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Abstract: We demonstrate a highly realistic model of optical coherence
tomography, based on an existing model of coherent optical microscopes,
which employs a full wave description of light. A defining feature of
the model is the decoupling of the key functions of an optical coherence
tomography system: sample illumination, light-sample interaction and the
collection of light scattered by the sample. We show how such a model
can be implemented using the finite-difference time-domain method to
model light propagation in general samples. The model employs vectorial
focussing theory to represent the optical system and, thus, incorporates
general illumination beam types and detection optics. To demonstrate its
versatility, we model image formation of a stratified medium, a numerical
point-spread function phantom and a numerical phantom, based upon a
physical three-dimensional structured phantom employed in our laboratory.
We show that simulated images compare well with experimental images of
a three-dimensional structured phantom. Such a model provides a powerful
means to advance all aspects of optical coherence tomography imaging.
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1. Introduction

A variety of methods for simulating optical coherence tomography (OCT) image formation
have been developed [1–11]. These methods have been motivated by the need to interpret im-
ages, to understand and manipulate phenomena which influence image formation in OCT, and
to provide a means of testing new system designs without the need to build them. Such mod-
els have also been important in the development of quantitative techniques, such as parametric
imaging [12] and solving the OCT inverse problem [6].

All such mathematical models make approximations and the scale of these approximations
varies according to a model’s objectives and constraints. Rigorous simulation of image forma-
tion in OCT requires the calculation of how a stochastic electromagnetic beam is focused by
an optical system, how the focused beam interacts with a sample and, finally, how that light
scattered back by the sample is focused onto a detector, where it interferes with the reference
light. Further processing in the time or spectral domains is then required to extract axial infor-
mation from the recorded signals. Such a model cannot, in general, be evaluated analytically
for samples described by an arbitrary refractive index distribution, even using mathematically
convenient representations for the incident beam and detection optics.

Here, we are interested in models based on a wave theory of light. Most such models de-
veloped to date employ a scalar approximation. Some models have been extended to allow
for the simulation of vectorial phenomena (e.g., [1–3]); however, the scalar approach is still
predominant. The coherence properties of the incident and scattered fields are generally also
not explicitly modelled, in the sense that the effect that propagation has on the coherence of the
beam is not modelled. Coherence is incorporated either directly through a point spread function
(PSF) [4] or by assuming that the light is delta-correlated [5]. Combining the scalar approxima-
tion with the first-order Born approximation allows the construction of a model which has been
used as a means of solving the linear inverse problem [6]. The first-order Born approximation,
however, implies that light scattered back to the detector undergoes only a single interaction
with the sample, i.e., the contribution of each scatterer is calculated as though it was located
in homogeneous space. Whilst OCT’s coherence gating aids in the satisfaction of this approx-
imation, it does not hold, in general, as is demonstrated by the observation of attenuation and
multiple scattering in OCT images.

The extended Huygens-Fresnel formalism has been used to construct a model which relaxes
the first-order Born approximation [4]. In this model, light which travels to and from a scatterer
is attenuated by the traversed part of the sample according to a statistical model. The remainder



of the model is essentially based upon linear systems theory, whereby the coherence gate is
embedded in a PSF, which is used to calculate the image formed by a deterministic arrangement
of scattering potentials. It is important to emphasize that, in this model, samples are represented
only in a quasi-deterministic manner since beam attenuation and multiple scattering are based
on an ensemble average representation. This useful model has influenced many subsequent
models, including those based upon the Monte Carlo method [7, 8], which derive their image-
formation model from it.

Mesoscale models have also been developed which bypass wave optics. For example, the
radiative transport equation (RTE), which is based upon energy conservation in a particle trans-
port regime, may be used to model how light propagates in a sample. Image formation can
be modelled using a result which relates the complex amplitude of light in the sample to the
OCT signal at the corresponding depth [9]. An example of such a model makes use of a so-
lution to the RTE for the case of layered media [5]. However, there are very few samples for
which analytic solutions are available. One way of overcoming this is to use the Monte Carlo
method [10], combined with an image formation model based upon the extended Huygens-
Fresnel formalism [7]. The advantage of this approach is that the Monte Carlo method can be
used to calculate the propagation of light in an arbitrary sample, so long as that sample is well
described by mesoscopic optical properties, which are expected to remain constant over “small
units of tissue volume” [10]. The disadvantage of this approach is that the wave nature of light,
including polarization and coherence, are not naturally included in the model.

In other branches of optical imaging, an unavoidable need has been the catalyst for the de-
velopment of rigorous models of image formation. For example, vectorial effects, which are
inescapable in high-numerical aperture confocal microscopy, prompted the development of the
first rigorous model of such a microscope valid for general samples [13]. The model was made
possible by the use of rigorous numerical techniques, such as the finite-difference time-domain
method, to calculate how light propagates in general samples. Capoglu et al. [14] published a
good review of rigorous computational models of optical microscopes. Few OCT models have
used rigorous numerical techniques to model light propagation in the sample and those that do,
do not rigorously model image formation. In one of only two examples we are aware of that
employ rigorous numerical techniques, Reed et al. [15] report a model of OCT which uses the
time-resolved Poynting vector in the sample to approximate the resulting OCT image. In the
second example, Hung et al. [16] developed a model in which the impact of surface roughness
upon refractive index recovery, for simple scattering geometries, was considered, but examples
of OCT image formation were not given.

The purpose of this paper is to introduce a vectorial model, an extension of a previously de-
veloped model of coherent optical microscopes [13], by which image formation in OCT can be
rigorously simulated. By this, we mean that the simulation is derived directly from the physics
of each system component and the sample, applying as few approximations as possible. In this
way, physical phenomena, such as different beam types, deterministic heterogeneous samples,
polarization, and anisotropic scatterers, are implicitly included in the model. For example, us-
ing a vectorial description of light allows polarization-sensitive OCT to be modelled rigorously,
and, as foreshadowed by Schmitt and Knüttel [4], the coherence properties of an OCT system
require a vectorial model in order to be treated “more exactly”. Further, a vectorial model is
required in order to treat scattering as a continuum of interactions rather than a heuristic parti-
tioning between scattered and unscattered light.

The model is intrinsically three-dimensional. The examples in this paper, however, corre-
spond to two-dimensional scenarios due to computational limitations. These limitations will
be the subject of future work, which will enable the model to be applied to three-dimensional
samples. In principle, the model presented here is limited only by the phenomena which are



able to be modelled by the FDTD method, the set of which is extremely broad [17]. This will
provide a foundation to study, in principle, all phenomena observed in OCT images.

In the remainder of this paper, we give an outline of the model that we propose before giving
detailed explanations of its three principal components: 1) Calculation of light incident on the
sample; 2) Calculation of how light interacts with the sample; and 3) Calculation of how light
scattered by the sample and light from the reference arm interfere at the detector. A number
of examples of the model are then given in order to demonstrate its versatility. We describe
image formation for a stratified medium, for a numerical point-spread function phantom and
for a numerical phantom based on the physical three-dimensional structured phantom used in
our laboratory, for which we perform a comparison with experiment.

2. Details of the model

2.1. Overview

We make reference to the diagrams in Fig. 1 to explain how our model is constructed. Although
the illumination and detection optical systems are depicted as 4f systems in air, the mathemati-
cal formalism applies equally as well to fiber-based systems which may employ optical systems
more complex than depicted in Fig. 1. We do not consider noise or system components with
non-ideal characteristics, even though it is possible to do so. The model applies equally well
to spectral- and time-domain OCT systems due to both the Wiener-Khintchine theorem and
the coherent-mode decomposition of fields [18]. We have, however, described the model in the
spectral-domain, which seems to be most common in the literature. One of the model’s defining
characteristics is that the principal functional components of the OCT system are mathemati-
cally decoupled and treated independently, in a similar manner to models of high-NA coherent
microscopes [13]. Consider Fig. 1(a): the model’s ultimate objective is to spatially integrate
the irradiance, at the detector D, as a function of wavenumber, k, of the field which results
from interfering light from the reference and sample arms. This is achieved by the sequential
application of three steps:

1. Analytic calculation of the light emitted from the source, propagated through the optical
system and incident upon the sample, Einc(rs,k);

2. Numerical calculation of the light scattered back by the sample to the objective lens,
Esc(rs,k);

3. Imaging of the light scattered back by the sample onto the detector, Esc(rd ,k);

As shown in Fig. 1, rs and rd are positions in the sample and detector space, respectively. We
note also that bold face symbols are used to denote vector quantities. The light incident on the
detector from the reference arm, Ere f (rd ,k), is calculated in the same way as Esc(rd ,k), except
that the sample is replaced with a mirror modelled as either a dielectric or perfect electrical
conductor. The spectrally resolved detector signal may then be evaluated according to:

Itot(k) = S(k)

∣
∣
∣
∣

∫∫

D
diag(D(rd))Etot(rd ,k)dS

∣
∣
∣
∣

2

, (1)

where Etot(rd ,k) =Ere f (rd ,k)+Esc(rd ,k), S(k) is the effective spectral intensity distribution
of the source, combining the spectrally dependent power of the source, any source spectral
shaping and detector characteristics, diag(D(rd)) is the diagonal matrix with diagonal entries
taken from the vector D(rd), where D(rd) is the detector sensitivity function, such as the
mode of a single-mode fiber, D is the spatial extent of the detector and the norm is defined by
|a|2 = a∗a, where ∗ represents complex conjugate transpose. Note that although we represent



the effective spectral intensity distribution as a scalar function, there is no reason why it cannot
be represented by a tensor which operates on field quantities. Furthermore, different spectral
intensity distributions can be used for the reference and sample arms if required, particularly
as the two are calculated using independent FDTD simulations. The OCT A-scan may then be
found by inverse Fourier transform of Itot(k). We explain how Steps 1-3 above are performed
in the remainder of this section.

Fig. 1. a) A schematic diagram of a spectral-domain OCT system containing a light source
(LS), lenses (L1 - L4), beam splitter (BS), sample (S) and detector (D); b) A typical ray
of the geometrical optics field, E0(s,k). Phase and amplitude modulation are described by
Ai(s) whilst refraction by L2 is described by

[

Li j
]

; c) A 4f system which images the light
scattered by the sample onto a detector or into the guided mode of an optical fiber with any
aberrations being represented by the phase modulation Ad(s).

2.2. Illumination

Any incident beam with a mathematical description satisfying Maxwell’s equations may be em-
ployed. The Debye-Wolf integral is a flexible formulation that has been widely used to calculate
the form of coherent beams focused by high-NA lenses [20–22], which remains valid for low
NA lenses. It has been applied in a wide variety of applications, such as focusing exotic beams
such as cylindrical-vector beams [23] and Gauss-Laguerre beams [24], as well as focussing
these and more conventional beams through microscope cover slips [25]. A variety of beams
such as Gaussian, Bessel and Airy, may be modelled and arbitrary states of polarization are also
able to be represented without any additional complexity. With reference to Fig. 1(a) and Fig.
1(b), the Debye-Wolf integral is formally valid for calculating the time-harmonic field in the
vicinity of the focus of L2 if L2 and L4 form a 4f system and the aperture stop (not shown in
Fig. 1) is placed at their common focal plane. The 4f system will then be afocal and telecentric
from the spaces of both the sample and light source. This is important because it means the
back focal plane of L2 appears at infinity from the sample space, which in turn means that the
field at the back focal plane may be specified using geometrical optics [26]. This enables the
incident field to be calculated according to:

Einc(rs,k) =
−ik f
2π

∫∫

s2
x+s2

y≤NA2
Ai(s) [Li j]E0(s,k)exp(iks ·rs)

dsxdsy

sz
, (2)

where, as shown in Fig. 1(b), s = (sx,sy,sz) is the unit vector of a typical ray which passes
through the nominal focus of the objective, NA is the numerical aperture of the lens in air,
Ai(s) represents possible phase (including aberrations) and amplitude modulation, [Li j] ac-
counts for refraction by the lens and is evaluated using the generalized Jones matrix formal-
ism [19], E0(s,k) is the geometrical optics approximation to the electric field vector incident



upon the back focal plane of the lens and f is the lens focal length. A similar expression exists
for the magnetic field.

2.3. Scattered light

We employ the finite-difference time-domain (FDTD) method to calculate how light is scat-
tered by the sample. The advantage of using this method is that scattering, at all wavelengths
of interest, may be calculated in a single simulation. It is beyond the scope of this paper to give
a detailed account of these well established methods; instead, we refer readers to the compre-
hensive book by Taflove and Hagness [17].

The sample is modelled by associating with each cell in the FDTD grid, a relative permittiv-
ity and permeability, conductivity and, possibly, a dispersion relationship. When employing the
FDTD method, a grid cell size not exceeding λ0/10 is required; however, a smaller size may
be employed subject to the amount of computer memory available. When computer memory is
limited, the pseudospectral time-domain (PSTD) method may be used, which requires signifi-
cantly less computer memory than the FDTD method, as a minimum grid spacing of λ0/2 may
be approached; however, our recent work [29] shows that a discretization not exceeding λ0/2.5
is required in practice.

A pulse with a Gaussian temporal profile is introduced into the FDTD simulation space at
a plane in the vicinity of the the sample surface, such as Sinc in Fig. 2. This plane must be
large enough such that the majority of the beam’s energy flows through it to prevent the non-
physical diffraction of the focussed beam. The incident field is introduced to the simulation
using equivalent electromagnetic sources [30], which, in the case of FDTD, is equivalent to
the well known total-field scattered-field source condition [31]. The properties of the source
condition employed in our model are most easily understood by considering the case in which
only equivalent magnetic current sources are employed. In particular, we assume that a sheet of
magnetic current density is located at plane Sinc in Fig. 2. This magnetic current density has a
time-dependent form [29]:

J∗
s (t) = ℜ{−k̂×Einc(rs,k0)exp(−ω0(t − t0))exp(−π((t − t0)/W )2)}, (3)

where k̂ is the unit vector aligned with the z-axis, Einc(rs,k0) is the incident field evaluated
using Eq. (2) at mean wavenumber, k0, ω0 = c/k0, where c is the speed of light, t0 is set such
that the components of J∗

s (t) are vanishingly small at t = 0 and ℜ denotes the real part. W
controls the temporal width of the incident pulse and, thus, the spectral width of the source,
allowing the scattered field at wavelengths throughout the spectrum of interest to be calculated
in a single simulation, making this model computationally tractable.

The complex amplitudes of the scattered field are recorded, at all wavelengths of interest,
on a plane also in the vicinity of the sample surface, such as Ssc in Fig. 2. This is done by
applying a temporal discrete Fourier transform at each wavenumber of interest as the FDTD
simulation proceeds. The resulting complex amplitudes are equivalent to those that would be
obtained by performing individual steady state simulations for each wavelength of interest [17].
Scattering in an infinite space is simulated by surrounding the sample with a perfectly matched
layer, as proposed by Berenger [27], which absorbs, without reflection, radiation incident upon
it. We have arrived at this treatment by tacitly assuming that the light source is well modelled
as a point source. If this is not the case, the coherent mode representation may be used to treat
beams with arbitrary states of coherence [32]. We employ an FDTD code developed in house,
originally for modelling high-NA confocal microscopes [13, 28].



Fig. 2. Schematic diagram of where the source field is introduced Sinc and where the scat-
tered field is recorded Ssc in FDTD simulations.

2.4. Image formation

After calculating the light scattered by the sample at plane Ssc in the sample space, it must be
focussed onto the detector or coupled into a fiber. In the general case, where the NA of the
objective may be high, a vectorial technique such as equivalent dipole decomposition, based
on the Debye-Wolf integral [33], must be employed. This formalism allows aberrations in the
optical detection system to be modelled. However, when a low NA objective is used, the low
aperture approximations of Richards and Wolf [20] can be used to show that equivalent dipole
decomposition reduces to scalar diffraction, where the two transverse field components may
be considered separately. This allows Fourier optics [34] to be employed, whereby the angular
spectrum of plane waves of the scattered field, is propagated through the 4f system, shown
in Fig. 1(c), to the detector. This results in the scattered field, Esc(rd ,k), being known in the
vicinity of the detector. The reference field, Ere f (rd ,k), may be similarly evaluated in the
vicinity of the detector. Substituting the calculated values of Esc(rd ,k) and Ere f (rd ,k) in to
Eq. (1), and expanding, allows Itot to be expressed as

Itot(k) = Ire f (k)+ Isc(k)+ Iint(k), (4)

where Ire f (k) = S(k)
∣
∣
∫∫

D diag(D(rd))Ere f (rd ,k)dS
∣
∣2 is due solely to the reference arm light,

Isc(k) = S(k) |∫∫D diag(D(rd))Esc(rd ,k)dS|2 is due solely to the scattered light and Iint(k) =
2S(k)ℜ{∫∫D diag(D(rd))Esc(rd ,k)dS · ∫∫D diag(D∗(rd))E

∗
re f (rd ,k)dS} is due to the interfer-

ence of the scattered and reference arm light. Again we note that the use of S(k) does not imply
that the sample and reference arms have the same spectral dependence. Any differing spectral
dependence can be accounted for in the independent calculations of each field quantity. Inverse
Fourier transformation of Itot with respect to k results in an OCT A-scan. After performing this
transformation, Ire f results in a “DC” contribution, Isc leads to the auto-correlation terms and Iint

contributes the cross-correlation terms, which are generally considered to constitute the OCT
image. In practice, Ere f (rd ,k) and Esc(rd ,k) may be calculated at only a finite, but arbitrary,
number of values of k and so a discrete inverse Fourier transform is employed. The main task
in constructing a full wave model of OCT is, thus, the calculation of Ere f (rd ,k) and Esc(rd ,k)
over a sufficient range of wavenumbers, using the FDTD method as outlined in Sec. 2.3.

3. Evaluation and analysis

This model has been previously verified for coherent optical microscopes [13]. This section,
thus, focusses on how low-coherence interferometry is integrated into the model. We consider,
first, the example of a stratified medium to verify the depth-sectioning performance of the
model. We follow this with the simulation of OCT point spread functions at a range of axial
positions. We conclude the section with a comparison of simulated and experimental OCT



images of a three-dimensional structured phantom. The simulation parameters such as source
spectral width, FDTD cell size, etc., remain constant for each simulation.

3.1. Numerical dispersion

The phenomenon of numerical dispersion [17], well known to the FDTD community, can im-
pact significantly upon the simulation of OCT image formation if it is not compensated. This
form of dispersion has a different origin from that arising in real systems, which is not consid-
ered further here. Numerical dispersion refers to the phenomenon by which waves propagated
in a homogeneous FDTD grid have wavelength-dependent phase and group velocities. Nu-
merical dispersion occurs as a result of the solution of the difference equations derived from
Maxwell’s equations diverging from the solution of the associated, continuous-case differential
equation. In particular, in the continuous case, the phase refractive index np relates the optical
frequency ν to the wavelength according to np = νλ/c, where c is the speed of light in vacuo.
In the discrete case, it is necessary to define a numerical phase refractive index, ñp, and a nu-
merical wavelength, λ̃ which are related by ñp = νλ̃/c. Analogously to the continuous-case
group refractive index, ng, which satisfies ng = np−λdnp/dλ [35], we define the discrete-case
group refractive index, ñg, which satisfies

ñg = ñp − λ̃
dñp

dλ̃
. (5)

In practice, ñp is calculated by extracting λ̃ for a plane wave propagating along the z-axis in
a homogeneous FDTD simulation and ñg is then calculated using Eq. (5). As an example, we
calculated ñp and ñg for separate cases of media having refractive indices n0 = np = ng equal to
1 and 1.42. The results of these simulations are shown in Fig. 3 for a free space wavelength band
centered on λ0 = 1325nm. The FDTD simulation employed an isotropic cell size of λ0/15. The
group refractive index is seen to vary more than the phase refractive index in both cases and the
deviation is worse in the case of n0 = 1.42. Once calculated, these parameters can be used in
more complex simulations. These results are important in the example following in Sec. 3.2, in
which the OCT image of a stratified medium is simulated.

Numerical dispersion may be reduced by employing a smaller FDTD cell size, however,
some additional compensation will generally be required. In the first instance, where simula-
tions are composed of scatterers embedded in a background medium, the background medium
ñp should be calculated to allow the field to be sampled at numerical wavenumbers match-
ing the required continuous wavenumbers. This step needs to be made explicit only because
complex amplitudes are extracted at specified frequencies, not wavenumbers, by application of
a temporal discrete Fourier transform. As a second step, numerical dispersion within isolated
scatterers can be compensated for by selecting a refractive index, n0, which results in a mean
value of ñp matching the desired refractive index. Finally, we note that FDTD simulations are
performed for both the sample and reference arms so that both have the same numerical disper-
sion relationship.

3.2. Simulation of the OCT image of a stratified medium

The imaging model presented in this paper has been rigorously tested previously for the case
of image formation using monochromatic light [13]. The objective of the current test is to
verify the acquisition of axial information using low-coherence interferometry. We, thus, com-
pared image formation for a stratified medium, using our model, with the analytic case. We
employed a two-dimensional model, in order to reduce computational complexity, whereby the
illumination and sample were considered to be uniform in the y-direction. We employed the
transverse magnetic (TM) case of a previously developed two-dimensional formulation of the
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ñ
n
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Fig. 3. Plots of numerical phase refractive index ñp and numerical group refractive index
ñg for air (n0 = 1) and dielectric material (n0 = 1.42). The horizontal axis represents the
continuous case wavelength.

Debye-Wolf integral [36], although the model applies equally well to the transverse electric
(TE) case. The FDTD simulation employed an isotropic cell size of λ0/15 with center wave-
length λ0 = 1325nm. A wavelength band 200nm wide, centered on λ0 was modelled. S(k) took
the form of a Hanning window over the corresponding range of k. The FDTD computational
grid had 6,000 cells in the transverse direction and 3,000 cells in the axial direction. The mod-
elled stratified medium was composed of a background of refractive index 1 and sheets, one
FDTD cell size thick, with refractive index 1.42. The light from the reference arm was also
calculated using an FDTD simulation with a perfect electric conductor positioned at the focal
plane of the focussed illumination. This ensures that the same numerical dispersion compen-
sation outlined in Sec. 3.1 can be used for both the sample and reference arms, since the thin
sheets contribute negligibly to the sample arm numerical dispersion relationship.

A cylindrical objective lens, of NA 0.056, and over-filled aperture was employed, with the
additional lenses in Fig. 1(a) having the same NA for simplicity. The detector sensitivity func-
tion, D, was set equal to unity for each of the field components over the region of the detector
in which the total field was non-negligible. Note that the longitudinal component of the electric
field incident upon the detector was negligible due to the low NA of the detector lens (lens L3
in Fig. 1(a).
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Fig. 4. OCT A-scans for 5 (left) and 20 (right) thin sheets of material with a refractive
index 1.42, embedded in a background of refractive index 1. The locations of the sheets are
indicated by vertical lines.

The A-scan calculated using the FDTD-based imaging model was compared with that cal-
culated analytically using the characteristic matrix treatment of stratified media [37], using an
angular spectrum of plane waves approach, as has previously been used as a platform for solv-
ing the inverse problem of OCT [38]. The reference beam is also calculated in this manner.



Figure 4 shows two simulated A-scans, for 5 and 20 reflecting sheets in the stratified medium.
The positions of the sheets are indicated by vertical lines. In the example with only 5 sheets,
all sheets are resolvable and the axial resolution of the system is evident from the A-scan peak
appearing at the lowest value of z. The simulation of 20 sheets shows examples of where not
all sheets are resolvable, resulting in an axial speckle pattern. Both examples show how the
proposed model predicts the OCT signal due to multiply reflected light, as is indicated by
the signal appearing after the final sheet. The normalized mean squared error, calculated as
∑ |OCTn −OCTa|2/∑ |OCTa|2, where OCTn and OCTa are the complex A-scans calculated nu-
merically and analytically, respectively, are 1.96×10−3 and 1.51× 10−3 for the left and right
plots, respectively. The level of agreement between the two models is, thus, sufficiently good
to conclude that the low-coherence interferometry aspect of the model is correct.

3.3. Calculation of an OCT point spread function
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Fig. 5. Images and plots which demonstrate the depth-dependent PSFs employed in OCT
by simulating images of 24 scatterers arranged equidistantly along the optical axis. (left)
Each image corresponds to a different detector sensitivity functions D= (Dpt ,0,0)T , D=
(Dint ,0,0)T and D = (Dext ,0,0)T . (upper right) Transverse line plots corresponding to
PSFs at three axial depths for each detector sensitivity function. (lower right) Axial line
scans corresponding to the three detector sensitivity functions. The envelope function of
the PSFs has been plotted to illustrate the confocal function for each case.

Before demonstrating the simulation of practical image formation, we consider an uncom-
plicated example of system PSF simulation. The PSFs, as shown in Fig. 5, demonstrate how
the imaging properties of a confocal microscope combine with low-coherence interferometry



to yield an OCT PSF [39]. In particular, transverse resolution is obtained in the same way as
a confocal microscope employing monochromatic light. Axial resolution is influenced by two
phenomena. One is the depth sectioning possessed by microscopes employing monochromatic
light, both confocal and conventional, and the other is coherence gating. Coherence gating
dominates when a low numerical aperture objective is employed.

A model identical to that of the stratified medium (Sec. 3.2) is employed, except with the
FDTD grid extended to 6,000 cells deep and without the stratified medium. A series of 24
single FDTD cell scatterers, with refractive index 1.01, were arranged equidistantly along the
optical axis, allowing depth-dependent PSFs to be calculated, as shown in Fig. 5. The PSFs were
calculated by performing 120 separate FDTD simulations, for a series of transverse scatterer
positions each differing by 0.52μm to ensure that the signals from different scatterers do not
overlap. The TM and TE polarizations yielded practically identical results. A low refractive
index contrast between scatterer and background ensured that each of the 24 PSFs shown in
Fig. 5 were practically identical to that obtained by calculating each PSF separately.

Each of the three images displayed in the left portion of Fig. 5 correspond to different detector
sensitivity functions: D= (Dpt ,0,0), D= (Dint ,0,0) and D= (Dext ,0,0). Dpt corresponds to
a true point detector, Dint is unity over a width of 114μm and Dext corresponds to an extended
detector which detects nearly all light imaged into the detector space. The width of the support
of Dint was chosen because it results in imaging properties approximately in between the point
and extended cases. OCT systems generally employ a single-mode optical fibre to sample the
reference and scattered light. In this case, the detector sensitivity function will take the form
of the fibre mode. Although not shown, the simulated PSF for a single-mode optical fibre will
be similar to the case of the point detector. The OCT system was focused, by over-filling the
aperture, on the upper-most scatterer, which appears at the top of the PSFs shown in Fig. 5. The
PSFs calculated using each of the three detector sensitivity functions have been normalized by
the value of the corresponding PSF at the in-focus position. The images demonstrate how the
PSF deteriorates with increased axial imaging distance. The transverse line scans demonstrate
how, as expected, the PSF is narrower in the transverse direction when a pinhole detector is
employed and increases as the detector radius increases. The non-Gaussian nature of the trans-
verse line scans, which becomes more pronounced with axial distance from the focus, is due
to an over-filled aperture being employed, although we note that, in practice, an under-filled
aperture is generally employed.

The axial line scans have an envelope function fitted to the peak of each PSF. This envelope
is the so-called confocal function, the plots of which show how the depth of focus can be in-
creased by increasing the extent of the detector, albeit to the detriment of lateral resolution. We
note, however, that in the case of the extended detector, the depth of focus is determined by
geometrical effects rather than by a confocal pinhole. As is expected, aside from the amplitude
modulation due to the confocal function, each of the individual axial PSFs has a profile match-
ing the Fourier transform of S(k). Finally, as noted previously, the transverse profile of the
PSFs has been verified previously in a model of confocal microscopes employing monochro-
matic light [13].

3.4. Simulation of OCT image formation for a phantom

We simulated image formation using a numerical phantom based upon a physical three-
dimensional structured phantom which has been developed in our laboratory [40]. The ob-
jective of this example is to demonstrate that the model is able to simulate the salient features
of experimental OCT images, rather than to match a particular experimental result. OCT image
formation for this phantom has also been recently modelled using a linear systems model of
OCT, accounting only for single scattering phenomena [11]. The phantom is depicted schemat-



ically in Fig. 6(a). The sample feature consists of the letters “OBEL”, constructed by dispersing
TiO2 (diameter = 1μm, n=2.488 at λ0 = 1300nm) particles into a silicone elastomer casting
(n=1.42 at λ0 = 1300nm) at a concentration of 10mg/mL. The scattering coefficient within
the letters was calculated to be μs = 12.6mm−1 at λ0 = 1300nm using the theory of extinc-
tion by a slab of particles. The particle scattering cross section was calculated using Mie the-
ory [42]. Experimental images of the physical phantom, presented in Fig. 6(b) and Fig. 8(c),
were acquired using a Thorlabs Telesto II, spectral-domain OCT system possessing a source
with central wavelength of 1300nm and axial resolution of 5.5μm, implying an effective 3db-
bandwidth of 135nm. It has a sample arm objective with NA of 0.056, which is under-filled
resulting in a lateral resolution (full-width at half-maximum) of 13μm. The experimentally ac-
quired auto-correlation image is shown in Fig. 8(d) for comparison with the simulated images.
The auto-correlation image results from the component of Eq. (1) due to purely scattered light,
Isc(k), and is usually separated from the meaningful OCT image by adjusting the position of the
reference mirror relative to the sample, as is shown in Fig. 6(b). Although not generally of im-
portance in dual-arm OCT systems, the autocorrelation image demonstrates the comprehensive
nature of our model.

Fig. 6. a) Schematic diagram of the physical phantom reported in [40]. Imaging is per-
formed from above the sample as demonstrated by the objective lens (not to scale) and b)
an OCT image of the phantom acquired with a Telesto II system, showing the lettering
feature at the centre and the auto-correlation image at the top. The nearly horizontal line
depicts the top of the phantom’s embedding medium, from which light reflects, leading to
the faintest “OBEL” image.
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Fig. 7. Diagram showing how a collection of spherical scatterers in a three-dimensional
beam (left) can be approximated in a two-dimensional system (right) where fields and scat-
terers extend uniformly in the y direction. The scatterers are, thus, cylinders, depicted as
circles in the xz plane.

A number of approximations are required to model, in two dimensions, a three-dimensional
imaging system and sample. It is natural to represent spherical scatterers by cylinders in two
dimensions as shown in Fig. 7. However, the radius of such cylinders will not, in general, be



equal to that of the spheres they represent. This is because the geometrical cross section, per-
unit length, of a cylinder exceeds the geometrical cross section of a sphere with the same radius,
at the length scale of interest. A further approximation arises when using the FDTD method to
calculate light scattering, as cylindrical scatterers are represented approximately due to space
being discretized with a resolution determined by the FDTD cell size. Thus, when approximat-
ing cylinders with radii approaching only a few FDTD cells, it is necessary to calculate the
scattering cross section, per-unit length, of such scatterers using the FDTD method itself. One
may, thus, vary the shape, refractive index and concentration of two-dimensional scatterers and
illumination polarization to achieve the desired optical properties such as scattering coefficient
and anisotropy.
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Fig. 8. a) Schematic diagram of the numerical phantom for which OCT image formation
was simulated. The scatterers are not to scale; b) Magnitudes of the principal field com-
ponent for the TM and TE cases, respectively, normalized by the in-focus free space field
magnitude; c) Experimental OCT image of the physical phantom; d) Experimentally ac-
quired auto-correlation image of the physical phantom; e) Simulated OCT image of the
numerical phantom for the TM case; f) Simulated auto-correlation image of the numeri-
cal phantom for the TM case; g) Simulated OCT image of the numerical phantom for the
TE case; h) Simulated auto-correlation image of the numerical phantom for the TE case.
The scale bars in each image indicate 50μm. The axial scale represents physical distance,
scaled using the refractive index of silicone (1.42) for the experimental images and the
mean group numerical refractive index for the simulated cases (1.48, see Fig. 3).

The FDTD simulation was identical to that of Sec. 3.3 except for the scatterers. One point to
note is that the illumination was focussed on the top of the letters in the phantom. Direct sim-



ulation of image formation, i.e. three-dimensional simulation, is currently not feasible due to
computational limitations. The current simulation, thus, amounts to approximating image for-
mation in an intrinsically three-dimensional system in two-dimensions. The task of matching
the optical properties between two- and three-dimensional situations can be achieved through
parametric studies of the shape, refractive index and concentration of two-dimensional scatter-
ers as described above. Our current interest is in providing a proof of principle demonstration
of our model. To this end, we chose to represent the 1μm nominal diameter TiO2 scatterers
in the physical three-dimensional structured phantom with cylindrical scatterers of diameter
250nm and a refractive index matching that of TiO2 (n=2.488 at λ = 1325nm). This enabled
Mie theory to be used to estimate the scattering coefficient of the resulting arrangement of scat-
terers. A numerical phantom was then constructed by calculating a random arrangement of non-
overlapping circles, in the xz plane, with diameter 250nm having centers rn = (xn,zn) and den-
sity 5×104mm−2, where n is a circle index. Circles falling outside of the stencil of the letters
“OBEL” were eliminated and the indices of scattering cells, within the FDTD simulation, were
determined according to the list {(i, j) ∈ Z

2 :
√

(iΔ− xn)2 +( jΔ− zn) ≤ 125nm, for any n}
where Δ is the FDTD cell size.

The scattering coefficients, within the letters of “OBEL”, were 4.3 and 22 mm−1 for the TM
and TE cases, respectively. A good explanation of how to calculate scattering coefficients is
given by Saidi et. al [41] and Bohren and Huffman [42]. The scattering coefficient of an en-
semble of particles may be calculated from the product of the volume density of particles and
the scattering cross-section defined as Csc = (1/Ii)

∫

SSs ·ndA, where Ii is the irradiance of the
incident plane wave, Ss is the Poynting vector of the scattered field and S is a surface enclos-
ing the particle with outward normal n. In the case of cylinders, the scattering cross-section,
and thus scattering coefficient, are calculated on the per unit length basis as the cylinders are
infinitely long. The scattering cross-section of a circle represented by FDTD grid cells was cal-
culated for both the TE and TM illuminations using the FDTD method. In particular, Ss was
calculated on a contour surrounding the scatterer, enabling the scattering cross-section to be
evaluated. For both the case of discrete approximations to cylinders and ideal cylinders, the-
ory shows that cylinders with a sub-wavelength diameter scatter light much more significantly
when the electric field vector is parallel to the cylinder (i.e., the TE case).

The results of image formation using the numerical phantom are shown in Fig. 8. The scatter-
ers in Fig. 8(a) are depicted with a larger diameter than was actually modelled for clarity. Figure
8b) shows the magnitude of the principal field components for one particular beam position, at
the central wavelength, for the TM and TE cases, respectively. The difference in scattering cross
sections, for the TM and TE cases, of each cylinder is evident from this plot. The field magni-
tude has been normalized by the magnitude of the field at the focus, in air, and in the absence
of scatterers.

The experimentally acquired OCT and auto-correlation images are shown in Fig. 8(c) and
Fig. 8(d), respectively. They are displayed on a scale covering 0 to 37dB of OCT signal-to-
noise ratio. Figure 8(e) and Fig. 8(g) show the simulated OCT images for the TM and TE cases,
respectively. The simulated images are displayed on a logarithmic scale such that the peak OCT
signal in the simulated image corresponds to the peak value of OCT signal-to-noise ratio in the
experimental images.

The scattering coefficient within the letters for the experimental image (μs = 12.6mm−1)
lies between that of the two simulated images (μs=4.3 and 22 mm−1, respectively). As a result,
multiple scattering is just visible below the letters in Fig. 8(c), absent in Fig. 8(e) and prominent
in Fig. 8(g). Furthermore, attenuation of the OCT signal is observable in Fig. 8(c) in regions
near the base of each letter, but is much more pronounced in Fig. 8(g). The simulated images,
thus, represent extreme cases of low and high scattering and the experimental image represents



an intermediate case.
We have presented the auto-correlation images to show the model’s inherent ability to model

contributions to image formation from sources other than those which are usually assumed to
make the principal contribution to OCT images. Furthermore, in other experiments we employ
a common-path configuration in our laboratory which uses the interface between a glass slide
and the sample to achieve high phase sensitivity [43]. In this case, the auto-correlation image
is included in the acquired image of the superficial region of the sample. Simulation of the
auto-correlation image will, thus, provide the opportunity to explore the impact that the auto-
correlation image has on phase sensitivity.

In contrast to the auto-correlation image, the magnitude of the OCT signal depends on the
reflectivity of the reference mirror. We have, thus, displayed the simulated OCT and auto-
correlation images on the same scale, noting that the effect of different reference mirror re-
flectivities can be modelled simply by offsetting the logarithmic scale of the OCT image, in
accordance with the reflectivity of the reference mirror. Finally, we note that it is also possible
to model the degradation of sensitivity due to parasitic reflections in the optical system simply
by building these into the simulation of the optical system. It is also possible to model shot
noise and sensitivity roll-off, since we calculate the irradiance at the detector surface.

We conclude this section by considering the computational burden involved with simulating
the images in Fig. 8. The OCT B-scans in Fig. 8 are all derived from the same set of 220 FDTD
simulations, representing adjacent A-scans separated by 2.2μm, requiring 38 minutes per A-
scan to complete using all 6 cores of an Intel Xeon E5645 CPU (2.4 GHz clock speed, 12 Mb
cache) and required just less than 4 Gb of RAM.

4. Discussion and conclusions

We have presented a framework, and an example implementation, of a rigorous, full wave
model of OCT. At the core of the model are, rigorous, time-domain electromagnetic scattering
solvers, such as the FDTD method, which allow the light scattered by the deterministic sample
to be calculated in a way which automatically includes phenomena such as multiple scattering
and vectorial effects.

A range of phenomena arising from OCT imaging can now be examined. For example, in the
future, we plan to consider applications such as displacement measurement using phase sen-
sitive detection [11], parametric imaging [46], the use of non-Gaussian beams, such as Bessel
beams [47, 48], and to test hypotheses regarding unresolved features observed in a variety of
medical and biomedical OCT images [15].

The model itself has scope for improvement. Most notably, if applications require it, the
modelling of dispersive media in FDTD can be implemented as can anisotropic media. Sources
of noise can also be incorporated. In fact, one of the prime strengths of this method is that
the modular nature of the model allows phenomena arising in, for example, a sample, optical
elements and detector, to be modelled by modifying only one component of the model.

The capability of modern desktop (and superior) computers, along with the emergence of
open source FDTD implementations [44, 45] mean that this kind of simulation will eventually
be accessible to non-specialists. Access to institutional computer clusters will enable volume
scans to be evaluated in on the order of a day, which is a time short enough to be of practical
use.
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