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Abstract 

 

Water uptake, sorption mechanics and swelling characteristics of thin-film Nafion and a 

commercially available Tokuyama alkaline anion exchange membrane ionomer from the 

vapour phase is explored using a quartz crystal microbalance (QCM). The water uptake 

measures the number of water molecules adsorbed by the ionomer per functional group and 

is determined in-situ using the QCM frequency responses allowing for comparison with 

nanogram precision. Crystal admittance spectroscopy, along with equivalent circuit fitting, is 

applied to both thin films for the first time and is used to investigate the ionomer’s 

viscoelastic changes during hydration; to elucidate the mechanisms at play during low, 

medium and high relative humidities. 

 

 

 

 

 

 

 

Keywords: Fuel cell water management; Solid polymer electrolyte; Membrane swelling; 

Crystal admittance spectroscopy; Quartz crystal microbalance. 

*Manuscript
Click here to view linked References

mailto:d.brett@ucl.ac.uk
http://ees.elsevier.com/memsci/viewRCResults.aspx?pdf=1&docID=22655&rev=0&fileID=729854&msid={745C3215-4606-45FD-9808-E29C4A80C466}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2 
 

1 Introduction 

Fuel cells are a promising electrochemical energy conversion technology applicable across a 

wide range of applications. Converting chemical energy directly into electricity with no 

moving parts and no point-of-use particulate or greenhouse gas emissions, they can offer 

higher efficiencies than current combustion engines and greater energy storage and reduced 

‘charge’ times compared to batteries. 

 

Fuel cells are made up of numerous components which are described in detail elsewhere [1, 

2]; this work focusses on the solid polymer electrolyte (SPE) ion conducting membrane. In a 

fuel cell, the SPE membrane serves to conduct ions (often H+ or OH-) between electrodes 

(anode to cathode in acidic fuel cells and cathode to anode in alkaline fuel cells); the 

membrane should also be a good electrical insulator and be impermeable to reactant 

species. The most common SPE membrane is Nafion (DuPont) and is used in proton 

exchange membrane (PEM) fuel cells, whilst advancements in alkaline SPEs has led to the 

first commercially available anion alkaline exchange membrane (AAEM) by Tokuyama Co. 

(Tokyo, Japan) 

 

Water management in SPE membrane fuel cells is essential to achieving optimal operation; 

SPEs must be hydrated to allow sufficient protonic and hydroxide ion conduction in PEM and 

AAEM fuel cells respectively, whilst excessive liquid water will cause deleterious 

performance effects [3]. Water transport across SPEs is driven by several mechanisms, 

including diffusion by activity gradients, convection through hydraulic pressure differences 

and electro-osmotic drag. 

 

Water uptake and transport through PEMs, and specifically Nafion, has been extensively 

studied; however, the microstructure of hydrated Nafion is currently a subject of intense 

study and speculation [4]; the most established theory is the Cluster–Network model 

presented in the 1980s [5-7]. The Cluster-Network model considers the ionomer as a 

network of ionic clusters formed by the sulphonic groups arranged as inverted micelles 

(roughly 4 nm diameter) and interconnected by narrow water channels (1 nm in diameter). 

Through techniques such as small angle X-ray scattering (SAXS), authors such as Gierke et 

al [5] have shown that as the Nafion ionomer adsorbs water, the cluster diameter, exchange 

sites per cluster and number of water molecules per exchange site, all increase as shown in 

Figure 1. Other publications, such as the work presented by Schmidt-Rohr and Chen [8], 

have shown through modelling techniques that the hydrated ionomer structure corresponds 

more closely to inverted-micelle cylinders with average channel diameters of 2.4 nm. 
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Figure 1: The Cluster Model theory for hydrated Nafion microstructure adapted from Gierke 

et al. 

 

Experimental work by Zawodzinski et al. [9, 10] has somewhat extended and explained the 

Cluster–Network model and has shown that Nafion hydrates through two distinct regimes. At 

low relative humidities (RHs), it is suggested that only a small quantity of water is adsorbed 

and the uptake corresponds to the solvation of the protons and sulphonate ions. The water 

in the polymer during this regime strongly interacts with the ionic components within the 

ionomer and these interactions help overcome the strong tendency of the polymer to exclude 

water due to its hydrophobic nature and swelling resistance. The second regime, which 

occurs at higher RHs, is thought to correspond to a large water uptake, in which the 

adsorbed water molecules fill the ionomer’s micro-channels and result in membrane 

swelling. 

 

There is a growing body of literature on water management properties of AAEMs [11-13]; 

however, most studies have neglected to consider the transport phenomenon at the 

interfacial level. One of the most common commercially available AAEMs is made by 

Tokuyama (Japan). Whilst the exact chemical composition of the Tokuyama membrane is 

not certain, it is known to be made up of a hydrocarbon backbone with terminated 

quaternary ammonium functional groups. Many experiments have been conducted to 
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characterise AAEM performance, durability and electro-osmotic drag [14-16] and it is 

proposed that as with Nafion, the ionomer hydrates and hydrophilic regions will swell, though 

little is understood about how AAEMs take up water or how swelling affects ion conductivity. 

It has been well documented that AAEMs have a significantly lower ionic conductivity than 

the PEM equivalent [13, 14]. To compensate for this, it is common for manufacturers to 

introduce additional functional groups on the polymer backbone to increase the ionomer’s 

ion exchange capacity (IEC). Excessive water loading is reported to cause mechanical 

instability in AAEMs [14] and consequently, the study of ionomer morphology during 

hydration (specifically when the ionomer is in a ‘fully hydrated’ state) is imperative. Similarly, 

improved understanding of interfacial water uptake, loading mechanisms and consequent 

hydroxide ion conductivity is required for AAEM ionomers. Development of AAEMs for fuel 

cells also needs to tackle the challenge of carbonate salt precipitation when operated in air 

containing CO2 [17, 18]. 

 

A promising analytical technique for the study of water uptake in SPEs is the quartz crystal 

microbalance (QCM). Studies on Nafion have described water uptake trends and some have 

commented on the so-called Schroeder’s Paradox [4, 19, 20]. However, to date, most QCM 

studies have limited the analysis to a simple consideration of the frequency of operation as 

the key metric of water uptake and overlooked viscoelastic effects, loading mechanisms and 

subsequent swelling of the interfacial layer upon hydration. Using the QCM to investigate 

viscoelastic changes of the ionomer during hydration provides potential insight into hydrated 

micro-structure and the links between hydration states and ionic conductivity. 

 

This study investigates the water uptake and loading mechanisms of both thin-film Nafion 

and a commercially available AAEM ionomer through a range of humidities using the QCM 

and Crystal Admittance Spectroscopy (CAS). 
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2 Experimental 

2.1 Ionomer water uptake 

An ionomer’s water uptake () is defined as the number of moles of water adsorbed per 

mole of functional group present (mol/mol) – it is electrolyte specific. It provides a useful way 

to directly compare the water sorption properties of different membranes types and 

thicknesses; it is calculated using Equation 1. 

 

   
 

             
 (1) 

 

The IEC represents the ion content per gram of polymer (mmol g-1) [21], Mw the molecular 

weight of water and   is the water content of the membrane, this is further defined by 

Equation 2. 

 

   
      
  

      (2) 

 

md and mw represent the dry and wet mass of the electrolyte at a given humidity, respectively 

[22]. 

 

Thin film ionomer md and mw values differ by nanograms, and thus QCM offers a sensitive 

and accurate method to determine the water loading between the hydrated and non-

hydrated ionomer. 

 

2.2 Quartz crystal microbalance 

The quartz crystal microbalance (QCM) is a bulk acoustic wave (BAW) resonator that has 

proved to be a versatile in-situ mass monitoring device with nano-gram resolution [23] . Bulk 

acoustic wave resonators contain a piezoelectric material (e.g., quartz) sandwiched between 

two electrically conductive metal electrodes (often gold or platinum). A voltage stimulus 

across the electrodes causes the quartz to resonate at a specific frequency; the frequency of 

this oscillation depends on the dimensions of the crystal and the amount of mass deposited 

on its electrodes. When there is a mass change within the system under consideration, the 

resultant frequency change can be accurately measured and related to a mass change using 

the Sauerbrey equation: 

 

    
     

    

       
 

(3) 
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Where Δf is the frequency shift experienced during mass loading, f0 is the microbalance’s 

fundamental frequency, A is the piezoelectric area, μq the shear modulus of quartz, ρq the 

quartz density and Δm relates to the corresponding mass change. 

 

The Sauerbrey equation does however make several assumptions which can lead to 

limitations in its applicability, such as: any mass deposited on the crystal is assumed rigid 

under oscillation and also evenly distributed across the electrode surface at a mass ≤ 2% of 

the quartz mass [23, 24]. The Sauerbrey equation assumptions also state that the deposited 

mass is assumed to have the same density and transverse velocity to that of quartz. The 

relationship assumes the frequency shift resulting from a mass deposited at some radial 

distance from the centre of the crystal will be the same regardless of the location [25]. 

Finally, when a mass or layer is added to the microbalance, it is assumed that the acoustic 

wave travels across the interface and propagates through the additional film – fulfilling the 

no-slip condition. 

 

The QCM has been used for a range of investigations, including polymer interactions [26], 

and more recently in the study of the Nafion ionomer water uptake [4, 19, 20]. The water 

uptake results presented by these investigations vary and only consider the frequency shift 

of the QCM, so limiting the extent of information accessible using the technique. Additional 

insight can be derived about viscoelastic changes in the thin film by using crystal admittance 

spectroscopy. 

 

2.3 Crystal Admittance Spectroscopy 

In the normal mode of operation, the QCM is allowed to oscillate at its natural frequency and 

provided certain constraints are adhered to, the Sauerbrey equation provides an accurate 

means of measuring mass change on the crystal surface. However, the frequency response 

is also a function of the viscoelastic properties of the deposited material and the rheology of 

the surrounding environment [27]. To better understand the nature of the acoustic coupling 

of the crystal with a deposited layer and the surrounding environment, the frequency of 

oscillation can be driven across the resonance region using crystal admittance spectroscopy 

(CAS) [25, 28, 29]. 

 

The QCM device and deposited material is a composite resonator and the CAS response 

can be modelled using an electrical equivalent circuit. The electromechanical properties of a 

piezoelectric resonator can be modelled using an equivalent circuit consisting of lumped 

parameter elements of mass, compliance (an object’s ability to yield elastically when a force 
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is applied) and resistance based on a mechanical model of a mass M attached to a spring of 

compliance Cm and a piston with friction rf, as shown in Figure 2. 

 

Cady [30] represented this model by a series of lumped parameters; an electrical network of 

inductive, capacitive and resistive components with a Butterworth Van-Dyke (BVD) circuit 

that represents an unperturbed crystal operating in air. 

 

 

 

Figure 2: (a) Butterworth Van Dyke (BVD) equivalent circuit and (b) its corresponding 

mechanical representation 

 

The BVD circuit can be thought of in two parts, the static and the motional arm. The motional 

arm (L1, C1 and R1) is the main point of focus as it is responsible for the system’s 

electromechanical properties. The static capacitance term (CO) dominates the admittance / 

impedance away from resonance, whilst the motional arm’s contribution is greatest near 

resonance. Fitting the circuit model to electrical measurements allows properties of the 

surface mass and / or liquid contacting media to be separated and analysed. For further 

discussion on how the two circuits relate, the reader is referred to [25]. 

 

The BVD circuit is an accurate representation for unperturbed crystals operating in vacuum 

and dry gas, but requires modification for resonators in contact with a viscoelastic material 

[31-33]. When a QCM is in contact with a viscoelastic medium, energy passes from the 

crystal to the media in the form of an acoustic wave which depends on the properties of the 

sensor – viscoelastic interface [34]. 

 

 

 

 

 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

8 
 

 

Figure 3: Modified Butterworth Van-Dyke equivalent circuit 

 

Martin et al. [28] proposed the modified equivalent circuit shown in Figure 3 for a QCM 

operating with a contacting viscoelastic phase and a contacting mass. The modified BVD 

introduces four new terms to the original BVD equivalent circuit: 

- For a microbalance in contact with a non-rigid medium, there is an additional 

inductance (L2) and a resistance (R2). 

- For a mass loaded crystal, a third inductance (L3) is introduced. 

- Cp represents the parasitic capacitance and depends on the geometry of the holder 

and the electrode pattern on the microbalance surface. 

 

The components used in the modified BVD represent the same physical characteristics of 

the QCM in the original BVD, and as such is also useful for characterisation of an 

unperturbed microbalance where L2 = R2 = L3 = 0, and Figure 3 reduces to the original BVD 

circuit for an unperturbed microbalance [35]. As discussed by Beck et al. [32] liquid loading 

causes an increase in both the motional inductance L2 and the resistance R2. Mass loading 

only affects L3; using CAS, this model allows different frequency responses to be 

distinguished. 

 

When fitting the modified BVD model, the assumptions are the same as that for the BVD, but 

also include: i) when the microbalance is oscillating in contact with liquid or viscoelastic 

media; a damped shear wave is radiated into the liquid; and ii) the contacting liquid thickness 

is assumed to be significantly larger than the radiated shear wave – i.e. the viscoelastic 

media can be assumed semi-infinite. Further information on the application and 

interpretation of CAS is available from [25]. 
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2.4 Thin Film Ionomer Casting 

Thin film ionomers of both Nafion and a commercial AAEM were cast with a thickness 

ranging from 20 – 100 nm, supported on a QCM electrode. The composite resonator (QCM 

and ionomer) is exposed to nitrogen under a range of humidities and the consequent water 

uptake values and swelling characteristics determined through a combination of passive and 

active oscillation methods. Active oscillation measurements, in which the composite 

resonator’s frequency response is measured when a specific voltage, were carried out using 

a QCM analogue controller (QCM200, Stanford Research Systems, USA). The admittance 

response is achieved using a Solartron 1260 impedance / gain phase analyser. Thin films 

are chosen for this study in order to minimize the contribution of internal water diffusion in 

the film [20], thus simplifying water transport analysis. 

 

The AAEM is expected to form carbonates on contact with CO2 (even at atmospheric 

concentration levels) [17, 36] and so all investigations were conducted in a CO2-free 

environment. Figure 4 shows the test station developed for this investigation. The controlled 

humidity chamber is further described in Figure 5a, which has a supply of dry or humidified 

nitrogen and is sealed to the external environment. 

 

 

Figure 4: Test rig setup, with active and passive oscillation systems (the dotted and solid 

lines represent electrical and piping connections respectively). 
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When casting thin films, Nafion D1021 dispersion (density 1.8 g cm-3 [19])   (DuPont, USA) 

and Tokuyama AS4 (density 0.94 g cm-3) (Tokuyama, Japan) were used respectively. 

Ionomer dilutions were made using methanol and IPA for the Nafion and AAEM electrolytes 

respectively and cast onto gold coated double-anchor electrodes, on 6 MHz AT-cut 14 mm 

diameter QCMs (Inficon). 

 

In the casting process, dispersions of each ionomer were applied in-situ to the crystal 

surface via a micro-pipette; the dispersed solutions dried under a stream of non-humidified 

nitrogen to leave a cast ionomer. The Nafion ionomer was cast and operated at 80 OC, whilst 

the AAEM was kept at 50 OC to limit the effect of nucleophilic displacement and subsequent 

membrane degradation, which is reported to occur around 60 OC [21, 37, 38]. 

 

The dry membrane thickness can be determined using the Sauerbrey Equation (3) and the 

Equation 4 below:  

 

    
  

     
 (4) 

 

 

Where ti is the ionomer thickness, mi is the ionomer mass (determined from the Sauerbrey 

Equation), A is the cast area and ρi the density of the recast ionomer. 

 

The cast was confined to the centre of the double-anchor electrode using the O-ring in the 

top of the QCM holder, shown in Figure 5b. This allows continuity across all experiments as 

the cast is kept to a specific area and reduces the risk of spurious radial mass loading which 

produce non-ideal frequency responses and also allows determination of the film thickness. 

 

As with other thin film ionomer studies [4, 19, 20], this investigation uses thin-film ionomers 

with thicknesses ranging from 20 nm to 100 nm. Ionomers within this range were chosen in 

order to minimise contribution from internal water diffusion, as discussed; but also to ensure 

they were within the operating range of the QCM. For the first time in an ionomer-QCM 

investigation, this study implements CAS; this allows determination of whether the cast 

ionomer operates within the QCM passive oscillation range. If the contacting viscoelastic 

ionomer is too thick, the composite resonator becomes overly capacitive, and is therefore 

unable to achieve a real resonant frequency [39]. 
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Figure 5: (a) The fuel cell humidification chamber, with in-situ casting chamber shown in the 

translucent section, and the QCM holder. (b) The holder shown in greater detail with QCM 

resonator and base plate for attachment to the humidification chamber. 

 

The QCM holder is designed and manufactured in-house from one piece of unfired 

pyrophyllite, with electrical connections to each electrode, and encompasses an O-ring to 

confine the cast area to the microbalance centre. The holder (Figure 5b) clamps the QCM 

from above and below, ensuring repeatable compression, good electrical connection and 

frequency stability. The electrical connection between the QCM and the frequency analyser 

was made using platinum wire and mesh. 

 

The QCM holder is housed within the body of the humidified cell (Figure 5a) and contains an 

access point for in-situ casting. Similar investigations [4] have cast the ionomer ex-situ and 

operated the microbalance under humidified environments; however, as this investigation 

includes the AAEM, in-situ casting was imperative to avoid the effect of CO2. 
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3 Results and Discussion 

3.1 Nafion Water Uptake 

3.1.1 Active Oscillation – Frequency Response 

 

Figure 6: Nafion ionomer water uptake for 33 nm (black line) and 60 nm (red line) thick 

ionomers operating through a range of RHs. The composite microbalance's (33 nm) 

frequency response when operating in humidity is also shown (inset) 

 

Figure 6 inset shows the microbalance frequency response for a 33 nm cast Nafion 

membrane operating over a range of RHs. The decreasing resonant frequency response 

with increased humidity is consistent with an increase of mass (electrolyte wet mass) loading 

on the crystal microbalance. Note that the initial exaggerated frequency drop is a result of a 

feed stream valve switching between the dry and humidified gas supply. If we initially 

assume that the Sauerbrey equation holds as an accurate measure of mass of water added 

to the layer, Equation 1 and 2 can be used to determine the membrane’s water uptake at a 

given humidity using the differences between its dry mass, wet mass and its IEC. The result 

for a 33 nm and a 60 nm thick membrane is shown in Figure 6. 
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Many sources confirm an increased Nafion water sorption and subsequent swelling with 

increasing RH; the more water in the operating environment, the greater the swelling (up 

until the point of maximum hydration) [3, 4, 19, 40]. 

 

As the contacting nitrogen’s RH is increased, the resonant frequency decreases; however, 

as can be seen, frequency stabilisation takes time as the membrane water content 

equilibrates with the operating atmosphere – the equilibration time can be attributed to the 

dew point humidifier PID control. 

 

Applying Equations 1 and 3 to the data from Figure 6 (inset) yields the water uptake at any 

given humidity for a 33 nm Nafion cast electrolyte; the same process was repeated for a 60 

nm electrolyte and the water uptake for both electrolytes is reported in Figure 6. Both 

electrolytes show good agreement to one another and to published literature, following the 

third-order polynomial trend for Nafion water uptake at specific RHs [3, 4, 19, 40]. 

 

The Nafion water uptake values obtained at higher (> 70%) RHs in this investigation are 

higher than those presented by some authors for studies in the vapour phase [4, 10, 20]; the 

anomaly between the uptake in the liquid and vapour phase is commonly attributed to 

Schroeder’s Paradox [41]. Schroeder’s Paradox is a phenomenon used to describe the 

difference in solvent uptake by a polymer when exposed to saturated vapour and pure liquid. 

However, work presented by many authors, including Zawodzinski et al. [10], has been 

unable to fully understand why Schroeder’s Paradox affects the Nafion ionomer and have 

explained the issue as a result of experimental set up, procedure discrepancies, time frames 

and have also ruled out the effect of sorption kinetics. The water uptake results presented 

here in the vapour phase are comparable to those often achieved in liquid phase 

investigations [3, 10] and, not for the first time show little or no contribution from the 

Schroeder’s Paradox effect [42, 43]. The use of CAS will help understand this effect. 

 

Nafion is expected to be fully hydrated at a water uptake value of ~22 [3, 10]. Work by Krtil 

et al. [19] has shown that this value is obtained using a cast QCM in humidified nitrogen at a 

RH near 100%; however, in this case these values are obtained around 92% RH, according 

to Figure 6. This variation can be attributed to instrumentation accuracy (dew point humidifier 

accurate to ± 1.5 OC) and limits in the use of the Sauerbrey equation applied to this system. 

Crystal admittance spectroscopy provides a more robust analysis of crystal loading than the 

Sauerbrey equation affords. 
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3.1.2 Passive Oscillation – Crystal Admittance Spectroscopy (CAS) 

Figure 7a shows the Nyquist plot for the cast Nafion composite resonator through a range of 

RHs. The Nyquist plot can help delineate the effects of contacting rigid mass and 

viscoelastic properties of the composite resonator. The resonator’s magnitude of admittance 

response is shown in Figure 7b, and is the plot most often used to describe such a system’s 

properties. 

 

Figure 7: CAS response for a 33 nm Nafion composite resonator operating through a range 

of RHs and hydration states: (a) admittance locus (systems susceptance (Y’) against 

conductance (Y’’)) and (b) magnitude of admittance Bode plot. 

 

As the membrane hydrates, the general trend observed is that the diameter of the 

admittance locus decreases and the magnitude of the admittance plot shifts to a lower 

frequency, with a decrease in amplitude (|Y|max). This is indicative of increased resistance in 

R2 and suggests an increasingly viscoelastic contacting media. For further reference and 

supplementary theory on how to interpret the admittance data, the reader is referred to [25, 

28, 34] 

 

The |Y|max peak describes the effect that humidity has on the viscoelastic properties and 

occurs at the series resonant frequency (fs). Figure 8a and b further emphasise the effect 

that hydration has on the magnitude of admittance by plotting the change in frequency at 

which the |Y|max value occurs (fs) and the value of |Y|max through the range of operating RHs, 

compared to the value at 0 % RH respectively. 
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Figure 8: (a) Series resonant frequency and (b) percentage decrease in the amplitude of 

admittance as a function of RH for a 33 nm Nafion composite resonator (linear sections 

added as a guide to the eye). 

 

Initially, at RHs < 35%, Figure 8a shows no change in the series resonant frequency with 

increasing RH; however, Figure 8b shows that the amplitude of the |Y|max peak decreases 

steadily by 8%. Plots of this nature indicate that there is little additional mass, but an 

increase in the composite resonator’s viscoelastic component. When compared to the 

magnitude responses between 35% - 96% RH, it can be seen that the composite resonator 

continues to load water, but in this case the loading has a significantly less viscoelastic effect 

on the resonator with increasing RH; this is represented by a steep change in fs by 90 Hz 

and the corresponding slow-down in the percentage change of only 8.5% across the period, 

as seen in the |Y|max plot shown in Figure 8b. The reader is reminded that perfect rigid 

loading (i.e. no viscoelastic effect) will see a consistent |Y|max amplitude, with a decreasing 

resonant frequency corresponding to the mass of the contacting species – relatable using 

the Sauerbrey Equation. Above 96% RH, there is a sharp decrease in the resonator’s fs (50 

Hz) and |Y|max (9%) amplitude, as represented in Figure 8a and b respectively. This change 

is commonly referred to as an additional viscous loading; such as a contacting liquid, e.g. 

water. 

 

The magnitude of admittance plots clearly indicate the presence of two loading regimes; one 

at low RHs in which there is limited water uptake (constant fs) but large viscoelastic changes 

in the Nafion membrane, followed by a larger water uptake with more rigid-type loading 

characteristics at higher RHs. Following these loading regimes, the sharp decreases in fs 

and the |Y|max amplitude are likely to be due to contacting water on the hydrated membrane’s 

surface. The presence of two distinct loading regimes coupled with the water uptake plots 

shown in Figure 6, is consistent with the theory discussed by Zawodzinski et al. [10], which 
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showed water loading to occur in two regions (ion solvation followed by micro-channel 

hydration and swelling [39]). 

 

Both Figure 8a and b show that above 96% RH the membrane’s viscoelasticity increases 

significantly – even more so than the initial loading regime. This large change in the 

composite resonator’s viscoelasticity is likely due to contacting liquid water on the composite 

resonators surface as the membrane becomes fully hydrated and cannot further load any 

water. This coincides with roughly the same RH at which the predicted maximum hydration 

occurs (water uptake λ = 22 [3, 10]), seen in Figure 6. 

 

Upon fitting the admittance response using the equivalent circuit shown in Figure 3, the 

value of different components of the equivalent circuit can be derived. Specifically, R2 and L2 

allow elucidation of the membranes viscoelastic properties (Figure 9). L1 and L2 are 

indistinguishable and are often lumped for simplicity of fitting and the R2 value is often used 

to directly distinguish between changes in the composite resonator’s viscoelastic properties 

[39]. 

Figure 9: Change in composite resonators resistance (R2) in the modified BVD equivalent 

circuit as a function of RH (linear sections added as a guide to the eye). 
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Figure 9 initially shows that as the RH is increased to 35%, R2 increases steadily by 1 Ω as 

the ionomer becomes more viscoelastic. Beyond 35% RH it can be seen that the rate of 

resistance change decreases significantly, increasing by only 0.2 Ω up until the RH reaches 

88%. Though R2 doesn’t vary significantly between 35% and 88% RH, it must be noted that 

there are still loading processes occurring on the membrane, as discussed and 

demonstrated in Figures 6 and 8. 

 

Finally, above 88% and specifically 96% RH, R2 increases sharply – this indicates a 

significant increase in viscoelasticity of the composite resonator. The sharp change 

observed in the composite resonators R2 and consequent viscoelasticity supports the data 

seen in Figure 8a and b, and is significantly sharper than the R2 changes seen previously; 

this suggest that there is contacting liquid on the resonator’s surface. 

3.2 Anion Alkaline Exchange Membrane 

3.2.1 Active Oscillation – Frequency Response 

 

Figure 10: AAEM ionomer water uptake for a 23 nm (black), 39 nm (red) and 101 nm (blue) 

thick ionomers operating through a range of RHs. The composite microbalance's (39 nm) 

frequency response when operating in humidity is also shown (inset) 
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As with the Nafion water uptake calculations, both the dry and wet mass of the membrane 

must be known in order to determine the AAEM’s water uptake. Once again, in order to 

determine the mass of the wet membrane, a cast AAEM (39 nm) QCM is operated under 

variable RH environments; the resulting frequency response is then recorded, as shown in 

Figure 10 (inset). 

 

The frequency trend observed is similar to that of Nafion in that increasing RH results in a 

reduction of the QCM’s resonant frequency. Again, as the valve is switched from the dry 

nitrogen stream to the humidified stream, there is an initial sharp frequency drop artefact. 

Figure 10 shows the water uptake values determined experimentally for AAEMs of 23 nm, 

39 nm and 100 nm thickness; as with Nafion, the results here also follow a third order 

polynomial trend. 

 

Whilst not extensively tested, some literature pertaining to commercial sheet AAEMs does 

exist [44, 45] and results indicate lower water uptake values compared to Nafion, as 

observed here. The third-order polynomial water uptake trends are comparable to those 

published by Li et al. for sheet AAEM [22]; however, there is no information on the effect the 

thickness of the cast AAEM has on its water uptake. Figure 10 shows that at lower RHs 

(<50%) there is only a small difference in water uptake for different membrane thicknesses; 

however, at higher RHs (>50%) the thicker membranes exhibit greater water uptake. The 

reason for this discrepancy is still unclear, but could be a result of interaction of the ionomer 

with the electrode, constraining the film from swelling and absorbing water; or alternatively 

the formation of a water impermeable layer as a result of disordering of channels at the gas/ 

ionomer interface. 

 

The results presented in Figure 10 suggest a lower water uptake for AAEM than Nafion, with 

comparable thickness – this compares well with published literature [16, 45, 46], all of which 

report water uptakes between 18 and 20 when operated in water. It is important to note that 

the frequency response shown in Figure 10 (inset) indicates very similar levels of water on 

the QCM surface; however the AAEM with a much higher IEC results in a lower water 

uptake per exchange site. The difference in uptake values is likely due to the variance in 

wettability of the main chains (the polytetrafluoroethylene polymer backbone in Nafion and 

the hydrocarbon polymer backbone in the AAEM) and side chains (the sulfonic acid group 

and the quaternary ammonium group in acid and alkaline membranes), respectively [22]. 

 

AAEM swelling reports are scarce, and those available are for studies investigating in-house 

fabricated AAEMs. However, literature from Li et al. [22] has suggested from ex-situ testing 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

19 
 

that the commercial AAEM thickness remains almost unchanged during the water uptake 

process; whereas Nafion increases by almost 40% when fully hydrated [47]. 

 

The theory presented by Li et al. can be explored using the QCM and CAS. Following the 

work presented on Nafion and the Cluster-Network model, it is understood that as the 

membrane swells, its viscoelasticity will slowly increase in-line with the operating RH [39], 

after some period of ion solvation (rapid viscoelastic effects). However, theoretically, if there 

is very little change in the membrane thickness during the water uptake process (i.e. no 

swelling – as predicted by [22]), there should be negligible viscoelastic change, and hence 

no change in the system’s R2 or |Y|max amplitude, but instead only in fs. 

 

3.2.2 Passive Oscillation – Crystal Admittance Spectroscopy (CAS) 

Figure 11 shows the admittance responses for the cast AAEM composite resonator 

operating through a range of RHs. 

 

Figure 11: CAS results for a 39 nm AAEM composite resonator operating through a range of 

RHs and hydration states: (a) Admittance locus and (b) magnitude of admittance plot. 

 

 

The AAEMs Nyquist and Bode plots at different RHs are shown in Figure 11a and b, 

respectively; as with Nafion it shows that increasing RH results in a decreasing admittance 

locus diameter – albeit with significantly bigger shifts than with Nafion. The Bode plot shows 

that while the frequency decreases with increasing RH, the decrease in |Y|max amplitude is 

very significant, and again much greater than for Nafion, this is further explored in Figure 12.  
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Figure 12: (a) Series resonant frequency and (b) percentage decrease in amplitude of 

admittance for a 39 nm AAEM composite resonator versus RH and hydration (linear sections 

added as a guide to the eye). 

 

The understanding of how AAEMs respond to humidification is still ambiguous with scarce 

and yet conflicting literature available. However, once more, the changes observed in the 

magnitude of admittance plot generally indicate viscoelastic loading effects with increased 

humidification. Figure 12a and b show the composite resonator’s series resonant frequency 

(fs) and the percentage change in the amplitude of the magnitude of the admittance peak, 

respectively. As suggested in Section 4.1, the initial Nafion water loading relates to the 

ionomer ion solvation below 35% RH; this is represented by low levels of water sorption, that 

increase the composite resonators viscoelasticity. The AAEM sees a similar trend; however, 

this initial ‘viscoelastic dominant / ion solvation’ loading mechanism extends over a wider 

range, from 0 to 85% RH. Above 80% RH, the resonant frequency remains constant, 

comparing this to the magnitude of admittance peak amplitude is very telling; it shows that 

as the RH is increased between 0 – 88% the amplitude of the |Y|max decreases significantly – 

to roughly 80% of the original value. However, > 88% RH, the rate at which the amplitude of 

|Y|max slows significantly and only drops by 2.5%. Coupled with the trends seen in Figure 10 

and 11, where it is clear that the membrane is still loading water, it can be suggested that 

this later ‘more rigid type’ loading mechanism can be attributed to the membrane swelling 

[39] – similar to that seen in the Nafion ionomer above 35% RH. Unlike Nafion, the 

suggested membrane swelling region is a small RH window, with very little change in fs, 

which indicates small ionomer swelling, supporting the theory of Li et al. [22] 

 

The AAEM admittance response suggests the presence of two loading regimes – similar to 

that of Nafion (excluding the proposed contacting water on the Nafion ionomer). As with 

Nafion, the AAEM’s initial loading regime has significantly larger viscoelastic effects on the 

membrane when compared to that of the second regime; this presents a significantly more 
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rigid-type load to the composite resonator. Unlike the Nafion membrane, the AAEM does not 

exhibit effects of contacting liquid water, even at the highest RHs, which indicates that the 

membrane may still be undergoing hydration and swelling. 

 

The authors believe that the results could be suggestive of a modified version of the two-

stage Nafion water loading mechanisms presented by Zawodzinski et al. [10] The AAEM 

ionomer is reported to have significantly more functional groups compared to Nafion, to 

compensate for a shortfall in its ionic conductivity; thus the ion solvation process is likely to 

require significantly larger quantities of water molecules to overcome the ionomer’s 

hydrophobic nature, and consequently leads to a large decrease in fs compared to Nafion. At 

higher RHs, the change in the resonators viscoelasticity decreases significantly and 

suggests, as with Nafion, a period of ionomer swelling – the corresponding Δfs is 0 and 

indicates negligible water loading – this may suggest that the quantity of water loaded for 

ionomer swelling is greater for Nafion than the AAEM ionomer. 

Figure 13: Change in composite resonators resistance (R2) in the modified BVD equivalent 
circuit as a function of RH (linear sections added as a guide to the eye). 

 

The R2 fit data is shown in Figure 13 for the ionomer water uptake through a range of RHs. 

Initially the resistance increases very steadily up to 80% RH, showing a large viscoelastic 

change in the composite resonator, corresponding well with Figures 10-12. Between 80% 

and 85% RH, there is a sharp resistance change of 50 Ω and this represents a large 

increase in the resonator’s viscoelasticity. Above 85% RH, the R2 rate of increase slows 

considerably through to 100% RH. As with Nafion, the slow-down in the rate of increase of 
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R2 is suggestive of a period of low viscoelastic change compared to the solvation region and 

can be attributed to ionomer swelling. 

 

4 Conclusions 

 

The work presented investigates the water uptake, sorption mechanics and swelling 

characteristics of thin film Nafion and a commercially available Tokuyama AAEM ionomer 

from the vapour phase using a QCM. 

 

The QCM frequency response has shown, as reported by other authors, that the water 

uptake is lower for the AAEM ionomer compared to that of Nafion at a given relative 

humidity. The active oscillation has also shown that unlike Nafion, the AAEM water uptake is 

not independent of film thickness. 

 

Crystal admittance spectroscopy has been applied to this system for the first time to help 

better understand the sorption characteristics and swelling of Nafion and AAEM ionomers. 

The experimental results suggest some similarities in loading mechanisms between the two, 

albeit to varying magnitudes. Both the Nafion and AAEM ionomer exhibit a process of high 

viscoelasticity increases as ions within the ionomer are solvated. The results presented 

show that the Nafion solvation occurs at a significantly lower relative humidity and water 

uptake value compared to the AAEM ionomer; beyond the solvation period, the ionomer 

channels begin to adsorb water and swell. The Nafion ionomer exhibits significantly larger 

water uptake during the swelling regime, suggesting a superior swelling ratio than that of the 

AAEM. 
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