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Abstract: We present an algorithm which exploits data redundancy
to make computational, coherent, optical imaging more computationally
efficient. This algorithm specifically addresses the computation of how
light scattered by a sample is collected and coherently detected. It is of
greatest benefit in the simulation of broadband optical systems employing
coherent detection, such as optical coherence tomography. Although also
amenable to time-harmonic data, the algorithm is designed to be embedded
within time-domain electromagnetic scattering simulators such as the
psuedo-spectral and finite-difference time domain methods. We derive the
algorithm in detail as well as criteria which ensure accurate execution of the
algorithm. We present simulations that verify the developed algorithm and
demonstrate its utility. We expect this algorithm to be important to future
developments in computational imaging.
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1. Introduction

There is currently a growing interest in rigorous simulation of broadband, coherent optical
imaging systems, particularly those aimed at resolution in the tens of microns, such as optical
coherence tomography (OCT) [1–3]. This is being enabled by advancements in both algorithms
and computer hardware which, in combination, make the simulation of image formation for
practically significant tissue volumes feasible. Broadband simulation adds an entire dimension
to the simulation parameter space, when compared with monochromatic simulation. This addi-
tional parameter, wavelength, poses a new computational bottleneck for already computation-
ally burdensome models. We have developed a method to remove this bottleneck by exploiting
data redundancy. This development leads to a reduction in both the computational complex-
ity and computer memory needs of our model. This reduced computer memory requirement
is particularly important as execution of models on memory-limited graphical processing units
(GPU) is necessary for computational optical imaging (COI) to realize its potential.

COI of three-dimensional samples is well established [4–7]. These models are amenable to
broadband simulation yet, with the exception of [6], exhibit monochromatic examples, prin-
cipally due to the computational bottleneck of broadband simulation. Rigorous COI is per-
formed by decoupling the four principal components of a coherent optical microscope [5]. The
first component of the model is that of the focussed illumination, which uses the established
Debye-Wolf vectorial focussing formalism [8–10]. The second component of the model uses
the finite-difference time-domain (FDTD) method [11, 12] to calculate how the focussed beam
is scattered by an arbitrary sample. The third component rigorously re-samples the scattered
field, calculated within a relatively small, densely sampled grid, onto a larger grid [13]. The
reason for this is that the fourth component, a numerical method for propagating the scattered
field through the optical system [14], requires the field to be sampled on a plane large enough
to have a negligible field at its boundary.

The greatest computational burden of monochromatic COI is the FDTD method which cal-
culates light scattered by the sample. The scattered field is recorded for a single wavelength,
only on the surface of the FDTD method’s computational grid, thus contributing negligibly to
the simulation’s total computer memory requirement. The second greatest computational bur-
den of the simulation is re-sampling the scattered field on a plane larger than the transverse
extent of the FDTD’s computational grid. Each sample point on this larger plane results from
an integration over the entire surface of the FDTD grid, a considerable computational burden.



This burden becomes even more significant if it must be performed for a range of wavelengths,
potentially exceeding the computational burden of the FDTD method. Furthermore, storing the
scattered field for a range of wavelengths on the surface of the FDTD grid leads to a significant
increase in its computer memory consumption, which may be prohibitive on some computer
architectures such as GPUs.

The computational bottleneck of broadband simulation can, however, be circumvented when
performing low NA, coherent, COI. The first step towards this comes by recognising that depo-
larisation due to focussing can be neglected at low NA (say NA< 0.5). The second step comes
by noting that there is a large degree of redundancy in the data contained within a COI simula-
tion. In particular, we do not need to know the spatial distribution of scattered light in the space
of the detector, only the integral of a coherent detector sensivitiy function multiplied by the
scattered field. We have developed an algorithm which exploits this data redundancy to elimi-
nate one component of COI models. This algorithm leads to gains in both computational and
computer memory efficiency in broadband COI.

The paper begins by introducing the optical system that this algorithm applies to. We then de-
rive the new algorithm and derive criteria which must be observed for this algorithm to produce
accurate results. We conclude the paper with examples which demonstrate how this algorithm
can be applied to the simulation of image formation.

2. Background to algorithm

The optical system under study is depicted in Fig. 1 and is representative of a typical optical
system found in a scanning coherent optical imaging system such an optical coherence tomog-
raphy (OCT) system. In particular, incident light is delivered by an optical fiber and focussed
onto the sample by a system well approximated by a 4f system. Incident light is scattered within
the sample space, which is subsequently focussed and coupled in to the optical fiber. We note
that the system in Fig. 1 is an idealisation as practical systems require space for elements such
as scanning mirrors, however, such systems are still represented to a good approximation by a
4f system.

As discussed in the introduction, the propagation of scattered light to the optical fiber has
previously been simulated using a two-stage computation [5] when high numerical aperture
focussing is employed. The use of low numerical aperture focussing, however, alleviates the
need for a two step computation as depolarisation due to focussing can be neglected. Indeed,
we have previously demonstrated how image formation for the system shown in Fig. 1 can be
rigorously simulated for arbitrary scattering configurations using a single stage of computa-
tion, but within a two-dimensional approximation [3]. In particular, the lens and sample were
assumed to extend uniformly in one of the transverse directions. The main reason for the two-
dimensional restriction was to make the model computationally feasible. The model works by
using the finite-difference time-domain (FDTD) method to model light propagation in the sam-
ple. The numerically calculated scattered light is recorded at the surface of the FDTD grid
and, at the conclusion of the FDTD simulation, the detection of this light is calculated by a
further Fourier-optics based algorithm. As we are now developing a three-dimensional imple-
mentation of this model it is necessary to develop methods which reduce the computational
burden of the two-dimensional model. An important development is the use of the psuedospec-
tral time-domain (PSTD) method in place of the FDTD method, allowing for a significantly
reduced spatial sampling requirement in the sample space. However, when modelling broad-
band imaging systems such as OCT, the scattered field must be recorded on a transverse plane
of the PSTD grid for a range of wavelengths. In the case of OCT, this means that the computer
memory required to store the scattered field can equal, or even exceed, the amount of memory
required to perform the PSTD simulation. As previously mentioned, there is redundancy in this



data since we require only the integral of a coherent detector sensitivity function multiplied
by the scattered field. We have thus developed an algorithm which is embedded in the PSTD
simulation which calculates how scattered light is coupled back into an optical fiber, or indeed
any coherent detector, as a PSTD simulation progresses, thus significantly reducing the com-
puter storage required to perform rigorous coherent COI. We would like to point out that the
presented algorithm works equally well embedded in a FDTD simulation.

3. Derivation of algorithm

Most of the derivations and results in this paper are for scalar fields. We note however, that
vectorial simulations can be performed by considering the orthogonal field components sepa-
rately. This is possible because this work is limited to low numerical aperture (NA), say less
than 0.5, objectives where focussing can be accurately represented within the scalar approx-
imation. Here, NA, refers to the right hand lens in Fig. 1 as this is the lens which faces the
sample. Due to the sine condition, the NA of the left hand lens must be equal to ( f2/ f1)NA. We
have defined three distinct spaces in the optical system of Fig. 1, in particular, the optical fiber
space, the focal plane common to both lenses and the sample space, to which we apply indices
of 1, 2 and 3, respectively. We use the symbols r, q, U and u to represent spatial coordinates,
spatial-frequency coordinates, complex amplitudes and time-domain fields, respectively, within
a particular space. We associate each parameter and complex amplitude with a particular space
by applying the index of the applicable space as a subscript. Finally, we denote the Fourier
transform of a field by applying a tilde (e.g., Ũ).

We develop our algorithm using a time-harmonic formalism. The conventional approach
would be to apply such an algorithm to the final result of a PSTD simulation, thus on time-
harmonic data. Time-harmonic fields are extracted from the intrinsically time-domain fields
simulated in the PSTD simulation by performing temporal discrete Fourier transforms of the
time-domain fields at the required spatial and temporal-frequency sample points. In particular,
time-harmonic fields U3(r3, f ) can be extracted at observation points r3 and temporal frequen-
cies f , from the time-domain field u3(r3,n∆t) according to

U3(r3, f ) =
1
Nt

Nt−1

∑
n=0

u3(r3,n∆t)exp(i2π f n∆t), (1)

where the index n refers the time step index of the PSTD simulation, Nt is the total number of
time steps in the PSTD simulation and ∆t is the PSTD time step. We note that, in general, ∆t
is smaller than that required to correctly sample the fields, and so in practice, Eq. (1) may be
evaluated at every Mth time steps so long as

M <
1
∆t

1
2 f

. (2)

One way [3] of calculating how the scattered field is coupled in to the optical fiber is to take
the field U3(r3, f ) resulting from the PSTD simulation and use Fourier optics to propagate
the field through the optical system. This amounts to performing discrete Fourier transforms
with respect to the spatial variable r3, applying a spatial-frequency domain filter, followed by
a further discrete Fourier transform, giving the field in the fiber space as:

U1(r1, f ) = F̂{K(r2)F̂{U3(r3, f )}} (3)

= F̂
{

K(r2)F̂
{

1
Nt

Nt−1

∑
n=0

u3(r3,n∆t)exp(i2π f n∆t)

}}

=
1
Nt

Nt−1

∑
n=0

exp(i2π f n∆t)F̂
{

K(r2)F̂ {u3(r3,n∆t)}
}
, (4)



where F̂ represents that discrete Fourier transform operator with respect to spatial coordinates
r3 and r2 = q3 f2λ , where q3 is the spatial-frequency parameter corresponding to r3. This
shows that we may perform the Fourier optics transformation of the field from the sample to
fiber space concurrently with the PSTD simulation.

Having explained that the transformation from sample space to detector space is performed
concurrently with the PSTD simulation, we now derive this transformation. We will do this
by supposing that we indeed have access to the time-harmonic field as is permitted by the
equivalence of Eq. (3) and Eq. (4). The field scattered by the sample is observed at the plane
z3 = zobs and is denoted U3(r3,zobs) where r3 is a two-dimensional vector denoting a position
in the plane of observation. We allow for the observation plane to be located within a medium
of refractive index ns with an air interface at z3 =−h. Our objective is to evaluate

a =
∫
R2

φ1(r1)U1(r1)d2r1 (5)

where φ1(r1) represents a detector sensitivity function such as a fiber mode and U1(r1) is the
complex amplitude of the scattered field in the detector space. As explained previously, we use
the notation of Ũ(q) and U(r) to denote Fourier transform pairs. Using an angular spectrum
approach, it is straightforward to show that [15]:

U2(r2) =
1

iλ f2
Ũ3

(
r2

λ f2
,zobs

)
K
(

r2

λ f2

)
(6)

where

K(q) = exp
(

i(h+ zobs)
ns2π

λ

√
1− (λ/ns)2|q|2

)
exp
(
−ih

2π

λ

√
1−λ 2|q|2

)
P(q), (7)

and P(q) is the pupil function defined as

P(q) =
{

1 λ |q| ≤ NA
0 otherwise.

(8)

We can then find

U1(r1) =
1

iλ f1
Ũ2

(
r1

λ f1

)
= − f2

f1
U3

(
− f2

f1
r1,zobs

)
⊗ K̃

(
f2
f1
r1

)
, (9)

where ⊗ represents convolution. Substituting Eq. (9) into Eq. (5) then gives

a =−
∫
R2

φ1(r1)

[
f2

f1
U3

(
− f2

f1
r1,zobs

)
⊗ K̃

(
f2

f1
r1

)]
d2r1

=− F
{

φ1(r1)

[
f2

f1
U3

(
− f2

f1
r1,zobs

)
⊗ K̃

(
f2

f1
r1

)]}∣∣∣∣q1=0

=−
∫
R2

φ̃1

(
f2

f1
q3

)
Ũ3 (q3,zobs)K (q3)d2q3, (10)

where the second line follows from the definition of Fourier transforms and the third line from
application of the convolution theorem. F{U(r)} denotes Fourier transform which we define
as:

Ũ{q}=
∫
R2

exp(i2πr ·q)U(r)d2r. (11)

Then, making use of Plancherel’s theorem which states that for square integrable functions g(x)
and f (x), ∫

∞

−∞

f (x)g∗(x)dx =
∫

∞

−∞

f̃ (q)g̃∗(q)dq, (12)



and neglecting the negative sign, we then can write Eq. (10) as

a =
∫
R2

φ̃1

(
f2

f1
q3

)
Ũ3 (q3,zobs)K (q3)d2q3

=
∫
R2

φ̃1

(
f2

f1
q3

)
K (q3)Ũ3 (q3,zobs)d2q3 (13)

=
∫
R2

φ̃1

(
f2

f1
q3

)
K (q3)

((
Ũ3 (q3,zobs)

)∗)∗
d2q3

=
∫
R2

F
{

φ̃1

(
f2

f1
q3

)
K (q3)

}(
F
{(

Ũ3 (r3,zobs)
)∗})∗

d2r3

=
∫
R2

F
{

φ̃1

(
f2

f1
q3

)
K (q3)

}
U3(r3,zobs)d2r3. (14)

We note that Eqs. (13) and (14) are the main results of this paper. In particular, Eq. (13)
shows how the field coupled in to the fiber may be evaluated within the central focal plane
of the 4f system and Eq. (13) shows how this quantity can be calculated in the sample space.
We also note that a similar result to Eq. (14) has been derived by Ralston et. al [16], however
their result was applicable only to Gaussian detector sensitivity functions. As these equations
will be applied to sampled data, the integrals must be replaced by summations and the Fourier
transforms by discrete Fourier transforms. We address some of the limitations imposed by this
in Sec. 4.

sample
spacedetector

space

optical 
fiber

Fig. 1. Schematic diagram of the optical system under study. Each position vector r1,
r2 and r3 is a two dimensional vector representing transverse displacement relative to
a location on the optical axis. The field is observed on plane z3 = zobs and there is an
infinite half-space of material with refractive index ns beginning at z3 =−h. z3 is measured
relative to the nominal focus of the right hand lens, in air. Angles θ1 and θ2 represent the
semi-convergence angles of typical rays. Ra is the radius of the aperture.

3.1. Translation of coherent detector

We note that in some instances it is useful to be able to simulate the translation of the coherent
detector, from the on-axis position to an arbitrary in-focus position rd . This means modifying
Eq. (5) to:

a =
∫
R2

φ1(r1−rd)U1(r1)d2r1. (15)

This is easily included in Eqs. (13) and (14) by multiplying φ̃1(( f2/ f1)q3) by
exp(−i2π(( f2/ f1)q3 ·rd)). This is useful for two principal reasons. The first reason is that it
allows for efficient simulation of image formation in wide-field coherent optical microscopes.
The second reason is that it suggests a formalism by which a scattered field can be sensed in a
compressed manor.



3.2. Implementation of Eqs. (13) and (14)

We now need to show how Eq. (13) and Eq. (14) are incorporated into the PSTD simulation.
As previously explained, the PSTD simulation gives access to time-domain fields u3(r3,n∆t) at
iteration n of the PSTD simulation. ∆t is required to satisfy the Courant stability criterion [12]
and will generally be smaller than the temporal-sampling period required to correctly tempo-
rally sample the time-domain fields. As a result, a temporal-sample time step is usually adopted
as M∆t, where M satisfies Eq. (2). For the sake of clarity, we will however assume a temporal-
sampling period of ∆t and Nt sampling periods. We note also that u3(r3,n∆t) is defined on
a discrete spatial grid with points r3 = (x3,y3) = (i, j)∆3, for integers i and j, as employed
by the PSTD simulation. We shall assume that there are a total of I = J grid points in both
the transverse directions. The discrete Fourier transform of the field on the observation plane
will be sampled on a spatial-frequency grid defined by q3 = (i, j)/(I∆3). Note that the spatial-
sampling period, ∆3, is required by the PSTD method to be smaller than λ0/(2ns). In typical
PSTD implementations, a time-harmonic field is evaluated concurrently with the PSTD simu-
lation according to:

U3((i, j)∆3, f ) =
1
Nt

Nt−1

∑
n=0

u3((i, j)∆3,n∆t)exp(i2π f n∆t). (16)

We now substitute Eq. (16) into Eqs. (13) and (14), replace integrals with summations and
convert Fourier transforms to discrete Fourier transforms to yield

a =
1
Nt

Nt−1

∑
n=0

exp(i2π f n∆t)∑
i, j

φ̃1

(
f2
f1
q3

)
K (q3) ũ3 (q3,n∆t)

1
(I∆3)2 (17)

=
1
Nt

Nt−1

∑
n=0

exp(i2π f n∆t)∑
i, j

F̂
{

φ̃1

(
f2
f1
q3

)
K (q3)

}
u3(r3,n∆t)∆2

3, (18)

where r3 and q3 both take on their discrete forms.
Either of Eq. (17) or Eq. (18) may be used depending upon the particular application. Con-

sider first Eq. (17), at each iteration of the PSTD algorithm, represented by the sum on n, three
terms are required: φ̃1, K and ũ3. We now discuss whether these terms should be computed
once per PSTD iteration, or computed once and then stored, with reference to computational
efficiency. φ̃1 is the Fourier transform of the detector sensitivity function which may be calcu-
lated analytically or numerically by a discrete Fourier transform. Whichever is used, it is likely
that this term will be stored in computer memory for use at each iteration since it does not
depend on the optical frequency f . The second term, K, is known analytically and can be com-
puted relatively cheaply. Furthermore, storage of this term is likely to be inefficient in the case
of broadband simulations since it depends upon f . When this is the case it is evaluated using
Eq. (7), for each optical-frequency of interest, at each iteration of the PSTD algorithm. The
final term, ũ3 must be evaluated at each iteration of the PSTD algorithm by a two-dimensional
discrete Fourier transform since it changes each iteration.

Consider now the alternative formulation, Eq. (18), which is principally useful in time-
harmonic simulations since it requires knowledge of the optical-frequency dependent term
F
{

φ̃1

(
f2
f1
q3

)
K (q3)

}
. The Fourier transform in this term could be performed either ana-

lytically of numerically. If performed analytically, it is likely to result in a Fresnel integral,
requiring numerical computation. Either way, it is only efficient to perform such computation
for a small number of optical-frequencies, or, to store this term for use in each iteration of the
PSTD algorithm. The advantage of using this formulation is that the sampling requirements
of K are relaxed, as discussed in the following section. This is because F

{
φ̃1

(
f2
f1
q3

)
K (q3)

}



can be calculated accurately, either analytically, or using discrete Fourier transforms. If dis-
crete Fourier transforms are used, it may be evaluated on a grid of q3 with sampling denser
than what may be allowed by the transverse size of the PSTD simulation. This formulation is
most efficiently implemented by computing F

{
φ̃1

(
f2
f1
q3

)
K (q3)

}
once and storing the result

for subsequent use in the PSTD simulation. This means that the transverse size of the PSTD
simulation can be chosen independently of the need to sample K correctly.

4. Sampling requirements of K(q)

As foreshadowed in Sec. 3.2, K(q) must be sampled at the Nyquist rate, or better, for Eqs. (17)
and (18) to be evaluated correctly. This requirement comes directly from the use of a discrete
Fourier transform in the case of Eq. (18). In the case of Eq. (17), however, it is necessary to use
a result derived in Appendix 1, which shows that integration over the entire domain of a band
limited function can be calculated exactly by summing all sampled values of that function. It
is thus necessary that K(q) be sampled at, or better than, the Nyquist rate for Eq. (17) to be
evaluated correctly. We note, however, that in some cases it may be necessary to employ a
smoothed pupil function in order to ensure that K(q) is band limited, however, this was not
found to be necessary in this work. We now derive a constraint upon the transverse size of the
PSTD grid which ensures that K(q) is correctly sampled.

We follow Matsushima and Shimobaba [17] and write K(q3) within the pupil as

K(q3) = exp(iΦ1(q3)), (19)

and thus Φ1(q3) is given by

Φ1(q3) = (h+ zobs)
ns2π

λ

√
1− (λ/ns)2|q3|2−h

2π

λ

√
1−λ 2|q3|2. (20)

If we now define q3 = (q3x,q3y), we can find the local frequencies of K(q3) as [17]

fq3x =
1

2π

∂Φ1

∂q3x
fq3y =

1
2π

∂Φ1

∂q3y
, (21)

it is straight forward to show that

fqi =−
(h+ zobs)(λ/ns)qi√

1− (λ/ns)2|q3|2
+

hλqi√
1−λ 2|q3|2

, (22)

where qi can be either q3x or q3y. We define ∆q3 = ∆q3x = ∆q3 as the sampling period of the
spatial-frequency vectors in the focal plane common to both lenses in Fig. 1. In order to satisfy
the Nyquist sampling criterion we require

∆q3 <
1

2| fqi |
, (23)

which, may be evaluated by first noting that 0≤ λ |q3| ≤ NA holds due to the aperture. We then
note that | fqi |, as defined in Eq. (22), will in general have its maximum value at λ |q3| = NA,
apart from when zobs is very close to the focus, in which case | fqi | has a maximum value within
the domain 0 < λ |q3| < NA. It is easily verifiable, however, that the near-focus regime can be
neglected since it results in only a negligible departure from the result predicted by assuming the
maximum value of | fqi | occurs at λ |q3|=NA, and, within this regime, the sampling requirement
of K is less restrictive than that of ensuring the sensitivity function is contained within the
computational domain, as presented in Sec. 5.



In order to proceed, we make use of the rotational symmetry of Φ(q3) and consider only a
single component, qi, of q3. We now continue to substitute Eq. (22) into Eq. (23), assuming
that the maximum value of | fqi | occurs at λqi = NA, giving the result:

∆q3 <
1

2NA
∣∣∣∣ h√

1−NA2
− h+zobs√

n2
s−NA2

∣∣∣∣ (24)

This, in turn, places a restriction on the transverse size of the PSTD simulation space since
discrete Fourier transforms are to be used to transform from u(r3) to ũ(q3). In particular, if the
PSTD grid is assumed to be square in a plane normal to the z-axis, and the square has a total
width of max(x3)−min(x3), since ∆q3 = 1/(max(x3)−min(x3)) , we can say that

max(x3)−min(x3)≥ 2NA

∣∣∣∣∣ h√
1−NA2

− h+ zobs√
n2

s −NA2

∣∣∣∣∣ (25)

4.1. Reduction of frequency sampling period by interpolation

In many cases of practical importance, the satisfaction of Eq. (25) may entail overly burdensome
computational sizes. This may, however, be overcome by interpolating ũ3 (q3) resulting in a
finer sampling and thus smaller sampling periods ∆q3x and ∆q3y. Note that so long as the field
on the observation plane is sampled at, or better than, the Nyquist rate, this can be done without
any approximation. Note that this requires that the observed field decays to zero at the edges
of the observation plane, or an appropriate window function is employed. Interpolation can be
implemented by multiplying the observed field by a linear phase function as described in [18],
or the observed field data can be zero padded, prior to discrete Fourier transformation. We
employed zero padding in our implementation.

5. Support of image of sensitivity function
In order for Eqs. (13) and (14) (and thus Eqs. (17) and (18)) to accurately simulate im-
age formation, the transverse extent of the computational domain must be sufficiently large
such that the detector sensitivity function, imaged onto the observation plane, is negligibly
small at the boundary of the computational domain. In general, this means that φ3(r3) =

F
{

φ̃1

(
f2
f1
q3

)
K (q3)

}
in Eq. (14) must be negligible at the boundary of the computational

domain. The analysis may be simplified significantly in the common case in which a single
mode optical fibre is employed. Then, noting that the projected sensitivity function must be
identical to the focussed beam resulting from light emergent from the fiber, the projected sen-
sitivity function may be evaluated as [19]:

φ3(r3) =
∫ sin−1 NA

0

√
cosθ1 sinθ1(1+ cosθ2)J0

(
2π

λ
|r3|sinθ1

)
·

· exp
(

i
2π

λ
h(ns cosθ2− cosθ1)

)
exp
(

ins
2π

λ
zobs cosθ2

)
exp
(
−(F sinθ1/NA)2)dθ1 (26)

where θ2 is uniquely determined by the expression ns sinθ2 = sinθ1, J0(.) is the Bessel function
of the first kind with order 0, F = ( f2/ f1)WπNA/(2λ ) and W is the mode field diameter of the
fiber. Note also that a scalar constant has been omitted from Eq. (26) for simplicity. One way
in which an appropriate lower bound on the width of the computational domain can be found is
to determine the minimum width, D, of a disc in the plane of observation such that∫

|r3 |<D
|φ3(r3)|2d2r3 > (1− ε)

∫
R2
|φ3(r3)|2d2r3 (27)

which is analogous to saying that the computational domain is wide enough such that a fraction,
1− ε , of the beam’s energy is contained within it. It is important to note that this is only an
approximation to energy since irradiance is not a conserved quantity [20], yet at low numerical
apertures it is a good approximation. It is straightforward to evaluate

∫
R2 |φ3(r3)|2d2r3 as:

I0 =
∫
R2
|φ3(r3)|2d2r3 =

2 f 2
1 λ 4

f 2
2 π3W 2

(
1− exp

(
f 2
2 NA2π2W 2

2 f 2
1 λ 2

))
. (28)



This result is useful as it allows a constraint upon the minimum simulation size to be evaluated
as:

max(x3)−min(x3)≥ 2D, where I(D) = (1− ε)I0, (29)

where I(D) is numerically evaluated according to

I(D) =
∫
|r3 |<D

|φ3(r3)|2d2r3, (30)

and an appropriate value for ε is 0.01, such that 99% of the reciprocal focussed beam’s energy
enters the simulation space.

6. Evaluation and analysis

We present simulations which demonstrate the utility and properties of the developed method.
The first example verifies that the method correctly calculates the lateral detection point spread
function (PSF) of a low numerical aperture (NA) scanning coherent optical microscope. We
use this simulation to plot the limitations upon the transverse extent of the simulation required
to sample the angular spectrum propagation term, K(q), correctly and also to ensure that the
image of the sensitivity function is well contained within the simulation space. The second
example demonstrates how the method may be used to calculate the axial PSF of the same
optical microscope. We conclude with an example of how this method may be used to efficiently
simulate image formation in a scanning coherent microscope for general samples.

All three examples are based upon the same primary simulation parameters. In particular, we
model a detection system as depicted in Fig. 1 with the initial system parameters outlined in
Table 6, which we understand to be representative of a typical optical coherence tomography
system such as the Thorlabs Telesto-II with an LSM03 objective. In all three cases, normally
incident plane wave illumination was assumed since our interest is in the detection, rather than
illumination, PSF. For the remainder of this paper, PSF is thus taken to implicitly mean the
detection PSF.

Table 1. Base parameters of the numerical simulations, λ0 is the wavelength in air and MFD
stands for mode field diameter.

Parameter Value
f1 25mm
f2 36mm
ns 1.4

Ra (aperture radius) 3.5mm
h 10mm

zobs 4.006mm
Optical fiber Single mode fiber (MFD= 9.2µm)

λ0 1300nm

6.1. Lateral point spread function simulation

The lateral detection PSF was simulated by performing a series containing 23 psuedospectral
time-domain (PSTD) simulations in which a single PSTD scatterer of refractive index 1.45 was
scanned within an in-focus plane, through lateral positions r3 = (iλ0/2,0) for i = 0,1, . . . ,22.
The PSTD simulation had a transverse size of 1112× 1112 grid points, with an isotropic grid
spacing of λ0/6, yielding a transverse width of just less than 241µm. An abnormally large
transverse width was chosen so that interpolation of the field within the pupil was not required,
as the method described by Eq. (13) was employed. A perfectly matched layer 10 cells thick,



which absorbs, with low reflection, radiation incident upon it was employed in the PSTD sim-
ulation. The PML attenuates the field at the edges of the simulation space thus removing the
need to employ a window function prior to performing discrete Fourier transformation, which
we performed using the FFTW implementation of the fast Fourier transform [21]. Although the
mode field diameter (MFD) of the fiber we modelled is 9.2µm, for the purpose of illustration
we additionally modelled MFDs of 1 and 18.4µm. We thus define three detector sensitivity
functions φ1(r1) = ϕ1(r1),ϕ2(r1) and ϕ3(r1), corresponding to MFDs of 1µm, 9.2µm and
18.4µm respectively.

We first present the quantities which form part of Eq. (13). In order to make interpretation
clearer, since the non field-based quantities are rotationally symmetric in the pupil, we have
plotted them only along the axis qy = 0 and only for positive values of qx. We have plotted
the real part of K(qx) in both the continuous and sampled cases. Note that for this simulation
Eq. (25) dictates that the NA should not exceed approximately 0.35, corresponding with one
of the vertical lines shown in Fig. 2. The meaning of Eq. (25) can be understood by noting
that line λ0qx = 0.35 marks the point where it appears as though there is no longer one sample
point per half-period of the chirped sinusoid. Note however, that for all MFDs except for that
represented by ϕ3, this lack of sampling will not produce any inaccuracy in the detected field
as K is apodized by ϕ̃1 and ϕ̃2, respectively.
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Fig. 2. Plots of the real part of K(λ0qx) in the continuous and discrete cases. K was sampled
at the points denoted with dots and the dashed line added to enhance readability. The sensi-
tivity functions transformed into the pupil have also been plotted for each simulated mode
field diameter. The vertical black lines denote two NAs that were considered: the design
NA of Ra/ f2 and 0.35.

We now plot in Fig. 3(a) the lateral PSFs for each MFD which resulted from the PSTD sim-
ulations for an NA of Ra/ f2 ≈ 0.097. To verify the accuracy the simulation we have plotted the
analytically calculated PSF by noting that, in the low NA case, the detection PSF must match
the reciprocal illumination PSF as given by the irradiance of the field emitted by the optical
fiber and focussed into the sample space. This was calculated using a rigorous model of fo-
cussing theory developed previously [19]. Very good agreement is achieved for all three mode
field diameters resulting in a normalized mean square error, between the numerical and analytic
results, of 4.5×10−5, 4.4×10−6 and 1.4×10−8 for sensitivity functions ϕ1, ϕ2 and ϕ3, respec-
tively. We define the normalized mean square error as ε = ∑i |Ian(xi)− Inu(xi)|2/∑i |Ian(xi)|2,
where Ian and Inu are the analytically and numerically evaluated PSFs and the xi are the coor-
dinates of where Inu was evaluated. The PSFs resulting from NA = 0.35 are plotted in Fig. 3(b)
resulting in normalized mean square errors of 3.1×10−4, 2.8×10−7 and 1.3×10−8 for sensitiv-
ity functions ϕ1, ϕ2 and ϕ3, respectively. As expected, due to the apodization of K, there are
no perceivable differences between the two NAs considered for the ϕ2 and ϕ3 cases. There is,



however, a difference between the PSFs, for the ϕ1 case, calculated analytically and using the
PSTD method due to insufficient sampling of K in the pupil. The increase in normalized mean
square error from 4.5×10−5 to 3.1×10−4 is small as the NA was set to the limit where sam-
pling becomes inadequate. It was noted, however, that the error in the numerically calculated
PSF was greatest for xi ≥ 5.5µm and when the normalized mean square error is recalculated
for this range only it is observed to increase from 2.8×10−3 to 1.1×10−2.
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Fig. 3. Plots of the lateral PSFs for each MFD calculated analytically (solid line) and nu-
merically using a PSTD simulation (dot markers) for NA = Ra/ f2 (a) and NA = 0.35 (b).

The simulations employed a value of zobs which was only 10 PSTD cells above the focus
in the simulation, thus why K is well sampled up until NA = 0.35. The required simulation
size, however, increases as zobs departs from the focus. This is demonstrated in Fig. 4(a) which
shows how the simulation size required to correctly sample K changes with zobs and such that
the image of φ1 in the sample space is well contained within the simulation space as measured
by evaluating Eq. (29) for ε = 0.01. As previously discussed, the criterion described in Eq.
(25) is inaccurate very close to the focus and this is the reason why the two plots in this figure
have minima at slightly different values of zobs. We note, however, that this is of no practical
significance since the minimum simulation size is determined by the greatest of the two plotted
lower bounds, and the φ1 constraint dominates for values of zobs in the vicinity of the focus
whilst the K constraint dominates elsewhere.
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Fig. 4. Plot of minimum simulation size as a function of zobs (a) and of NA (b) required to
sample K correctly and to contain the image of φ1 = ϕ2 within the sample space.

We now show in Fig. 4(b) how the two simulation size criteria vary with NA whilst zobs is
fixed at the value used to evaluate the transverse PSFs presented in this section, for a fiber of
MFD 9.2µm (φ1 = ϕ2). The plot shows that as NA increases, the K sampling criterion becomes
dominant as is expected, since this is not constrained by the fiber mode ϕ2. The image of φ1



support criterion is more restrictive at low NA since the lower the NA, the broader the image of
φ1 in the sample space. We note that at NA. 0.09, the image of φ1 becomes increasingly large as
the Gaussian beam in the pupil becomes increasingly truncated by the aperture. At NA & 0.09,
there is negligible truncation by the aperture and so image of NA . 0.09 is predicted by the
theory of ideal Gaussian beams.

6.2. Axial point spread function simulation

We now consider the simulation of the axial PSF for the system considered in Sec. 6.1. The
simulation parameters were largely the same as in Sec. 6.1 with the exception that the PSTD
simulation had a transverse size of 350× 350 PSTD cells and a depth of 1600 PSTD cells.
A PSTD cell size of λ0/4 was employed to make the simulation of significant axial depths
feasible. A total of 13 simulations were performed in which a single PSTD cell scatterer was
scanned axially in increments of 130 PSTD cells (42.25µm), beginning at the in-focus posi-
tion. The same MFDs as in Sec. 6.1 were considered, leading to three distinct axial PSFs as
plotted in Fig. 5. The analytic PSFs were evaluated using rigorous focussing theory developed
previously [19], thus taking advantage of the reciprocity between illumination and detection
point spread functions. We emphasize however, that plane wave illumination was employed in
order to isolate the detection PSF. The normalized mean square errors between the numerical
and analytic PSFs were 4.1×10−4, 2.1×10−4 and 1.1 ×10−5 for the three cases, respectively.
Some deviation between the numerical and analytically evaluated PSFs is evident. One of the
most evident discrepancies is in the ϕ3 case, where the numerical PSF appears to oscillate
slightly around the analytic PSF. This is due to the poor performance of the perfectly matched
layer, which is supposed to absorb all radiation upon it. In practice, some of this radiation is
reflected back to the detector interfering with the light from the scatterer. Another reason why
the numerical PSFs underestimate the analytic PSFs is numerical dispersion. Numerical dis-
persion corresponds to the phenomenon by which, within the computational domain, a plane
wave of given optical frequency ν , propagates in the PSTD grid with a dispersion relationship
ñs(ν) = c/(νλ̃ ) where c is the speed of light in a vacuum. If we we instead calculate the an-
alytic PSFs for the numerical values of wavelength and refractive index (λ̃0 = 1307.2nm and
ñs = 1.3925) a better match is obtained.
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Fig. 5. Plots of the axial PSFs for each MFD calculated analytically (solid line) and numer-
ically using a PSTD simulation (dot markers) for NA = Ra/ f2.



6.3. Image formation example

We conclude this section by showing an example of how an image may be simulated using a
single PSTD simulation. The image simulated was that of a shape stamped out of a sheet of
dielectric material of refractive index 1.45 and thickness λ0/6. The resulting scatterer is shown
in Fig. 6(a) where the gray corresponds to the material of refractive index 1.45. The white
regions take on the background refractive index (1.42). A plane wave, linearly polarised at π/4
to the x (vertical) direction, was incident upon the scatterer. The magnitude of the incident
plane wave components in the x and y directions were set to unity. Figures 6(b) and (c) show
the magnitude of the x and y scattered field components on a plane 2λ0 above the top of the
scatterer. Figures 6(d)– 6(f) show images simulated using the parameters listed in Table 6, but
for different values of zobs in order to simulate defocussing. In particular, for each of the images
Figs. 6(d)– 6(f), an additional 0, 200µm and 400µm, respectively was added to zobs.

Each image was simulated by implementing the scanning technique outlined in Sec. 3.1 us-
ing an unnecessarily high number of values, rd , in order to obtain a high resolution image.
Note, however, that although the PSTD simulation had a transverse dimension of 1400×1400,
the resulting image contains only 175×175 pixels, a 64 fold reduction in the computer mem-
ory requirement. The simulations were performed on a workstation with two Intel® (Santa
Clara, California, USA) Xeon® E5-2650V2 processors. Each image in Figs. 6(d)– 6(f) took
approximately 125 minutes to compute using Eq. (17). This is less than than the 146 minutes
required by the previously developed rigorous model [5]. Although we were able to ommit the
re-sampling step of the rigorous model [13] it could be made more efficient if it were opti-
mized for low NA systems. The presented algorithm is, thus, numerically efficient relative to
the rigorous model, particularly when multiple detector positions and optical wavelengths are
considered for a single detector sensitivity function. This is because a significant cost of the
entire simulation (i.e. including the PSTD simulation) is attributed to fetching data from the
random access memory (RAM) into the central processing unit (CPU) cache memory. Once ũ3
and φ̃1 have been evaluated and stored in CPU cache memory, it is relatively fast to evaluate Eq.
(17) for different values of λ and/or different detector positions. Computation would be slowed
more significantly if different detector sensitivity functions were also considered.

b) c)a)

d) e) f)

0
.0
70

0
.0
70

Fig. 6. a) Cross-section through the simulated scattering object which was λ0/6 thick and
embedded in a material of refractive index 1.4. b) and c) show the magnitudes of the x and
y components of the scattered field just above the scatterer. d) - e) show images when the
scatterer was 0, 200µm and 400µm, respectively, from the focus.



7. Discussion and conclusions

In developing the numerical algorithm to be embedded in the PSTD and FDTD methods, we
have also derived, in Eqs. (13) and (14), general formula which describe image formation in
coherent optical imaging systems. Although these equations will be intuitive to many in the
field, we are not aware of them having been previously derived in such a general manner.
This new algorithm has reduced by one the number of components in a rigorous COI model.
This has also enabled the amount of computer memory required to perform such simulations
to be significantly reduced when considering broadband sources. This saving will enable the
simulation of an OCT A-scan to be performed within a single graphical processing unit, which
was previously unfeasible due to memory limitations. We thus anticipate that this algorithm
will enable a significant increase in the uptake of rigorous simulation in OCT and related fields.

Future plans for this algorithm revolve around developing a variety of implementations of
Eqs. (17) and (18). Our current implementation employs Eq. (17) in a manner whereby φ̃1 is
calculated using a discrete Fourier transform at the beginning of the PSTD simulation and K
is calculated at each iteration of the PSTD algorith as required. We would like to allow for
analytic forms of φ̃1 to be available in the PSTD simulation. We would also like the alterna-
tive formulation, Eq. (18), to be available in the PSTD algorithm whereby F̂

{
φ̃1K

}
may be

calculated using discrete Fourier transform or analytically.
An interesting direction is to consider a set of detector sensitivity functions, {ϕi}, such that

{ϕiK} forms an orthonormal set. The set of detected {ai} values would allow the field in the
PSTD simulation to be reconstructed to an an accuracy dependent on the construction of {ϕi}.
This would provide a way of storing scattered fields with a reduced sampling requirement. Fi-
nally, we would like to extend this algorithm to the high numerical aperture case where vectorial
effects such as depolarisation by lenses cannot be neglected [14].

Appendix 1: Proof of theory on integration over sampled data

We seek to prove that a if a band limited function g(x) is sampled on the domain [0,(N−1)∆x]
with ∆x satisfying the Nyquist criteria, then the following holds:∫ N∆x

0
g(x)dx = ∆x

N−1

∑
n=0

g(n∆x). (31)

We start by noting that the following identity holds under the assumptions above [22]

g(x) =
1
N

N−1

∑
k=0

N−1

∑
n=0

exp
(
−i2π

kx
N∆x

)
exp
(

i2π
kn
N

)
g(n∆x)dx. (32)

Then, starting with the left hand side of Eq. (31), and substituting in Eq. (32), we can write:∫ N∆x

0
g(x)dx =

∫ N∆x

0

1
N

N−1

∑
k=0

N−1

∑
n=0

exp
(
−i2π

kx
N∆x

)
exp
(

i2π
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)
g(n∆x)dx

=
1
N

N−1

∑
k=0
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∑
n=0

[∫ N∆x

0
exp
(
−i2π

kx
N∆x

)
dx
]

exp
(
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)
g(n∆x)

=
1
N

N−1

∑
k=0
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∑
n=0

δk,0N∆xexp
(
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)
g(n∆x) =

N−1

∑
n=0

g(n∆x)∆x as required.
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