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BACKGROUND: Endobronchial ultrasound (EBUS)-guided biopsy is the mainstay for investi-
gation of mediastinal lymphadenopathy for laboratory diagnosis of malignancy, sarcoidosis,
or TB. However, improved methods for discriminating between TB and sarcoidosis and
excluding malignancy are still needed. We sought to evaluate the role of genomewide
transcriptional profiling to aid diagnostic processes in this setting.

METHODS: Mediastinal lymph node samples from 88 individuals were obtained by EBUS-
guided aspiration for investigation of mediastinal lymphadenopathy and subjected to
transcriptional profiling in addition to conventional laboratory assessments. Computational
strategies were used to evaluate the potential for using the transcriptome to distinguish
between diagnostic categories.

RESULTS: Molecular signatures associated with granulomas or neoplastic and metastatic
processes were clearly discernible in granulomatous and malignant lymph node samples,
respectively. Support vector machine (SVM) learning using differentially expressed genes
showed excellent sensitivity and specificity profiles in receiver operating characteristic curve
analysis with area under curve values > 0.9 for discriminating between granulomatous and
nongranulomatous disease, TB and sarcoidosis, and between cancer and reactive lymph-
adenopathy. A two-step decision tree using SVM to distinguish granulomatous and
nongranulomatous disease, then between TB and sarcoidosis in granulomatous cases, and
between cancer and reactive lymphadenopathy in nongranulomatous cases, achieved
> 90% specificity for each diagnosis and afforded greater sensitivity than existing tests to
detect TB and cancer. In some diagnostically ambiguous cases, computational classification
predicted granulomatous disease or cancer before pathologic abnormalities were evident.

CONCLUSIONS: Machine learning analysis of transcriptional profiling in mediastinal lymph-
adenopathy may significantly improve the clinical utility of EBUS-guided biopsies.
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Endobronchial ultrasound-guided transbronchial
needle aspiration (EBUS-TBNA) has transformed
diagnostic evaluation of mediastinal lymphadenopathy
in respiratory medicine. This has revolutionized
lung cancer staging, providing a median sensitivity
of 89% for detection of malignant cells, and also affords
high sensitivity for detection of granulomatous
lymphadenitis in sarcoidosis.1-3 Two specific diagnostic
limitations have emerged as research priorities to maximize
the benefits from EBUS-TBNA: (1) to increase sensitivity
for detection of malignancy and hence the negative
predictive value, to reduce the need for more invasive
surgical sampling; and (2) to increase the sensitivity
for detection of active TB and improve discrimination
between TB and sarcoidosis in granulomatous
lymphadenitis. This distinction currently relies on
assessment of demographic risk of TB or microbiological
confirmation, which is unavailable in > 50% of cases.4,5

Genomewide transcriptional profiling can identify
molecular signatures in peripheral blood or tumor
specimens that could be used to improve diagnosis
and risk stratification of patients with infectious and
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inflammatory diseases or to guide targeted therapeutic
strategies for individuals with cancer.6-10 Feasibility of
transcriptional profiling to detect gene expression
associated with molecular pathogenesis of lung cancer in
a small number of tumor-infiltrated nodes has been
reported.11,12 Granulomatous lymphadenitis has never
been assessed by this method, but three previous studies
reported extensive overlap of peripheral blood
transcriptional signatures associated with TB and
sarcoidosis.13-15 Although computational machine
learning techniques were successfully applied to peripheral
blood gene signatures to discriminate between TB and
sarcoidosis cases, confidence in this approach has been
partly undermined because of minimal overlap between
the discriminating genes identified in each study.13-15

Since the inflammatory processes in sarcoidosis are
reputed to be compartmentalized,16 we speculated that
transcriptional profiles at the site of disease may offer
better discrimination. In the present study we tested the
hypothesis that genomewide transcriptional profiling
of EBUS-TBNA samples will improve diagnostic
differentiation of TB and sarcoidosis and detection of
cancer in patients undergoing staging investigations.
Materials and Methods
Ethics Statement

The study was approved by the North London Research Ethics
Committee (10/H0724/72). Written informed consent was obtained
from all participants.

Study Design

Lymph node samples were obtained from adult patients undergoing
EBUS-TBNA for investigation of mediastinal lymphadenopathy (see
e-Appendix 1 for a description of conventional assessments). Cases were
classified according to predefined diagnostic criteria given in e-Table 1.17

Transcriptional Profiling by cDNA Microarray

Lymph node cores harvested into RNALater (Qiagen) and homogenized
in Qiazol (Qiagen) were used to obtain total RNA using the RNEasy
Micro kit (Qiagen). Samples were processed for Agilent microarrays,
and data were normalized as previously described (e-Appendix 1).18
Principal component analysis (PCA) was performed using the
prcomp function in R to compare global gene expression profiles.
Significant gene expression differences between samples were
identified by t tests (P < .05) using MultiExperiment Viewer (version
4.6.0) and restricted to those with greater than twofold differences.
Pathway overrepresentation analysis of differentially expressed genes
was conducted using InnateDB, and transcriptional regulation of
specific gene expression profiles was assessed by oPossum single
transcription factor binding site enrichment analysis as previously
described.19,20 Additional details for the analysis of microarray data
are provided in e-Appendix 1 and e-Figs 1, 2, 6. Microarray data are
available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress)
under accession number E-MTAB-2547.

Case Classification Using Machine Learning

Support vector machines (SVMs) for binary computational
classification of high-dimensional data were trained to classify
samples using selected gene signatures.21 Given a set of training data,
an SVM establishes a model that optimizes separation of data points
from two groups. The SVM algorithms were implemented using
the kernlab package in R3.0.2 with a linear kernel, which allows
the influence of each gene in the model to be weighted (see
e-Appendix 1 for a detailed description of SVM classification).
Bootstrap sampling with replacement was used to select training
cases to optimize the SVM model. This model was then used to
classify remaining data that were not included in the training cohort,
and the process was repeated 100 times to evaluate its performance.
Sensitivity and specificity values for multiple SVM models were then
presented in receiver operating characteristic (ROC) curve analysis
using the “pROC” package in R3.0.2. In additional assessments of
the SVM models, we used leave-one-out cross-validation, in which
the training set comprises all but one of the samples, which is then
tested, and the process is repeated to test each individual sample.
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The minimum number of genes needed for accurate SVM classification
was assessed by training the SVM on 10 randomly chosen cases to
determine weight values for each gene, iteratively refined in 100
TABLE 1 ] Summary of Study Subjects’ Demographic Data

Diagnosis No. Age Range, y

Definite sarcoidosis 19 24-80

Definite TB 9 21-71

Reactive 10 33-78

Definite cancer 27 49-86

Possible sarcoidosis 3 38-50

Probable TB 2 30-35

Possible cancer 12 56-82

Undetermined 6 44-58
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training sets. A cumulative sequence of genes ranked by weight was
then used to determine SVM classification accuracy in distinct test
cases using ROC curves.
Results

Transcriptomes Reflect Associated Molecular
Pathologies

We performed transcriptional profiling of EBUS-TBNA
samples from 88 patients (Table 1). Detailed
information about study subjects is given in e-Table 2.
First, we focused our analysis on patients with “definite”
diagnoses of sarcoidosis, TB, cancer, or reactive
lymphadenopathy, ascertained by routine clinical and
laboratory assessments. Comparison of EBUS-TBNA
genomewide data from these patients by PCA to
visualize the greatest co-correlated differences between
individual samples shows that sarcoidosis, TB, and
reactive lymph node samples clustered together, and
most but not all cancer samples clustered separately
(Fig 1).

Despite the overlap in the clustering analysis described
above, direct comparison of gene expression data
identified differentially expressed genes between
granulomatous and nongranulomatous lymph node
samples (488 genes), between TB and sarcoidosis samples
(58 genes), and between malignant and reactive
samples (1,223 genes) (see e-Tables 3-5 for differentially
expressed gene lists). Granulomatous lymph nodes
were significantly enriched for genes associated with
immunologic processes integral to cell-mediated
immunity and granuloma formation and regulated
by canonical transcription factors involved in
proinflammatory and cytokine responses (e-Fig 3,
e-Table 6). In keeping with previous peripheral blood
transcriptional profiling studies,13-15 genomewide
transcriptional profiles of TB and sarcoidosis lymph
node samples were very similar. We identified only
16 genes with significantly higher expression in
sarcoidosis and 42 genes with higher expression levels
in TB lymph node samples (e-Fig 4).

In the nongranulomatous samples, malignant lymph
node samples were significantly enriched for genes
involved in cell cycle control and extracellular matrix
interactions, consistent with processes related to cancer
development and metastasis (e-Fig 5), and under the
transcriptional regulation of Kruppel-like factors and
other zinc finger protein family members (e-Table 7).
These control cell proliferation, differentiation,
migration, and pluripotency in normal tissues and
regulate cancer cell proliferation, apoptosis, and
metastasis in many human tumors.22

Machine Learning Discriminates Diagnostic
Categories

SVM are data-driven computational algorithms that
can “learn” to discriminate between high-dimensional
data such as genomewide transcriptomes. Therefore,
we assessed the performance of SVM discrimination
between diagnostic categories using the differentially
expressed transcriptional signatures described above. In
this analysis, we used repeated bootstrap subsampling
cross-validation23,24 with five, 15, or 25 training cases
to evaluate the classification performance of the SVM,
ensuring the test set was always independent of the
training set. ROC curves showed that the SVM
performance improved as the cohort sample size
increased, achieving area under the curve (AUC) values
> 0.9 in each case (Fig 2). A recognized limitation of
SVM is risk of overfitting of training data, but the high
levels of accuracy consistently achieved in multiple
iterations using different combinations of training and
Sex M (F) Ethnicity

12 (7) 16 Eurasian, 3 African

8 (1) 7 Eurasian, 2 African

9 (1) 10 Eurasian

16 (11) 25 Eurasian, 1 East Asian, 1 African

3 (0) 2 Eurasian, 1 Latin American

0 (2) 2 Eurasian

5 (7) 12 Eurasian

2 (4) 5 Eurasian, 1 African
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Figure 2 – Support vector machines (SVMs) classification performance
improves as cohort sample size increases. The performance of SVM to
classify cases by training on signatures comprising differentially
expressed genes (greater than twofold difference and P < .05, t test)
between comparator groups using bootstrap sampling of five, 15, or
25 cases with replacement (100 iterations), is represented by receiver
operating characteristic (ROC) curves. Increasing the training dataset
sample size progressively improves the ability of SVMs to correctly
distinguish granulomatous (n ¼ 28) from nongranulomatous (n ¼ 37)
disease (A), sarcoidosis (n ¼ 19) from TB (n ¼ 9) (B), and malignant
(n ¼ 27) from reactive (n ¼ 10) lymph nodes (C), with AUC values of
> 0.9 once the cohort comprises 25 samples. AUC ¼ area under the
curve.
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Figure 1 – Clustering analysis of genomewide lymph node profiles does
not distinguish disease groups. Comparison of genomewide transcrip-
tional profiles of lymph node samples by principal component analysis
(PCA) shows that the majority of cancer samples cluster away from all
other disease groups in PC1, responsible for the greatest differences
within the data. However, sarcoidosis, TB, and reactive lymph nodes as
well as some cancer samples clustered together in both PC1 and PC2 in
this analysis, which was unable to segregate individual disease groups.
Each symbol represents a sample.
test data strongly suggest overfitting does not confound
the present analysis.

Next we assessed the performance of SVM classification
in a two-step decision tree sequence, using leave-one-out
cross-validation as an alternative cross-validation
strategy that optimizes the size of the training cohort
(Fig 3). In step one, we classified each sample as
granulomatous or nongranulomatous. In step two,
samples classified as granulomatous were then
subclassified as TB or sarcoidosis, and those classified
as nongranulomatous were subclassified as cancer or
reactive lymphadenopathy. We achieved excellent
specificity across all four diagnostic groups and high
sensitivity for detection of malignancy (93%) and
sarcoidosis (85%) (Table 2, e-Tables 8, 9). This analysis
was less sensitive for identification of reactive
lymphadenopathy (80%) and TB (67%), but we noted a
positive relationship between test sensitivity and sample
size for each diagnosis (Table 2).

We also sought to identify the minimum number of
genes needed to accurately classify cases using each
SVM. The most discriminating genes were identified by
their weighting in the training data sets using repeated
bootstrap subsampling cross-validation (see e-Table 10
for lists of the most discriminating genes). Cumulative
inclusion of these genes in order of their weighting in
538 Original Research
the SVM training data improved the ROC curve AUCs
(Fig 4A). To achieve ROC curve AUC > 0.9, expression
data from at least five genes were required to
discriminate granulomatous and nongranulomatous
[ 1 4 9 # 2 CHES T F E B R U A R Y 2 0 1 6 ]
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Figure 3 – Support vector machines classification sequence. In this
analysis, SVMs are trained using leave-one-out cross-validation. Step 1:
Cases are subjected to initial SVM analysis using the 488-gene signature,
which distinguishes granulomatous from nongranulomatous disease.
Step 2: Samples classified as granulomatous disease subsequently
undergo SVM testing using the 58-gene signature, which discriminates
sarcoidosis from TB, and those classified as nongranulomatous disease
undergo further SVM evaluation using the 1,223-gene signature, which
distinguishes cancer from reactive lymph node. See Figure 2 legend for
expansion of abbreviation.
cases, 19 genes to discriminate TB and sarcoidosis, and
150 genes to discriminate cancer and reactive cases.

Peripheral blood gene signatures that distinguish TB and
sarcoidosis have been reported previously.13-15 These
show only modest overlap with our lymph node-derived
differential gene expression signature (Fig 4B) and
clearly perform less well in discriminating TB from
sarcoidosis lymph node samples by SVM classification
(Figs 4C, 4D). This suggests that the gene signatures
exhibit context specificity and that peripheral blood data
may not faithfully reflect the site of disease.

SVM Classification of Undiagnosed
Lymphadenopathy

Finally, we tested the two-step SVM decision-tree
sequence described above on cases in which a “definite”
TABLE 2 ] Sensitivity and Specificity of SVM
Classification

Diagnosis No. Sensitivity, % Specificity, %

Sarcoidosis 19 85 96

TB 9 67 98

Reactive 10 80 93

Cancer 27 93 92

SVM ¼ support vector machine.

journal.publications.chestnet.org
diagnosis could not be made at the time of EBUS-TBNA.
We compared SVM classification of these samples with
the final diagnosis based on follow-up data (Table 3).
SVM analysis identified “granulomatous disease” in
almost all specimens with histologic evidence of
granulomas and two samples without granulomas on
histology (Possible S2 and S3). A definite diagnosis of
sarcoidosis was later confirmed in one case (Possible S2),
after assessment of further lymph node samples
obtained by mediastinoscopy revealed noncaseating
granulomas. Another case (Probable TB2) was
classified by SVM as “sarcoidosis” but subsequently
confirmed as “TB.” The majority of “possible cancer”
samples were classified as “reactive,” consistent with
histologic assessments. However, SVM classified two
cases as “cancer,” in the absence of histologic evidence.
Subsequent examination of surgically resected specimens
confirmed metastatic carcinoma in the lymph node,
which had shown no evidence of malignancy on
EBUS-TBNA 6 weeks previously (Possible C10).
Strikingly, SVM also predicted the presence of “cancer”
4 months before tumor involvement was discernible
on histology in another case (Possible C11). SVM
predicted “cancer” in one further individual (U2) with
a presumptive diagnosis of sarcoidosis and no evidence
of malignancy during long-term follow up.
Discussion
The development of EBUS has revolutionized
investigation of mediastinal lymphadenopathy by
facilitating minimally invasive sampling of lymph
nodes at the site of disease. Transcriptional profiling
of EBUS-TBNA in granulomatous and malignant
lymphadenopathy revealed clear evidence of the key
biologic processes relevant to each disease. Samples
from granulomatous diseases were enriched for immune
cell recruitment and activation as well as antigen
presentation and interferon-g signaling, which
characterize granulomatous inflammation.25 Malignant
lymph node samples were enriched for molecules
involved in control of cell division and interactions with
the extracellular matrix or adjacent cells, the molecular
mechanisms that underpin cancer development and
metastasis. Bioinformatic analysis of the transcriptional
control of genes involved in these processes confirmed
the importance of nuclear factor-kB as a principal
regulator of inflammatory responses in granulomatous
disease and Kruppel-like factors in transcriptional
regulation of key events in tumor generation in
humans in vivo.22 Macroscopic blood contamination
539
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of EBUS-TBNA was variable, but globin transcript levels
were comparable between the diagnostic groups and
therefore did not produce a systematic bias. Although
globin depletion is advocated in blood samples to
improve sensitivity,26 biologically plausible gene
expression differences between groups in our study were
still evident. Nonetheless, assessment of globin depletion
or RNA sequencing to increase sensitivity should be
considered in future studies.

The similarity between TB and sarcoidosis profiles
suggests that by the time of clinical presentation, the
molecular pathology in these diseases is comparable.
540 Original Research
Sarcoidosis samples showed higher expression of
genes with putative roles in granuloma formation,
including cathepsin K, transmembrane 7 superfamily
member 4, and chemokine (C-C motif) ligand 21.27-29

We hypothesize that this may reflect the more
organized, noncaseating granuloma phenotype typical
of sarcoidosis.30 The most highly expressed gene in
sarcoidosis compared with TB lymph nodes was
chitotriosidase (CHIT)1, which encodes a lysosomal
hydrolase that degrades fungal cell wall chitin.31

Elevated levels of chitotriosidase have also been
reported in BAL fluid and serum of individuals with
sarcoidosis.32,33 A putative role for inhaled antigens is
[ 1 4 9 # 2 CHES T F E B R U A R Y 2 0 1 6 ]



TABLE 3 ] SVM Classification of Cases Without a Definite Clinical Diagnosis

Diagnosis Clinical Question Histology SVM 1 SVM 2 SVM 3 Clinical Outcome

Possible S1 Sarcoidosis? G NG . R Clinical diagnosis of sarcoidosis. Spontaneous
resolution of symptoms, under observation
only.

Possible S2 Sarcoidosis? NG G S . Definite sarcoidosis confirmed by
noncaseating granulomas on lymph node
sample from mediastinoscopy. Clinical
improvement with steroid treatment.

Possible S3 Sarcoidosis? NG G S . Spontaneous improvement in clinical
symptoms and chest radiograph
lymphadenopathy.

Probable TB1 TB? G G TB . Good clinical and radiologic response to
empirical TB treatment.

Probable TB2 TB? G G S . Pleural fluid acid- alcohol-fast bacilli positive,
Mycobacterium tuberculosis culture
negative. Good clinical response to
empirical TB treatment.

Possible C1 Metastatic
endometrial
cancer?

G G . R Palliative chemotherapy for presumed lung
metastases.

Possible C2 Sarcoidosis/
lymphoma?

G G . R Died of non-Hodgkin’s lymphoma diagnosed
on bone marrow biopsy.

Possible C3 Metastatic bowel
cancer?

G G . R Patient declined empirical TB treatment and
did not attend further respiratory follow-up
appointment.

Possible C4 Metastatic bowel
cancer?

G G . R Died.

Possible C5 Metastatic lung
cancer?

NG NG . R Developed further lung lesion and
fluorodeoxyglucose-avid lymph node
following wedge resection of right lower lobe
tumor.

Possible C6 Cancer? NG NG . R Remains in remission from lung cancer—no
further treatment.

Possible C7 Metastatic lung
cancer?

NG NG . R Died.

Possible C8 Metastatic
bladder/renal
cancer?

NG NG . R Clinically well after neoadjuvant
chemotherapy, right nephroureterectomy,
cystoprostatectomy, and ileal conduit
formation.

Possible C9 Metastatic lung
cancer?

NG NG . R Neoadjuvant chemotherapy, left upper lobe
resection, consolidation chemotherapy.
Clinically stable but mediastinal
lymphadenopathy still evident on CT scan.

Possible C10 Metastatic lung
cancer?

NG NG . C Left upper lobe resection specimen showed
metastatic carcinoma in the lymph node,
which had shown no histologic evidence of
malignancy on samples obtained via EBUS.

Possible C11 Metastatic lung
cancer?

NG NG . C Previous right middle lobe resection for lung
adenocarcinoma and had confirmed
metastatic adenocarcinoma on a second
EBUS procedure performed 4 mo later due
to progressive lymph node enlargement.

Possible C12 Metastatic
bladder
cancer?

NG NG . R Clinically stable, static appearance of
lymphadenopathy on interval CT scan;
discharged from respiratory follow-up.

(Continued)
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TABLE 3 ] (Continued)

Diagnosis Clinical Question Histology SVM 1 SVM 2 SVM 3 Clinical Outcome

U1 Sarcoidosis/TB? G G S . Empirical TB treatment stopped after 2 mo as
no response. Now under observation—
remains clinically stable.

U2 Sarcoidosis? NG NG . C Presumptive diagnosis of sarcoidosis-induced
peripheral neuropathy. Minor clinical
improvement with steroid and
cyclophosphamide treatment.

U3 Sarcoidosis/
lymphoma?

NG G S . Unknown—patient did not attend follow-up
clinical appointments.

U4 Sarcoidosis? G G S . Remains clinically stable—under observation
only.

U5 Sarcoidosis/TB? G G S . Spontaneous improvement in clinical
symptoms and chest radiograph
lymphadenopathy. Subsequently completed
6 mo empirical TB treatment (Mantoux
45 mm, interferon-g release assay
negative). Now well—discharged.

U6 Sarcoidosis/TB/
lymphoma?

NG NG . R Clinically well after 6 mo empirical TB
treatment—discharged.

C ¼ cancer; EBUS ¼ endobronchial ultrasound; G ¼ granulomatous; NG ¼ nongranulomatous; R ¼ reactive; S ¼ sarcoidosis; U ¼ undetermined,
See Table 2 legend for expansion of other abbreviation.
recognized in sarcoidosis.34 Therefore, aberrant immune
responses to fungi in pathogenesis of sarcoidosis merit
further investigation.

The performance of SVM using differential gene
expression signatures to distinguish between
granulomatous and nongranulomatous disease, cancer
and reactive lymphadenopathy, and TB and sarcoidosis
showed excellent promise to improve diagnostic
classification, providing AUC statistics of > 0.9 in each
case. Importantly, the SVM models identified the most
influential genes and opportunity to test the feasibility
of using targeted transcriptional analysis rather than
genomewide technologies in future studies. Our analysis
suggested that this might be possible for discriminating
granulomatous from nongranulomatous disease and
TB from sarcoidosis using multiplex quantitative
polymerase chain reaction analysis of 20 to 30 genes.
However, expression data from more than 150 genes
were required to discriminate cancer and reactive
lymphadenopathy.

The application of SVM in a two-step decision tree
model was significantly more sensitive than
mycobacterial culture for identification of TB and
equivalent to histologic detection of noncaseating
granulomas for sarcoidosis.4,5,35,36 Notably, SVM
predicted the presence of granulomatous disease in one
EBUS-guided biopsy with no granulomas on histology,
from an individual subsequently diagnosed with
542 Original Research
sarcoidosis after lymph node samples obtained by
mediastinoscopy confirmed granulomatous
inflammation. Importantly, differentially expressed
genes that distinguished sarcoidosis from TB lymph
node transcriptional profiles performed better than
previously published gene signatures derived from
peripheral blood,13-15 suggesting that peripheral blood
does not wholly reflect the profiles at the site of
disease and strengthening the case for lymph node
sampling for maximum diagnostic accuracy.

SVM also classified specimens from two individuals
undergoing EBUS-guided lymph node sampling for
lung cancer staging as “cancer,” despite no histologic
evidence of malignancy. In keeping with this, SVM
classification was slightly more sensitive than the
reported median sensitivity of histologic identification
of malignancy.2 In both cases, further biopsies taken
from these nodes 6 weeks to 4 months after the initial
specimens, demonstrated tumor infiltration that may
reflect progression of micrometastatic disease. These
examples highlight the potential power of combining
transcriptional profiling with a computational
classification algorithm to provide a more sensitive
approach for identification of subtle molecular
indicators of granulomatous disease or malignancy
that are discernible before histologic or cytologic
abnormalities become evident. Importantly, this strategy
has the potential to identify individuals who might
[ 1 4 9 # 2 CHES T F E B R U A R Y 2 0 1 6 ]



benefit from more frequent surveillance and to improve
the current low negative predictive value of 40% for
EBUS-guided lymph node sampling in isolated
mediastinal lymphadenopathy,37 which will avoid
unnecessary invasive mediastinoscopy procedures and
minimize delays in definitive treatments. We recognize
that SVM analysis of transcriptome data did not
correctly classify every case in our study; therefore,
this approach does not currently supersede clinical
assessment and laboratory investigations. However,
both accuracy and sensitivity of SVM classification
improved as the training dataset sample size increased,
suggesting the potential for more precise discrimination
and increased sensitivity with expansion of the current
journal.publications.chestnet.org
cohort. Our data pave the way for larger-scale
observational cohorts to validate the findings presented
here and controlled trials to investigate the impact of
this approach on clinical outcomes.
Conclusions
We propose that transcriptional profiling of lymph
node samples from the site of disease combined with
machine learning data analysis offers a novel strategy
with molecular-level resolution that could be applied
to augment conventional investigation of clinically
ambiguous cases of mediastinal lymphadenopathy. This
merits further evaluation in future large-scale clinical trials.
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