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Abstract

Tractography is becoming an increasingly popular method to reconstruct white matter connec-

tions in vivo. The diffusion MRI data that tractography is based on requires a high angular

resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish

kissing from crossing fibers. However, scan time increases with increasing spatial and angular

resolution, which can become infeasible in clinical settings. Here we investigated the trade-off

between spatial and angular resolution to determine which of these factors is most worth invest-

ing scan time in. We created a unique diffusion MRI dataset with 1.0 mm isotropic resolution

and a high angular resolution (100 directions) using an advanced 3D diffusion-weighted multi-

slab EPI acquisition. This dataset was reconstructed to create subsets of lower angular (75, 50,

and 25 directions) and lower spatial (1.5, 2.0, and 2.5 mm) resolution. Using all subsets, we in-

vestigated the effects of angular and spatial resolution in three fiber bundles – the corticospinal

tract, arcuate fasciculus and corpus callosum – by analyzing the volumetric bundle overlap and

anatomical correspondence between tracts. Our results indicate that the subsets of 25 and 50

directions provided inferior tract reconstructions compared to the datasets with 75 and 100

directions. Datasets with spatial resolutions of 1.0, 1.5, and 2.0 mm were comparable, while the

lowest resolution (2.5 mm) datasets had discernible inferior quality. In conclusion, we found

that angular resolution appeared to be more influential than spatial resolution in improving

tractography results. Spatial resolutions higher than 2.0 mm only appear to benefit multi-fiber

tractography methods if this is not at the cost of decreased angular resolution.
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1 Introduction

In recent years, diffusion magnetic resonance imaging (MRI) has attracted attention for its

potential to reconstruct fiber tract pathways within the white matter (WM) using fiber trac-

tography (e.g., Mori et al., 1999; Basser et al., 2000; Behrens et al., 2007; Jones, 2008). High-

Angular Resolution Diffusion Imaging (HARDI) methods have been proposed to describe the

measured diffusion profile with a higher accuracy than the diffusion tensor (e.g., Basser et al.,

1994; Frank, 2002; Tournier et al., 2004; Tuch, 2004; Descoteaux et al., 2007). By describing

the diffusion signals with a higher angular resolution on a single shell in q-space (Callaghan

et al., 1988), orientation distribution functions (ODFs) can be estimated that allow for more

accurate representations of diffusion in complex fiber architecture. These multi-fiber methods

can be used to boost tractography performance, by more accurately tracking through regions

of crossing fibers (Descoteaux et al., 2009; Fillard et al., 2011; Jeurissen et al., 2011; Wedeen

et al., 2012), and have already found their way into clinical research studies (e.g., Reijmer et al.,

2012) and presurgical planning (e.g., Winston et al., 2014). In parallel to the developments of

multi-fiber methods, improvements in diffusion-weighted image (DWI) acquisition have led to

an increase in spatial resolution (e.g., McNab and Miller, 2008; McNab et al., 2009; O’Halloran

et al., 2013; Engstrom and Skare, 2013), which increase the spatial accuracy with which to

distinguish neighbouring structures within the brain.

A high angular resolution is essential for accurate diffusion modeling per voxel, whereas

a high spatial resolution is required for accurate localization of anatomy. Specifically, multi-

fiber tractography can resolve multiple fibers within a voxel, but has a difficulty distinguishing

between crossing and kissing fibers (Tournier et al., 2011). A high spatial resolution, however,

aids in making this distinction. Such different complex fiber configurations are present in vivo

and these configurations coexist within one voxel to various degrees, which means a high angular

and a high spatial resolution would be optimal to resolve the highly complex fiber architecture.
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So far, research has mostly focused on improving either spatial or angular resolution. In

this work, we aim to bridge the two, investigating the trade-off between angular and spatial

resolution. Early investigations into the effects of angular or spatial resolution on tractography

focussed on either one of the two effects, or independently looking at both. Kim et al. (2006), for

instance, have looked at the effects of voxel size on diffusion tensor tractography and were one

of the first studies to demonstrate the benefit of isotropic voxel sizes. For multi-fiber methods,

the effects of angular and spatial resolution were first examined independently of one another by

Zhan et al. (2012) to be followed up by the first study investigating the trade-off between angular

and spatial resolution (Zhan et al., 2013), using short time-matched acquisition protocols with

different angular and spatial resolution to show the added signal-to-noise ratio (SNR) of lower

spatial resolutions improved tractography results in a hardware phantom in the low SNR regime.

More recently, Calabrese et al. (2014) showed in an extensive ex vivo macaque study using six

time-matched protocols with varying spatial and angular resolutions that tractography results

greatly vary depending on the acquisition protocol, finding an optimal balance at intermediate

spatial and angular resolutions.

In this study we aim to extend these last works into high-end in vivo data, comparing

a unique human in vivo dataset that offers both high spatial and high angular resolution to

subsamples of this dataset that have either a high spatial or high angular resolution. The

overarching aim of this study was to determine whether increasing spatial or angular resolution

provides the largest gain and when (if at all) there are diminishing returns. Especially for

clinical settings, where scan time is limited, it is important to determine where scan time is

best invested in.
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2 Materials and methods

2.1 Simulated datasets

Simulations of diffusion-weighted signals for single and crossing fiber configurations have already

shown huge benefit in validating multi-fiber methods, both in terms of accuracy, precision, and

theoretical optimal acquisition settings (e.g., Jeurissen et al., 2013; Tournier et al., 2013; Zhan

et al., 2013). These contributions from simulations are essential in informing the community on

the performance of multi-fiber methods under varying SNR, modeling parameters, and number

of gradient directions. These, however, often focus on crossing configurations. To determine

how well tractography can resolve different complex fiber geometries under varying angular and

spatial resolutions, tractography results from simulations were used. Three configurations are

used: crossing, or interdigitating, fibers; brushing fibers; and kissing fibers (as shown in the first

column of Fig. 1). These configurations were created using the methods from Leemans et al.

(2005) in ExploreDTI (Leemans et al., 2009) with a fiber bundle thickness of 1 mm, with the

two fiber populations coming together at a 65◦ angle within the axial plane. The individual fiber

populations were simulated as cylindrically symmetric (i.e., λ2 = λ3) diffusion tensors (simu-

lated with FA=0.9 and MD=0.7×10−3 mm2/s). Diffusion-weighted images were generated at

b=1000 s/mm2 for each configuration at 1 mm isotropic resolution (at an SNR of 10; Sijbers

and den Dekker, 2004) and two angular resolutions (25 and 100 gradient orientations sampled

on the half-sphere (Jones et al., 1999)). The simulated DWIs at 1 mm resolution were down-

sampled to 2 mm for comparison at both resolutions. Multi-fiber deterministic tractography

was performed on these datasets as detailed in section 2.5 for the in vivo data.

2.2 Data acquisition

A variant of the recently proposed 3D multi-slab EPI method by Engstrom and Skare (2013)

was used to acquire high-resolution isotropic DWI data. While conventional 2D acquisitions
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only Fourier-encode each slice in-plane (kx and ky), 3D acquisitions also encode each slab along

the z-direction, kz. Here, a slab of 7 mm thickness was excited, and read out with a field-of-

view (FOVSLAB) of 232× 232× 8 mm and an acquisition matrix (matrixSLAB) of 232× 232× 8

was used to achieve 1 mm isotropic resolution. The matrix was acquired by ‘stacking’ 2D EPI

readouts, each with a different phase-encoding along the kz-dimension. Each of the 8 kz phase-

encodes was acquired in a separate excitation. Each in-plane EPI readout was performed with

a GRAPPA acceleration factor of 4 and a partial Fourier factor of 0.7. A two-echo readout was

used: the first echo was used for the imaging data and the second was used as navigator for

non-linear 2D phase correction before combining the kz-encodes. Given the small slab thickness,

through-plane phase errors were ignored. The echo time of the imaging and navigator echoes

were 71.5 and 146.6 ms, respectively, for a TR of 7 s. As for most MR acquisitions, the slab

profile—with a prescribed 7 mm thickness—was not perfectly rectangular. To account for slab

boundary artifacts and prevent aliasing of the slab back onto itself (see Fig. 2 in Engstrom and

Skare, 2013), only 5 of the 8 kz-encodes of 1 mm each were used. Thirty slabs were acquired

and spaced in such a way that the combination of the 5 mm volume of the 3rd-7th kz-encodes

of each slab formed a continuous coverage of 150 mm to image the entire brain. Imaging was

performed on single female subject (30 years old; healthy, no lesions) on a 3 T GE MR750

scanner with a Nova Medical 32-channel head coil.

For the HARDI acquisition scheme, 100 unique gradient orientations were acquired (Jones

et al., 1999) with a b-value of 1000 s/mm2 and single-refocused diffusion preparation. To

account for possible background gradients that could modify the diffusion-weighting orientation

and magnitude (Neeman et al., 1991), each gradient orientation was acquired with opposing

directions (i.e., gradient directions g=[0 0 1] and g=[0 0 -1]).

To achieve DWI data with a high geometric fidelity, a high in-plane parallel imaging accel-

eration of 4 was used, as shown by Holdsworth et al. (2012) to greatly reduce EPI distortions.

In order to reduce geometric distortions even further, each DWI was acquired two times, once
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with the phase-encoding direction in the posterior-anterior direction (blip-up), and once in the

anterior-posterior direction (blip-down Chang and Fitzpatrick, 1992; Skare and Bammer, 2010).

Each of the 100 unique gradient orientations was acquired with two EPI phase-encoding

directions (AP and PA) and opposite gradient directions (AP+, AP-, PA+, and PA-), for a

total of 100 × 2 × 2 = 400 DWIs. In addition, 40 volumes without diffusion-weighting were

acquired (b=0-images, 20 with ‘blip up’ and 20 with ‘blip down’). Because of the 3D nature

of the sequence, the total acquisition time per image was TACQ = TR × Nkz = 56 s, for a

total acquisition time of 440 × 56 s = 24640 s = 6h50m40s. To acquire this amount of data,

the total acquisition was fragmented into 20 sessions of 20.5 min., which were performed over

several weeks. Scanner stability over the study duration was monitored, as detailed in a study

performed on the same scanner at the same time (Maclaren et al., 2014). In each session, 20

DWIs and 2 b=0-images were acquired as follows: 5 unique gradient orientations acquired with

AP+, AP-, PA+, and PA-; and one b=0-image with opposite EPI phase-encoding readout.

To ensure accurate repositioning over different scan sessions, and thus reliable data fusion, a

custom-made ‘head holder’ was created based on the geometry of the head coil—as determined

via CT—and an anatomical MR scan of the subject’s head (Fig. 2). As a result, this head holder

molded around the subject’s head and fit tightly into the head coil for immobilization and near-

perfect repositioning. The head coil used in this work had a noncircular cross-section so that the

insertable head holder fit into the coil in only one unique way. The head holder was constructed

using a 3D printer, and yielded a very high repositioning accuracy over repeated scans (< 1◦).

A more detailed description of this positioning approach and its validation can be found in (Vos

et al., 2013a). This head holder also helped to prevent intra-volume motion—a risk that could

seriously corrupt the acquired images and decrease scanning efficiency if not prevented. Note

that given the longer scan time per volume compared to 2D imaging, 3D imaging is much more

prone to motion artifacts—as any motion during the scanning of a volume could render the 3D

k-space of each slab erroneous.
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In addition, a single T1-weighted structural scan was acquired using the same 32-channel

head coil and head holder. A sagittal 3D FSPGR scan with a 256×256×192 mm field-of-view

(AP×IS×LR) and an acquisition matrix of 256×256×192 was made to obtain a 1 mm isotropic

resolution structural image. Sequence parameters include TE/TR/TI of 3.0/7.3/400 ms, and a

flip angle of 11◦.

2.3 Image preprocessing

Prior to analysis, data had to be fused from the different scan sessions into one dataset. First,

each dataset was corrected for possible background gradients and EPI distortions by combining

an affine transformation of the corresponding opposite gradient orientations using elastix

(Klein et al., 2010) with the Jacobian-weighted reverse gradient polarity method (RGPM) using

a multi-resolution b-spline registration (Chang and Fitzpatrick, 1992; Skare and Bammer, 2010).

The order of these two image registrations was chosen such that the affine registration was done

first, to increase the image SNR for the nonlinear b-spline registration of the EPI distortion.

Image intensities were normalized across sessions based on the b=0-images (similar to Froeling

et al., 2014). Lastly, all datasets were combined (similar to Froeling et al., 2014), correcting each

DWI for eddy current induced geometric distortions and subject motion by realigning all DWIs

and b=0-images to the the b=0-image of the first session using elastix (Klein et al., 2010),

with an affine coregistration technique and mutual information as the cost function. In the same

registration step, this DWI dataset was also transformed to the T1-weighted structural scan

(Rohde et al., 2004). The diffusion-encoding gradients were reoriented to account for subject

motion (Leemans and Jones, 2009).

2.4 Reconstruction of datasets with different spatial and angular resolutions

The full 1 mm isotropic dataset with 100 directions (dubbed 100 1.0mm) was reconstructed

into optimal subsets of 75 (75 1.0mm), 50 (50 1.0mm), and 25 (25 1.0mm) of the acquired di-
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rections. Here, the aim was to achieve as uniform a sampling on the half-sphere as possible.

These optimal subsets were selected based on their condition number of the gradient sampling

scheme (Skare et al., 2000; Dubois et al., 2006). The total number of permutations is
(
100
50

)
, or

roughly 1029, making it impossible to calculate the condition number of each subset. Instead,

107 random subsets were created and from this the optimal subset was chosen. In addition, these

datasets were also spatially subsampled to 1.5 mm, 2.0 mm, and 2.5 mm isotropic resolution

(25 1.5mm, 25 2.0mm, 25 2.5mm, etc). This subsampling was done in image-space to ensure

equal downsampling effects in all three dimensions, where all imaging volumes were downsam-

pled independently. Interpolation after downsampling was done using a trilinear interpolation –

which has inherent anti-aliasing properties. With large downsampling factors the downsampled

image may no longer give a complete representation of the underlying high-resolution data. We

used a 3×3×3 trilinear interpolation kernel centered on the point of interest with kernel weights

varying by downsampling factor. This can be regarded as a linear version of the work recently

presented by Cardoso et al. (2015).

2.5 Fiber tractography

For each reconstructed dataset, second-order diffusion tensors were estimated using the iter-

ative weighted least-squares approach (Veraart et al., 2013) to generate fractional anisotropy

and directionally-encoded color maps used to delineate tract inclusion and exclusion regions.

Constrained-spherical deconvolution (CSD, Tournier et al., 2007) was used to calculate the fiber

ODF (fODF) using a recursive response function calibration, using the settings from that orig-

inal paper (Tax et al., 2014). The fODF peak amplitude was set to 0.1, similar to the settings

in Jeurissen et al. (2011, 2013). Multiple values for the maximum order of spherical harmonics

(LMAX) were used (4, 6, and 8) except for the 25-direction datesets where only LMAX=4 was

used. The fODFs were created at the respective voxel grid for each spatial resolution.

Whole-brain deterministic multi-fiber tractography was performed based on the fODF peaks
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in ExploreDTI, using trilinear interpolation of the voxel-wise fODF spherical harmonic coeffi-

cients. An isotropic 1.5×1.5×1.5 mm3 seeding grid was used for all datasets. From these

whole-brain tractography results, several fiber bundles were segmented:

• the arcuate fasciculus (AF), as described in Catani and Thiebaut de Schotten (2008);

• the cortico-spinal tract (CST) that terminate in the primary motor cortex (M1) were

segmented as described in Wakana et al. (2007) and Aarnink et al. (2014). The ROIs

selecting M1 were 26 mm superior to the corpus callosum on the mid-sagittal slice;

• the trans-callosal bundle connecting the bilateral M1 areas, which will be abbreviated to

M1–M1. The same M1 selecting ROIs were used as for the selection of the CST.

Detailed illustrations of the tract-selection process is shown in the supplementary material. All

tracts were included that intersected both bundle-selecting ROIs.

To investigate how the results of deterministic tractography compare to probabilistic trac-

tography, probabilistic multi-fiber tractography of the bilateral CST was performed in MRtrix

(Tournier et al., 2012). Here, the inferior tract-selecting ROI was used as seed region from

where 20000 tracts were seeded, only including those that ended up in the superior ROI (using

the same ROIs as for the deterministic tractography).

2.6 Analysis

2.6.1 Simulated datasets

For each of the three complex fiber geometries – crossing, brushing, and kissing – tracts were

extracted for each of the possible subparts. In any two-fiber crossing, there are four branches

that could each be connected. Connections between each branch were investigated to determine

how well datasets of varying spatial and angular resolution could resolve the three configurations,

and results interpreted solely based on whether the correct connections were retrieved and

whether or not wrong connection were found.
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2.6.2 In vivo datasets

The anatomical accuracy of fiber tracts is difficult to quantify, given that no ground truth of

the wiring of the human brain exists. None of the acquired datasets can be regarded as the

‘gold standard’ for this work, but given that the full 100 1.0mm dataset using LMAX=8 has

the highest angular and spatial resolution, and should therefore provide the “best” results in

terms of tractography, overlap values were determined with respect to this reference. Because

of this lack of a gold standard, it is only possible to compared datasets against each other, and

to previously published work on neural anatomy (e.g., Catani and Thiebaut de Schotten, 2008).

Volumetric overlap

To quantify the volumetric overlap between segmented fiber tract bundles from different datasets,

a binary mask was created of all voxels intersected by the tract pathways included in that bun-

dle. Because tracts are continuous space-curves, this tract-mask is not restricted to the voxel

size of the dataset it was created from (as for instance demonstrated in track density imaging,

Calamante et al., 2010). For all datasets, the tract masks were created at a 1 mm isotropic

resolution. For the fiber bundles from deterministic tractography any tract that intersected a

voxel at any point within its volume was counted as being included in the binary mask. For

probabilistic tractography at least five tracts should intersect a voxel at any point to be included

in the binary mask. A higher threshold was used to account for the large number of tracts ini-

tiated from the seed region. From these binary masks the volumetric overlap was quantified as

the Dice similarity coefficient (Dice, 1945):

overlap =
2 (maskA ∩maskB)

maskA + maskB
(1)

where maskA and maskB are the tract masks of the reconstructed bundles to be compared, and

∩ indicates the overlap of the masks. The Dice similarity is bounded between total overlap, 1,

and no overlap, 0. All overlap values are determined with respect to the 100 1.0 mm LMAX=8
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reference. Dice overlap scores are the method of choice in reproducibility studies into in vivo

fiber tractography (e.g., Besseling et al., 2012; Bauer et al., 2013; Kristo et al., 2013b; Dayan

et al., 2015) which helps put the obtained overlap values in this work into perspective.

Anatomical correspondence

Volumetric overlap is one of the many possible criteria of fiber tract bundle correspondence.

Termination points of fiber bundles are another important aspect. Because of the different

configurations of the fiber bundles, this is evaluated differently for each fiber bundle:

• The segment of the AF investigated connects two language areas: Wernicke’s and Broca’s

in the temporal and frontal lobes, respectively (Dejerine, 1895; Benson et al., 1973; Catani

et al., 2005). Tract reconstructions were evaluated based on their ability to show cortical

projections into these areas;

• Tracts from the CST should terminate in the M1 gyrus. The superior ROI used to select

these tracts was drawn around M1, and the fraction of voxels in this ROI penetrated by

fiber tracts was inspected for each reconstructed dataset;

• Transcallosal fibers that connect the bilateral M1 areas were evaluated similar to the tracts

from the CST.

2.7 Methodological validation

Test-retest, or scan-rescan, experiments on multi-fiber tractography of fiber bundles have al-

ready shown that volumetric overlap can be markedly lower than unity (e.,g Kristo et al.,

2013b; Dayan et al., 2015), possible as a result from noise-related small variations in local fODF

estimation. To put the obtained overlap values between different reconstructed datasets into

perspective with respect to such test-retest variation, internal reference values of the volumetric

overlap were generated. From the full 100 1.0mm datasets, ten ‘test sets’ were created where

one random gradient direction was removed from each, generating very similar datasets. Be-
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cause these ‘test sets’ were nearly identical, only very minor changes in local fODF estimation

and subsequently in tractography results were expected, and the volumetric overlap values for

each fiber bundle between all combinations of these ten ‘test sets’ (45 combinations) can be

used as a reference standard against which to compare the overlap values from the differently

reconstructed datasets.

3 Results

3.1 Simulations

The results of tractography are shown in Fig. 1 for each of the three configurations. For

the three different complex geometries, angular and spatial resolutions have different benefits.

For a true crossing, the two datasets with a low angular resolution could only resolve one of

the populations. Here, a high spatial resolution does not help in resolving the crossing – one

instead needs a high angular resolution. For brushing fibers, as one might have on the interface

between two distinct fiber populations (e.g., the cingulum and the corpus callosum), a high

spatial or a high angular resolution both aid in resolving the intersection. Here, the dataset

with low angular and low spatial resolution could correctly follow one bundle but also finds

an erroneous connection. In this case, the low spatial resolution of 2 mm isotropic showed a

larger variability in tract location due to the increased partial voluming effect. The kissing

fibers experiment shows that a high spatial resolution is essential. Both datasets with 1 mm

resolution perfectly separate the two kissing bundles, whereas both datasets with low spatial

resolution also find crossings when these are not there. Here, the low angular resolution of the

25 2.0 mm dataset seems to perform better than the 100 2.0 mm dataset. Here, the 25 2.0 mm

dataset has insufficient angular resolution to resolve the complex configuration, whereas the

100 2.0mm datasets resolves this area – wrongly – as a crossing. As such, the 25 2.0mm dataset

that can’t resolve the configuration seems to perform better.
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3.2 Dataset reconstruction

Example diffusion-encoded color (DEC) maps of the full 100 1.0mm dataset and the datasets

reconstructed at lower spatial resolutions are shown in an axial and coronal view in Fig. 3.

3.3 Methodological validation

The overlap between the fiber bundles from deterministic tractography in the two near-identical

test sets with 99 gradient directions is shown in Table 1, where the mean, minimum, and

maximum overlap is shown for each bundle over the 45 combinations from the ten subsets.

Example fiber bundles of the structures with the highest (M1–M1) and lowest (AF) overlap are

shown in Fig. 4 from two test sets, to visualize where these differences occur. Although visually

there are only minor differences in the reconstruction of these bundles, the volumetric overlap is

lower than 1 (which would have indicated perfect overlap). For the probabilistic tractography

results from the bilateral CST the test-retest overlap values were lower, 0.81 for the left and

0.75 for the right bundle.

3.4 Comparison of spatial and angular resolution

The overlap in reconstructed tract volumes is shown in Figs. 5-8, for the AF, CST, and M1–M1

tracts, respectively. The fiber bundles are visualized in Figs. 9-14, respectively. This allows

for inspection of where differences are, facilitating the interpretation of why any differences in

volumetric overlap occur.

3.4.1 Arcuate fasciculus

Volumetric overlap

These results clearly show that the datasets with only 25 directions are inadequate to capture

the complete AF, where the reduced volumetric overlap originates largely from the more anterior

part of the bundle (Fig. 9a). Similar limitations are visible using LMAX=8 at only 50 directions
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(Fig. 9d). More generally, at the highest number of directions, 75 and 100, the use of LMAX=4

seems to give inferior overlap compared to the LMAX=6 and LMAX=8 (5). From Fig. 9 one can

see that the lower volumetric overlap for the datasets with 50 directions and for LMAX=4 at

75 and 100 directions seem to arise from a similar origin: tracts branching off laterally in the

middle of the AF that seem to belong to the corpus callosum. These limitations are present for

all spatial resolutions for low angular resolution and low LMAX.

Anatomical correspondence

As the datasets with low angular resolution suffer from various errors (Fig. 9) only the datasets

with 75 and 100 directions with LMAX=6 and 8 (Fig. 10) will be discussed in more detail. The

75 1.0 and all datasets with 100 directions show more posterior and lateral projections off the

temporal part of the AF, which are missed in the other low-resolution datasets with 75 directions

at LMAX=8 (arrows in Fig. 10). At the anterior end of the bundle, the only systematic difference

seems to be that the higher spatial resolution datasets show tracts branching off superiorly

(arrowheads in Fig. 10 indicate location in datasets with these branching tracts).

3.4.2 Corticospinal tracts

Volumetric overlap

In comparison to the test-retest overlap values from the methodological validation, the deter-

ministic tractography fiber bundles from 25 directions (LMAX=4) and 50 directions at LMAX=8

demonstrate low (<0.7) volumetric overlap (Fig. 6). For the left CST, overlap is very high

(≥ 0.80) between the 100 1.0 at LMAX=8 reference standard and the other datasets with 100

directions except the 2.5 mm resolution cases, and high (≥ 0.75) for the 100 2.5 and all datasets

with 75 directions. This indicates high similarities throughout a large range of parameters con-

cerning spatial and angular resolution. For the right CST, the overlap values are marginally

lower, and a clear decrease in overlap is observed with spatial resolutions of 2.0 and 2.5 mm.

For the probabilistic tractography similar patterns are observed albeit with lower absolute
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overlap values (Fig. 7), which could be expected from the lower overlap values from the test-

retest experiments (0.75-0.81 vs. 0.9 from deterministic tractography). The datasets seem to

benefit more from higher spatial resolution, with relatively equal overlap at 1.0 and 1.5 mm

and a stronger drop in overlap values when going from 1.5 to 2.0 mm then in the deterministic

approach. Moreover, the difference between the 75 directions and 100 directions datasets seems

smaller, with the 50 directions dataset also performing reasonably well.

Anatomical correspondence

From Fig. 11, showing the left CST, it would appear that the majority of the volumetric

differences arise from the inferior half of the CST. At the most inferior end, there are marked

differences in how the tracts remain within the CST or branch also into the medial lemniscus

(posterior to the CST), especially for lower LMAX and lower spatial resolution (open arrowhead).

Where the CST should only contain fibers from the primary motor area, the medial lemniscus

contains tactile fibers that terminate in the primary somatosensory area (Purves et al., 2001;

O’Sullivan and Schmitz, 2007; Oishi et al., 2011). These cortical areas are on different sides of

the central sulcus, and the inclusion of these lemniscal tracts in the CST for the lower resolutions

can therefore be regarded as a clear result of increased partial voluming. In the datasets with 75

and 100 directions, partial volume effects also cause tracts entering the cerebellar peduncles to

appear at a lower spatial resolution (as indicated with closed arrowheads for the 100 directions

datasets). For lower number of directions, LMAX, and spatial resolutions there is a tendency to

pick up tracts that branch off medially towards the basal ganglia (as indicated by white arrows

in Fig. 11).

Cortical visitation

Fig. 12 shows how the primary motor cortices are penetrated by the bilateral CST from deter-

ministic tractography. Here, for the right M1 the more lateral part of the cortex is visited by

tracts, for instance in all spatial resolutions of the 100 LMAX=8 cases, all of the 50 LMAX=6

cases, and 75 1.5 and 75 2.0 at LMAX=8. These projections were missed in the 75 1.0 dataset,
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likely because of a reduction in number of directions causing a reduction in angular SNR. The

lower spatial resolutions (75 1.5 and 75 2.0) have increased SNR and can recover these parts.

For all spatial resolutions, this is at the highest reliable LMAX value. Interestingly, intersec-

tion of the lateral part of the cortex by tracts seems to be consistent over the range of spatial

resolutions. In contrast, whereas at 100 directions the CST reconstructed with LMAX=8 do

show these lateral parts consistently, they are fully absent when using LMAX=6 or LMAX=4 to

reconstruct the same datasets. No clear distinction is found in the left M1 area, with almost

no tracts ending up in the lateral parts. At lower spatial resolutions the shape of the cortex

seems to be lost somewhat, with the visitation map becoming more continuous and compact

compared to the high spatial resolutions.

For probabilistic tractography the results are shown in Fig. 13. Generally, the lateral

part of the gyrus has a higher visitation than in deterministic tractography, combined with

smaller variations in cortical visitation at different angular resolution and LMAX. With lower

angular resolution of a dataset fewer tracts reached the M1 gyrus, causing a less densely sampled

visitation area (e.g., comparing the 50 and 100 directions datasets for the same LMAX), especially

at high spatial resolutions. Across spatial resolutions, a similar pattern was observed as in the

deterministic tractography (Fig. 12), where lower spatial resolutions yielded a more clustered

and convex visitation area. For the left CST a lot more of the lateral part of the gyrus was

visited than in deterministic tractography. Although this was effect was not observed in all

datasets and typically only included a few lateral voxels, this seemed to appear at low angular

resolution and/or lower spatial resolution.

3.4.3 M1–M1 tracts

Volumetric overlap

For the M1–M1 tracts, Fig. 8, only the 50 directions at LMAX=8 datasets seem to have sig-

nificantly lower overlap compared to the 100 1.0 reference tracts. The highest overlap values
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(0.90 and 0.91) are found for the 100 1.5 at LMAX=8 and 100 1.0 at LMAX=6 datasets. A clear

pattern of lower overlap is observed with a decrease in spatial resolution, for all number of direc-

tions and all LMAX values, with all datasets of 2.5 mm resolutions having overlap <0.7, except

for 100 2.5 at LMAX=8. For datasets with 75 directions, the LMAX value used seems to have

relatively little effect, with overlap values w.r.t. the reference being around 0.75-0.85. However,

there is some indication that use of lower LMAX on the datasets with 50 and 75 directions gives

greater overlap than using the highest possible LMAX value.

Anatomical correspondence

Visually, the fiber bundles in all these cases are very similar (Fig. 14). The most pronounced

difference is whether a lateral branch is included, as also seen in Fig. 4. The effect of spatial

resolution on overlap seems to arise mostly from a difference in cross-section along the entire

tract length.

Cortical visitation

The tract visitation maps of where in the cortical areas the tracts end up is shown in Fig.

15. These results appear very consistent concerning angular resolution for 75 and 100 gradient

directions and all values of LMAX. These patterns of visitation also appear reproducible at

spatial resolutions down to 2.0 mm. The tracts from the 50 directions lack the contiguity that

the higher angular resolution datasets show, whereas all 2.5 mm datasets show less well-defined

areas. It is also apparent that the M1–M1 tracts end more medially than the CST (Figs. 12

and 15).

4 Discussion

The purpose of this work was to give an overview of how different degrees of angular and

spatial resolutions impact fiber tractography results. We used the latest-generation 3D DWI

pulse sequence to acquire diffusion MRI data at 1 mm isotropic resolution with a HARDI

acquisition scheme comprising 100 gradient directions. Reconstructions of this high-resolution
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dataset were subsequently generated with a lower angular resolution, a lower spatial resolution,

or both.

4.1 Methodological validation

Prior to comparing datasets with different angular and spatial resolution, a statistical validation

was performed. The volumetric overlap between fiber bundles from two nearly identical datasets

is in the range of 0.84-0.95, depending on the structure of interest (Fig. 4). The excellent

structural correspondence between these different reconstructions can be appreciated along the

length of the bundle. The differences in volumetric overlap are mostly caused by individual

fiber tract pathways deviating from the core bundle.

The different reconstructions analyzed in this work could be considered some variant of

test-retest or intra-subject repeatability, and our overlap values are in the same range as the

previously reported reproducibility of tractography (e.g., Ciccarelli et al., 2003; Heiervang et al.,

2006; Malykhin et al., 2008; Kristo et al., 2013a,b). For multi-fiber tractography, Dice scores are

known to be relatively low between scan-rescan tests, with a recent study by Kristo et al. (2013b)

showing overlap values around 0.6 in both the AF and CST. The methodological validation

experiment (Fig. 4) resulted in much higher overlap values of 0.84 for the AF and 0.90 for the

CST. This indicates that the minor difference between the two test-retest datasets used here

can cause small perturbations in fODF estimation that cause mismatch in the reconstructed

fiber bundles.

Comparisons of test-retest between deterministic and probabilistic tensor-based tractogra-

phy show that the latter generally has a lower reproducibility for tract volume and overlap (e.g.,

Heiervang et al., 2006; Malykhin et al., 2008), which is also observed in this work for CSD-based

tractography of the CST.
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4.2 Analysis of reconstructed datasets

From Figs. 5-8 it is most obvious that the volumetric overlap between fiber bundle reconstruc-

tions shows large variations between bundles, with the CST and M1–M1 tracts more repro-

ducible across subsets than the AF. At the regions where these fibers cross, the CST is the

dominant fiber population, and is the easiest to model accurately with low angular resolutions.

The non-dominant fiber populations, the AF and the lateral projections of the corpus callosum,

are known to be less accurate at lower angular resolutions (Vos et al., 2013b) and consequently

produce erroneous tract reconstructions (Fig. 9).

Ultimately, objective metrics of cortical visistion and anatomical correspondence would aid

in quantitative evaluation of these aspects, but no such metrics exist. The difficulty here,

for instance for cortical visitation, is that these metrics should evaluate both the proportion

of visited voxels as well as the location within the gyrus, as one would want the distinction

between a large convex medial vistation area and a more irregularly-shaped and thin visitation

area that covers the entire gyrus.

4.2.1 Arcuate fasciculus

Only the datasets with 75 and 100 directions using LMAX=6 and 8 show the AF bundle as

completely as it is in the reference dataset (Fig. 10); all other combinations of angular resolution

seem inadequate in varying ways (Fig. 9). In the tracts that were reconstructed properly only

minor differences could be observed, mostly in cortical projections off the temporal section, with

the exception of the three lowest spatial resolutions at LMAX=8 in the 75 directions datasets,

possibly as a result of a complex interplay between partial voluming and SNR at these lower

resolutions. The highest overlap values when varying spatial or angular resolution are around

0.75-0.77, for those closest in parameters to the reference. This is still lower than the overlap

in the test-retest bundles, which was 0.84. This decrease is likely caused by the higher number

of individual tracts branching off from the AF at the various spatial or angular resolutions.
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4.2.2 Corticospinal tracts

Overlap values for the CST are generally higher than the AF but demonstrate similar patterns.

With respect to the 100 1.0 LMAX=8 dataset, highest overlap values are obtained in tract

reconstructions from datasets with very similar parameters. Clear decreases in overlap can be

observed at low spatial resolution, with the most systematic differences being how the inferior

part of the CST is reconstructed. Superiorly, there are few systematic differences in how much

of the M1 gyrus is intersected by the CST (Fig. 12). The largest areas were intersected when

the highest usable LMAX was used per number of gradient directions. However, the 50 LMAX=6

datasets showed equal penetration to the 100 LMAX=8 datasets, which were both superior

to the 75 LMAX=8 datasets, showing no clear consistency with respect to number of DWIs.

The maximum overlap values for deterministic tracking of 0.88 were for 100 1.0 LMAX=6 and

100 1.5 LMAX=8, and can be regarded as being in the same range as the overlap of 0.90 in

the test-retest case. Similarly for the probabilistic CST, the highest overlap of 0.80 (left) and

0.74 (right) are at the same subsets, and strongly match the test-retest values of 0.81 and 0.75,

respectively.

The overlap values show asymmetry between the left and right bundle, in both the deter-

minstic and probabilistic reconstructions (Figs. 6 and 7), with higher overlap for the left fiber

bundle, possibly caused by the left-right asymmetry observed in the cortical visitation (Figs.

12 and 13).

4.2.3 M1–M1 tracts

The variations between different spatial and angular resolution seem to have the least effect on

the M1–M1 tracts. Although overlap values do vary – mostly due to a change in the cross-

section of the bundle – visual inspection shows very minor difference in tract morphometry and

anatomy. Tract visitation in both M1 areas seems consistent for 75 and 100 directions at all but

a spatial resolution of 2.5 mm. Overlap values of 0.90 and higher are present for some datasets,
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indicating very comparable values with the test-retest data with an overlap of 0.94.

4.2.4 Comparison between bundles

The overlap scores varied substantially between different fiber bundles. Overlap between subsets

was generally lower in the AF (topping at 0.77) than in the CST (with a 0.88 maximum), with

the M1–M1 tracts showing the highest overlap values (0.91). This pattern is also present in

the test-retest experiments. The main reason for this is the complexity of the fiber structure

investigated. The M1–M1 tracts are very strictly defined as going through the left and right

M1 cortices, as shown in the Supplementary material. This allows for very little variation along

the path of the bundle. Similarly, the CST is defined by passing through one of the M1 gyri

and the cerebellar peduncles, which is also a very strict delineation. This allows for a bit more

variability in the inclusion of small side-branches, as highlighted by the arrows and arrowheads

in Fig. 11. In both the CST and the M1–M1, the tract-selecting ROIs were at the far edges of

the bundles. Contrastingly, for the AF the tract-selecting ROIs were rather medial to ensure all

relevant temporal, lateral, and frontal projections would be included (as shown in e.g., Catani

et al., 2005; Catani and Thiebaut de Schotten, 2008). This inherently allows for much variation

in these projections – variation that is observed in Figs. 9 and 10 and results in Dice overlap

values that are lower in the AF than in the CST and M1–M1.

4.3 Deterministic vs. probabilistic tractography of the CST

The corticospinal tracts were reconstructed with both deterministic and probabilistic CSD-based

tractography. In terms of volumetric overlap the patterns were very similar, albeit with relatively

lower absolute overlap values for the probabilistic than deterministic results (Figs. 7 and 6,

respectively). The lower overlap in probabilistic than deterministic tractography is already

present in the test-retest data (Table 1), likely caused by the inherently larger variability in the

probabilistic method. In fact, the difference between test-retest Dice overlap and the variation

as a result of different spatial or angular resolution seemed slightly lower for probabilistic than

22



deterministic tractography. In terms of cortical visitation, the patterns vary between the two

tractography types. Where deterministic tracking results in tracts that appear continuous, the

probabilistic tracts show a more varied pattern that extends more laterally, spreading the tracts

out thinly across more different areas of the gyrus at the expense of not always covering the full

medial extent. One could regard this as an inherent characteristic of the probabilistic approach.

At the highest angular resolution and LMAX=8, the CSD model is assumed to describe the

data as well as can be within these datasets, which would result in relatively sharp fODFs and

thus low variability during the probabilistic tractography. At lower angular resolution or lower

values of LMAX, the signal is noisier or less accurately described, respectively, resulting in a

larger variability in the fODFs and thus a larger range of tract configurations. From the total

number of seeded tracts in the brain stem there were twice as many tracts reaching the M1

gyrus in the 100 directions dataset compared to the 25 and 50 directions datasets, indicating

increased variability in fODF estimation and the probabilistic tracking approach in these lower

angular resolution datasets resulting in a much larger spread than in high angular resolution

datasets.

4.4 Trade-off between spatial and angular resolution

The simulations of crossing, brushing, and kissing fibers (Fig. 1) show that the type of complex

fiber configurations influences the trade-off between angular and spatial resolution, as a high

angular resolution could properly resolve crossings but not kissing, and vice versa for a high

spatial resolution. The unknown ratio of these configurations at each location in the brain

indicates the in vivo investigations will likely be nontrivial.

For deterministic tractography, fiber bundles were mostly comparable over different spatial

resolutions – up to certain limits – whereas decreases in angular resolution seemed to degrade

tractography results more quickly. These results indicate that the gain in knowing the fiber

orientations in more detail is more beneficial than knowing fiber locations more accurately.
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This may infer that at lower spatial resolution the higher intra-voxel complexity over-rules the

SNR boost achieved with larger voxels, resulting in a reduction of fODF accuracy. The cross-

over of effects appears to occur at spatial resolutions of 2.5 mm, which do not seem to perform

to the same high standard as the three higher spatial resolutions, neither in terms of volumetric

overlap nor in anatomical correspondence.

For probabilistic tractography of the CST it would seem the results are not as clearly in

favour of angular resolution, with a more equal cortical visitation between the 75 and 100 direc-

tions datasets than in deterministic tracking before reducing the coverage in the 50 directions

datasets. In line with the deterministic CST reconstructions, the effect of spatial resolution

seems negligible on the cortical visitation. However an increase in voxel size to 2.5 mm isotropic

seems to reduce visitation patterns more strongly than in the deterministic experiments.

The results favouring high spatial resolutions arise only in anatomical accuracy in the brain-

stem for the CST (Fig. 11). The ability to correctly distinguish tracts from the corticospinal

tracts and the medial lemniscus degraded more with decreasing spatial than with angular res-

olution. When aiming to map the different cortical areas and their respective projection fibers,

making this distinction is critical. However, at the highest angular resolution (100 directions

and LMAX=8), this could be achieved at spatial resolutions of 1.0, 1.5, and 2.0 mm.

Clearly, the balance between angular and spatial resolution lies somewhere in the middle.

Increasing the resolution from 2.5 mm – which is still common in many clinical studies – to

2.0 mm is beneficial for anatomically accurate tractography results, as is most clearly apparent

in the CST. Spatial resolutions higher than 2.0 mm only seem to benefit multi-fiber tractography

methods if this would not include a decrease in angular resolution.

These results complement the results from Calabrese et al. (2014), who investigated this

trade-off between angular and spatial resolution ex vivo. They used six time-matched acquisition

protocols with varying spatial and angular resolutions – ranging from 0.13 mm3 and 12 directions

to 0.6 mm3 and 257 directions – to investigate the trade-off for tractography in eight different
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fiber bundles in the ex vivo macaque brain. Their results show greatly varying results depending

on the acquisition protocol, also finding an optimal balance at intermediate spatial and angular

resolutions. Our setup and methodology differs from previous studies investigating the trade-off

(Zhan et al., 2013; Calabrese et al., 2014), in that where those studies used six distinct time-

matched acquisition protocols, we have opted for a single dataset to be reconstructed into more

combinations of angular and spatial resolutions yield a total of 16 different datasets. Further,

for each of these datasets CSD modelling was performed with multiple values of LMAX where

possible, whereas the works from Zhan et al. (2013) and Calabrese et al. (2014) used only one

value of LMAX for ODF estimation or used a different diffusion modelling approach for each

dataset. With datasets of different angular resolutions and SNR, as we use here, not making a

decision about the model parameters a priori is an extra degree of freedom to understand the

trade-off.

4.5 Limitations

4.5.1 Angular resolution

An important factor in the angular resolution of the diffusion-weighted signal is the b-value. The

contrast between regions of high and low diffusivity increases with b-value, resulting in a higher

effective angular resolution. For HARDI-based multi-fiber method, a b-value of 1000 s/mm2

is considered to be lower than optimal, but is commonly used for CSD-based tractography in

more clinically-oriented studies (e.g., Metzler-Baddeley et al., 2011) as well as technical studies

(e.g., Reisert et al., 2012; Jeurissen et al., 2013). In a comparative study on the performance

of different multi-fiber methods at b-values in the order of b=1000 s/mm2, CSD showed above

average performance (Ramirez-Manzanares et al., 2011) making CSD the model of choice for our

data. The high spatial resolution used in this work prevented the use of b-values in the range

of 2000-3000 s/mm2, which would have decreased SNR. The use of additional signal averages

to increase SNR was not regarded as an option because this would double the already extreme
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scan time.

Performance of multi-fiber methods will generally increase with the number of acquired

DWIs (Wedeen and Dai, 2011), with possibly limited gains at high numbers of DWIs (depend-

ing on the chosen method). Therefore, tractography is expected to be more accurate with

increasing numbers of gradient directions for the datasets with different angular resolutions

used here, irrespective of the b-value used. If higher b-values would have been used in this

work, the effective angular resolution would have increased for all datasets, allowing for better

characterization of crossing fibers. Alternatively, similar results may have been obtained using

fewer diffusion directions at a higher b-value (Tournier et al., 2007; Vos et al., 2014). This is

supported by preliminary analyses in a single dataset from the Human Connectome Project

(HCP), as shown in the Supplementary Material for the arcuate fasciculus reconstructed at

different angular and spatial subsets using b-values of 1000, 2000, and 3000 s/mm2. Similar to

the 3D DWI data, using LMAX of 4 seemed not to capture the full complexity of the bundle

as well as LMAX of 6 and 8. At b=3000 s/mm2, results at 75 and 90 directions yielded very

comparable results, with a strong drop in AF reconstruction performance reducing angular res-

olution to 50 directions (Figs. S1-S3). With a b-value of 2000 s/mm2, there is a clear benefit of

using LMAX=8 over LMAX=6, allowing the reconstruction the most frontal projections that are

absent at LMAX=6 (Fig. S4). At b=1000 s/mm2, these most frontal projections are found with

difficulty, mostly when the SNR is boosted by having a lower spatial resolution (Fig. S5). In

all cases, having adequate angular resolution (either through b-value, number of directions, or

used LMAX) is critical for reconstructing the AF. For a moderate b-value, 1000 s/mm2, many

directions are required to do so (i.e., 90), whereas with higher b-values a reduction in number

of directions is acceptable: for b=2000, datasets with 75 and 90 directions performed very well

using LMAX=8, where the angular information captured in that data was represented as accu-

rately as possible. At the highest b-value, this dependence on LMAX was reduced, possibly as a

result of the increased angular contrast in the data (Tournier et al., 2013). A high spatial res-
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olution aided in finding the cortical termination points in a more well-defined way, with some

cortical projections lost at the lower spatial resolutions (some at 2.00 mm and more at 2.50

mm).

4.5.2 Spatial resolution

To create the lower resolution datasets, the acquired images were downsampled from the 1 mm

isotropic dataset, which does not yield exactly the same images as when they would have

been acquired at these resolutions. For instance, higher resolutions introduce larger geometric

distortions, and the longer readout time prolongs the echo time and thus lowers SNR. The first

aspect is largely addressed by using the RGPM for EPI distortions, and should have limited

influence. The prolongation of TE is inherent in higher in-plane resolutions, since a larger part

of k-space is sampled. With a partial Fourier factor of 0.7 and high parallel imaging factor used

in this work, the effective TE is only slightly increased compared to standard clinical acquisition

with 2.5 mm isotropic resolution.

The 1 mm datasets were downsampling using straightforward linear interpolation. Much

effort has been put into finding optimal ways of interpolation for upsampling of images, to aid in

detection of fine image boundaries from low-resolution data, (e.g., Lehmann et al., 1999; Dyrby

et al., 2014). The most recent diffusion MRI related work on this, by Dyrby et al. (2014),

has shown that interpolation of the individual DWIs or through the tensor-model outperforms

interpolation of quantitative maps, with higher-order interpolation methods performing better

overall despite issues of ringing from overfitting. The interpolation steps used in this work, dur-

ing tractrography, a model-based interpolation of the fODFs is in line with the well-performing

methods from that work.

In this work, we have used a 3D multi-slab acquisition to acquire DWIs with a 1 mm isotropic

resolution. To achieve true isotropic resolution, 3D acquisitions are preferred. Slice profiles for

2D imaging becomes worse for thinner slices, rendering an effective 1 mm thin slice difficult to
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acquire. The 3D multi-slab method does not suffer from these slice profile imperfections in the

same way, yielding true isotropic resolution. Another benefit of the 3D acquisition is that it

is more SNR efficient than conventional 2D imaging (Engstrom and Skare, 2013). A downside

is that the scan time is increased compared to 2D imaging, by the need to acquire different

kz-encodes. To address this, Van et al. (2015) have proposed a SENSE-like reconstruction to

reconstruct all 3D slabs simultaneously, providing an increase in speed of roughly 25-50%. It is

important to note here that 3D multi-slab has a higher SNR per unit time, or SNR efficiency

(Engstrom and Skare, 2013), but the minimum scan time per volume is higher. Given that

one needs at least 45 directions to use LMAX=8 for CSD, the use of 3D multi-slab methods in

clinical settings would require longer scan times than 2D single-shot EPI.

Another effect of varying spatial resolution on tractography results is the varying extent

of partial voluming of WM with non-WM signal, e.g., from grey matter or cerebrospinal fluid

(CSF). For most single-shell diffusion methods it is a difficult challenge to correctly estimate

ODFs in presence of CSF, as e.g., shown by (Parker et al., 2013), and our results may be

affected by these differently for different spatial resolutions. Although multi-shell modelling

approaches (e.g., Yeh et al., 2010; Jeurissen et al., 2014) can overcome these drawbacks this was

not included in our study as the extra shell in q-space would require another level of complexity

in the trade-off, and the use single-shell approaches still predominates in clinical settings.

4.5.3 Generalization

The conclusions in this work are based on deterministic tractography results of one associa-

tion (AF), one projection (CST), and one commissural (M1–M1) fiber bundle combined with

probabilistic tractography of the CST. Generalization to other structures is likely to be possible

for other major fiber bundles such as the uncinate fasciculus and parts of the pyramidal tracts

other than the CST, given that sizes and configurations and roughly similar. These results may

not be as easily generalized for smaller fiber bundles or fiber bundles of significantly differing
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configurations, such as the subcortical U-fibers and the optic radiation. Although we believe our

results may have been different for these structures, we have not included them because either

there is as yet no definitive consensus on their exact anatomy, or their results in fiber tractogra-

phy vary significantly (e.g., Sherbondy et al., 2008; Nilsson et al., 2010). Therefore, any results

we would show on these bundles would be specific to the methodology, highly debatable, and

thus of limited use to the community.

This study has used a single local diffusion modelling approach, CSD to model fODFs,

with both deterministic and probabilistic tractography. Generalization across other fODF or

dODF estimation methods or tractography algorithms is expected to be nontrivial, as methods

behave differently under conditions or varying number of directions, SNR, and b-value. As two

examples, one could imagine another local modelling approach may yield an overall better result

than the one used in this study at very high angular resolutions but perform markedly worse at

lower angular resolutions, or vice versa; or, similarly the more computationally expensive group

of global tractography methods might outperform local tractography methods at low angular

resolutions – benefitting greatly from the global approach – while yielding no benefits at high

angular resolution.

4.6 Conclusion

Whilst modeling techniques demand increases in angular resolution, the developments in dif-

fusion acquisition often focus upon increasing spatial resolution. However, it is infeasible to

increase both spatial and angular resolution in clinically accepted scan times. As a result, the

decision as to which of these two factors is most beneficial to invest scan time in becomes ever

more relevant. In this work, we have given an overview of tractography results from datasets

with varying spatial resolution and different numbers of diffusion-weighting directions. High

spatial and high angular resolution is the ultimate combination. If a trade-off must be made

between: i) increasing spatial resolution past current standards, or ii) investing scan time in
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higher angular resolutions, our results suggest that fiber tractography benefits the most from

high angular resolutions.
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Table 1: Dice overlap for test-retest experiment

Mean [range]

AF
Left 0.87 [0.86 - 0.88]

Right 0.86 [0.84 - 0.88]

M1–M1 0.95 [0.93 - 0.96]

CST (det)
Left 0.92 [0.91 - 0.94]

Right 0.91 [0.90 - 0.93]

CST (prob)
Left 0.81 [0.80 - 0.82]

Right 0.77 [0.76 - 0.79]

AF = arcuate fasciculus; CST = corticospinal tracts

39



Figure 1: View of the three simulated complex geometries. The top row shows crossing or

interdigitating fibers; the middle row brushing fibers; the bottom row shows kissing fibers. The

left-most panel in each row is an illustration of how such a configuration looks, with the red cube

indicating a 2 mm isotropic voxel in which such a configuration is simulated. The results are

shown for four combinations of spatial and angular resolution. To clearly indicate which tracts

connect which branches, the tracts have been color-coded as: blue connects the top-right with

the bottom-left; green connects top-left with bottom-right; red connects top-left with bottom-

left; and yellow connects top-right with bottom-right. For the top two rows, with crossing and

brushing fibers, the green and blue tracts are correct; for the bottom row, with kissing fibers,

the red and yellow tracts are correct.
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Figure 2: Image of the custom-made 3D-printed headholder on the scan subject’s head (a),

shown from the side of the subject’s head with a black box over the face for anonymization. In

b), the headholder is positioned in the coil.
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Figure 3: Axial and coronal views (top and bottom rows, respectively) of the DEC-maps of

datasets with 100 gradient directions reconstructed at four different spatial resolutions: 1.0,

1.5, 2.0, and 2.5 mm. The voxel volumes of these datasets are 1, 3.375, 8, and 15.625 mm3,

respectively. For both rows, the leftmost panel shows the entire slice at 1 mm resolution. For

the axial view in the top row, the zoomed-in area shows the posterior half of one hemisphere;

for the coronal view in the bottom row, the zoomed-in area shows one hemisphere. The green

lines in the axial image indicate the shown coronal slices; the blue lines in the coronal image the

shown axial slices. The differences in spatial resolution are strongly reflected in the amount of

partial volume effect, as most clearly seen in the posterior part of the optic radiation (indicated

by the arrows).
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Figure 4: Test comparison of the fiber bundles between the two test sets with 99 directions,

1.0 mm, and LMAX=8 for the M1–M1 tracts and right arcuate fasciculus (AF). The top panels

show the bundles of one test set with 99 directions, the bottom row the other test set of 99

directions. Of all five investigated bundles in this test example, the M1–M1 (shown on the left)

has the highest overlap, 0.94, the right AF (shown on the right) the lowest, 0.84. Very minor

changes can be observed along the cores of the bundles, with the largest differences for the

M1–M1 in tracts branching of laterally (white arrowhead), and for the AF in its frontal and

lateral temporal projections (white arrows).
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Figure 5: Volumetric overlap between the AF fiber tracts reconstructed from datasets with

different spatial and angular resolutions using deterministic tractography. The top panel shows

overlap values for the left AF, the bottom panel for the right AF. The overlap values are with

respect to the 100 1.0mm tracts with LMAX=8. For each panel, the rows indicate the LMAX

values used, the columns indicate the angular and spatial resolution of the data as indicated.

Overlap values (×100) are given in case of moderate overlap, i.e., ≥0.6.

Figure 6: Volumetric overlap between the CST fiber tracts reconstructed from datasets with

different spatial and angular resolutions using deterministic tractography. The top panel shows

overlap values for the left CST, the bottom panel for the right CST. The overlap values are with

respect to the 100 1.0mm tracts with LMAX=8. For each panel, the rows indicate the LMAX

values used, the columns indicate the angular and spatial resolution of the data as indicated.

Overlap values (×100) are given in case of moderate overlap, i.e., ≥0.7.
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Figure 7: Volumetric overlap between the CST fiber tracts reconstructed from datasets with

different spatial and angular resolutions using probabilistic tractography. The top panel shows

overlap values for the left CST, the bottom panel for the right CST. The overlap values are with

respect to the 100 1.0mm tracts with LMAX=8. For each panel, the rows indicate the LMAX

values used, the columns indicate the angular and spatial resolution of the data as indicated.

Overlap values (×100) are given in case of high overlap, i.e., ≥0.7.

Figure 8: Volumetric overlap between the M1—M1 fiber tracts reconstructed from datasets with

different spatial and angular resolutions using deterministic tractography. The overlap values

are with respect to the 100 1.0mm tracts with LMAX=8. For each panel, the rows indicate

the LMAX values used, the columns indicate the angular and spatial resolution of the data as

indicated. Overlap values (×100) are given in case of moderate overlap, i.e., ≥0.7.
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Figure 9: Tractography results of the right arcuate fasciculus a spatial resolution of 2.0 mm

and all datasets with 25 (a) and 50 directions (b-d) and the datasets with 75 (e) and 100

(f) directions with LMAX=4. Clear premature termination is visible in a), and insufficient

SNR is present in the 50 directions dataset to use LMAX=8 (d). The other datasets suffer from

incorrect branching into the lateral projections of the corpus callosum, as indicated by the white

arrowheads. Although examples from only the 2.0 mm datasets are shown for clarity, identical

errors are present for other spatial resolutions for low angular resolution and low LMAX.
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Figure 10: Tractography results of the right arcuate fasciculus for datasets with 75 and 100

directions at LMAX=6 and 8 for all spatial resolutions. None of the errors present in the low

angular resolution datasets (Fig. 9) are visible. The arrows indicate temporal projections that

are missing in the 75 directions datasets with LMAX=8 but are present in the other datasets.

The arrowheads show anterior cortical projections in the datasets with high spatial resolution

(1.0 and 1.5 mm) that are not found in the low spatial resolution cases (2.0 and 2.5 mm).
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Figure 12: Visualization of where deterministic tractography fiber bundle of the bilateral CST

end up in the M1 cortices. Each subpanel represents results from the different reconstructed

datasets, with columns being different spatial resolutions and each row a combination of number

of gradient directions and used LMAX, as indicated in the figure. White areas indicate voxels

that were intersected by fiber tracts. The green line on the 100 1.0 LMAX=8 panel indicates the

ROI that selects the cortices. The inset in the top-left corner shows an overview of the axial

slice, with the gyri of interest outlined in green.
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Figure 13: Visualization of where probabilistic tractography fiber bundle of the bilateral CST

end up in the M1 cortices. Each subpanel represents results from the different reconstructed

datasets, with columns being different spatial resolutions and each row a combination of number

of gradient directions and used LMAX, as indicated in the figure. White areas indicate voxels

that were intersected by fiber tracts. The green line on the 100 1.0 LMAX=8 panel indicates the

ROI that selects the cortices. The inset in the top-left corner shows an overview of the axial

slice, with the gyri of interest outlined in green.
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Figure 14: Tractography results of the M1–M1 tracts for all combinations of spatial and angular

resolution and LMAX values.
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Figure 15: Visualization of where fiber tracts of the bilateral M1–M1 tracts intersect the cortical

areas. Each subpanel represents results from the different reconstructed datasets, with columns

being different spatial resolutions and each row a combination of number of gradient directions

and used LMAX, as indicated in the figure. White areas indicate voxels that were intersected

by fiber tracts. The green line on the 100 1.0 LMAX=8 panel indicates the ROI that selects the

cortices. The inset in the top-left corner shows an overview of the axial slice, with the gyri of

interest outlined in green.
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Supplementary material 

Tract segmentation from whole-brain tractography 

Arcuate fasciculus (AF) 
The arcuate fasciculus was segmented by placing two inclusion masks and one exclusion mask. 

a) One inclusion mask was placed on a coronal slice midway between the genu and splenium of the 

corpus callosum, where the entire region around the arcuate fasciculus was included. 

b) The other inclusion mask was placed on an axial slice around the inferior-superior going part of 

the fiber bundle 

c) The green and blue lines indicate the location of the coronal and axial slices from a) and b), 

respectively. 

d) The red exclusion region-of-interest (ROI) was placed on the mid-sagittal slice to prevent any 

possible spurious tracts from intersecting the mid-line. The resulting left arcuate fasciculus is 

shown for the 100_1.0 mm dataset reconstructed with LMAX=8. 

 



 

Corticospinal tracts (CST) 
The CST was segmented with two inclusion masks and an exclusion mask. 

a) One axial inclusion mask on the level of the decussation of the cerebellar peduncles. 

b) One axial inclusion mask selecting the primary motor area (M1), drawn on an axial slice 26 mm 

superior to the corpus callosum as seen on the mid-sagittal slice. 

c) Coronal view indicating the locations of the two axial slices (blue lines) where the ROIs were 

drawn. The red line indicates the location of the sagittal slice shown in d). 

d) Sagittal view indicating the locations of the two axial slices (blue lines) where the ROIs were 

drawn. The green line indicates the location of the coronal slice shown in c). 

e) The exclusion mask (red) was placed on the mid-sagittal slice from the level of the external 

capsule extending to the top of the brain. The resulting left CST fasciculus is shown for the 

100_1.0 mm dataset reconstructed with LMAX=8. 

 

 

 



 

Corpus callosum segment connecting M1—M1 
Two inclusion masks were used to select the interhemispheric fiber bundle segment. 

a) One axial inclusion mask selecting the primary motor area in each hemisphere, drawn on an 

axial slice 26 mm superior to the corpus callosum as seen on the mid-sagittal slice. 

b) Coronal view indicating the locations of the two axial slices (blue lines) where the ROIs were 

drawn. The red line indicates the location of the sagittal slice shown in c). 

c) Sagittal view indicating the locations of the two axial slices (blue lines) where the ROIs were 

drawn. The green line indicates the location of the coronal slice shown in b). 

d) The resulting left CST fasciculus is shown for the 100_1.0 mm dataset reconstructed with LMAX=8. 

 



Investigating the trade-off in Human Connectome Project data 
 
Using the 3D DWI dataset the investigated trade-off contained three degrees of freedom: spatial 
resolution, number of gradient directions, and the used Lmax value. This has already led to analyses and 
results with many facets. The preliminary analyses on an HCP dataset shown below add two degrees of 
freedom to this, given that HCP dataset has a different SNR per image to the 3D DWI, as well as multiple 
b-values. 
Tractography was performed on a single subject dataset from the Human Connectome Project. The 90 
directions from each shell (b=1000, 2000, and 3000 s/mm2) were taken and optimal angular subsets of 
25, 50, and 75 directions were taken, all also subsampled from the acquired isotropic resolution of 1.25 
mm to isotropic voxel grids of 1.50, 2.00, and 2.50 mm. Firstly, ten subsets of 89 directions were 
obtained, as in Section 2.7 and 3.3, with the results shown in Table S1. Values for the HCP b=1000 shell 
are somewhat lower than for the 3D b=1000 s/mm2 data, with the HCP b=2000 and b=3000 s/mm2 
reproducibility overlap roughly similar to that of the 3D DWI data at b=1000 s/mm2.  
 
Table S1: Test-retest Dice overlap for left AF 
reconstructed from HCP data 

 Mean [range] 

b=1000 s/mm2 0.81 [0.79 - 0.83] 

b=2000 s/mm2 0.84 [0.83 - 0.86] 

b=3000 s/mm2 0.85 [0.84 - 0.87] 

 

Volumetric overlap 
Comparing the angular and spatial subsets within each shell to the highest angular and spatial resolution 
dataset, the 90_1.25mm dataset (indicated R in Fig. S1), similar patterns are observed as in Fig. 5 for the 
left AF reconstructed from the 3D DWI data: the highest overlap was obtained for subsets closest to the 
reference, specifically the datasets with high spatial resolution (1.25 and 1.50 mm) and many directions 
(75 or 90), as long as Lmax values of 6 or 8 are used. Similar to Fig. 5, Lmax=4 seems to result in a 
pronounced drop in overlap compared to Lmax of 6 and 8. These patterns are consistent across the 
three b-values in the HCP data. 
To compare all reconstructions to a single reference standard (Fig. S2), instead of per-shell, the 
90_1.25mm dataset at b=3000 s/mm2 is regarded as optimal as for CSD the highest b-value theoretically 
captures the diffusion signal the best (Tournier et al., 2013). This shows that overlap for virtually all 
combinations of spatio-angular resolution is lower at lower b-values compared to the b=3000 s/mm2 
reference. Still a definite drop in overlap is observed when choosing Lmax=4 over a higher Lmax – at all 
b-values. In all cases, a reduction in the number of directions from 75 to 50 causes a steep drop in 
overlap, mostly for Lmax=8 but also noticeably for Lmax=6. The biggest reduction in overlap as a 
function of spatial resolution seems to be from 1.50 mm to 2.00 mm, similar to the results in Fig. 5. This 
is in contrast with the corticospinal and interhemispheric M1—M1 tracts, where this happens from 2.00 
to 2.50 mm. 

Anatomical correspondence 
Comparing the reconstructed fiber bundles visually (Figs. S3-S5), a similar trend is visible with a 
pronounced difference in reconstruction between the Lmax=4 and Lmax values of 6 and 8. At b=3000 
s/mm2, there is little improvement in using 90 over 75 directions at Lmax=8. With a b-value of 2000 



s/mm2, there is a clear benefit of using Lmax=8 over Lmax=6, allowing the reconstruction the most 
frontal projections that are absent at Lmax=6. At b=1000 s/mm2, these most frontal projections are 
found with difficulty, mostly when the SNR is boosted by having a lower spatial resolution.  
Interestingly, bundles reconstructed using only 50 directions showed best results using b=2000 s/mm2 
data. This is in contrast with the Dice overlap, which was higher for b=3000 s/mm2 than b=2000 s/mm2 
for resolutions of 1.50 mm or lower. This could indicate that the higher angular contrast at b=3000 
s/mm2 requires more information to the described accurately than the b=2000 s/mm2 data. 
A detailed inspection shows that the reference dataset, 90_1.25mm at b=3000 s/mm2 fails to 
reconstruct one of the more inferior and lateral temporal projections that datasets at lower spatial 
resolution do recover (Fig. S5). This imperfection in the reference dataset should be considered when 
interpreting the lower volumetric overlap, as it reveals that some of the decrease in overlap could be 
because of an improved reconstruction of the cortical projection. At the lowest spatial resolution, 
however, the larger partial voluming causes tractography to miss some frontal cortical projections. 
 
 

 
Fig. S1: Volumetric overlap values for the left arcuate fasciculus (AF) reconstructed using an HCP dataset. 
For each of the three panels, the different spatial resolutions and number of directions are along the 
horizontal axis with the rows indicating the used Lmax value. The top panel shows results of the data 
with a b-value of 1000 s/mm2, the middle panel shows b=2000 s/mm2, the bottom panel shows b=3000 
s/mm2. The overlap values are with respect to the 90_1.25mm tracts with Lmax=8 for each b-value 
separately. Overlap values (×100) are given in case of moderate overlap, i.e., ≥0.50. 
 



 
Fig. S2: Volumetric overlap values for the left arcuate fasciculus (AF) reconstructed using an HCP dataset. 
For each of the three panels, the different spatial resolutions and number of directions are along the 
horizontal axis with the rows indicating the used Lmax value. The top panel shows results of the data 
with a b-value of 1000 s/mm2, the middle panel shows b=2000 s/mm2, the bottom panel shows b=3000 
s/mm2. The overlap values are with respect to the 90_1.25mm tracts with Lmax=8 for b=3000 s/mm2. 
Overlap values (×100) are given in case of moderate overlap, i.e., ≥0.50. 



 
Fig. S3: Tractography results of the left arcuate fasciculus for datasets with 50, 75, and 90 directions at 
all Lmax values for all spatial resolutions using an HCP dataset with b=3000 s/mm2. The 90_1.25mm at 
Lmax=8, bottom left corner, is taken as the reference. This reference dataset misses a most lateral 
temporal projection that is reconstructed in datasets with lower spatial resolution (arrowhead). The 
tracts to the temporal pole (arrow) most likely belong to the inferior longitudinal fasciculus, and should 
thus be regarded as erroneous. Datasets with more directions and higher Lmax found more temporal 
and frontal projections (similar to Fig. 10), although there is relatively little difference between the 75 



and 90 datasets when Lmax and spatial resolutions are matched. Datasets with only 50 directions are 
only acceptable at low spatial resolution, but those still demonstrate cortical projections that are less 
well-defined. Compared to the bundles reconstructed using Lmax=6 and 8, the Lmax=4 bundles shown - 
using 90 directions – all seem to lack the most frontal projections of the AF.  Tracts reconstructed with 
Lmax=4 were only shown for the datasets with 90 directions. At lower angular resolution the tracts were 
identical in what they were missing as the Lmax=4 at 90 directions – or worse. 
 
 
 
 
 



 
Fig. S4: Tractography results of the left arcuate fasciculus for datasets with 50, 75, and 90 directions at 
all Lmax values for all spatial resolutions using an HCP dataset with b=2000 s/mm2. The 90_1.25mm at 
Lmax=8, bottom left corner, is taken as the reference. The variation in tract reconstructions at different 
spatial and angular resolutions is similar to that in Fig. S3, with the notable difference that at b=2000 
s/mm2 there seems to be a strong benefit of using Lmax=8 over Lmax=6, especially in the most frontal 
parts of the bundle, and a larger benefit of 90 over 75 directions than in the b=3000 s/mm2 data (e.g., no 
erroneous tracts to the temporal pole, arrows). 



 
Fig. S5: Tractography results of the left arcuate fasciculus for datasets with 50, 75, and 90 directions at 
all Lmax values for all spatial resolutions using an HCP dataset with b=1000 s/mm2. The 90_1.25mm at 
Lmax=8, bottom left corner, is taken as the reference. The variation in tract reconstructions at different 
spatial and angular resolutions is similar to that in Figs. S3, with the notable difference that at b=1000 
s/mm2 the most frontal parts of the bundle are reconstructed with difficulty. Additionally, with the 
inherent lower angular resolution of data with b=1000 s/mm2 compared to b=3000 s/mm2, there is a 
larger benefit of having 90 instead of 75 directions. 


