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Abstract 

Metabonomics/Metabolomics is an important science for the understanding of 

biological systems and the prediction of their behaviour, through the profiling of 

metabolites. Two technologies are routinely used in order to analyse metabolite 

profiles in biological fluids: nuclear magnetic resonance (NMR) spectroscopy and 

mass spectrometry (MS), the latter typically with hyphenation to a chromatography 

system such as liquid chromatography (LC), in a configuration known as LC-MS. 

With both NMR and MS-based detection technologies, the identification of the 

metabolites in the biological sample remains a significant obstacle and bottleneck. 

This article provides guidance on methods for metabolite identification in biological 

fluids using NMR spectroscopy, and is illustrated with examples from recent studies 

on mice. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

NMR-Based ID of Metabolites: A Guide  Page 2 

 

 

Keywords 

1. nuclear magnetic resonance (NMR) spectroscopy 

2. metabolite identification 

3. molecular structure 

4. metabonomics 

5. metabolomics 

 

Highlights (N.B. this needs cutting out into a separate document later) 

1. many simple metabolites can be identified in biofluids using 1D 
1
H NMR 

methods 

2. metabolites at lower levels and with more complex structures will require 2D 

NMR approaches for identification 

3. metabolite databases such as the HMDB are helpful for metabolite 

identification 

4. users need to be aware of the possibility of errors in metabolite databases 

5. metabolite identification carbon efficiency (MICE) helps measure known 

metabolite identification confidence 
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1. Introduction 

 

Metabonomics is defined as ‘the quantitative measurement of the multiparametric 

metabolic response of living systems to pathophysiological stimuli or genetic 

modification’ and is concerned with the study of the metabolic response of organisms 

to disease, environmental change or genetic modification.[1] The similar term 

metabolomics [2] was defined later and is now used interchangeably. In contrast to 

the interventional definition of metabonomics, metabolomics has an observational 

definition which is difficult if not impossible to achieve: ‘a comprehensive analysis in 

which all the metabolites of a biological system are identified and quantified’.[2] In 

this work we will use the original term throughout. Metabonomics has many areas of 

application including biology and medicine [3] with new developments such as 

pharmacometabonomics (the ability to predict drug responses prior to drug dosing) 

and the more general area of predictive metabonomics, emerging recently.[4-7]  

 

There are many stages to a well-designed metabonomics experiment including: 1) 

definition of study aims and experimental design, 2) ethical approval of the study, 3) 

sample collection and storage, 4) sample preparation, 5) data acquisition, 6) data 

quality control, 7) spectroscopic data pre-processing (for NMR data this would 

include zero-filling, apodisation, Fourier transform, phasing, baseline correction and 

referencing), 8) statistical data pre-processing including peak alignment, scaling and 

normalisation, 9) statistical analysis of the data to interrogate e.g. differences in 

metabolite profiles due to a drug treatment, 10) identification of the metabolites that 

are responsible for the metabolite profile differences, 11) biological/biochemical 

interpretation of the role of those metabolites, including pathway analysis and 12) 

reporting of results and deposition of the data. 

 

Many of the metabonomics study elements above have excellent literature reviews 

and references available to assist effective study execution.[8-20] However, the 

identification of the key biomarkers or metabolites that are responsible for 

discriminating between different groups in a study (Stage 10 above) is non-trivial for 

both NMR [15,21-28] and MS-based [28-34] metabonomics experiments. This guide 

aims to provide an insight into the methodologies that can be used for NMR-based 

metabolite identification in the course of a metabonomics project. It is assumed that 

the reader is familiar with the basics of NMR spectroscopy: many excellent books on 

the topic are available.[35-38] The focus of this guide is on the use of 
1
H NMR, or 

1
H 

NMR-detected heteronuclear 2D NMR experiments, for metabolite identification in 

metabonomics experiments on biological fluids. 

 

 

2. Molecular Structure Information from 1D NMR Spectra of Metabolites 

 

A surprising amount of information is available from a one-dimensional (1D) 
1
H 

NMR spectrum, including: 1) chemical shifts, 2) signal multiplicities, 3) homonuclear 

(
1
H - 

1
H) coupling constants, 4) heteronuclear coupling constants (typically 

14
N - 

1
H 

or 
31

P - 
1
H), 5) the first order or second-order nature of the signal, 6) the half 

bandwidth of the signal, 7) the integral of the signal and 8) the stability of the signal 

(changes in the integral with time). We will not cover: 9) spin-lattice relaxation times 

(T1s) or 10) spin-spin relaxation times (T2s). Whilst an appreciation of both these 

latter features is critical for the conduct of all NMR experiments, and differentiation 
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of short from long T2s is fundamental in the Carr-Purcell-Meiboom-Gill (CPMG) 

spin-echo pulse sequence for plasma analysis, these features are of minor importance 

per se for metabolite identification. We will deal with each of the first 8 features in 

turn and see how they can be used to assist metabolite identification. 

 

2.1 
1
H NMR Chemical Shifts 

 

Each chemically distinct hydrogen nucleus in each metabolite in a biological sample, 

such as a biofluid, will exhibit an NMR signal at a characteristic resonance frequency, 

which is measured as a chemical shift relative to a standard compound. For example, 

in metabonomics studies of urine, it is common to add the reference material such as 

3-(trimethylsilyl)-2,2',3,3'-tetradeuteropropionic acid (usually abbreviated to TSP) or 

deuterated forms of 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) or its sodium 

salt, and define the chemical shift of the TSP or DSS methyl resonances as 0 ppm. 

Our preference is to use TSP as the reference material in biofluids without significant 

protein concentrations. The normal reference material for NMR spectroscopy in 

organic chemistry, tetramethylsilane (TMS) is rarely used in metabonomics studies, 

as it is insoluble in aqueous solutions.  

 

The exact chemical shift of the NMR signal of a hydrogen nucleus in a metabolite is 

independent of the applied field strength, is highly reproducible and precisely 

characteristic of that nucleus, in that metabolite, in the particular matrix conditions. 

For biofluids such as blood plasma or serum, where DSS or TSP may become bound 

to macromolecule components, it is common to reference the spectra to the H1’ 

anomeric proton of the alpha anomer of glucose at 5.233 ppm, to avoid variation in 

reference intensity and position due to binding.[39] However, care must be taken with 

temperature control as this signal has high temperature sensitivity and indeed, has 

been used as an NMR thermometer.[40] 

 

When comparing the experimental 
1
H NMR chemical shifts of hydrogens in 

metabolites in intact biofluids with those of the corresponding pure reference 

standards in aqueous solution, it is usual for values to agree within 0.03 ppm. One of 

the strengths of NMR spectroscopy is that the chemical shifts are exquisitely sensitive 

to structural and environmental change. Indeed, sensitivity of chemical shifts to pH 

change can be used to distinguish or identify metabolites, especially those containing 

ionisable functional groups.[41] Whilst this is an excellent feature in terms of 

decreasing the likelihood of two similar molecules having identical 
1
H NMR spectra, 

it does mean that for some metabolites, environmental change can have a significant 

effect on the spectra, including the 
1
H NMR chemical shifts. A classic case of this 

sensitivity to the environment occurs for the diastereotopic methylene hydrogens in 

citric acid. Changes in pH between samples will alter the ionisation of the carboxylate 

groups in citric acid and thus affect the chemical shifts of the methylene hydrogens. In 

addition, it is well known [3] that citric acid can chelate metal ions such as calcium, 

magnesium and sodium. Thus, even if biofluid samples are buffered effectively to a 

constant pH, changes in metal ion concentrations between samples, which are not 

readily apparent by 
1
H NMR, may have a significant effect on the chemical shifts and 

the half bandwidths of the signals of the methylene hydrogens of citric acid and also 

any other metabolites with similar properties. This effect is observed in Figure 1. 
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Figure 1: an expansion of the 600 MHz 

1
H NMR spectrum of the urine of four, 30 week old, male 

C57BL/6 mice, in the region of the doublet signals of citrate at ca 2.70 and 2.56 ppm. Even though the 

urine is buffered to pH 7.4, there are differences in the chemical shifts of the citrate signals between the 

four urine samples and noticeable differences also in half bandwidth, with the signals of mouse 1 

(bottom spectrum) being especially broadened. The ‘roofing’ of the doublet citrate signals towards one 

another is illustrated by the arrows above the citrate resonances of mouse 4. See section 2.6 on 2
nd

 

order effects. 

 

Many general resources are available which correlate the relationships between 

chemical structure and NMR chemical shifts [36,42], including web resources [43], 

whilst more specific metabonomics-focused databases are covered in Section 4.3 

below. As for 
13

C NMR chemical shifts (see Section 2.2 below), it is also possible to 

calculate 
1
H NMR shifts, especially in discrete series.[43] 

 

2.2 
13

C NMR Chemical Shifts 

 

Most metabonomics experiments are conducted with 
1
H NMR detection. However, 

the 2D 
13

C, 
1
H HSQC NMR (Section 3.5 below) and 2D 

13
C, 

1
H HMBC NMR 

(Section 3.6) experiments which correlate 
1
H NMR chemical shifts with 

13
C NMR 

chemical shifts over 1-bond (HSQC) or 2 to 3 bonds (HMBC) are very important for 

metabolite identification, as they enable the determination of the 
13

C NMR chemical 

shifts of metabolites, so an appreciation of the nature of 
13

C NMR chemical shifts is 

required. One key feature of 
13

C NMR chemical shifts is their much larger range of 

values compared with 
1
H NMR chemical shifts. For common metabolites 

13
C NMR 

chemical shifts occupy a huge range of values from ca 10 ppm for methyl carbons 

such as C4 in butanone to ca 222 ppm for the ketone (C2) carbon in the same 

molecule. Thus the range of 
13

C NMR chemical shifts is ca 20 times that of 
1
H NMR 

and this is the reason that their measurement is so important in metabolite 

identification: they are much more sensitive to small changes, or more remote 
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changes in molecular structure, including stereoisomerism, than 
1
H NMR chemical 

shifts.  

 

For simple molecules 
13

C NMR chemical shifts can be calculated by hand using 

simple additivity tables.[44] For example in simple substituted benzenes such as para-

cresol (1-hydroxy-4-methylbenzene), the 
13

C NMR chemical shifts of all of the 

carbons can be calculated by adding the known substituent effects of hydroxyl and 

methyl groups [44] to the chemical shift of benzene in an additive fashion. 

 

 
The substituent parameters for an hydroxyl group added to a benzene ring are +26.9 

(ipso), -12.7 (ortho), +1.4 (meta) and -7.3 ppm (para position). For a methyl group the 

corresponding parameters are +9.3 (ipso), +0.8 (ortho), 0.0 (meta) and -2.9 ppm 

(para).[44] The accepted 
13

C NMR chemical shift of benzene is 128.5 ppm. Even if 

the molecule para-cresol was not in a metabolite database, we could calculate the 
13

C 

NMR shifts with some degree of precision. For C2 and C3 the calculated shifts would 

be as follows: 

 

δC2 = 128.5 -12.7 (OH ortho) + 0 (methyl, meta) = 115.8 ppm 

 

δC3 = 128.5 +1.4 (OH meta) + 0.8 (methyl, ortho) = 130.7 ppm 

 

 

For comparison, the actual values in the HMDB [45] for para-cresol, HMDB01858, in 

water at pH 7.0 are 117.9 and 132.8 ppm for C2 and C3 respectively. Modern NMR 

data processing software such as MNova [46] possesses more sophisticated 
1
H, 

13
C, 

and multinuclear NMR chemical shift calculation and prediction algorithms. The 

algorithm in MNova 10.0.0 predicted shifts of 117.6 and 130.0 ppm for C2 and C3 

respectively, a very good fit to the real data for C2, but not quite as good as the simple 

hand calculation for C3. MarvinSketch v 6.1.1 from ChemAxon [47] also has 
1
H and

 

13
C NMR chemical shift calculation capabilities and it gave 115.3 and 130.0 ppm for 

C2 and C3 respectively. Calculations such as these can be useful when information 

about metabolites of interest is not in the existing databases: a common occurrence. 

However, users must be aware that these calculations are approximate, with precision 

varying according to the complexity of the metabolite and the relationship of the 

structure of the metabolite to the molecules in the prediction calculation database, or 

to those used to derive the substituent tables. In general a precision of better than +/- 5 

ppm is usually achieved for 
13

C resonances. 

 

OH

CH
3

3

2
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It is beyond the scope of this guide to discuss factors that influence 
13

C NMR shifts in 

any detail. However, the key factors include: hybridisation of the carbon atom (sp3, 

sp2 or sp hybridised), inductive substituent effects and mesomeric effects.[43,48-52] 

 

2.3 
1
H NMR Multiplicities 

 

The multiplicity is the pattern of peaks that is observed for a particular hydrogen 

signal in the 
1
H NMR spectrum. In a first order 

1
H NMR spectrum, the frequency 

difference between the resonances of coupled hydrogens is large (>> 10 times) 

relative to the value of the coupling constant between them. In those circumstances, 

the signals exhibit first order coupling patterns, which obey an n+1 splitting rule, 

where n is the number of equivalent coupling partners. For instance, methyl groups 

such as those of lactic acid which couple with one hydrogen on an adjacent carbon via 

a homonuclear, 3-bond vicinal coupling, 
3
JH,H, will be split into a doublet signal (1 + 1 

= 2). Correspondingly, the signal of the lactate methyne CH proton will be split into a 

4-line quartet due to the interaction with the 3 equivalent methyl hydrogens (3 + 1 = 

4). The intensity ratios of these multiplet signals follow Pascal’s triangle [35] , being 

1:1, 1:2:1, and 1:3:3:1 for a doublet, triplet and quartet respectively. An example of a 

1:2:1 triplet from one of the methylene CH2 groups in 2-oxoglutaric acid is clearly 

observed at 2.45 ppm in the 
1
H NMR spectra of the urines of the mice in Figure 1.  

 

If a particular hydrogen is coupled to more than one group of hydrogens, then more 

complex coupling patterns or multiplicities are observed. For instance, the CH2-3 

methylene signal from the butyryl chain of N-butyrylglycine resonates as a triplet of 

quartets as it is coupled to both the terminal CH3-4 protons and the CH2-2 protons 

adjacent to the C1 amide carbon. If the coupling constants involved were non-equal 

then up to 12 lines could be observed in this case (4 x 3). However, in this case, the 

CH3-4 to CH2-3 coupling constant (7.4 Hz) is almost equal to the CH2-2 to CH2-3 

coupling constant (7.5 Hz) and the C3 methylene signal resonates as a pseudo-sextet 

due to signal overlap (Figure 2).  

 

 
Figure 2: an expansion of the 600 MHz 

1
H NMR spectrum of the urine of a male, 15 week old, 

C57BL/6 mouse, in the region of the signal from the CH2-3 methylene protons of N-butyrylglycine at 

ca 1.62 ppm (dots). This pseudo-sextet signal is actually a triplet of quartets with the two 
3
JH,H 
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couplings being almost equal in magnitude (7.4 and 7.5 Hz) resulting in overlap of many of the lines. 

The molecular structure of the metabolite is superimposed. 

 

The analysis of signal multiplicities, simple and complex [36,43], is important for the 

identification of metabolites. Multiplicity-editing spin-echo NMR experiments can 

also be used to distinguish between signals with different multiplicities and this can 

be helpful in metabolite identification. A good example is the use of spin-echo 
1
H 

NMR in the identification of novel penicillin metabolites, where the characteristic 

singlet signals of the penicillin gem-dimethyl groups can be easily identified by Hahn 

spin-echo methods.[53,54] Many spectra do not obey first order requirements 

however and two main consequences arise from this; multiplicity intensities may be 

distorted, or in extreme cases additional lines may occur in the multiplets: see Section 

2.6 below.  

 

2.4 Homonuclear 
1
H, 

1
H Coupling  

 

Scalar coupling can occur between all non-equivalent hydrogen atoms in a metabolite. 

The key requirement here is magnetic non-equivalence. Hydrogens that are equivalent 

by molecular symmetry, such as the methyne hydrogens in tartaric acid, or equivalent 

by virtue of fast rotation, such as those of methyl hydrogens, will not show scalar 

coupling between themselves. Indeed the two methyne hydrogens of 2R, 3R-tartaric 

acid resonate as a characteristic, sharp singlet at 4.34 ppm in urine. 

 

   
 

The detection of the presence of scalar coupling between two hydrogens in a 

metabolite is very important in metabolite identification, as the magnitudes of the 

coupling constants are characteristic of the electronic pathway between the two 

hydrogens or groups of hydrogens. Scalar coupling is transmitted via the bonding 

electrons in the metabolites and drops off in magnitude as the number of bonds 

between the hydrogens increases. Most of the homonuclear scalar couplings observed 

in metabolites will be two-bond geminal couplings (
2
JH,H) between hydrogens on the 

same carbon, or three-bond, vicinal couplings (
3
JH,H) between hydrogens on adjacent 

carbons in a metabolite. In general, 2-bond geminal couplings are larger in magnitude 

that 3-bond, vicinal couplings. However, geminal couplings are affected by the 

hybridisation of the carbon atom and by the electronegativity of substituents, and in 

some alkenes, such as R1R2C=CH2 the 
2
JH,H value for the terminal =CH2 will be close 

to 0 Hz. In passing, we should note that most geminal couplings are negative in sign 

and most vicinal couplings are positive, but this is not relevant for most analyses and 

we will ignore this feature henceforth. The large magnitude of geminal couplings in 

sp
3
CH2 groups is well illustrated by the spectrum of citrate shown in Figure 1, where 

the geminal 
2
JH,H coupling is ca 16.2 Hz. By contrast, the 3-bond, vicinal coupling 

between the C3-CH2 group and its adjacent methyl and methylene group neighbours 

OH

O

OH

OH

HO

O

2R, 3R-tartaric acid
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in N-butyrylglycine is ca 7.4 and 7.5 Hz respectively (Figure 2). These 
3
JH,H values 

are smaller and are typical of the values for free-rotating aliphatic moieties. 

 

The values of vicinal couplings are particularly sensitive to stereochemistry in 

relatively rigid systems and this is well illustrated by metabolites such as D-glucose, 

which exists as two anomers in slow exchange with one another, so that separate 

signals are observed for each anomer. 

 

 
 

The anomeric proton at C1 in the alpha anomer is in an equatorial position on the 6-

membered pyranose ring and has a modest 
3
JH,H coupling of ca 3.7 Hz to the axial H-2 

(equatorial-axial coupling). By contrast, the coupling between H2 and H3 (both axial) 

has a value 
3
JH,H ca 9.8 Hz because this is a favoured, di-axial coupling. Thus the 

magnitude of coupling constants can give information on the type of coupling and the 

stereochemistry of the interacting hydrogens. In addition to this, the values of 

coupling constants are affected by the electronegativity of groups in their vicinity, due 

to their impact on the electrons that transmit the coupling.[43] 

 

If 
1
H NMR spectra are acquired with good spectral resolution, good digital resolution 

and good lineshape, it is possible to observe 4-bond, 5-bond and even 6-bond 

hydrogen-to-hydrogen couplings, 
4
JH,H , 

5
JH,H and 

6
JH,H, in biofluids. For example, in 

cis-aconitic acid, it is usual to observe the olefinic proton at ca 5.74 as a triplet with 
4
JH,H ca 1.4 Hz due to long-range, 4-bond coupling to the equivalent methylene CH2 

hydrogens across the double bond (Figure 3).  

 

 

HO

OH

O

OH

HO

HO

H

H

H

2

1

3

alpha-D-glucose
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Figure 3: an expansion of the 600 MHz 
1
H NMR spectrum of the urine of pooled, male C57BL/6 mice 

at 15 weeks age, in the region of the signal from the olefinic proton of cis-aconitic acid at ca 5.74 ppm. 

The signal is a triplet due to a long-range, 4-bond, 
4
JH,H coupling of ca 1.4 Hz to the two equivalent 

methylene hydrogens. The 1:2:1 nature of the triplet is clear, even though it is superimposed upon the 

very broad signal from urea at ca 5.80 ppm.  

 

In the trans-aconitic acid isomer, the olefinic proton at 6.60 ppm is a triplet with a 

smaller 
4
JH,H ca 0.8 Hz coupling. Note the enormous sensitivity of the chemical shift 

to the geometry of the double bond: the olefinic proton shifts nearly 0.9 ppm just from 

the change of double-bond geometry, and the change in the coupling value for 
4
JH,H is 

also diagnostic. 

 

 

2.5 Heteronuclear 
1
H, X Coupling  

 

These couplings are less common but will occur in phosphorous-containing 

metabolites such as adenosine monophosphate, where the presence of the NMR-

active, 100% abundant, spin I =1/2, 
31

P isotope will give rise to additional 3-bond and 

4-bond 
3
JP,H and 

4
JP,H couplings to the ribose ring protons, that are highly 

diagnostic.[55] Another less-commonly observed heteronuclear coupling in 

metabolites is due to the 99.6% natural abundance 
14

N isotope which is NMR-active 

but quadrupolar, with spin quantum number I = 1. Due to quadrupolar relaxation, 

couplings to 
14

N are not often observed, but in a symmetrical environment, the effects 

of quadrupolar relaxation are reduced and small couplings may be observed and these 

can also be critical for metabolite identification. For instance, in choline 

(HMDB00097), the almost symmetrical environment around the nitrogen allows the 

observation of a small 
2
JN,H coupling of ca 0.6 Hz (1:1:1 triplet due to spin quantum 

number I = 1) to the methyl hydrogens due to 2-bond coupling to the 
14

N. So, in this 

unusual case, the methyl signal is a narrow triplet instead of the expected singlet 

(Figure 4).   
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Figure 4: an expansion of the 600 MHz 

1
H NMR spectrum of the pooled urine of male C57BL/6 mice 

at 15 weeks age, in the region of the signal from the methyl protons of choline (structure 

superimposed) at ca 3.20 ppm. The signal is a 1:1:1 triplet (dots) due to a 2-bond coupling of ca 0.6 Hz 

to the 
14

N nucleus. Interestingly, the well-resolved doublet at ca 3.13 ppm is due to the methylene 

protons of cis-aconitic acid with 
4
JH,H coupling of ca 1.4 Hz (see also Figure 3). The spectrum has been 

zero filled to 131,072 points and resolution enhanced by Gaussian multiplication, prior to Fourier 

transformation. 

 

 

2.6 Second-Order Effects and Strong Coupling in 
1
H NMR Spectra  

 

As the frequency separation in Hertz between coupled 
1
H NMR signals decreases to 

less that ca 10 times the value of the coupling constant between them, distortions to 

expected multiplet peak intensities start to occur in the spectra. The spins are said to 

exhibit ‘strong coupling’, or to be in a second-order system. The spectra take on 

appearances that are different from those of systems that exhibit ‘weak coupling’ or 

are in first-order systems. Rather than being a problem, this is actually an aid to 

spectral interpretation and metabolite identification, as follows. In the simple case of 

two, non-equivalent hydrogen atoms coupling with one another, the intensity 

distortion is such that the doublets slope towards one another in an effect called 

‘roofing’. This is well illustrated in the spectra of the two, non-equivalent methylene 

protons in citric acid shown in Figure 1. The chemical shift difference between the 

resonances at 2.70 and 2.56 ppm is 0.14 ppm, which equates to ca 84 Hz at 600 MHz 

operating frequency. The 
2
JH,H coupling is ca 16.2 Hz and therefore the ratio of the 

frequency separation to the coupling constant is 84/16.2 = 5.2. This two-hydrogen 

spin system is formally designated AB: the two letters indicate that there are two 

distinct spins or hydrogen atoms involved in the coupling system; the closeness of the 

letters in the alphabet indicates that their chemical shifts are close in frequency. The 

roofing of the signals is clear to see in Figure 1 and provides a way, without using 2D 
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COSY NMR or any decoupling techniques, to determine that these hydrogens are 

coupled to one another; an important and often overlooked benefit of this feature. In a 

two-spin system that is first order, the nomenclature would be AX instead of AB to 

indicate that the two hydrogens are widely separated in chemical shifts, relative to the 

size of their mutual coupling. 

 

If the spin system is more complex, or the ratio of signal frequency separation to 

coupling constant becomes much smaller, the intensity distortions can become more 

significant and in extreme cases involving three spins or more, additional lines are 

seen in the resonances which are not always interpretable by first order analysis. This 

effect is commonly observed in the NMR signals for the aromatic hydrogens in 

symmetrically substituted benzene rings (Figure 5).  

 

 
Figure 5: two versions of the 600 MHz 

1
H NMR spectrum of an authentic sample of the metabolite 

para-cresol sulphate in deuterated phosphate buffer at pH 7.4, in the region of the signals from the 

aromatic hydrogens: 1) with a standard 0.3 Hz line-broadening and 2) resolution-enhanced using a 

Lorentzian to Gaussian transformation. The signal of the H2, H6 protons appears as a complex, second-

order multiplet at ca 7.22 ppm, instead of a first-order doublet. The signal of the H3, H5 protons at ca 

7.29 ppm displays additional complexity due to coupling to the methyl protons via a 4-bond coupling, 

in addition to the extra lines, clearly visible in this second-order system. 

 

For metabolites such as para-cresol sulphate, the phenomenon of magnetic non-

equivalence appears.[37] The hydrogens on C2 and C6 are chemically equivalent by 

symmetry, as are those on C3 and C5. However, these pairs of hydrogens are NOT 

magnetically equivalent. The reason for this is as follows: H2 is ortho to H3 and has a 

3-bond coupling to it. By contrast, the chemically equivalent proton H6 is ortho to H5 

and para to H3. Thus, in terms of their nuclear magnetic interactions, these hydrogens 

are non-equivalent and this has consequences. The frequency difference between the 

signals of H2 and H6 is 0 Hz by definition and they are coupled by a favourable, 
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long-range ‘W’ coupling over 4-bonds. Thus, the frequency separation to coupling 

ratio is 0, no matter what the value of the coupling constant and the resultant spectra 

are second-order.[37] This spin system is designated AA’BB’, where A and A’ 

represent H2 and H6 and the apostrophe signifies a chemically equivalent but 

magnetically non-equivalent nucleus. B and B’ are H3 and H5 and the closeness of 

the letters in the alphabet is deliberate and signifies the closeness of the chemical 

shifts of these two groups of spins. In these extreme cases, additional lines appear in 

the spectra and the resonance patterns may not be readily interpretable by first order 

analysis. Instead of a simple pair of doublets, as might be expected, a complex pattern 

appears (Figure 5). Typically, a computational, spin simulation program is used to 

calculate the spectrum and this is now a routine procedure. An important point to 

appreciate is that it may not be straightforward to extract chemical shifts or coupling 

constants from second-order spectra without spin simulation: see Section 2.10 and 

Figure 6. 

 

2.7 The Half Bandwidth of NMR signals 

Another feature that provides information on the structure and the dynamics of 

metabolites is the half bandwidth of their signals. The half bandwidth, Δν1/2 of a 

signal is related to the real spin-spin relaxation time of the hydrogen giving rise to that 

signal according to equation 1: 

 

Δν1/2 = 1/π . T2*   Eqn. 1 

 

… where T2* is the real spin-spin relaxation time that takes into account underlying 

molecular relaxation processes, plus the effect of field inhomogeneities and the 

influence of factors such as the presence of paramagnetic species (including dissolved 

oxygen gas) in the sample. T2* can be shortened by interaction with quadrupolar spins, 

such as 
14

N and by chemical exchange. In the case of chemical exchange between two 

forms of a metabolite, A and B, the lifetime of a spin in species A is necessarily 

limited to the lifetime of species A, as a maximum. Exchange-broadening of the 

signals will occur when the exchange rate in Hertz between forms A and B is of the 

same magnitude as the chemical shift difference between the corresponding 

hydrogens in A and B. The broadening effects of exchange with water, quadrupolar 

relaxation and unresolved couplings to 
14

N can be quite large, as can be seen in Figure 

3, where the hydrogen signal from urea has a half bandwidth of ca 50 Hz, in contrast 

to the much narrower linewidth of the olefinic proton in cis-aconitic acid, where all of 

these effects are absent and consequently the non-exchanging hydrogens have much 

larger T2* values.. 

 

2.8 The Integral of NMR signals 

 

When NMR experiments are run with sufficient delay times in between the 

acquisition of each successive free induction decay, the nuclei under observation will 

enjoy close to full spin-lattice relaxation. Under these conditions, the signals will not 

be partially saturated,[35] and the area of a methyl (CH3) signal in a metabolite in a 

biofluid will be precisely three times that of a methyne (CH) signal in the same 

metabolite in the same sample. NMR spectroscopy is thus an inherently quantitative 

technique and this is a huge advantage for the conduct of metabonomics experiments. 

It should be noted however that most NMR-based metabolic profiling experiments do 

not achieve full relaxation with the delay times typically used. Even so, the situation 
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is in stark contrast to MS-based profiling, where the intensities of signals from 

metabolites may be significantly suppressed or enhanced by the presence of other 

metabolites in the sample [56] and internal reference standards are required in order to 

achieve quantitation.  

 

Quantifying the level of a metabolite in a biological fluid such as urine, by 
1
H NMR 

spectroscopy, can be very difficult, because of spectral crowding and spectral overlap, 

and great care is required either with line fitting or direct integration quantification 

approaches. However, when careful approaches are taken, the analytical precision of 

the methodology is high [12,57,58] and this is critical for the statistical analysis of the 

data and the reliable discovery of discriminating biomarkers: see Section 4.1. 

 

2.9 The Stability of NMR signals 

 

Generally, the metabolic profile of a biological fluid is stable over a significant period 

of time at room temperature, and certainly stable enough for the acquisition of routine 

1D and 2D 
1
H NMR data. However, there are exceptions. Some biological fluids are 

inherently unstable. A good example of this is human seminal fluid, where, post-

ejaculation, enzymatic reactions take place that cause the biochemical transformation 

of some metabolites.[59] In addition, if a sample such as animal urine, has been in 

contact with animal faeces at any stage, it will be microbiologically contaminated and 

potentially unstable. Bacterial growth in a urine sample, for instance, will result in the 

transformation of certain metabolites into new products, as the bacteria scavenge the 

biofluid for fuel sources. It is common practice to add anti-bacterial agents such as 

sodium azide [8,16] to inhibit the growth of the bacteria. However, in our experience, 

even in the presence of sodium azide at 9 mM, bacterially-mediated metabolite 

transformations can still occur in mouse urine if kept at room temperature for 

extended periods, and hence, signals will be unstable over time: the signals of 

fermentation substrates will decrease, whereas those of products will increase. See 

Section 4.6, Biochemical Transformation and In Vitro Fermentation of Biofluids to 

Aid Metabolite Identification. A major improvement in this area has occurred with the 

development of cooled sample changers, such as the SampleJet system from Bruker 

Corporation (Billerica, Massachusetts, USA), that keeps queued samples at 4 C prior 

to their insertion into the NMR magnet, thus minimising sample instability. 

 

2.10 Interpretation of 1D 
1
H NMR Spectra and Metabolite Identification 

 

Metabolites that are present at relatively high concentrations or that have distinctive 

signals in relatively uncrowded spectral regions can be identified by inspection from a 

simple 1D 
1
H NMR spectrum. This can be done manually by the spectroscopist 

interpreting the data, or with the assistance of software such as Chenomx NMR Suite 

(Chenomx, Edmonton, Canada), which has the advantage of a database of standard 

metabolite spectra at a variety of magnetic field strengths and a variety of pH 

values.[60] Obvious metabolites include citric acid (see Figure 1) where the 

(somewhat variable) chemical shifts and large ‘roofed’ geminal couplings of the 

methylene protons are unmistakeable. Another easily identifiable metabolite is 

hippuric acid, whose second-order aromatic proton resonances between 7.9 and 7.4 

ppm provide an unmistakable ‘fingerprint’ for identification (Figure 6).  
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Figure 6: 1) the 600 MHz 

1
H NMR spectrum of the urine of a 30 week old, male, flavin mono-

oxygenase 5 (FMO5) knockout mouse [61] in the region of the aromatic signals from hippuric acid 

(structure inset). The spectrum is resolution enhanced by Gaussian multiplication. 2) A spin simulation 

of the aromatic signals from hippuric acid using the MNova spin simulation function. A good 

approximation to the complex, second-order signals was obtained. The complexity of the two ortho and 

two meta hydrogen signals is due to the fact that whilst these hydrogens are chemically equivalent 

(within each pair), they are magnetically non-equivalent and are part of a five hydrogen AA’BB’M 

spin system (see Section 2.6). Signals from 3-indoxyl sulphate and other metabolites are present in the 

real spectrum (1). 
 

Certain other metabolites have distinctive singlet signals at characteristic chemical 

shifts, such as the methyl hydrogens of methylamine, dimethylamine and 

trimethylamine at ca 2.61, 2.73 and 2.88 ppm respectively. However, little 

information is present in the 1D 
1
H NMR spectrum of these metabolites: just one 

singlet resonance. Hence, it is advisable to check the assignments of these types of 

resonances using a 2D 
13

C, 
1
H HSQC experiment to verify that the methyl carbons 

have the expected chemical shifts of ca 27.7, 37.6 and 47.6 respectively for 

methylamine, dimethylamine and trimethylamine. Note the uniform ca 10 ppm 

increase in methyl carbon chemical shift as each methyl group is added, due to the 

additive, two-bond or beta substituent effect. 

 

The identification of metabolites present at relatively low levels, or that have signals 

that are partially or completely overlapped, will be difficult by 1D NMR methods and 

the use of two-dimensional NMR spectroscopic methods is required. In Section 4.7, 

we will review how much information is required in order to consider the 

identification of a known metabolite confident. 

 

3. Molecular Structure Information from Two-Dimensional (2D) NMR 

Spectroscopy  
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3.1 Introduction to 2D NMR spectroscopy 

 

In a 1D NMR spectrum the NMR signals are acquired as a function of a single time 

variable (t2) in a free induction decay (FID), typically over 65,536 data points at a 
1
H 

frequency of 600 MHz. This FID arises from the induction of an electric current in the 

receiver coils of the NMR probe by the excited nuclear magnetisations: there is no 

emission event detected in NMR. Fourier transformation of this FID gives rise to the 

conventional 1D 
1
H NMR spectrum in which NMR signal intensity (y-axis) is plotted 

as a function of chemical shift (x-axis). By contrast in a 2D NMR experiment, a 

second time dimension (t1) is artificially created by the deliberate incrementing of a 

time delay, known as the evolution time, between two of the radiofrequency pulses in 

the pulse sequence used. An FID is collected for each of m values of the evolution 

time, such that at the end of the experiment, m x FIDs have been collected, each 

containing n data points. Double Fourier transformation of this data set over both t2 

and t1 results in a single 2D NMR spectrum in which signal intensity (z-axis) is 

plotted as a function of two orthogonal signal frequency axes; f2 and f1 corresponding 

to t2 and t1 in the time domain (x and y respectively). The spectra are typically 

displayed as contour plots where signal intensity is represented by contour lines, in 

much the same way that the heights of mountains and hills are represented on maps. 

 

We shall not go into the details of the design of the 2D NMR pulse sequences, nor the 

analysis of how those pulse sequences give the resulting spectra, as many excellent 

reference works are available in this area.[35,37]  

 

 3.2 2D 
1
H J-Resolved (JRES) NMR Spectroscopy  

 

The 2D 
1
H J-Resolved NMR Spectroscopy (JRES) experiment is one of the simplest 

2D NMR experiments and one of the most useful for the analysis of the complex 
1
H 

NMR spectra of biological fluids.[21,22,62] The experimental radiofrequency pulse 

sequence is simply: RD - 90
0

H - t1/2 - 180
0

H - t1/2 - FID, where RD is a relaxation 

delay. The second proton pulse (180
0

H) occurs in the middle of the incremented 

evolution time (t1). In the resulting 2D 
1
H NMR JRES spectrum, the chemical shifts 

run along the first frequency dimension, f2, as normal, and homonuclear coupling 

constants are modulated (spread out) across a second frequency dimension, f1. For 

simple, first order spin systems, no new signals are created: the existing signals are 

just spread out across two frequency dimensions instead of one. This has a 

tremendous effect in reducing signal overlap in crowded spectral regions. The spectra 

are typically tilted by 45
0
 so that all the signals of a homonuclear multiplet appear at 

the exact same chemical shift. The projection of the 2D spectrum onto the chemical 

shift dimension, f2, is then effectively a broadband proton-decoupled proton NMR 

spectrum, in which each 
1
H resonance is a singlet. It is important to note that 

heteronuclear couplings are unaffected by the 
1
H 180

0 
pulse in the 2D 

1
H NMR JRES 

experiment and these are not modulated across the second dimension of the 2D 

spectrum.[55] 

 

The tremendous improvement in signal resolution by spreading the NMR signals out 

across a second dimension is clearly illustrated in Figure 7. In the 1D 
1
H NMR 

spectrum of the urine of an FMO5 knockout mouse [61], the triplet methyl signal for 
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N-butyrylglycine (three blue circles at 0.926 ppm) is overlapped with the doublet 

methyl signal for isovaleric acid (two red squares at 0.916 ppm). By contrast in the 

2D 
1
H JRES NMR spectrum, these signals are completely resolved from one another. 

 

 

 
Figure 7: the low frequency region of the 600 MHz 2D 

1
H J-resolved NMR spectrum of the urine of a 

male, 30 week old, FMO5 knockout mouse [61] displayed as a contour plot underneath the 

corresponding 1D 
1
H NMR spectrum. The overlapping signals from the triplet methyl group of N-

butyrylglycine (0.926 ppm, three blue circles and downward arrows) and the doublet methyl group of 

isovaleric acid (0.916 ppm, two red squares and upward arrows) are completely resolved in the 2D 

JRES NMR spectrum. The spectrum is tilted by 45
0
, so that all the signals of each multiplet appear at 

the same chemical shift, and it is symmetrised. 

 

The simple interpretation of 2D 
1
H JRES NMR spectra only applies for first order 

systems in which there is weak coupling. If strong coupling exists (a second-order 

system) then artefacts can appear in the spectra.[63] This occurs because in a strongly 

coupled system the second 
1
H pulse (a 180

0
 or π pulse) will cause not just the 

modulation of the signals of a homonuclear-coupled spin across the second 

dimension, according to the size of its spin couplings, it will also cause the mixing of 

the transitions or signals between coupled spins, such as would normally occur in a 

chemical shift correlation experiment such as COSY (via the second 90
0
 pulse). Thus, 

in a simple two hydrogen AB spin system such as citric acid, the two A transitions 

(doublet) become mixed with the two B transitions and in a tilted 2D 
1
H JRES NMR 

spectrum, signals appear in the 2D spectrum at chemical shifts where there are no 

hydrogens! It is very important to recognise these ‘artefacts’ in order to avoid mis-

assigning the spectra to non-existent metabolites with unreal J values! Figure 8 shows 

an example of this feature for citric acid itself: the 2
nd

 order signals in the 2D 
1
H JRES 

NMR spectra are marked with stars. 
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Figure 8: an expansion of the 600 MHz 2D 

1
H J-resolved NMR spectrum of the urine of a male, 30 

week old, FMO5 knockout mouse [61] in the region of the AB resonances from citric acid at ca 2.70 

and ca 2.56 ppm (four dots in 1D spectrum), displayed as a contour plot underneath the corresponding 

1D 
1
H NMR spectrum. The spectrum is tilted by 45

0
, so that all the signals of each multiplet appear at 

the same chemical shift, and symmetrised. The signals labelled with stars, appearing at ca 2.63 ppm, 

exactly in between the shifts of the two citrate signals are 2
nd

 order effects caused by the mixing of 

transitions between the A and B spins by the 180
0
 pulse, in the presence of strong coupling. As is clear 

from the 1D 
1
H NMR spectrum, there are no real signals at 2.63 ppm! 

 

Awareness of the origin of these signals allows chemical shift correlation information 

to be extracted from the 2D 
1
H JRES NMR spectrum, so these artefacts can have real 

utility in spectral assignment and metabolite structure elucidation! 

 

An important use of 2D 
1
H JRES NMR spectra is to establish the magnitude of the 

coupling constants for the 
1
H NMR signals of particular hydrogen atoms. This can 

readily be done even when the metabolites are at low levels and the signals are 

difficult to see in the 1D 
1
H NMR spectra. For example, Figure 9 shows an expansion 

from the 2D 
1
H JRES NMR spectrum of the urine of an FMO5 KO mouse at 30 

weeks age. The signals at 2.003 and 1.845 are from the two methylene hydrogens at 

C3 in 2S-hydroxyglutaric acid (HMDB00694). The chemical shifts of the two 

hydrogens are close to the values reported in the HMDB (1.985 and 1.825 

respectively) but the assignment of the two hydrogens is much more secure if the 

coupling constants can also be shown to match. In this case the 1D 
1
H NMR FID of 

the authentic metabolite was downloaded from the HMDB and reprocessed. This 

showed that the line separations in the multiplets at 1.985 and 1.825 in the authentic 

metabolite were identical to those observed at 2.005 and 1.845 in the 2D 
1
H JRES 

NMR spectrum of the urine of an FMO5 KO mouse at 30 weeks age, thus helping 

confirm this metabolite identification. 
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Figure 9: an expansion of the 600 MHz 2D 

1
H J-resolved NMR spectrum of the urine of a male, 30 

week old, FMO5 knockout mouse [61] in the region of the resonances from the C3 methylene 

hydrogens of 2S-hydroxyglutaric acid, displayed as a contour plot underneath the corresponding 1D 
1
H 

NMR spectrum. The spectrum is tilted by 45
0
, so that all the signals of each multiplet appear at the 

same chemical shift, and symmetrised. The peak picking allows a simple analysis of three of the four 

couplings that these hydrogens possess as 4.2, 6.3 and 10.5 Hz (2.003 ppm) and 5.5, 7.6 and 10.3 Hz 

(1.845 ppm). Note that these multiplets are invisible in the 1D 
1
H NMR spectrum. 

 

3.3 2D 
1
H Chemical Shift Correlation Spectroscopy (COSY) 

 

The 2D 
1
H chemical shift correlated spectroscopy (COSY) NMR experiment is a 

workhorse of metabonomics analyses for the identification of the metabolites in 

biological samples. Many variants of the 2D 
1
H COSY NMR experiment exist [35] 

but all variants provide information on which hydrogens are spin-spin coupled 

together, and this is vital for metabolite structure identification. The basic pulse 

sequence is: RD - 90
0

H - t1 - 90
0

H - FID, where RD is a relaxation delay. The first 90
0
 

pulse excites all the nuclear spins: the second 90
0
 pulse causes coherence transfer 

between the magnetisations of hydrogens which are spin-coupled to one another. The 

reason for the importance of the COSY experiment can be best illustrated with an 

example. If we observe a methyl doublet signal in a urine sample at 1.34 ppm and that 

doublet signal has a coupling constant of 6.9 Hz, we could infer that that signal 

originated from lactic acid. However, if a 2D 
1
H COSY NMR spectrum of that urine 

sample indicated that the methyl doublet at 1.34 ppm was spin-coupled to a methyne 

proton at 4.13 ppm, that would be much stronger evidence that the methyl signal was 

indeed from lactic acid. The probability of known metabolite mis-identification 

decreases strongly with each successive connected spin matched to the corresponding 

signal in the spectrum of the authentic metabolite. 

 

It is typical to run quick 2D 
1
H COSY NMR spectra with low digital resolution and 

often low sensitivity. This can be appropriate for rapid analysis of pure chemical 
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compounds but is not appropriate for metabonomics studies, as it results in the limited 

observation of hydrogen-to-hydrogen connectivities for major metabolites over 2-

bonds or three-bonds only. If the experiment is run at higher sensitivity and 

resolution, much more information can be gleaned, from a larger number of 

metabolites. Acquiring 2D COSY data at higher resolution can cost time, but this 

would not be done for every sample in a large metabonomics experiment. A high 

resolution COSY NMR spectrum would only be obtained on a handful of samples that 

are representative of the different groups in the study, with the express purpose of 

aiding metabolite identification.  

 

Using traditional methodology, a high resolution COSY spectrum might take several 

hours to acquire. For example, Figure 10 shows an expansion of the 600 MHz 2D 
1
H 

COSY NMR spectrum of the pooled urine from two FMO5 KO mice[61] at 60 weeks 

age. This experiment was acquired with spectral widths in f1 and f2 of 9578 Hz, and 

4096 points in the FID (t2) for 512 values of the evolution time (t1): the final 

spectrum was an 8192 by 2048 data matrix. The acquisition time was 0.428 sec with a 

relaxation delay of 2 sec, and 32 transients per increment of the evolution time, 

resulting in a total experiment time of just over 11 hours, which is a significant 

investment of time. However, that additional time does allow correlations via small 

couplings over 4- to 6-bonds to be observed and these can be important for metabolite 

identification, as they enable connectivities to be established between parts of 

molecular structures isolated by so-called ‘spectroscopically silent centres’. These 

silent centres are atoms with no hydrogens attached or no non-exchanging hydrogens. 

These spectroscopically silent centres break up the chains of proton-to-proton 

connectivity in a metabolite that are important for metabolite identification by e.g. 

COSY NMR. In this case the silent centre is the pyridinium nitrogen, which has no 

hydrogens bonded to it.  
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Figure 10: an expansion of the 600 MHz 2D 

1
H COSY NMR spectrum of the pooled urine of two male, 

60 week old, FMO5 knockout mice [61] in the region of the broad singlet methyl resonances from 

trigonelline at ca 4.435 and 1-methylnicotinamide ca 4.475 ppm, displayed as a contour plot 

underneath the corresponding resolution-enhanced 1D 
1
H NMR spectrum. Trigonelline displays cross-

peaks due to long-range, 4-bond coupling from the methyl protons to the H2 (9.111) and H6 (8.820) 

protons ortho to the pyridinium nitrogen. 1-methylnicotinamide displays the same cross-peaks to H2 

(9.259) and H6 (8.951), but in addition, displays a clear and remarkable cross-peak via six-bond 

coupling to H4 (8.883). The ability to connect the methyl shift with the pyridinium proton shifts in this 

way can assist metabolite identification enormously. 

 

When run at high resolution, the 2D 
1
H COSY NMR spectrum can also be used to 

identify the multiplicity of signals that are completely buried in the 1D 
1
H NMR 

spectrum, and even those that are buried in the 2D 
1
H JRES NMR spectrum. For 

example, the signal for the C4H methyne proton of ketoleucine at 2.098 ppm was 

invisible in the 1D 
1
H NMR spectrum (Figure 11 top), or in the corresponding 2D 

1
H 

J-resolved NMR spectrum of the same sample (Figure 9) but its identification is 

confirmed from the high-resolution COSY spectrum (Figure 11). 
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Figure 11: an expansion of the 600 MHz 2D 

1
H COSY NMR spectrum of the urine of a male, 30 week 

old, FMO5 knockout mouse [61] highlighting with 7 arrows the cross-peak from the C4H proton of 

ketoleucine (structure inset) at 2.098 to the equivalent C5 and C6 methyl groups at 0.941 ppm. The 

signals from ketoleucine at 2.098 are not visible either in the 1D 
1
H NMR spectrum (top), or in the 2D 

1
H J-resolved NMR spectrum of the same sample (see Figure 9) but the identification is confirmed 

from this high-resolution COSY spectrum. The seven cross peaks marked are the most intense peaks of 

the 9-line, pseudo-nonet, triplet of septets, the two outside lines of which are too weak to observe. See 

text for details. 
 

The C4H peak of ketoleucine is a triplet of septets which appears as a pseudo-nonet, 

as the coupling from C4H to the C3H2 group (7.0 Hz) is very similar to the spin-

coupling to the six equivalent methyl group protons (6.7 Hz). The two weak outside 

lines of the pseudo-nonet are weak and difficult to observe even in the authentic 

reference standard (BMRB, BMSE000383; HMDB00695 (caution the HMDB 1D 
1
H 

NMR was run at pH 3! [accessed 12 September 2015]). The high resolution COSY 

spectrum shown in Figure 11 allowed the measurement of the frequency separation of 

highest and lowest frequency lines observed in the multiplet at 2.098 as 41.4 Hz, 

which corresponded well (COSY digital resolution in f2 = 0.73 Hz) to the separation 

in authentic material: 40.8 Hz in BMSE000383, thus providing further confidence for 

the assignment of this cross-peak. 

 

The COSY experiment should always be run with good resolution in the FID (t2) as 

that resolution is essentially ‘free’. The increase in the acquisition time that this costs 

can be counterbalanced by a corresponding decrease in the relaxation delay between 

successive transients. Increasing the resolution across the second dimension, t1, does 

cost however, as does increasing the number of transients per value of the evolution 

time, and it is here that non-uniform sampling (NUS) methods and FAST NMR 

methods may lead to decreases in acquisition times in 2D NMR experiments for 
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metabolite profiling in the future. Preliminary studies show promise and we await 

developments in this area with interest. [64]  

 

3.4 2D 
1
H Total Correlation Spectroscopy (TOCSY) 

 

The 2D 
1
H TOCSY NMR experiment, sometimes called ‘homonuclear Hartmann-

Hahn spectroscopy’ (HOHAHA), is a relatively simple NMR experiment often used 

in conjunction with the COSY experiment to elucidate further structural information 

on small molecules of interest [65]. TOCSY provides similar information to a COSY 

experiment with regards to directly coupled hydrogens, but provides further structural 

information by identifying larger, interconnected groups of indirectly spin-coupled 

hydrogens.  

 

In comparison to the COSY sequence, the second 90
°
H pulse is replaced by a spin-lock 

field, applied for 10s of milliseconds, which can be considered to behave like a series 

of 180° H pulses. The spin-lock field eliminates chemical shifts during its application, 

but does not affect the scalar coupling. Due to the elimination of chemical shift 

differences in the spin-lock period, the spins are in a strong coupling regime, lose 

their individual identity and undergo magnetisation or coherence transfer. The 

magnetisation transfer that takes place is governed by the length of the spin-lock 

periods. Short spin-lock periods (20 -100 ms) yield cross peaks for directly coupled 

spins. With longer spin-lock times (100 – 300 ms), coherence will be transferred more 

remotely down chains of spin-coupled hydrogens. Thus, if we have a spin system 

AMX, where A is coupled to M and M is coupled to X, but A is not coupled to X, two 

situations can arise in the TOCSY experiment. For short spin-lock periods, 

correlations will be seen between the chemical shifts of both A and M and of M and 

X. For longer spin-lock periods, cross-peaks will also be observed between A and X, 

even though they are not directly coupled.  

 

A good example of this can be shown in N-butyrylglycine (HMDB00808) which has 

an alkyl chain three carbons long. In a COSY experiment, the protons from the 

terminal C4-methyl group (0.93 ppm) would only have cross peak correlations with 

the adjacent C3-methylene protons (1.61 ppm). However, further structural 

information for N-butyrylglycine is provided (Figure 12, see also Figures 2 and 7) 

when a cross peak is observed at the resonance of the remote C2-methylene protons 

(2.28 ppm).  

 

A one-dimensional version of the TOCSY experiment is also available. The 

experiment involves the selective excitation of a signal followed immediately by the 

application of the spin-lock field to effect coherence transfer, essentially observing a 

slice of a 2D TOCSY. Chemical shift selective filter TOCSY (CSSF-TOCSY) uses 

excitation sculpting techniques with pulse field gradients to selectively excite 

overlapping proton signals with tiny chemical shift differences, enabling reliable 

extraction of coupling constants, important in metabolite identification. 
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Figure 12. an expansion of the 600 MHz 2D 

1
H TOCSY NMR spectrum of the urine of a 30-week-old 

male C57BL/6 mouse. The cross peaks marked originate from the alkyl chain connectivities of N-

butyrylglycine, from the terminal methyl group (C4). The cross peak marked at 0.926, 1.617 ppm 

represents a direct correlation from the C4 methyl protons to the adjacent C3 methylene group, 

equivalent to the cross-peak that would be observed in a 2D 
1
H COSY experiment. Additional 

metabolite identification information is provided in this TOCSY experiment however, with the cross-

peak at 0.926, 2.279 ppm establishing a connection between the C4 methyl protons and the C2 

methylene group, even though there is no observable coupling between them.   

 

3.5 2D 
13

C, 
1
H Heteronuclear Single Quantum Correlation (HSQC) NMR 

Spectroscopy 

 

The 2D 
13

C, 
1
H Heteronuclear Single Quantum Correlation (HSQC) NMR 

Spectroscopy experiment is another fundamental experiment for metabolite 

identification. The experiment operates by correlating the chemical shifts of 

hydrogens with the chemical shifts of carbon-13 nuclei to which they are directly 

attached via 
1
JC,H. The reason that this experiment is important is two-fold. Firstly, it 

introduces a completely new and orthogonal dimension beyond 
1
H NMR to obtain 

information on the structure of metabolites: that available from the C-13 NMR 

chemical shift. Secondly, the chemical shifts of the carbon-13 nucleus extend over 

about 220 ppm for most metabolites: this is ca 20 times the range of proton NMR 

chemical shifts (ca 11 ppm), and these 
13

C NMR shifts thus provide a much more 

sensitive response to minor changes in metabolite structure than does the 
1
H NMR 

chemical shift: see Section 2.2. 

 

Many variants of the 2D 
13

C, 
1
H HSQC NMR experiment are in current usage [35] 

and its successful execution does have some challenges. All variants of this 

experiment use 
1
H detection for high sensitivity and thus, not only must the enormous 

proton signals from water be suppressed, but also all of the signals from hydrogen 

atoms that are bound to carbon-12 nuclei, which is 99% of the hydrogens in each 
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metabolite. Fortunately, the availability of high performance digital NMR 

spectrometers and gradient pulses has made the experiment routine. Indeed, new 

variants suitable for metabolite profiling in biofluids are now available that even 

provide carbon multiplicity editing as well. In these experiments, the 2D 
13

C, 
1
H 

HSQC NMR spectrum not only displays the cross-peaks due to 
1
JC,H correlations, but 

also edits the cross-peaks in a phase-sensitive fashion so that the cross-peaks due to 

methyl (CH3) and methyne (CH) moieties are of opposite phase to those of methylene 

groups (CH2). This provides tremendous power for the assignment of signals in 

crowded regions of the 
1
H NMR spectra of a biofluid: see Figure 13. 

 

 
Figure 13: an expansion of the 600 MHz, multiplicity-edited, 2D 13C, 

1
H HSQC NMR spectrum of the 

pooled urine of 60 week old, male, FMO5 knockout mice [61], displayed as a contour plot underneath 

the corresponding resolution-enhanced 1D 
1
H NMR spectrum. In this phase-sensitive plot, positive 

peaks are represented by red contours (asterisked) and negative peaks by blue contours (no asterisks). 

See text for further explanation.  

 

The multiplicity-edited, 2D 13C, 
1
H HSQC NMR spectrum in Figure 13, readily 

distinguishes the red, positive cross-peaks (asterisked) from the methyl groups of 

creatinine (3.04, 32.98), creatine (3.04, 39.71) and dimethylamine (2.73, 37.36) from 

the blue, negative cross-peaks (no asterisks) due to the methylene groups in cis-

aconitic acid (3.14, 46.34), 2-ketoglutaric acid (3.03, 38.63 and 2.45, 33.41) and 

succinic acid (2.42, 36.79). This experiment is a tremendous aid to the correct 

assignment of complex biofluid NMR spectra. 

 

3.6 2D 
13

C, 
1
H Heteronuclear Multiple Bond Correlation (HMBC) NMR 

Spectroscopy 

 

The 2D 
13

C, 
1
H Heteronuclear Multiple Correlation (HMBC) NMR Spectroscopy 

experiment [35] is another critical experiment in the identification of metabolites 
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using NMR methods. The key reason for its importance is that it enables the 

establishing of connectivities between the parts of a metabolite’s structure that are 

separated from one another by quaternary carbons or heteroatoms with no slow-

exchanging, attached hydrogens. These are the so-called ‘spectroscopically silent 

centres’ mentioned earlier. The problem is that these silent centres interrupt the chains 

of proton-to-proton connectivity between regions of protonated carbons, resulting in 

isolated fragments of structure that may not be easy to piece together. To take a 

simple example, in the molecules cis- and trans-aconitic acid, the methylene moiety is 

separated from the olefinic proton by a quaternary carbon. In this case the HMBC 

experiment can help to connect the two fragments of protonated carbon structure 

together by establishing connectivities between hydrogens and carbon separated by 

two or three bonds (Figure 14). 

 

 
 
Figure 14: an expansion of the 600 MHz 2D 13C, 

1
H HMBC NMR spectrum of the pooled urine of 

male, 60 week old, FMO5 knockout mice [61], displayed as a contour plot underneath the 

corresponding resolution-enhanced 1D 
1
H NMR spectrum in the region of the signals from the 

methylene protons of cis-aconitic acid (3.14) and trans-aconitic acid (3.47 ppm). The methylene 

protons display all four possible 2- and 3-bond hydrogen-to-carbon connectivities, to both adjacent 

carboxylic acid carbons (178.8, 182.4 ppm, trans- and 179.1 and 181.7 ppm, cis-isomer) plus 

connections to the quaternary and protonated olefinic carbons at 141.6 and 133.9 (trans-) and 146.3 and 

126.6 ppm (cis-isomer), respectively, thus establishing connectivities between the two regions of 

protonated carbon structure isolated from each other by the quaternary olefinic carbon. 
 

The HMBC experiment is critical for establishing connectivities between regions of 

protonated carbon structure when they are separated by quaternary carbons or 

heteroatoms. Although relatively insensitive, the HMBC experiment is sometimes the 

only way to obtain this information, if it is not available from alternatives such as 

high resolution COSY. 
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4. Metabolite Identification 

In this section we will bring together information obtained from 1D and 2D NMR 

experiments, together with information from metabolite databases and other sources 

to achieve metabolite identification and we will review methods for assessing the 

confidence in those metabolite identifications. There are essentially three strands to 

this activity: 1) the use of statistical methods to determine which NMR signals in a 

particular study are statistically significantly discriminating between groups of 

subjects in the study, or otherwise important, and therefore require identification and 

assignment, 2) the structure elucidation of novel metabolites, not previously described 

and 3) the structure confirmation of known metabolites. Some authors [28,66] have 

described novel metabolites as unknown unknowns and known metabolites as known 

unknowns, but this language is confusing and unhelpful: we will retain the clear and 

simple distinction between novel metabolite structure elucidation and known 

metabolite structure confirmation or identification, that has been used in molecular 

structure studies by NMR spectroscopy for decades. 

 

4.1. Identification of Significant Metabolites, or Biomarkers, using Multivariate 

Statistics 

The main objective in metabonomics is to extract relevant information from the large 

multivariate data sets. To this end pattern recognition (PR) and related multivariate 

statistical approaches can be used to discern meaningful patterns and identify 

metabolic signatures in the complex data sets that are of diagnostic or other 

classification value. A wide range of statistical methods is available today ranging 

from unsupervised methods, such as, principal component analysis (PCA), [67] or 

hierarchical clustering (HCA) [68], to supervised approaches like partial least squares 

(PLS) [69], partial least squares discriminant analysis (PLS-DA) and orthogonal 

partial least squares discriminant analysis (OPLS-DA) [70]. 

 

PCA is the most common technique in multivariate analysis that reduces the 

dimensionality of data and provides an unbiased overview of the variability in a 

dataset. In this approach samples are clustered based on their inherent 

similarity/dissimilarity with no prior knowledge of class membership. PCA represents 

most of the variance within a data set using a smaller set of variables, so-called 

principal components (PCs). Each PC is a weighted linear combination of the original 

variables, and each consecutive PC is orthogonal to the previous PC and describes the 

maximum additional variation in the data set that is not accounted for by the previous 

PCs. The results of a PCA are generally reported in terms of component scores, and 

loadings. In a scores plot, each point corresponds to a sample spectrum. Scores plots 

provide an overview of all samples and enable the visualization of groupings, trends 

and outliers. A loadings plot illustrates which variables have the greatest contribution 

to the positioning of the samples on the scores plot and are therefore responsible for 

any observed clustering of samples. Since directions in the scores plot correspond to 

directions in the loadings plot, an examination of the loadings can explain spectral 

clustering observed on the scores plot [71-73]. Usually, PCA constitutes the first step 

in metabonomic data analysis and is commonly followed by supervised pattern 

recognition techniques. These methods use class information of the samples to 
maximise the separation between different groups of samples and detect the metabolic 

signatures that contribute to the classifications.  
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One commonly used supervised method is partial least squares, also known as 

projection to latent structures (PLS), which links a data matrix of predictors usually 

comprising spectral intensity values (an X matrix), to a matrix of responses containing 

quantitative values (a Y matrix). When the response matrix is categorical, i.e. the Y 

matrix contains sample class membership information, the application of PLS 

regression is called partial least squares-discriminant analysis (PLS-DA). PLS has 

also been used in combination with a pre-processing filter termed orthogonal signal 

correction (OSC), which excludes irrelevant parts of the data that are uncorrelated 

(orthogonal) with the response, often referred to as structured noise. This structured 

noise in the data set can be caused by analytical variation or by innate physiological 

variation (e.g. different diet, age, gender). Orthogonal partial least squares 

discriminant analysis (O-PLS-DA) has an advantage over the standard PLS because it 

filters the irrelevant variation and hence enhances the model interpretation and 

identification of important variables that are responsible for the observed 

classification [73-75]. Recently, a more advanced statistical technique, Statistical 

HOmogeneous Cluster SpectroscopY (SHOCSY), has been developed which can 

better address irrelevant variation in datasets and enhance the interpretation and 

predictive ability of the OPLS-DA model via the selection of ‘truly’ representative 

samples in each biological class [76]. 

 

In supervised techniques, loading weight, variable importance on projection (VIP) 

and regression coefficient plots are used to determine the most significant 

discriminating variables. Recently, a new approach has been introduced by Cloarec et 

al. that incorporates the back-transformed loading of an auto-scaled model with the 

respective weight of each variable in the same plot. The resulting loading plot created 

in this way has the same shape as that of a spectrum with color-coded coefficients, 

according to statistical significance for each variable, which allows for easier 

interpretation of chemometric models. [77]  

 

Generally, supervised techniques are subject to overfitting, particularly in 

metabonomic studies where the number of variables is large and therefore the chance 

of false correlations is high. Proper model validation is therefore a key step to ensure 

model reliability and identification of true biomarkers. There are various validation 

methods including k-fold cross validation, permutation and test set validation. [78-81] 

Cross validation is performed in most cases, especially when the number of samples 

is low. Here, the k subset of samples is iteratively left out and predicted back into the 

model until all samples have been used once. However, truly robust model validation 

is achieved by dividing the data into a training set and a test set. The training set is 

used to construct a model and the test set is used to assess the model performance.  

 

4.2. Statistical Correlation Spectroscopy (STOCSY) 

Statistical Correlation Spectroscopy (STOCSY) follows the concept of two 

dimensional correlation spectroscopy which had originally been implemented in other 

spectroscopic techniques including fluorescence and Raman spectroscopies.[82] The 

development and adaptation of STOCSY in NMR spectra was initially performed by 

Cloarec et al. and is traditionally applied to one dimensional 
1
H NMR.[83] STOCSY 

takes advantage of the inherently linear relationship between intensity variables 

belonging to the same molecule in an NMR spectrum. It analyses the covariance of 

variables in a series of spectra and produces a correlation matrix, presented in the 

form of an NMR spectrum, which reveals the degree of correlation between each 
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variable in the spectrum (either one-dimensional or two-dimensional; see Figure 15). 

Depending on the strength of the correlation, correlated variables or resonances 

(consisting of many variables depending on the resolution) might belong to the same 

molecule (strong correlation) or molecules in the same metabolic pathway (weaker 

correlation). The correlation of each resonance, relative to the selected peak on which 

STOCSY is performed, is revealed by a colour scale which ranges from low 

correlation (typically 0) to high correlation (typically 1).[83] In the field of 

metabonomics this technique is particularly useful in the analysis of complex 

mixtures, such as urine, where the identification of metabolites can be difficult due to 

the high density of resonances and potential overlapping.[83]  

 

It is important to clarify that the ability of STOCSY to detect the correct correlations 

is affected by the degree of overlap between resonances, as well as low 

concentrations. Significant overlapping with other peaks will distort the covariance of 

different resonances belonging to the same molecule in a spectrum, while resonances 

closer to the noise level are harder to analyse. Such deficiencies have led to the 

development of other techniques including SubseT Optimization by Reference 

Matching (STORM), which uses an iterative method to calculate the correlations and 

is better suited to dealing with potential overlaps or low concentrations.[13]  

 

 
 
Figure 15: resulting NMR plot following a STOCSY analysis on a set of faecal water 

1
H-NMR spectra. 

The selected driver peak at 1.57 ppm was used to calculate the correlation matrix which reveals 

correlations ranging from 0 (low) to 1 (high). Two other resonances were revealed to have a positive 

correlation of 1, suggesting that they arise from the same molecule that was later identified as butyric 

acid. 

 

4.3. Structure Elucidation of Novel Metabolites 

If a truly novel metabolite is identified in the course of a metabonomics study, then a 

full structure elucidation to the standard generally accepted for the identification of 

novel natural products [84] or novel drug degradation products [85] is required. This 

will usually entail the isolation and purification of the novel metabolite from the 

biofluid and a full structure elucidation, typically using NMR spectroscopy, MS, 

infrared spectroscopy and ultraviolet spectroscopy, and /or the synthesis of the 

metabolite for direct comparison with the data obtained from the biofluid. 

 

4.4. Use of Information from Metabolite Databases  
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Most metabolites observed by NMR spectroscopy in metabonomics studies will be 

known, and information on a proportion of these is available in various databases such 

as the Human Metabolome Database (HMDB),[45] the BioMagResBank (BMRB) 

[86] and the Birmingham Metabolite Library (BML).[87] The HMDB is the largest 

repository of NMR and MS data on human metabolites that is currently available. As 

of September 4
th

 2015, the HMDB contained information on 41,993 metabolites. 

However, only 1,381 of these metabolites have experimental NMR data, totally 3,186 

NMR spectra. Thus, there are many metabolites for which it is not currently possible 

to access NMR data online. Databases such as the HMDB are valuable for four main 

reasons: 1) provide search facilities that allow the identification of known metabolites 

based on matches between user spectral data and database data on authentic 

metabolite samples, 2) provide interpreted 1D 
1
H and 2D NMR spectra (particularly 

2D 
13

C, 
1
H HSQC spectra) of metabolites; 3) provide access to the raw free induction 

decay data for authentic metabolites for downloading, processing and comparison 

with user data on metabolites from biofluids and 4) provide metadata on the 

metabolites and links to other databases. 

 

The 2D 
13

C, 
1
H HSQC search facility in the HMDB is particularly useful and searches 

for matches between HSQC cross-peak coordinates input by a user and those of 

authentic metabolites in the database. This is a good place to start a metabolite 

identification exercise. The user must input the tolerances for the chemical shift 

differences between the user input values and database values: metabolites whose 

cross-peak coordinates are inside those tolerances will be returned as ‘candidate 

metabolites’. Chemical shifts will naturally be different between those of an authentic 

sample in water, D2O or phosphate buffer and those of the same metabolite in a 

biofluid such as urine or plasma, but generally 
1
H NMR chemical shifts should agree 

to +/- 0.03 ppm and 
13

C NMR chemical shifts to +/- 0.5 ppm. These differences will 

increase for 
1
H or 

13
C NMR chemical shifts in metabolites which can undergo 

tautomerism [88] of any kind and the shift differences may also be larger for nuclei 

close to ionisable groups in metabolites: both these features will be sensitive to 

environment.   

 

When reviewing the candidate structures returned by the database that have HSQC 

features matching the user query, other information about the metabolite of interest 

will be used to discriminate the candidates. This information could include the 

multiplicity in the 
1
H NMR spectrum of the hydrogen giving rise to the HSQC signal, 

or connectivity information linking further elements of the metabolite structure from 

COSY or HMBC spectra. Of course, if the database search is done on just one HSQC 

cross-peak observed in the spectrum of the biofluid, ALL remaining HSQC cross-

peaks in that metabolite should also be observable in the biofluid HSQC spectrum, 

and the absence of any of the expected HSQC cross-peaks would put a question mark 

over the identification of the metabolite. On the other hand, as seen above, even 

databases as large as the HMDB are incomplete and searches will return no candidate 

structures for known metabolites if either: (i) the metabolite is not entered into the 

database, (ii) the metabolite is in the database but the relevant NMR data is not, or 

(iii) the metabolite is in the database but the relevant NMR data is not correctly 

entered. 

 

A further caveat to the use of metabolite databases is that they are only as good as the 

quality of the data entered into them. Users must beware that errors of several type are 
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present at a low level in current databases such as the HMDB, including incorrect 

samples, incorrect structures for the metabolites, impure samples and incorrect 

assignments. A good approach is to always download the original data and check it 

against expectations, and/or check the values given across more than one database 

where possible. 

 

4.5. Prediction of NMR Spectra of Metabolites for Structure Confirmation 

An ideal situation for the confident identification of known or novel metabolites 

would be to be able to predict their NMR spectra computationally without the need 

for access to authentic, real samples. In section 2.2, we saw that 
13

C NMR chemical 

shifts could be predicted by hand for simple molecules. Accurate chemical shift 

prediction would allow the expansion of databases such as the HMDB to include all 

known metabolites and the confident identification of novel as well as known 

metabolites. At present, this approach is not generally possible. Software such as 

MNova [46] and Marvin [47] allows the prediction of 
1
H and 

13
C NMR spectra. In our 

experience, these approaches are useful and somewhat successful but may fail in 

cases where the metabolite structure is complex, or is complicated by tautomerism or 

multiple sites of ionisation, and the methodology cannot always compute these with 

confidence for the relevant biological matrix. 

 

4.6. Biochemical Transformation and In Vitro Fermentation of Biofluids to Aid 

Metabolite Identification 

One successful approach to metabolite identification that is currently under-utilised is 

the biochemical transformation of unknown metabolite A in a biofluid to known 

metabolite B. This approach was used in the identification of para-cresol sulphate 

(PCS) as the key biomarker in human urine for the prediction of the metabolic fate of 

paracetamol.[5] Incubation of samples of the human urine containing PCS with a 

sulphatase enzyme led to the transformation of PCS to the known metabolite para-

cresol, which was then readily identified in this first human pharmacometabonomics 

study. 

 

A more extreme and more random, but still useful, implementation of this approach 

can occur if biofluids are left at room temperature for extended periods of time. 

Biofluids such as mouse urine will quite likely have been in contact with faecal 

material and thereby be contaminated with bacteria from the animal’s microbiome. It 

is standard practice in metabonomics studies to add a low concentration of an anti-

bacterial agent such as sodium azide to animal urine samples to inhibit bacterial 

growth, but unless the concentration of azide is high, bacterial growth may still occur. 

This will cause in vitro fermentation in the urine and will transform large numbers of 

metabolites into different but related metabolite products. For instance, bacterial 

fermentation in a sample of urine from a male FMO5 KO mouse at age 30 weeks, led 

to the 100% conversion of hippuric acid (benzoylglycine) to benzoic acid and glycine 

(Figure 16).  
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Figure 16: an expansion of the 600 MHz 

1
H NMR spectra of the urine of a male, 30 week old, FMO5 

knockout mouse [61]: 1) before bacterial fermentation and 2) after bacterial fermentation after leaving 

the sample at ambient temperature for several days. The bacterial fermentation caused many metabolic 

transformations including that of hippuric acid (hipp) to benzoic acid (b.a.) and glycine (3.57 ppm, not 

shown) and the formation of formate. The lower spectrum 1) prior to fermentation shows many signals 

including those from the ortho (7.84), para (7.64) and meta (7.56) protons of hippuric acid, whereas 

post-fermentation, spectrum 2) at top, shows corresponding signals from the ortho (7.88), para (7.56) 

and meta (7.49 ppm) protons of benzoic acid.   
 

Compared with specific enzymatic transformations, the in vitro fermentation approach 

is less specific. However, it is still a potentially useful tool to clarify metabolite 

identifications, by transforming unknown metabolites into known metabolites, or just 

to decrease crowding in a particular spectral region. 

 

4.7. Confidence Levels in Known Metabolite Identification and Confirmation of 

Known Metabolite Identity 

 

The Metabolomics Standards Initiative recognises 4 levels of known metabolite 

identification: 

 

Level 1: Identified Compound: A minimum of two independent and 

orthogonal data (such as retention time and mass spectrum) compared 

directly relative to an authentic reference standard  

Level 2: Putatively Annotated Compound: Compound identified by 

analysis of spectral data and/or similarity to data in a public database but 

without direct comparison to a reference standard as for Level 1 

Level 3: Putatively Characterised Compound Class: unidentified per se 

but the data available allows the metabolite to be placed in a compound 
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class 

Level 4: Unknown Compound: unidentified or unclassified but 

characterised by spectral data 

 

These categorisations are somewhat vague in terms of the degree of fit between the 

data on the metabolite and that on the reference standard it is being compared to. 

They have not been widely adopted since their publication in 2007,[89,90] and this 

has been commented upon recently.[91] Various modifications to the original 

categorisations have been suggested [92,93] in order to improve them but with no 

general agreement on the way forward. A call to the community was made for 

engagement with this problem.[92] Encouragingly, a new, quantitative Bayesian 

method for annotation of metabolites in LC-MS experiments has recently emerged. 

[94] New quantitative NMR spectroscopy-based proposals have also been published 

[95] that reject the notion that known metabolite identification (as opposed to putative 

annotation (Level 2)) must always be based on a direct comparison of the 

experimental data on the metabolite in a biofluid with that of an authentic reference 

standard (Level 1 above). The new methods are based on the matching of information 

obtained experimentally from NMR studies of biofluids with that contained on 

authentic metabolites in databases such as the HMDB. These methods analyse the 

amount of matching 1D and 2D 
1
H NMR spectroscopic information obtained on each 

metabolite, relative to the number of carbon atoms or heavy atoms in the molecule. 

One promising new approach is called Metabolite Identification Carbon Efficiency 

(MICE) [95] and provides a logical, quantitative and systematic method for assessing 

confidence in known metabolite identification by NMR methods.  

 

The use of metabolite database information, as opposed to information directly from 

the actual reference standards, to underpin metabolite identification is appropriate for 

NMR spectroscopy-based methods. In general, there is very good agreement between 

the chemical shifts of a metabolite in a buffered biological fluid such as urine and in a 

pure buffer solution of the same metabolite at the same pH. As mentioned in Section 

4.4 above, generally, 
1
H NMR chemical shifts should agree to +/- 0.03 ppm and 

13
C 

NMR chemical shifts to +/- 0.5 ppm for most metabolites, although there will be 

cases of metabolites with greater chemical shift sensitivity, due to the arrangement of 

ionisable groups in their molecular structures, for instance, citric acid. There will be 

an even closer agreement between the chemical shifts of a reference standard run in 

similar buffers between one laboratory and the next. Therefore access to the NMR 

spectral data on a metabolite from a database such as HMDB is, in most cases, 

equivalent to having run the NMR spectrum of that material under the same 

conditions in the user laboratory. It must be stressed however, that all database data 

should be checked for quality and for matching to the expected structure. Mistakes in 

databases do occur: users should be aware. On the other hand, for MS-based 

metabonomics approaches, such as LC-MS or UPLC-MS, the use of authentic 

reference standards is more important, due to variations in metabolite retention times 

and peak intensities that can occur in these experiments, although new methods are 

making the metabolite annotations more secure. [94] 

 

The MICE method mentioned above is one of many new variants that can be used for 

the assessment of known metabolite identification confidence. In its recommended 

HSQC-level implementation,[95] MICE counts and sums the number of bits of 

spectroscopic identification information obtained from 
1
H NMR chemical shifts, 
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multiplicities, coupling constants, second-order flags (flag = 0 if metabolite signals 

are first order; flag =1 if signals second-order [strict definition: additional lines 

present in the spectra]), 2D COSY cross-peaks and 2D HSQC cross peaks, for each 

metabolite, that match corresponding database values for the authentic metabolite. 

The MICE value is then obtained by dividing this information bit sum total by the 

number of carbon atoms in the metabolite. For example, the following signal features 

were observed for the metabolite ketoleucine, (4-methyl-2-oxopentanoic acid, 

HMDB00695, see Figure 11 and structure below), in the 600 MHz 
1
H NMR spectra 

of the urine of a male, 30 week old FMO5 knockout mouse [61]: a doublet (
3
JH,H ca 

7.0 Hz) for the H3 protons at 2.618 with a COSY to 2.098 (triplet of septets, H4), 

itself with a COSY to the equivalent methyl groups H5, and H6 at 0.941 (doublet, 6.7 

Hz) and these with an HSQC to 24.5 ppm (C5, C6). Thus for this metabolite, we 

observed 3 
1
H NMR chemical shifts, 3 multiplicities, two coupling constants, two 

COSY connectivities and one HSQC connectivity: a total of 11 pieces of information, 

all of which are a good match to the corresponding values in the HMDB. The 

guidelines for a good match are: within ±0.03 ppm for 
1
H, and ±0.5 ppm for 

13
C NMR 

shifts and ±0.2 Hz for proton couplings. There are 6 carbon atoms in the molecule, so 

the Metabolite Identification Carbon Efficiency (MICE) = 11/6 = 1.8. MICE values of 

> 1 with a good match of spectral features to those of the standard in a database are 

considered confidently identified, as in this case.  

 

 
 

Even if a known metabolite is confidently identified by NMR spectroscopy using the 

MICE methodology, it can sometimes still be important to further confirm the 

identification, especially if the particular metabolite is an important biomarker. Three 

basic approaches are frequently used: 1) authentic metabolite spiking; 2) orthogonal 

analyses using MS-based approaches and 3) isolation or purification of the metabolite 

using chromatographic procedures. Metabolite spiking involves the addition of a 

small quantity of an authentic sample of the metabolite into the biofluid of interest 

and re-running the NMR spectrum. If the metabolite is present in the biofluid, then 

the signals of the spiked material should overlap exactly with those assigned to that 

metabolite in the original biofluid. For this experiment to work optimally, spectral 

resolution and lineshape must be optimal and it is best to spike in a quantity equalling 

between 25% and 50% of the material in the biofluid: too little material spiked can 

lead to uncertainty as to whether the signals of interest have increased in intensity: too 

much material spiked may swamp the signals and lead to uncertainty as to whether 

the spike signals match those of the metabolite of interest. Liquid chromatography - 

mass spectrometry (LC-MS) or ultra performance liquid chromatography MS (UPLC-

MS)[29,30] is often used as an orthogonal confirmatory technique for metabolites 

identified by NMR spectroscopy. This joint NMR and MS approach will provide the 

maximal confidence in the identification of known biomarkers that are particularly 

H
3
C

CH
3

O

OH

O

13
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important. Isolation or purification procedures may use liquid chromatography, solid-

phase extraction or liquid-liquid extraction methods.[96,97] 

 

5. Conclusions and Future Thoughts 

 

Metabonomics/metabolomics is undergoing a period of very rapid technology 

development and a huge increase in the number of applications, using mainly NMR 

spectroscopy or MS detection technologies. In this guide, we have focused upon the 

metabolite identification stage of a project using NMR spectroscopy-based detection 

of metabolites. Compared with MS, NMR spectroscopy is much less sensitive, but has 

the key advantages of better spectrometer stability, absence of spectrum quenching or 

enhancement phenomena, full quantitation of metabolites and the ability to use a huge 

range of the most powerful experiments for metabolite structure elucidation. NMR-

detected metabonomics/metabolomics has been delivering answers to important 

questions in medicine, biology and other sciences for over 30 years and we 

confidently predict that it will continue to do so for decades more. 

 

Many key advances in NMR spectroscopy-based metabonomics are emerging and 

these are expected have a significant impact on the utility of the technology. We can 

highlight the following: 1) the development of highly stable digital spectrometers 

producing spectra of unparalleled quality; 2) the development of probes with multiple 

receiver coils enabling the parallelisation of some data acquisition;[98] 3) the 

development of non-uniform sampling and spatially-encoded ‘ultrafast’ methods [64] 

of 2D NMR data acquisition, which hold out the prospect that in the future the default 

metabonomics experiment may be 2D COSY or 2D J-resolved rather than the current 

standard: 1D 
1
H NMR; 4) huge advances in the computational analysis of NMR data 

in methods derived from STOCSY that hold out the prospect of a systems biology 

analysis directly from the NMR data [99] and finally 5) the use of reliable, chilled, 

NMR sample automation systems which mean that large-scale experiments on 

hundreds or thousands of samples are feasible, enabling the advent of large-scale 

phenome analyses.[12] We await this future with excitement and much anticipation. 
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7. Glossary of Terms 

 
term meaning 

1D one-dimensional 

2D two-dimensional 

90
0
H a 90 degree pulse to the 

1
H channel 

180
0
H a 180 degree pulse to the 

1
H channel 

BML Birmingham Metabolite Library 

BMRB BioMagResBank 

CAWG Chemical Analysis Working Group 

COSY COrrelation SpectroscopY 

CPMG Carr-Purcell-Meiboom-Gill 

CSSF-TOCSY Chemical Shift Selective Filter TOCSY 

δH hydrogen-1 or proton NMR chemical shift 

δC carbon-13 NMR chemical shift 

FID Free Induction Decay 

FMO5 Flavin Mono-Oxygenase 5 

GC-MS Gas Chromatography-Mass Spectrometry 

HCA Hierarchical Cluster Analysis 

HMBC Heteronuclear Multiple Bond Correlation spectroscopy 

HMDB Human Metabolome DataBase 

HOHAHA HOmonuclear HArtman HAhn 

HSQC Heteronuclear Single Quantum Correlation spectroscopy 

ID identification 
3
JH,H three-bond spin-spin coupling between two hydrogens 

JRES J-resolved spectroscopy 

KO gene Knock Out 

LC-MS Liquid Chromatography-Mass Spectrometry 

MHz MegaHertz = Hertz x 10
6
 

MICE Metabolite Identification Carbon Efficiency 

MS Mass Spectrometry 

MSI Metabolomics Standards Initiative 

NOESY nuclear Overhauser spectroscopy 

NMR Nuclear Magnetic Resonance 

O-PLS-DA Orthogonal-Partial Least Squares-Discriminant Analysis 

PC Principal Component 

PCA Principal Components Analysis 

PLS Partial Least Squares (Projection to Latent Structures) 

RD Relaxation Delay 

SHOCSY Statistical HOmogeneous Cluster SpectroscopY 

STOCSY Statistical  TOtal Correlation SpectroscopY 

STORM SubseT Optimization by Reference Matching 

t1 evolution time in a 2D NMR experiment 

t2 the acquisition time over which the FID is measured 

T1 spin-lattice relaxation time 

T2* real spin-spin relaxation time 

TOCSY TOtal Correlation SpectroscopY 

TSP sodium 3-(trimethylsilyl) propionate-2, 2, 3, 3-d4 

UPLC-MS Ultra-Performance Liquid Chromatography Mass Spectrometry 

VIP Variable Importance on Projection 
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