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ABSTRACT

The research of effective and reliable detrending methods for Spitzer data is of paramount importance for the
characterization of exoplanetary atmospheres. To date, the totality of exoplanetary observations in the mid- and far-
infrared, at wavelengths >3 μm, have been taken with Spitzer. In some cases, in past years, repeated observations
and multiple reanalyses of the same data sets led to discrepant results, raising questions about the accuracy and
reproducibility of such measurements. Morello et al. (2014, 2015) proposed a blind-source separation method
based on the Independent Component Analysis of pixel time series (pixel-ICA) to analyze InfraRed Array Camera
(IRAC) data, obtaining coherent results when applied to repeated transit observations previously debated in the
literature. Here we introduce a variant to the pixel-ICA through the use of wavelet transform, wavelet pixel-ICA,
which extends its applicability to low-signal-to-noise-ratio cases. We describe the method and discuss the results
obtained over 12 eclipses of the exoplanet XO3b observed during the “Warm Spitzer” era in the 4.5 μm band. The
final results are reported, in part, also in Ingalls et al. (2016), together with results obtained with other detrending
methods, and over 10 synthetic eclipses that were analyzed for the “IRAC Data Challenge 2015.” Our results are
consistent within 1σ with the ones reported in Wong et al. (2014) and with most of the results reported in Ingalls et
al. (2016), which appeared on arXiv while this paper was under review. Based on many statistical tests discussed in
Ingalls et al. (2016), the wavelet pixel-ICA method performs as well as or better than other state-of-art methods
recently developed by other teams to analyze Spitzer/IRAC data, and, in particular, it appears to be the most
repeatable and the most reliable, while reaching the photon noise limit, at least for the particular data set analyzed.
Another strength of the ICA approach is its highest objectivity, as it does not use prior information about the
instrument systematics, making it a promising method to analyze data from other observatories. The self-
consistency of individual measurements of eclipse depth and phase curve slope over a span of more than three
years proves the stability of Warm Spitzer/IRAC photometry within the error bars, at the level of 1 part in 104 in
stellar flux.

Key words: methods: data analysis – planets and satellites: atmospheres – planets and satellites: individual (XO3b)
– techniques: photometric

1. INTRODUCTION

Observations of transits and eclipses of exoplanets have been
used, in the last decade, to characterize the nature of more than
100 of these alien worlds with unprecedented detail. Molecular,
atomic, and ionic signatures have been detected in the atmo-
spheres of exoplanets through transmission spectroscopy, i.e.,
multiwavelength measurements of the transit depth, showing
differential absorption/scatter of the stellar light through the
planetary limb (e.g., Charbonneau et al. 2002; Tinetti et al. 2010;
Deming et al. 2013). For the brightest targets, emission spectra
have been measured during (planetary) eclipses to constrain the
atmospheric chemistry, pressure-temperature profile, albedo, and
global circulation patterns (e.g., Charbonneau et al. 2005; Swain
et al. 2009). Many data sets were obtained using the InfraRed
Array Camera (IRAC; Fazio et al. 2004) on board the Spitzer
Space Telescope. Since depletion of the telescopeʼs cryogen in
2009, IRAC continues to operate in the 3.6 and 4.5μm bands, as
the “Spitzer Warm Mission.”

A precision of 0.01% is required to study the atmospheres of
giant exoplanets through transmission and/or emission spectro-
scopy (Brown 2001; Tessenyi et al. 2013; Waldmann et al.
2015a, 2015b). Detrending instrumental systematics in raw
data is necessary to achieve the target precision. It is not always
obvious how to decorrelate the data using auxiliary information
of the instrument and, in some cases, different methods lead to

significantly different results (see e.g., Waldmann 2012;
Morello et al. 2015). The majority of exoplanets’ transit and
eclipse multi-band photometric data adopted in the literature
are obtained by combining data at different wavelengths from
separate epochs years apart. Repeated observations are
necessary to estimate the overall level of variability, due to
astrophysical variations and possible uncorrected instrument
effects. If consistent, compared to single observations, repeated
observations can provide more accurate parameter values,
leading to higher signal-to-noise-ratio (S/N) atmospheric
spectra for exoplanets, and potentially allowing the character-
ization of smaller exoplanets around fainter stars.
The main instrumental effect affecting Spitzer/IRAC data at

3.6 and 4.5 μm is due to intra-pixel gain variations and
spacecraft-induced motion, the so-called pixel-phase effect.
The measured flux from the star is correlated with its position
on the detector, hence the idea of correcting the data with a
polynomial function of the stellar centroid as proposed in the
literature (Charbonneau et al. 2005; Morales-Caldéron
et al. 2006; Stevenson et al. 2010; Beaulieu et al. 2011).
Multiple reanalyses of the same data sets with the polynomial
method show that, in some cases, results can be sensitive to
some specific options/variants, such as the degree of the
polynomial adopted, partial data rejection, including temporal
or other decorrelations (e.g., Beaulieu et al. 2008, 2011; Désert
et al. 2009; Stevenson et al. 2010; Knutson et al. 2011).
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Recently, several alternative methods have been proposed to
decorrelate Spitzer/IRAC data: gain mapping (Ballard
et al. 2010; Cowan et al. 2012; Knutson et al. 2012; Lewis
et al. 2013; Zellem et al. 2014), bilinearly interpolated sub-
pixel sensitivity mapping (BLISS, Stevenson et al. 2012),
Independent Component Analysis using pixel time series
(pixel-ICA; Morello et al. 2014, 2015), pixel-level decorrela-
tion (PLD; Deming et al. 2015), and Gaussian Process models
(Evans et al. 2015). A comparison between pixel-ICA and PLD
methods is reported in Morello (2015). The discussion about
the detrending methods, their performances, reliability, and
potential biases for Spitzer/IRAC data is a hot topic. In the
“IRAC Data Challenge 2015” different methods have been
tested over synthetic data created by the IRAC team, which
contain 10 simulated eclipse observations of the exoplanet
XO3b (Ingalls et al. 2016). Researchers were also encouraged
to reanalyze a similar set of real observations obtained in the
4.5 μm band.

In this paper, we describe an evolution of the pixel-ICA
method proposed in Morello et al. (2014, 2015) and Morello
(2015), and present the results obtained by applying the method
to the analysis of 12 eclipses of the exoplanet XO3b taken with
Warm Spitzer/IRAC in the 4.5 μm band. The pixel-ICA
method differs from the other detrending methods proposed in
the literature, as it is an unsupervised machine learning
algorithm. The lack of any prior assumptions about the
instrument systematics and astrophysical signals ensures a
high degree of objectivity, and indicates that the same method
could be applied to detrend data taken with different
instruments. The pixel-ICA method gave coherent results when
applied over multiple transit observations of the exoplanets
HD189733b and GJ436b, for which the previous literature
reported discrepant results (Morello et al. 2014, 2015), and
over simulated observations with a variety of instrumental
systematics (Morello 2015). Similar techniques have been used
in the literature to detrend Spitzer/IRS and Hubble/NICMOS
data, the main difference being in the choice of the input time
series (Waldmann 2012, 2014; Waldmann et al. 2013). The
ability of ICA to decorrelate non-Gaussian signals is inherently
limited to a low Gaussian white noise amplitude relative to the
non-Gaussian signals. In this paper, we propose a wavelet
pixel-ICA algorithm, which outperforms the traditional pixel-
ICA algorithm in low-S/N observations, extending applic-
ability to planetary eclipses taken during the “Warm
Spitzer” era.

XO3b is a hot Jupiter (Mp=11.7±0.5MJup, Johns-Krull
et al. 2008; Hirano et al. 2011) in an eccentric orbit
(e=0.283±0.003, Knutson et al. 2014) with a period of
3.19 days and orbital semimajor axis of a=0.045 au (Winn
et al. 2008). The host star is F5V with T*=6760±80K, and

glog =4.24±0.03 (Winn et al. 2008; Torres et al. 2012). A
previous analysis of the 12 eclipses reported an average eclipse
depth of 1.58 0.04

0.03
-
+ ×10−3 relative to the out-of-eclipse flux (star

+planet), and a phase curve slope of 6.0 1.6
1.3

-
+ ×10−4 days−1

(Wong et al. 2014). Here we compare our results with the ones
reported in Wong et al. (2014).

2. DATA ANALYSIS

2.1. Observations

We analyze 12 eclipse observations of XO3b taken with
Spitzer/IRAC in the 4.5 μm band. Ten individual eclipses were

observed over six months (2012 November 11–2013 May 24),
including two sets of three consecutive eclipses, and another
eclipse is contained within a full-orbit observation on 2013
May 5 (PID: 90032). Each individual observation consists of
14,912 frames over 8.4 hr using IRACʼs sub-array readout
mode with 2.0 s integration time. In sub-array mode 64 frames
are taken consecutively, the reset time is ∼1 s. We extracted
14,912 frames from the full-orbit observation to analyze the
light-curve of the eclipse over a time interval similar to other
observations. The last eclipse was extracted out of a 66 hr
observation on 2010 April 8 (PID: 60058). Table 1 reports the
dates in which the eclipses were observed.

2.2. The Eclipse Model

In our model the stellar flux is constant in time, and
normalized to 1. We adopt the formalism of Mandel & Agol
(2002) for the eclipse model, accounting for the planet being
occulted by the star. We approximate the planetʼs phase curve
in the region of the eclipse as a linear function of the time, the
slope is called “phase constant,” adopting the same terminol-
ogy of Wong et al. (2014). The slope is only due to planetʼs
flux variations. While the planet is completely occulted by the
star, the flux is constantly 1. The eclipse depth is defined as the
(unseen) planetʼs flux at the center of eclipse, in units of stellar
flux (see Figure 1). When fitting the eclipse models, the orbital
parameters are fixed to the values reported in Table 2, taken
from Wong et al. (2014), while the center of eclipse, eclipse
depth, and phase constant are free parameters to determine. We
also considered models with zero phase curveʼs slope (see
Appendix A.5).

2.3. Wavelet ICA

2.3.1. Continuous Wavelet Transform (CWT)

The wavelet transform (WT) decomposes a given signal, x
(t), into its frequency components. This is done by convolving
the time signal with a basis of highly localized impulses or
“wavelets.” To fix the ideas, we assume that x(t) is a time
series, although this is not necessary, as the Discrete Wavelet
Transform (DWT) can be applied to different kinds of signals.
The individual wavelet functions are derived from a single
“mother wavelet,” ψ(t), through translation and dilation of the
mother wavelet. The mathematical definition of the CWT is

c x t t dt 1, ,( ) ( ) ( )
ò y=t j t j

Table 1
Eclipse Observations Dates and Orbit Numbers of XO3b

Obs. Number UT Date Orbit Number

1 2010 Apr 8 0
2 2012 Nov 11 297
3 2012 Nov 17 299
4 2012 Nov 20 300
5 2012 Nov 23 301
6 2012 Dec 2 304
7 2012 Dec 9 306
8 2013 Apr 22 348
9 2013 May 5 352
10 2013 May 18 356
11 2013 May 21 357
12 2013 May 24 358
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where ψτ,j is the mother wavelet for a given scaling j and
translation τ, and cτ,j is the wavelet coefficient with respect to
τ and j.

If the wavelet basis is orthogonal, the inverse wavelet
transform can be used to reconstruct the original time series:

x t c t . 3, ,( ) ( ) ( )
 

åå y=
j t

t j t j
Î Î

The mother wavelet can be chosen among a variety of wavelet
families with different properties. For more details we refer to
the relevant literature, e.g., Daubechies (1992) and Percival &
Walden (2000).

2.3.2. Discrete Wavelet Transform (DWT)

Astronomical data are usually in the form of discrete time
series. For the DWT the mother wavelet is denoted by h(t), and
the scaling function, also called “father wavelet,” is denoted by
g(t). The mother and father wavelets act as high-pass and low-
pass frequency filters, respectively. They are related by

g L t h t1 1 , 4t( ) ( ) ( ) ( )- - = -

where L is the filter length and corresponds to the number of
points in the time series x(t).

The one-level DWT is defined by

cA x g t

x t g t
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The cA1 time series approximates the underlying low-frequency
trend of x(t) (average coefficients), while the cD1 time series
represents a higher frequency component (detail coefficients).
They are down-sampled by a factor of two (“ 2 ” in
Equations (5) and (6)) with respect to the original time series,
because of the Nyquist theorem.
It is possible to apply the g and h filters to the cA1 time

series, then obtaining new sets of coefficients, cA2 and cD2, and
iterate the process. The n-level DWT includes the cAn series of
average coefficients, down-sampled by a factor of 2n, and n
series cD1–cDn of detail coefficients, representing bands of
higher frequencies. The original data can be reconstructed by
reversing the process:

x t cA g t

cD h t

2

2 . 7

n

i

n

i
1

( ) ( ) ( )

( ( )) ( )å å

t t

t

= - +
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2.3.3. Wavelet ICA

In this section we describe the wavelet ICA algorithm, which
is used in a variety of contexts, such as medical sciences (e.g.,
Inuso et al. 2007; La Foresta et al. 2012; Mammone
et al. 2012), engineering (e.g., Lin & Zhang 2005), acoustic
(e.g., Moussaoui et al. 2006; Zhao et al. 2006), image
denoising (e.g., Karande & Talbar 2014), and astrophysics
(e.g., Waldmann 2014).
Be x x x x, , ..., m

T
1 2( )= the column vector of observed

signals. In this paper, xk are individual pixel time series, so-
called pixel light curves, which are mixtures of different source
signals, astrophysical or instrumental in nature, and Gaussian
noise. The formalism adopted in this subsection is valid in a
more general context, where the xk can be any kind of mixed
signals. ICA is a linear transformation of the observed (mixed)
signals, which minimizes the mutual information to decorrelate
the independent components:

x As s Wx, 8( )= =

where s s s s, , ..., m
T

1 2( )= is the column vector of the original
source signals, A is the matrix of mixing coefficients, and
W = A 1- . We refer the reader to Waldmann (2012) and Morello
et al. (2014, 2015) for additional details.
The ability of ICA to decorrelate non-Gaussian signals is

inherently limited to a low Gaussian noise amplitude relative to

Figure 1. Scheme of the eclipse model adopted: the stellar flux is constant and normalized to 1 (blue dashed line), the planetary flux is a linear function of time, and
disappears during the eclipse (red line). The eclipse depth is the extrapolated planetary flux, in units of stellar flux, at the eclipse center.

Table 2
Values of the Parameters Fixed while Generating the Eclipse Models

Orbital period, P (days) 3.19153285
Scaled semimajor axis, a/R* 7.052
Inclination, i (degree) 84.11
Eccentrity, e 0.2833
Argument of periastron, ω (degree) 346.8
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Figure 2. Left panels: (blue) raw light curves obtained from 5×5 array of pixels. Right panels: (blue) detrended eclipse light curves obtained with the wavelet pixel-
ICA method, and (red) best eclipse models. All the light curves are binned over 32 frames, i.e., ∼64 s.
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the non-Gaussian signals. Wavelet ICA algorithms are
designed to be less sensitive to white noise compared to the
simple ICA separation, described above. In wavelet ICA
algorithms, the DWT is applied to the observed signals:

x t x cA cD cD, , ..., 9k k k n k n k, , ,1( ) ˆ ( ) ( ) =

x xt x t x t x t, , ..., 10m
T

1 2( ) ˆ ( ˆ ( ) ˆ ( ) ˆ ( )) ( ) =

The ICA separation is performed with the series of coefficients:

s Wx 11ˆ ˆ ˆ ( )=

The independent components series of coefficients are

s cA cD cD, , ..., 12l l n l n l, , ,1ˆ ( ) ( )=

They can be converted into the time domain through inverse
DWT (Equation (7)).

The DWT preliminarly separates the high-frequency com-
ponents from the low-frequency trend, enhancing the ability of
ICA to disentangle the low-frequency independent compo-
nents. This step is particularly important in cases where the
Gaussian noise is dominant. Additional processing options/
variants have been proposed in the literature to further improve
the ICA performances in specific contexts, e.g., coefficients’
thresholding (Stein 1981; Donoho 1995), suppression of some
frequency ranges (Lin & Zhang 2005), taking individual levels
as input to ICA (Inuso et al. 2007; Mammone et al. 2012). In
this paper, we aim to provide the most objective analysis of the
data sets with minimal prior assumptions, hence those variants
are not considered. The impact of those variants and other
operations to the data will be carefully investigated in future
studies.

2.4. Detrending Method, Light-curve Fitting, and Error Bars

In this section we list the main steps of the wavelet pixel-
ICA method, followed by a more accurate description and
comments:

1. Selecting an array of pixels. The raw light-curve is the
sum of the individual pixel time series within the selected
array.

2. Removing outliers.
3. Subtracting the background from the raw light curve.
4. Computing the wavelet transforms of the time series from

the pixels within the selected array, hereafter called pixel
light curves.

5. Performing ICA decomposition of the wavelet-trans-
formed pixel light curves.

6. Computing the inverse wavelet transforms of the
independent components.

7. Simultaneous fitting of the components (except the
eclipse one) and astrophysical model on the raw light
curve.

8. Estimating parameter error bars.

2.4.1. Selecting the Pixel-array

We use squared arrays of pixels as photometric apertures; in
this paper, we tested 5×5 and 7×7 arrays with the stellar
centroid at their centers. By default, all pixel light curves within
the selected array are also used to decorrelate the instrument
systematics through ICA. Our previous analyses of transit
observations indicated the 5×5 and 7×7 arrays to be

optimal choices, and, in general, results were very little affected
by the choice of different arrays (Morello et al. 2014, 2015).

2.4.2. Outlier Rejection

We flag and correct outliers in the flux time series. First, we
calculate the standard deviations of any set of five consecutive
points and take the median value as the representative standard
deviation. We define the expected value in one point as the
median of the four closest points, i.e., two before and two after.
Points differing from their expected values by more than five
times the standard deviation are flagged as outliers. They are
then replaced with the mean value of the points immediately
before and after, or, in case of two consecutive outliers, with a
linear interpolation between the closest points which are not
outliers. We checked that the outliers removed after this
process are coincident with outliers that would have been
spotted by eye. They are less than 0.35% the number of points
in each observation.

2.4.3. Background Subtraction

The background is estimated by taking the mean flux over
four arrays of pixels with the same size of the selected array
(5×5 or 7×7) near the corners of the sub-array area. In
Appendix A.3 we discuss how this preliminary step improves
the results. Here we anticipate that the impact on individual
measurements of the eclipse depth is at the level of ∼10−5, well
below the error bars. However, this difference might become
significant when averaging results from multiple observations,
and the error bars are reduced.

2.4.4. Wavelet Transforms

The main novelty of the algorithm proposed in this paper is
that the pixel light curves are wavelet transformed before
performing the ICA separation. More specifically, we adopt
one-level DWT with mother wavelet Daubechies-4 (Daube-
chies 1992). We found that different choices of the mother
wavelet, among different families and numbers, lead to exactly
the same results, and higher-level DWTs are not useful. We
also investigated the effect of binning the time series (see
Appendices A.1 and A.2).

2.4.5. ICA Decomposition

It is performed on the wavelet-transformed pixel light curves
(see Equation (11)).

2.4.6. Inverse Wavelet Transforms

The independent components are transformed in the time
domain through inverse DWTs (see Equation (7)).

2.4.7. MCMC Fitting

The raw light curves are linear combinations of the
independent components. One of the components is the eclipse
signal (with some residual systematics), other components may
be instrumental systematics and/or other astrophysical signals.
Instead of fitting an eclipse model to the eclipse component,
more robust estimates of the eclipse parameters are obtained by
fitting a linear combination of the eclipse model and the non-
eclipse components, hereafter full models, to the raw light
curves. The free parameters of the eclipse model are fitted
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together with the scaling coefficients of the independent
components. First estimates of the parameters and scaling
coefficients are obtained through a Nelder–Mead optimization
algorithm (Lagarias et al. 1998); they are then used as optimal
starting points for an Adaptive Metropolis algorithm with
delayed rejection (Haario et al. 2006), generating chains of
300,000 values. The output chains are samples of the posterior
(Gaussian) distributions. We adopt the mean values of the
chains as final best estimates of the parameters, and the
standard deviations as zero-order error bars, σpar,0.

2.4.8. Final Error Bars

The final parameter error bars are

13par par,0
0
2

ICA
2

0
2

( )s s
s s

s
=

+

0
2s is the sampled likelihood variance, approximately equal to

the variance of the residuals for the best transit model; ICA
2s is a

term accounting for the potential bias of the components
obtained with ICA.

o ISR 14
j

j jICA
2 2 ( )ås =

where ISR is the so-called Interference-to-Signal-Ratio matrix,
and oj are the coefficients of the non-eclipse components. The
term relative to the goodness of the fit of the components does
not appear in Equation (14), as it is automatically included in
σ0 when the components’ coefficients and astrophysical
parameters are fitted simultaneously.

2.5. Results

Figure 2 shows the raw light curves for the 12 observations,
the correspondent detrended eclipses and best models, obtained
using the 5×5 array and binning over 32 frames, i.e., ∼64 s.
The individual measurements of eclipse depth and phase
constant are reported in Figure 3 and Table 3. The results from

Figure 3. Top panel: (green circles) individual best eclipse depth measurements obtained in this work , and (red triangles) results from Wong et al. (2014). Bottom
panel: the same for individual measurements of the phase constant.

Table 3
Individual Best Parameters Results Obtained in this Work

Obs.
Number

Depth
(10−3) 1σ error

Phase Constant (10−4

days−1) 1σ Error

1 1.66 0.11 −6 7
2 1.72 0.11 6 8
3 1.54 0.10 8 5
4 1.56 0.10 9 7
5 1.52 0.10 −9 7
6 1.56 0.13 2 10
7 1.64 0.11 5 10
8 1.57 0.12 0 11
9 1.54 0.11 0 5
10 1.52 0.10 11 8
11 1.50 0.12 16 7
12 1.48 0.12 8 6

6

The Astrophysical Journal, 820:86 (14pp), 2016 April 1 Morello, Waldmann, & Tinetti



all epochs are consistent within the error bars, suggesting the
lack of any detectable astrophysical variability for this system,
and residual instrument variability. By taking the weighted
means of the individual measurements, we obtain global best
estimates of (1.57±0.03)×10−3 for the eclipse depth, and
(4.4±2.0)×10−4 days−1 for the phase constant.

3. DISCUSSION

3.1. Reduced Chi-squared Tests

The underlying assumption for the weighted mean to be a
valid parameter estimate is that individual measurements of that
parameter are normally distributed around the same mean value
with variances i

2s , and there are no systematic errors. The
reduced chi-squared can be used to test, in part, this hypothesis:

n k

x x1
15

i

n
i

i
0
2

1

2

2

( ¯) ( )åc
s

=
-

-

=

where xi±σi are the individual measurements, x̄ is the
weighted mean value, n=12 is the number of measurements,
and k=1 is the number of calculated parameters. Ideally, if
the assumption is valid, we should expect 0

2c 1. Con-

ventionally, the hypotesis is rejected if Mn k0
2

,c > , where Mn,k

is the critical value corresponding to a probability of less than

5% for the hypothesis to be valid. We found 0.420
2c = for the

eclipse depth, and 1.00
2c = for the phase constant, confirming

the non-detection of any inter-epoch variability. 0.420
2c =

may suggest that the error bars for the eclipse depth are
overestimated, but this is not totally surprising, given that we
actively increased them to account for potential uncorrected
systematics and biases in the detrending method. Note that the
reduced chi-squared tests whether the actual dispersion in the
measurements is consistent within their error bars, but it is not
sensitive to a uniform bias for all measurements, e.g., a
constant shift. Hence, it is not sufficient alone to justify the use
of the weighted mean as global estimate of a parameter.
Additional tests, reported in the appendices, show that the
weighted mean result is very stable for the eclipse depth. The
phase constant appears to be more dependent on certain
detrending options, in particular background subtraction. In this
case, the adopted weighted mean error bar of
2.0×10−4 days−1 is a lower limit, valid under some caveats.
In the worst-case scenario, the maximum error bar, calculated
without scaling when combining multiple measurements, is
7×10−4 days−1.

3.2. Comparison with a Previous Analysis of the Same
Observations

Our results are consistent within 1σ with the ones from a
previous analysis reported in Wong et al. (2014) (see Figures 3
and 4). Our error bars are generally larger by a factor 0.8–1.5
for the eclipse depth (smaller in 1 case) and 1.0–2.0 for the
phase constant compared to the ones in the literature. The
factors for the weighted mean eclipse depth and phase constant
are 0.9 and 1.4, respectively. Slightly larger error bars are a
worthwhile trade-off for much higher objectivity, which
derives from the lack of assumptions about the origin of
instrument systematics and their functional forms in our
detrending method. We also note that, despite the larger
nominal error bars, the dispersions in our best parameter
estimates are slightly smaller than the ones calculated from the
results reported in Wong et al. (2014; see Table 4).

Figure 4. Left panel: (green circle) best global eclipse depth estimate obtained in this work, and (red triangle) in Wong et al. (2014). Right panel: the same for the
global phase constant.

Table 4
Weighted Mean Parameter Results, Dispersions, and Reduced Chi Squared

Values Obtained in this Paper and Reported in Wong et al. (2014)

Eclipse Depth This Work Wong et al. (2014)

Best estimate (1.57±0.03)×10−3 1.580 0.039
0.033

-
+ ×10−3

Dispersion 7.2×10−5 8.4×10−5

0
2c 0.42 0.86

Phase Constant (days−1) This work Wong et al. (2014)

Best estimate (4.4±2.0)×10−4 6.0 1.6
1.3

-
+ ×10−4

Dispersion 7.0×10−4 11.3×10−4

0
2c 1.0 4.3
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The reduced chi-squared values inferred from their indivi-
dual parameter estimates are 0.860

2c = for the eclipse depth,
and 4.30

2c = for the phase constant. While the first 0
2c value is

consistent with the hypothesis of a constant transit depth within
the quoted error bars, the second 0

2c value indicates that the
analogous hypothesis for the phase constant can be rejected
(less than 0.1% probability of being true). This may suggest
either that they were able to detect some astrophysical
variability of the phase curveʼs slope, or that their individual
error bars are underestimated by a factor ∼2. Given that the
astrophysical slope is degenerate with other instrumental
trends, such as long-term position drift of the telescope and
possible thermal heating, it is possible that their individual error
bars do not fully accounts for these degeneracies, as the authors
themselves state. If this is the case, we observe that their final
error bar on the phase constant, derived by a joint fit of all
eclipses, could be equally underestimated, because it is not
guaranteed that residual systematic errors cancel out over
multiple observations as if they were random errors. Note that
the joint fit approach is theoretically valid under the same
assumptions for which the weighted mean is valid, and the two
approaches are expected to lead to very similar results (we
checked that this happens in this case). In conclusion, our
reanalysis confirms the results reported in Wong et al. (2014)
for the eclipse depth, and relative inter-epoch variability, but
not the 4σ detection of a non-flat phase curveʼs slope during the
eclipse, as larger error bars are needed to account for the
possible residual systematics.

4. CONCLUSIONS

We have applied a blind signal-source separation method to
analyze twelve photometric observations of the eclipse of the
exoplanet XO3b obtained with Warm Spitzer/IRAC at 4.5 μm.
The method is an evolution of the pixel-ICA method proposed
and successfully used by our team to analyze real and synthetic
transit observations. By adding a wavelet transform of the time
series, we extend the applicability of pixel-ICA to detrend low-
S/N observations with instrumental systematics stronger than
the astrophysical signal. Wavelet pixel-ICA results are
consistent within 1σ with results reported in the literature.
They also have smaller dispersions in the eclipse parameters
measurements, even including the most recent results that
appeared on arXiv while this paper was under review. While
the individual error bars are usually more conservative, as they
fully accounts for the possible uncertainties, the final error bar
on the eclipse depth is equal or smaller than the ones obtained
with other methods discussed in the literature.
No significant inter-epoch variations are detected over

twelve repeated observations in 3 years interval. This is
convincing evidence that, with appropriate data detrending
methods, transit, and eclipse measurements based on Spitzer/
IRAC observations can achieve this level of precision and
reproducibility, and therefore are useful to characterize the
atmospheres of exoplanets. Also, the lack of any detectable
astrophysical variability, for the XO3b system, allows us to
combine multiple observations to increase the accuracy in
stellar and planetary parameters.

Figure 5. Top panel: rms of residuals as a function of bin size for (red line) Gaussian white noise, (cyan dots) individual observations analyzed with bin size of 32
frames, and (blue circles) values averaged over the 12 observations. Bottom panel: the same for individual observations analyzed with a bin size of 64 frames.
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APPENDIX
TESTING THE ROBUSTNESS OF RESULTS

A.1. The Effect of Binning

Given the large number of frames (14,912) for each
observation, binning data is very useful to decrease the
computational time needed to run the MCMCs for the eclipse
parameters and scaling coefficients for the independent
components (see Section 2.4.7). Some authors suggest that an
optimal choice of the binning size can be useful to reduce the
noise on the timescale of interest (Deming et al. 2015; Kammer
et al. 2015), provided that the theoretical curve is similarly
binned as necessary to eliminate bias, and the bin size is not too
long to cause significant loss of astrophysical information
(Kipping 2010).

An additional choice for the pixel-ICA algorithm is whether
to bin the pixel time series prior the ICA separation, or to bin
the independent components extracted from unbinned pixel
time series. We found that the two options are almost
equivalent, as the eclipse signals obtained after removing the
systematic components from the raw light-curve are identical
(discrepancies of one to two orders of magnitudes smaller than
the fitting residuals), except in cases for which the unbinned
ICA separation fails to retrieve an eclipse component. It is
worth noting that for the unbinned case, the amplitude of the
total noise plus systematics is higher than the the eclipse depth.
Thus we decided to bin the individual pixel light curves prior
ICA retrieval.
We compare the results obtained for all the observations with

bin sizes of 32 and 64 frames, i.e., 64 and 128 s, respectively.
First, we test the gaussianity of fitting residuals by calculating
their rms as a function of the bin size, b. If fitting residuals are
white noise, the rms would scale as b1 . Figure 5 shows that,
in both cases, the rms of fitting residuals slightly deviates from
the expected behavior of white noise. Those deviations are
smaller for the analysis with a bin size of 32 frames. The
parameter results obtained with the two binning choices are all
consistent within 0.5σ, and on average within 0.16σ (see also
Figures 6 and 12). Both the error bars and the overall
dispersions are smaller for the cases with bin size of 32 frames
by factors of ∼1.4. We consider the results obtained with bin
size of 32 frames as our best results.

Figure 6. Top panel: individual eclipse depth measurements obtained with 5×5 array, background subtraction, and (dark green, full circles) binning over 32 frames,
and (light green, empty circles) binning over 64 frames. Bottom panel: the same for individual measurements of the phase constant.
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A.2. Specific Wavelet ICA Options

The DWT of a time series is specified by the choice of a
mother wavelet and the number of levels (see Section 2.3.2).
We adopted a Daubechies-4 mother wavelet, and one-level
decomposition. For a few observations we tested multiple
choices of the mother wavelet, among the Daubechies,
Biorthogonal, Symlets, and Coiflets families, and number of
decomposition levels. We refer to Daubechies (1992), Percival
& Walden (2000) for details about the wavelet properties. We

found that different choices of the mother wavelet are not
significant, e.g., discrepancies in the eclipse signals are one to
two orders of magnitudes smaller than the fitting residuals,
while level decompositions higher than 1 usually appear to
make it impossible for ICA to retrieve the eclipse. The
difficulties with higher-level DWTs may arise from sub-
sampling the average coefficients, and the fact that some of the
low-frequency non-Gaussian components may be smeared over
higher levels of detail coefficients.

Figure 7. Example of background time series binned over 32 frames.

Figure 8. Top panel: individual eclipse depth measurements obtained with 5×5 array, time series binned over 32 frames (green circles) with background subtraction,
and (blue circles) without background subtraction. Bottom panel: the same for individual measurements of the phase constant.
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A.3. About Background Subtraction

Uncorrected background may bias the normalized amplitude
of the eclipse depth, as well as the phase curveʼs slope, if the
background is not constant over time. The typical morphology
of a background time series is either a constant function or a
slow monotonic drift. The lack of a distinct temporal structure
and non-gaussianity makes it difficult to disentangle with ICA,
as well as other statistical methods. For this reason, we
performed ad hoc background subtractions before ICA
detrending (see Section 2.4.3). In this section, we discuss the
impact of this step in the analyses, by comparing results
obtained with and without background subtraction. These are
also used to infer the maximum parameter errors that can be
caused by an inappropriate background correction.

Figure 7 shows an example of background time series
estimated for one observation. The measured mean background
level slightly varies from one observation to the other, but it is
always less than 0.6% of the total flux from the system, hence
potentially affecting the eclipse depth by less than 10−5, well
below the error bars. The background is also not constant
during one observation: it has a small ramp for the first ∼20
minutes (except for the eclipses extracted from longer
observations), then continues to slowly increase.

Figure 8 shows the parameter results obtained with and
without background subtraction. The greatest discrepancies are
observed for the phase constant, which is systematically higher
by 2–20×10−4 days−1 for the cases without background
subtraction, suggesting the presence of uncorrected

systematics. It is quite remarkable that our individual error
bars automatically account for those systematics, but, given
their non-random nature, the weighted mean error bars for the
phase constant cannot be compared. It is difficult to prove the
superiority of the results obtained with background subtraction
over the others, as the residuals between the full models and the
relevant raw light curves (see Section 2.4.7) are very similar for
the two cases, e.g., similar amplitudes and time correlations,
leading to similar error bars. Slightly smaller parameter
dispersions are obtained with background subtraction rather
than without, in particular 7×10−5 versus 9×10−5 for the
eclipse depth, and 7×10−4 versus 8×10−4 days−1 for the
phase constant. The higher mean value of the phase constant
obtained without background subtraction, i.e., ∼13×10−4

days−1, appears to be less likely, as it would require a higher
than expected increase in the atmospheric temperature due to
stellar irradiation during the eclipse, and/or strong horizontal
disomogeneities either in temperature, chemical composition
and/or clouds (Cowan & Agol 2011; Kataria et al. 2013;
Agúndez et al. 2014). If we assume that systematics are
removed with background subtraction, we can take the
weigthed mean as the best estimate for the phase constant.
The discrepancies between eclipse depth measurements with

and without background subtraction are in the range 10−5
–

10−4, and, on average, the eclipse depth is smaller by
∼4×10−5 for the case without background subtraction.
Although this is more than the 10−5 difference expected from
the mean background level relative to the mean stellar flux (see

Figure 9. Top panel: individual eclipse depth measurements obtained with (green circles) 5×5 array, and (brown squares) 7×7 array; both are obtained with time
series binned over 64 frames, and background subtraction. Bottom panel: the same for individual measurements of the phase constant.
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the discussion in the previous paragraph), in this case, the two
weighted means are consistent within 0.5σ. We found that the
main effect of background on the eclipse depth is due to
correlations between the measured eclipse depth at the eclipse
center and the phase constant, in terms of Pearson correlation
coefficients between the relevant MCMCs. The details of this
study are beyond the scope of this paper.

A.4. Using Different Arrays of Pixels

In previous studies, we found that, for high-S/N transit
observations, pixel-ICA performances are only slightly depen-
dent on the choice of the array (Morello et al. 2014, 2015). The
3×3 array is too narrow compared to the Spitzer/IRAC Point
Spread Function, and for this reason, it is not photometrically
stable (although it usually leads to consistent results). Larger
arrays are more photometrically stable, but they include more
noise. Also, noisier pixel light curves, appear to increase the
uncertainties in the ICA decomposition (σICA, see Sec-
tion 2.4.8), so that the smallest error bars were usually
obtained using the 5×5 array.

In this work, we analyzed all data sets with two different
choices of the pixel-array, i.e., 5×5 and 7×7. For the
analyses with the 7×7 array, we only adopted the 64 frames
bin size, for which the MCMC fitting is faster. Figure 9
compares the results obtained with the two different arrays and
the same bin size. The two sets of results are consistent well
within 1σ, but error bars obtained with the 7×7 array are
1–1.5 times larger than the ones obtained with the 5×5 array,

despite the residuals in the fits are similar and often smaller for
the 7×7 cases. This confirms the conclusions obtained from
previous analyses, in particular:

1. The 5×5 array leads to smaller error bars than other
squared arrays of pixels;

2. Parameter results from different arrays are consistent well
within 1σ.

In this case, the choice of a less optimal array increases the
error bars more significantly than in our previous analyses,
most likely because of the lower S/N of the observations
analyzed here.
Figure 10 compares the results obtained with and without

background subtraction for the case of 7×7 array. The same
considerations discussed in Appendix A.3 for the 5×5 array
are valid for the 7×7 array.

A.5. Breaking Degeneracy with the Phase Constant

At the end of Appendix A.3 we revealed the existence of a
correlation between the eclipse depth and phase constant
parameter, which is stronger for data with a higher slope, such
as the cases without background subtraction. This may affect
the eclipse depth estimate in case of residual systematics with a
slope, e.g., uncorrected background. In our analyses, the
maximum bias on the eclipse depth due to correlations with this
kind of systematics is ∼4×10−5, provided the systematic
slope is not larger than our individual error bars.

Figure 10. Top panel: individual eclipse depth measurements obtained with 7×7 array, time series binned over 64 frames (brown squares) with background
subtraction, and (purple squares) without background subtraction. Bottom panel: the same for individual measurements of the phase constant.
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Here we test the consequences of adopting zero phase
constant while fitting for the eclipse depth. This is equivalent to
the assumption that the phase curve is flat before and after the
eclipse, and the slope is entirely due to instrumental effects.
Compared to the cases with the phase constant as free
parameter, fitting residuals with zero phase constant are not
significantly larger. Figure 11 compares results for the eclipse
depth with free and zero phase constant, with and without
background subtraction. The weighted mean results are
reported in Figure 12. We note that differences in eclipse
depth measurements with and without background subtraction
are smaller for the zero phase constant models, suggesting that
eclipse depth measured with zero phase constant models is less
affected by residual systematics with a slope. Free phase
constant models are valid in a more general context, as,
differently from the zero phase constant models, they
approximate a planetʼs flux variability during the observation.
The consistency between the results obtained with the two
classes of models indicates that, in this case, the planetʼs flux
variability in the proximity of the eclipse is smaller than the
error bars.

A.6. Robustness of the Eclipse Depth Measurement

Figure 12 reports the weighted mean eclipse depth estimated
for all the tests discussed in the appendices. Note that they are
mutually consistent at the 0.5σ level, and the range
is 6×10−5.
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