimentBuilder, we are free to

define components in whatever way we wish, providing abstractions where appropriate

rather than being tied to strict representations of the working component. There are

systems that model components exactly, embodying the experimental environment and

allow experimentation to be created and controlled within the application11. Within

such systems, there are strict rules that govern the environmental components, often

limiting users to a set of predefined components.

The ExperimentBuilder, in contrast, enforces no such restrictions on experimental

components, other than that they can be represented textually. This allows the user

the freedom to make design decisions that are based on the experimental environment

rather than the change management application which should, in our opinion, act as

a support framework to an experimental environment rather than an embodiment of

the experiments themselves. In most cases, we expect the ExperimentBuilder to be

integrated with an existing experimental environment, as per our case study in chapter

3. In such situations, it would be unreasonable to expect a user to rewrite or, more

inconveniently, recompute the experimental environment to fit our new framework. The

ExperimentBuilder has been designed to fit around existing experimental environ-

ment. The degree of user interaction with the ExperimentBuilder depends on the

capacity of a component for change as well as the complexity and the tendency of the

changes. An environment that changes often will require more user interaction in order

to remain up to date. There are ways in which we could link some aspects of the Ex-

perimentBuilder to the real world environment without compromising the freedom to

create bespoke experimental environments12.

10The ExperimentBuilder does in fact contain experimental data in the form of datasources but
there is no computational link to the real experimental environment.

11We refer, specifically, to workflow re-enactment systems and these are described in section 2.5.2.
12Future work can be found in section 8.4.
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Pivotal to the processes of change detection and impact propagation are the use of key-

word profiles. Primarily, we use keyword profiles as an abstraction of a single version

of a component. We can then use the keyword profile rather than the component ver-

sions to identify inter-component relationships. We need these relationships in order to

accurately determine impact propagation. We also use a variant of the keyword pro-

file, the delta keyword profile as an abstraction of the changes between one component

version to the next. But how accurately are component versions and their changes rep-

resented by keyword profiles? The keyword manager accumulates identified keywords13

and assembles them in order of semantic importance14. In section 7.2.3, we describe

the performance of keyword profiles against that of a brute-force comparison technique.

Ultimately, the performance of the keyword profile depends, in most cases, on the clar-

ity of definition exhibited by the component together with the level of user diligence in

curating the keyword profiles15.

7.2.2.2 Implementation Limitations

The ExperimentBuilder compares the keyword profiles of components in order to

identify a relationship. The strength of this relationship is determined by the levels of

similarity found between the two keyword profiles. But how accurate is this determi-

nation? The keyword profile for one component version may be very accurate as may

the other but this does not mean that we will necessarily capture an accurate relation-

ship between the two. The reason being that a keyword in one keyword profile may

not necessarily carry the same semantic meaning as a keyword in the other. Regardless

of this, the profile manager will still register a degree of similarity. Keyword mismatch

leads to phantom similarities and an overestimation of the inter-component relationship.

There are many situations where keyword identification is not ideal for representing a

component version. Semantically important keywords may be under-represented within

the keyword profile which will lead to inaccurate relationship identification for that

component version. The ExperimentBuilder allows the shifting of semantic weight

throughout the keyword profile in order to mitigate the chance of under-representation.

In response to the inaccuracies that can occur during inter-component relationship iden-

tification, the ExperimentBuilder allows the user to tweak inter-component relation-

ships after the automatic estimation process. Users can then redefine relationships

13A keyword is a non-numerical value with a length of at least three.
14Semantic importance is calculated as a result of topological importance and frequency. See section

6.2 for more details.
15The user can exclude undesirable or irrelevant keywords from the keyword profile in order to improve

its efficacy. Note that the user can not make any changes to a delta keyword profile.
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according to what they know about their own experimental environment. This is neces-

sary for identifying relationships that cannot be determined using the built-in keyword

analysis methods.

During our analysis of the existing experimental environment, we dedicated a significant

effort to identifying the sources of possible change, described in section 3.3.1. This por-

tion of the analysis contributed, in part, to the identification of the experimental compo-

nents present in the system but also described the types of changes that were occurring.

Components can change in many different ways and for many reasons. Representing the

heterogeneity of the changes presents a significant challenge. The ExperimentBuilder

represents a change as a delta keyword profile, which specifies the addition or removal of

keywords from one component version to the next. As such, changes are represented by

the impact on the effected component, rather than the cause or nature of the change.

Impact propagation from an identified change relies on two pre-existing estimations made

by the ExperimentBuilder; the change, represented by a delta keyword profile, and

the network of dependant related components from the origin of the change. When a

new component version is added, the ExperimentBuilder conducts a keyword analysis,

measuring the resultant keyword profile against the existing profiles, in order to establish

any inter-component relationships and insert the new component version into the correct

part of the impact propagation network. The success of impact propagation depends

on the success and accuracy of its component parts. The same is true when considering

the estimation of the update cost, supplied by the ExperimentBuilder, which can

only be as accurate as the preceeding processes. The ExperimentBuilder uses cost

profiles to describe the costs and efforts required to rebuild a particular component. This

description is made, albeit admittedly somewhat clumsily, in terms of fiscal and temporal

cost in order to express the real-world effort in updating. By expressing effort in these

terms, the internal workings of the estimation can be hidden. The ExperimentBuilder

allows the user to inspect all aspects of the estimation as well as the raw value versions

of the presented estimations.

When a component requires an update, the computed cost of every dependant compo-

nent is weighed and presented to the user so an informed decision can be made. The

cost calculation is iterative so the cost to update a dependant component contains the

total cost of its dependant components as well. When the experimental environment is

complex with many dependant components, the cost of updating a single component,

no matter how trivial, can be significant.
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7.2.2.3 Technical Limitations

Our research question drives the application of a change management framework for an

experimental environment. Before integrating change management, it was necessary to

develop a framework capable of modelling an existing experimental environment, requir-

ing an accurate model for the experimental environment together with an adequate user

interface to drive the prototype, resulting in a substantial piece of work. Considerable ef-

fort was directed at building the experimental framework of the ExperimentBuilder,

much of it requiring construction before work on the change management framework

could begin.

As such, some elements of the ExperimentBuilder, in particularly the user inter-

face, feel undernourished as a result of not being core material. The model persistence

methodologies are a good example of this. It was clear from the start that we would

require a data management system to handle the experimental data and components

including the management of environmental persistence. The ExperimentBuilder en-

vironment will likely contain multi-versioned components and we, therefore, require a

version-enabled data management system. After some initial investigation, we decided

to devise a bespoke data management solution to handle the multi-versioned experi-

mental data. Persisting the experimental data, with all versions intact and retrievable,

presented a significant challenge.

7.2.3 Performance of the Keyword Profile Approach

Much of our research and framework for managing experimental change depends on our

use of keyword profiles. We use keyword profiles to represent experimental component

versions in order to identify inter-component relationships and establish the impact

propagation network. We use delta keyword profiles, a derivative of the component

version keyword profile, to represent a change from one component version to the next.

Due to their inherent similarity, we can then compare dependant components against

the change to determine the impact. The impact is simulated through our impact

propagation network and, together with the registered cost profiles for each dependant

component version, we estimate the levels of required effort to update due to the change.

We use keyword profiles as an abstraction of a component version but what impact does

this abstraction have on performance? In other words, how good a representation of

a component version is the keyword profile? We have already described some of the

limitations of keyword profiles, as well as some of the benefits, in the previous sections.

But we have, so far, made no mention of the performance of the keyword profile when
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compared against the components themselves, without an abstracted representation16.

In other words, to what degree is a keyword profile an accurate representation of a

component version?

In order to measure the performance of a keyword profile, and by extension the delta

keyword profile, we have constructed an experimental dataset, upon which we can enact

some determined change. Based on this change, we use the ExperimentBuilder to

determine the degree of change from one version to the next using the integrated keyword

profile system. We have discussed the limitations of the keyword profile for detecting

change in value-based keywords. Indeed, we have decided to remove values altogether

from the profiling mechanism due to the difficulty in assessing their semantic value.

Because of this design choice, the ExperimentBuilder will perform poorly on value-

intensive components, preferring components with few or no value data items. We have

chosen two data components, upon which to base our performance metric. Ideally,

as for the HDM performance, we would select a component populated with random

data. In this case, however, a random data component would nullify the functionality

of the keyword profile, essentially generating an evenly distributed profile containing no

semantic meaning. Although it weakens the performance analysis, we must provide a

component with semantic meaning in order to fully test the keyword profiling system.

We are using the demographics datasource, described in section 3.2.1 with varying lev-

els17 of randomised change appearing within the dataset. We will use the Experiment-

Builder to detect the levels of similarity between the original and simulated datasets,

the same methodology that looks for component version change, using keyword profiles

to abstract the component versions. We will also employ the brute-force dataset compar-

ison technique18, available in the ExperimentBuilder to provide a point of comparison

for the keyword profile approach.

In order to test the performance of the integrated keyword profiling system, we are

comparing the accuracy in detecting change at varying levels. We compare these results

against those of a brute-force approach, which literally tests each data item measuring

change. The difficulty arises, not in affecting the change, but deciding how to simulate

the change. The dataset can be changed by varying degrees and these changes are

affected randomly throughout. The difficulty is determining to what the randomly

selected data items should be changed in order to adequately simulate a real world

change. If we change the data item to a random value, we are effectively removing a

16We have already made the case for using a component abstraction, such as a keyword profile, pri-
marily for the enabling of heterogeneous component comparison.

17We apply levels of 1, 2, 5, 10, 15, 20, 25, 50 and 60 percent of change to simulate the new version.
18The brute-force comparison technique compares every single data item in both versions, returning

a relative difference value to represent the degree of change.
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(a) Randomly generated change

(b) Randomly spliced data change.

Figure 7.2: Performance results for the ExperimentBuilder.

portion of the sample dataset and, due to the normalisation of the keyword profile, the

change will not be fully represented.

In order to successfully affect a random data change comparison, we first change the

selected data items to a single variable19 and the results of this comparison can be seen

in figure 7.2(a). But a dataset will not always change to the same value, which may

account for the observed accuracy fall-off at higher levels of randomised change. So, we

can not change the selected data items to random values and it is not ideal to use a

static value either, although this does yield much more feasible results.

19In our performance comparison, we randomly select data items and change them to the value ”Dat-
aChange”.
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Ideally, we need a legitimate series of dataset versions that have undergone normal, real-

world change. Unfortunately, it is very difficult to get hold of this kind of information

so we need to simulate the change. The random and static simulations mentioned above

do have merit, although the nature of the simulated change is unrealistic. The problem

is the data which we are introducing to the dataset in order to build the subsequent

version. Under real-world conditions, the introduced change will contain some semantic

value and will exhibit cohesive properties with the existing data, but how can this

be simulated? Figure 7.2(b) illustrates the performance of the ExperimentBuilder

on datasets that have been spliced, to varying degrees, with randomly selected data

items from other experimental datasets. We have selected two scientific, but unrelated,

datasets with which to splice the demographics data; a DNA descriptor file and a

portion of microarray data. The results can be seen in figure 7.2(b).

We can see from the illustrated results that the ExperimentBuilder performs to some

degree, correctly estimating each level of change in respect to others. There are, however,

a number of limitations of the file-splicing approach. Firstly, although we have achieved

semantic cohesion within the changed data items, there is no link to the existing data20.

Secondly, we must acknowledge that, even though the demographics dataset and the

splicing datasets are unrelated, using keyword comparison does report a small degree of

similarity, at around 5% for each of the splicing files. This affects the accuracy for change

detection by the ExperimentBuilder as around 5% of the data items being substituted

will report a false positive against the keyword profile for the original dataset.

The performance analysis of the ExperimentBuilder somewhat demonstrates the ef-

ficacy of the keyword profile. We can see that keyword profiles do estimate change to

some degree and, importantly, to react positively to percentage changes in the simulated

changed datasets. This is demonstrated most ably by the random, static value insertion

technique illustrate in figure 7.2(a). Ideally, we require real-world dataset versions but

these are difficult to come by and it is even more difficult to accurately assess the degree

of change between versions; that is the purpose of the ExperimentBuilder.

20As there would be in a real-world data change.
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Conclusion

The following chapter provides a conclusion to our work and this thesis. We begin by

detailing a summary of our contribution in section 8.1, followed by a critical appraisal

in section 8.2. Following this, we provide an appraisal of our contribution in comparison

with the relative merits of other competing technologies in section 8.3.1. Finally, we

look at possible future avenues that our contribution might take in section 8.4.

8.1 Summary of Work

During the previous chapters, we have often stressed the need for a new change man-

agement framework. This is primarily due to the lack of any existing framework that

specifically targets change and the impact of change. Largely in unchartered territory

with little previous research from which to derive system specifications, considerable

efforts were required to build a precise set of requirements for the framework. The body

of these efforts appear in the form of a comprehensive analysis of an existing experimen-

tal environment using a series of computational machine learning experiments. Further

details of this case study can be found in chapter 3.

The focus of the case study is aimed directly at elements of the experimental environ-

ment that can change. Various experimental components can change but they do so in

very different ways and these differences also impact the manner in which the change

propagates through the system. The case study analysis of chapter 3 not only details

the sample system but specifically all the identified points of possible change therein.

The report goes on to describe how each of the changes can cause impact throughout

the system. At that point, we were able to conclude the type of changes that could

occur within a sample environment and, to a certain degree, observe how those changes

affected the rest of the system.

150
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Having identified a set of regularly occurring changes, it appeared that many occurred

within the experimental datasets so it seemed sensible to start focussing on datasets

and, in particular, the associated metadata. The Hashed Data Model (HDM) helps

e-scientists identify, track and manage these types of change. The HDM is a tool that

abstracts an experimental dataset together with any associated metadata to build a

model that can be used to detect changes between versions of datasets. The HDM

breaks down the dataset and then reconstructs it as an abstract model using hashes to

represent specific portions of the dataset. If we break each dataset down in exactly the

same way, we can then compare one to another but the main goal of this approach is

to discover whether a dataset has changed from one moment to the next. The hashed

value reflects a change no matter how small or insignificant. The characteristics of the

HDM allow the user to potentially retain a unique version of the dataset for every single

experiment. Of course the benefit of the hashed value, in that it can represent a change

no matter how fine, is also its most significant restriction. Using hashes, we can tell if

there has been a change but we know nothing about the size or strength of the change.

We have incorporated some techniques into the HDM in order to rectify this limitation

and, to some extent, these have been successful but there must be some abstraction of

the dataset and this results in some loss of precision.

In order to successfully implement an experimental tracking framework, it is necessary to

model the experimental environment within which the changes occur and the tracking

is to take place. The ExperimentBuilder is the product of this requirement and

embodies the experimental processes, allowing the user to track and observe both change

and impact within their experiments.

There were three main stages in the construction of the ExperimentBuilder; construc-

tion of the experimental environment, tracking experimental impact and persisting the

entire multi-version environment. The ExperimentBuilder provides users with the

ability to define Lines of Enquiries (LOEs), which encapsulate the idea of a particular

line of thought or hypothesis. LOEs can be nested, much like a file directory, to allow

the user to build up their entire experimental environment within a single application.

Users must also define the experimental components that they intend to use and the

ExperimentBuilder provides tools to construct these. Once these components have

been defined, experiments can be constructed, assigned to LOEs and populated with

components.

The ExperimentBuilder estimates impact in the experimental environment by mea-

suring relationships between components. It is easy to hypothesise how we could identify

relationships between components of the same type, i.e. dataset vs. dataset. We can

define algorithms to look for similar field names, field types, size, or metadata or simply
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a direct data comparison and then imply a relationship based on the degree of simi-

larity. But what about components of differing types? How do you compare a dataset

to a method? The ExperimentBuilder uses a heuristic algorithm that breaks down

each component, regardless of type into a single, measurable keyword profile (kwp) that

can be used as a representation of the component and compared against the kwp of any

other component. The ExperimentBuilder automatically builds kwps as components

are added and then estimates the relationships of the new component to those within

the rest of the environment. It also allows the user to fine-tune the impact relationships,

should they wish.

At some point, a change will occur somewhere in the environment. When this happens,

the ExperimentBuilder measures the strength and nature of the change and prop-

agates it towards all components that have an identified dependant relationship but

change cannot simply be passed on. A change may occur in one component that should

not be passed on to a dependant component. Consider a scenario where a change in

the source component1 does not affect a dependant2, regardless of the strength of the

overall relationship. The ExperimentBuilder overcomes this problem by abstracting

each change into a model similar to a component kwp. The change kwp can be compared

against a component kwp to determine the effect of the change. We can then propagate

the change based on its own characteristics rather than that of the source component.

Using methods similar to these ones, the ExperimentBuilder can accurately propa-

gate impact through multiple levels of related components. For exact descriptions of the

tracking methods, please refer to section 6.4.

The final stage of the construction of the ExperimentBuilder is the persistence of

the environment requiring a relatively complex solution and is far from trivial. We can

easily employ strategies for statically persisting datasets, methods and tools but when we

consider that these components are changing and we need to persist all available versions,

environment persistence becomes complex. We require a solution that can record every

version without becoming inflated and unmanageably large. We have developed several

strategies for persisting a multiple version environment and these are described in more

depth in section 5.6.

8.2 Critical Appraisal

The purpose of the research was to address the problems of change within an exper-

imental environment. The practical outcome of the research is an application that

1We refer to source components as those where the change or impact originates. It may not necessarily
be the original source of the change.

2A component that is defined as receiving impact from a source component is defined as a dependant.
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encapsulates an experimental change management framework. Throughout the intro-

ductory chapters, we presented a concise history of genomics, focussing primarily on

the Human Genome Project (HGP) as an example of a large-scale data-intensive

project. We discussed the problems inherent in such projects and described some meth-

ods that have been conceived to deal with them. Inevitably, some problems receive more

attention than others and we highlighted some areas that received relatively little. One

significant area is the evolution of environmental data and tools over time. These can

often change in an unpredictable and unannounced manner causing significant problems

for dependant projects. The motivation of the work (section 1.1) builds the research

question focussing on the HGP as an example. We could have described numerous

other projects with similar requirements that prompted similar research questions and

many of these are also described in chapter 2. Rather than discuss multiple applicable

projects, we focus on the HGP in order to simplify the background to our research

question.

Due to a lack of existing research on the subject of experimental change management

and impact propagation, it was necessary to find a clear and appropriate case study that

encapsulates frequent and unannounced change and embodies the associated problems.

The case study uses data from a private collaborative database consisting of clinical

and proteomic data from 350 patients. The data is then mined using various machine

learning techniques in order to derive patterns and relationships within the data. Ad-

ditionally, proteins can be cross-referenced from an external public database. The case

study contains many features that make it suitable for our research. Firstly, it employs

both private, collaborative and public datasources. Different datasources behave differ-

ently with respect to change depending on their characteristics and it was important

to find a case study that used, at least, some varying datasources. For any given re-

search, it is necessary to have sufficient examples in order to demonstrate the validity

of the work. Due to the lack of pre-existing research, there was an inherent lack of

identified case studies appropriate for investigating change management. We have built

a comprehensive analysis of an appropriate system, presented in chapter 3.

Throughout the course of the case study analysis, we focussed on measuring the states

of change that occurred within the system. We conducted an overview of the entire

system, providing a detailed analysis of all parts of the experimental process along with

all aspects of data integration. We followed up with a document detailing all the parts

of the system that could initiate a change. Every conceivable change in the experimental

environment was recorded and was then followed up by a detailed analysis of how each

change could propagate through the system and the resulting impacts. The result of the

case study provides a complete change profile for an existing experimental environment
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specifying every possible change with the identified impact. We use this analysis to build

a system specification, taking into account all the identified requirements.

The Hashed Data Model (HDM) prototype has be shown to work within an existing

biological domain with real biological data, including the data from the case study.

However, the HDM is only an initial step towards a comprehensive framework for

change management. In order to provide real usability for biologists, more must be

added to the HDM. The limitations of the HDM are uncovered as we investigate the

inner workings. The HDM builds an abstraction of the dataset and therefore, we can

never recover the dataset in its original form. This is a problem if the changes are to

be investigated on a fine scale. Consider the HDM with a granularity factor of one3.

Even at this level of granularity, we can not infer what the data values were and what

they are now. For many cases, this is an acceptable level of granularity but for explicit

data investigation, we propose the addition of a versioned database containing the data

sources used for model creation and in silico experimentation.

The analysis of the limitations of the HDM highlights several requirements for a next

step. Among other requirements, it is clear that we require a fully persistent experi-

mental environment that encapsulates all aspects of any experiment. One of the major

achievements of the ExperimentBuilder is the ability to accurately and fluidly repre-

sent a portfolio of experiments and faithfully record the interactions between. The Ex-

perimentBuilder allows the user to create experimental components in order to build

experiments. As these components are built, they are analysed by the Experiment-

Builder and compared against any pre-existing environmental components to identify

possible inter-component relationships. We can then estimate and define relationships

not only within experiments but between them throughout the entire environment.

One of the principal characteristics of the ExperimentBuilder is the accumulation of

experimental metadata to form a representation of the environment. This approach has

several advantages, discussed in chapters 5 and 6. There are, however, significant limita-

tions to this method. The most notable, perhaps, is the lack of workflow re-enactment.

We store the component metadata rather than the components themselves and, because

of this, there is no physical link between our experimental environment and the external

experimentation. We can not, therefore, initiate or re-run experimentation from the

ExperimentBuilder. Moreover, the ExperimentBuilder is not only reliant on user

participation in order to function effectively but requires strict data authenticity to al-

low valid change management. There are currently no formal mechanisms for enforcing

correct user input within the ExperimentBuilder.

3A granularity of one represents a HDM where every single data item is modelled with its own
individual hashed value.
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We have constructed an original change tracking algorithm, implemented within the

ExperimentBuilder, allowing the estimation of environmental impact and, more im-

portantly, enabling the estimation of multiple levels of propagated impact. Clearly, we

would like to know the effects of changes and how they ripple through the system. The

ExperimentBuilder enables us to do that. There are limitations to the change man-

agement framework. All aspects of the change management use keyword profiles and

herein lies some of the main limitations. The use of keywords can miss some key points

of the data; values are disregarded under the strict use of keyword profiling and this can

ignore some significant component differences. The same keyword can carry a different

semantic meaning, depending on its context and placement and, currently, the keyword

profiling techniques do not account for non-related identical keywords.

A significant achievement for the ExperimentBuilder is the successful persistence of

the experimental environment. Given the complex nature of the environment together

with the requirement for multi-versioned components, this proved to be far from trivial.

We used a MySQL database to house the environmental data. A MySQL imple-

mentation has several benefits, most notably the ability to house data either locally

or remotely with the management of multiple remote connections. As Experiment-

Builder connections are made to the database in the form of either a persist or a restore,

we can monitor multiple users, avoiding such problems as deadlock. There is currently

no specific functionality included in the ExperimentBuilder to manage concurrency.

8.3 The Contribution Revisited

This section describes our main research contributions to be considered. In chapter 1,

we have introduced the important problem of biological data and experiment versioning

which, hitherto has been largely ignored. We have presented a clear definition of related

problems that lead ultimately to our research question.

In chapter 2, we have presented a comprehensive and thorough examination of all the

relevant background, including an extensive review of existing related technologies to-

gether with an appraisal of each as it relates to our research. At that point, we can

conclude the need for a new change management framework. The analysis of an existing

experimental environment in chapter 3 reinforces our case for a change management

framework. This case study is an example of the requirement for change management

and as validation for our change management framework.

There are two main stages of implementation within our research. The HDM is a

framework that provides a light-weight abstraction of an experimental dataset enabling
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change tracking at varying granularities as well as semantic differentiation of data. The

HDM has limitations, that have already been discussed, and the ExperimentBuilder

represents a progression to a complete representation of an entire experimental environ-

ment, encapsulating all required aspects of experimentation into a single, manageable

framework, allowing investigation and integration of multiple experimental components.

The ExperimentBuilder provides the experimental framework for our change manage-

ment methodologies to track changes in our environment and determine the real-world

cost of updating any affected components.

The outcome of our change management framework is a cost of updating, presented to

the user in terms of time and effort based on the estimation of impact resulting from a

single or series of changes.

8.3.1 An Appraisal of the Contribution Relative to Other Products

Over the past chapters, we have made mention of other technologies which may, in

part, compete with our offering, encapsulated by the ExperimentBuilder. At the

conception of the research, a review of the relevant literature was carried out with the

conclusion that there existed no single tool or framework that dealt specifically with

the evolution of data and/or processes that combine to form experiments. At the time

of writing, there still remains no single framework or tool for achieving that goal, save

for our implementation. There are, however, several technologies with which we can

compare various parts of implementation and approach to discuss the relative merits

and demerits of each.

It would be inappropriate to talk about versioning without mentioning traditional ver-

sioning methodologies, in particular CVS and other related technologies. For more

detailed information on these technologies, please refer to section 2.2. Traditional ver-

sioning methods have been very popular over the years and are increasingly being in-

tegrated into modern operating systems4. Versioning is also being employed not just

by developers or computer super-users but increasingly by a mainstream audience with

the release of popular tools such as Dropbox5, a light-weight snapshotting tool for

multi-user, any-location access.

The limitation of traditional versioning systems, however, is that the target of the ver-

sioning is invariably a text file6. Traditional versioning systems are aimed at versioning

text or text-based resources and, because of this, makes them inappropriate for dealing

4We refer to Time Machine available as standard in Apple’s Mac OS X.
5More information can be found at http://www.dropbox.com
6This excludes snapshotting tools that generally do not consider the internal elements of a file anyway.
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with the large-scale management of evolving experimentation. We require the repre-

sentation of many versions with multiple inter-component dependencies and traditional

methods do not possess the expressivity to handle this. This is not surprising; the prob-

lem domain is outside that which traditional methods were designed to work. We do,

however, use traditional methods where appropriate. When retaining multiple versions

of components (e.g. methods), we use CVS to generate the backwards diff from the

current version. This saves from having to retain the complete textual copy of each

version. We use other mechanisms for retaining the inter-component dependencies.

Shui et al. [83] present an XML-based version management system for tracking complex

biological experiments in order to describe changes in the XML-based description. This

provides a useful format for representing biological experiments and is one of the first

mentions of biological processes being as important as the data that is used to generate

the results.

But we need to go much further than this. It is not sufficient to say that something

has changed. The drawback with most tools concerned with change is that they have

been designed to be reactive. By this, we mean that at some point during or after

experimentation, presumably after a failed experiment7, we can look to see if something

has changed and then do something. This strategy has been adopted by most, if not all,

data providers. The larger primary data providers, such as Swiss-Prot and Ensembl

allow us access to the archives to compare versions of data but these are only really

useful after an experiment has failed. There is little to promote inspecting previous

versions before running the experiment in order to establish whether an experiment will

pass or fail; it would take too long. But experiments can require a lot of time and/or

effort to run. It would be preferable to know whether an experiment might be affected

by a change without running it.

We aim to provide a system that is proactive, a revolution of the run-it-and-see methods,

that establishes a framework to estimate how an experiment may be affected, given a

change to one of its components. This is a very new idea and, as such, there is no specific

methodology with which to make a direct comparison.

We can look for similarities with the Taverna e-science workbench, the main user inter-

face for myGrid. Taverna is a large-scale project that provides language and software

tools to enable the design and implementation of workflows. Both Taverna and our

own ExperimentBuilder allow the design of workflows, the difference being that Ex-

perimentBuilder cannot implement the workflow. This does, however, give the Ex-

perimentBuilder a significant advantage in that it is not limited by the components

that can be specified in a Taverna-compliant workflow. In the ExperimentBuilder,

7We refer to an experiment as failed if that experiment is not returning the expected results.
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the user can design the workflow in any desired way that should conform only to their

own experimental environment.

There is very little literature as to how change detection is handled within Taverna and,

indeed the whole of myGrid. If the services or infrastructure within myGrid decay, so does

the workflow. There are tools that can help identify the decay of the workflow, such as the

aforementioned Workflow Monitor, but debugging failing workflows remains a crucial

but neglected topic[41]. Of course, it is not a requirement of the ExperimentBuilder to

implement a workflow just as the management of evolving components is not a principal

requirement of Taverna so it is not possible to compare the two technologies directly.

It is perhaps useful to think of the ExperimentBuilder as sitting aside Taverna

with regards change management. Using the ExperimentBuilder, we implement a

workflow not for the purposes of enactment but to identify dependencies within our

experimental environment which may lead to impacts to a component as a result of a

change somewhere in the environment8.

8.4 Avenues for Future Work

There are numerous avenues for expanding and improving the Experiment Builder.

We can improve the way the ExperimentBuilder interacts with the in silico experi-

mentation and revisit the possibility of integrating parts of the experimental process di-

rectly into the ExperimentBuilder possibly allowing workflow enactment. Individual

improvements aside, the goal of the ExperimentBuilder is to improve the experimen-

tal process through the addition of change management. We have shown the change

management framework to successfully deal with the issues raised by our analysis of the

case study. We have demonstrated that the ExperimentBuilder works but we have

not fully analysed whether it is worth employing the ExperimentBuilder. In order

to fully demonstrate the efficacy of the ExperimentBuilder, we need to integrate it

into a large-scale experimental project in order to analyse whether the addition of the

ExperimentBuilder is justified; i.e., is the level of required user interaction worth the

benefits provided by the ExperimentBuilder? This is an important aspect to con-

sider, especially as the success of the ExperimentBuilder depends on the usability of

the system, particularly the willingness of the user to employ the system.

While there has been substantial progress in the areas of biological data management and

related areas over recent years, there is still relatively limited work carried out on biolog-

ical change management. The purpose of the the ExperimentBuilder to improve the

8For details on the precise operation of the ExperimentBuilder, please refer to chapters 5 and 6.
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experimental process by enabling change management and there are many opportuni-

ties for improving existing experimental applications. There are several future directions

for related work, including four specific high-level directions that seem promising; sav-

ing of workload due to accurate impact estimation; validation and/or certification for

safety-critical experimentation; workbench and research validation; fraudulent research

detection.

In chapter 1, we describe a scenario whereby a scientist, carrying out normal experimen-

tation, might subsequently find that the source data for the experiments has changed.

At this point, there are some difficult questions to consider, especially if the line of af-

fected experimentation is current and/or important. The scientist needs to know, with

some degree of certainty, how the data source has changed and, more importantly, how

these changes may affect their experimental results. Our change management frame-

work, encapsulated by the ExperimentBuilder helps such a scientist not only identify

these changes as they occur, but convey an accurate estimation of the impact on their

results. This allows us to know when we may need to update our results but more im-

portantly, allows us to know when the data has changed insignificantly so as to not affect

our results. Results obtained from complex experimentation may take many hours and

computational cycles to reproduce, clearly undesirable if such an update is not required.

We can, theoretically, save a great deal of time, therefore increasing productivity and

simultaneously improving the reliability of results.

But we can provide much more with a change management framework. Consider an

experimental system containing very important experiments. Note that any scientist

might consider their experiments very important but for the moment, we are interesting

in only those experiments yielding results of a critical nature; disease diagnosis and

prognosis, drug delivery systems, or part of a clinical trial for an important drug. The

success of such experimentation depends heavily on achieving valid results in a timely

manner and can, therefore, be thought of as safety-critical experimentation. In this

situation, a change management framework can be implemented as a validation process

for safety-critical results by ensuring that the results have been generated by the most

current state of experimental process.

Currently, results are generated through a specific experimental process and then sub-

mitted, presumably in an up-to-date state. Without a change management framework,

however, the description of the state is meaningless. As we have already discussed, the

data and tools that form experiments can change in a unannounced and unpredictable

manner. Considering this state of constant change, results may be out-of-date at any

point after submission. We can attach a date, or some other brief metadata, to the
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results which may give us an indication of the reliability of the data but a change man-

agement framework allows us to record so much more. Results can be presented together

with metadata describing the experimental process, much like the implementation of the

ExperimentBuilder, and this allows us to measure the validity of the results at any

point in the future. We may need to update the results the very next day or they may be

reliable for ten years, depending on the changeability of the experimental components.

For safety-critical applications, we will know the exact moment that results become

unreliable and, as importantly, we will know for how long they remain valid.

We can easily identify safety-critical applications that require a strict validation process

but when we consider more mainstream research avenues, the same advantages of a

change management framework can be applied. With a few conceptual tweaks, we can

conceive a validation framework for an entire line of research. The ExperimentBuilder

monitors experimental components in order to determine the impact on results. But

the story doesn’t end there. Some of the results go on to form the basis of other

experiments and the experimental process continues. Some of the data is used to form

direct analyses or graphs and these may appear in a publication or report of some kind9.

If we can define graphs, reports and publications as components within a framework

such as ExperimentBuilder, we can then define them as dependents of experiments

and, ultimately, data sources. Using a change management framework in this way,

whenever data is presented in any form, it comes complete with an associated validation

framework. It could therefore become impossible to present data, either in a publication

or simply informally, if the presentation was based on data that was out-of-date.

We could go further than simply validating the presentation of data. Unreliable data

can occur for many reasons; some beyond the control of the scientist but some due

to poor scientific procedure. A change management application providing a validation

framework can help identify the state of data reliability. But sometimes, unreliable data

can be purposely presented. More and more cases involving scientific fraud have come

to light over the last two decades, largely due to an increase in biostatisticians who

have begun to work more closely with physicians and scientists in many branches of

medical research[74]. There are many ways to commit scientific misconduct and it is

generally very difficult and costly to identify and investigate potential cases[93], but there

is evidence to suggest research fraud to be more prevalent than originally thought10.

Scientific fraud is a very serious issue and can, especially in the case of medical research

fraud, endanger human life. In 1997, two cancer specialists, Friedhelm Hermann and

9It may sound obscure describing data in this way but this is precisely how data flows from its initial
source to the point where it is presented as evidence to support theory.

10A review in the British Medical Journal (1999) found that half of the US biomedical researchers
accused of scientific fraud and subjected to formal investigations in recent years were found guilty of
misconduct
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Marion Brach were found to have forged several publications and were subsequently

dismissed from their respective posts. Over the next 18 months, it transpired that nearly

100 published papers over the previous ten years contained apparent data manipulations

and a further 120 publications could not be validated and possibly contained wrong data.

The data manipulation became clear in several images where old data had been either

wrongly used or manufactured. It is impossible to measure the impact, ironically given

our research, of such deception, especially given the longevity of the misconduct. How

much research is based on these fraudulent publications and how can we now guarantee

the quality of such work and how could a change management framework help?

If we were to set up the ExperimentBuilder to flag changes to source data for any

published work, we could tell immediately when any published data were to become

invalidated. This would make it impossible to publish work that was based on source

data that was either out-of-date or had been manipulated throughout the course of

experimentation11. Of course, employing the ExperimentBuilder to function in this

way would be the choice of the individual scientist and we make no exception for those

individuals who choose to avoid a genuine approach to research. At the very least, the

ExperimentBuilder could eradicate accidental data unreliability and, if implemented

properly, it could help remove the possibility of any out-of-date data appearing in pub-

lished, peer-review form for any reason.

11The ExperimentBuilder would identify these manipulations as changes, albeit regardless of intent.
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