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Abstract    

The design of tasks for the exploration of mathematical concepts involving tech-
nology can take several starting points. In many cases the 'tool' is predefined as an 
existing mathematics application with an embedded set of design principles that 
shape the mathematical tasks that are possible. In other cases, the tool and tasks 
are designed through a more dynamic process whereby designers and educators 
engage in a discourse that influences the resulting tasks. The chapter will begin 
with a brief description of a longitudinal study, and its theoretical framework that 
resulted in a rubric to inform the design of tasks that privilege the exploration of 
mathematical variants and invariants (Clark-Wilson and Timotheus 2013; Clark-
Wilson 2010). This rubric is then used as a construct for the post-priori analysis of 
two tasks that introduced the concept of linear functions and that use different 
technologies. Conclusions will be drawn that highlight subtle tensions that relate 
to the mathematical knowledge at stake and the design principles of the underlying 
technology and task.  
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Introduction 

An important premise for the design of any task in mathematics education con-
cerns the very nature of the mathematical knowledge that the task is intended to 
develop, which might encompass facts, skills, algorithms, relationships, notations 
etc. that are all situated within the particular mathematical culture. Alongside this, 
the diversity of the mathematical processes through which the user of the task 
might construct their mathematical knowledge could require her to represent, vis-
ualise, conjecture, notate, estimate, reason, justify, generalise and so on. I am in 
strong agreement with Mason, Graham and Johnston-Wilder’s premise that ‘a les-
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son without the opportunity for learners to express a generality is not in fact a 
mathematics lesson’ (2005, p.297). That is, the core purpose of the tasks that we 
offer to learners of mathematics is to expand their frame of mind through an ongo-
ing process of validating or refuting mathematical knowledge.  Consequently, the 
work described in this chapter has emanated from two projects in which tasks 
have been designed within technology-mediated environments to privilege learn-
ers’ first-hand dynamic exploration of mathematical variants and invariants within 
English mathematics classroom settings (11-16 years).  

Theoretical framework 

A longitudinal study that involved 15 English teachers of secondary school math-
ematics in the design, teaching and evaluation of 75 lesson activities resulted in a 
rubric for mathematical task design within dynamic multi-representational digital 
environments (Clark-Wilson 2010; Clark-Wilson and Timotheus 2013). In this 
study the teachers were designing tasks that required students to use the TI-Nspire 
v1.8 handheld device or computer software (Texas Instruments 2007b), which at 
that time was a new digital environment for all concerned.  
This research was framed within an activity-theoretic approach that interprets the 
Vygotskian notion of activity as a ‘unit of analysis that included both the individ-
ual and his/her culturally defined environment’ (Wertsch 1981). Verillon and Ra-
bardel elaborated this earlier theory to develop the instrumental approach within 
technological environments (Verillon and Rabardel 1995). This construct has been 
further expanded by the mathematics education research community to include the 
notions: instrumentation; instrumentalisation; instrumental genesis; instrumental 
orchestration and documentational genesis. (Drijvers and Trouche 2008; Guin and 
Trouche 1999; Trouche 2004; Gueudet and Trouche 2009; Drijvers 2012; 
Haspekian 2014). These ideas concern the complex and interrelated processes of: 

• Learning to use a new technology for purposeful mathematical activity; 
• Designing tasks for students to initiate purposeful mathematical activity; 
• Collating the various artefacts that comprise the ‘document system’ for the ac-

tivity; 
• Supporting students to learn to use technology for purposeful mathematical ac-

tivity; 
• Articulating the teacher’s role in supporting the students to navigate their re-

spective routes through the various artefacts that comprise the activity to in-
clude interaction with the technology.   

It is important to comment that within the research contexts from which these no-
tions have emanated, the chosen technologies fit Pierce and Stacey’s description 
of ‘mathematical analysis tools’ (2008), which include technologies such as com-
puter algebra software (CAS), dynamic geometry software (DGS), graphing soft-
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ware and spreadsheet software. The TI-Nspire technology used within my earlier 
research afforded a range of ‘applications’ that included: calculator; spreadsheet; 
dynamic geometry; function graphing; statistical calculation and graphing; built in 
commands i.e. factor(n); and text editing. In all of these environments, the facility 
to save numeric outputs as variables supported the linking of variables within and 
between these different representations. 
A second important theoretical construct of significance to the study was that of a 
multiple representational environment, which was postulated initially by Kaput 
(1986) in his vision for the way in which technology might support higher–level 
engagement with mathematics. In the intervening years, different genres of tech-
nologies have afforded opportunities to engage with mathematics dynamically by 
observing the simultaneous views of different representations, for example, the 
representations of a function, its graph and a table of its associated coordinate val-
ues. The development of ‘dragging’ an image through the interface of a mouse (or 
pen or finger) has afforded further forms of mathematical interaction.  
As the study progressed, an element of the teachers’ epistemological development 
was related to their realisation that expressing generality was a very important as-
pect of the tasks that they went on to design, although this was not necessarily re-
alised at the time. Other elements of the teachers’ professional learning concerned 
increasing attention to the way that the digital environment supported or hindered 
the expression of generality, the design of the associated supporting resources, and 
the teacher’s role in mediating the associated classroom discourse. The evidence 
from the study suggested that the process of designing tasks that utilise such envi-
ronments to privilege explorations of variance and invariance is a highly complex 
process, which requires teachers to carefully consider how variance and invariance 
might be manifested within any given mathematical topic. The relevance and im-
portance of the initial example space and how this might be productively expand-
ed to support learners towards the desired generalisation is a crucial aspect of task 
design. For example, the example space might need to be flexible enough to ena-
ble the students to explore and generate different example sets, which might be 
accomplished by dragging an on-screen object that drives a variant property.     
The starting point for any classroom task is its initial design, and the following set 
of questions, generated as a result of this study, offer a research-informed ap-
proach to the design process: 

• What is the generalisable property within the mathematics topic under 
investigation? 

• How might this property manifest itself within the multi-representational 
technological environment – and which of these manifestations is at an 
accessible level for the students concerned? 

• What forms of interaction with the multi-representational technology will 
reveal the desired manifestation? 

• What labelling and referencing notations will support the articulation and 
communication of the generalisation that is being sought? 
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• What might the ‘flow’ of mathematical representations (with and without 
technology) look like as a means to illuminate and make sense of the 
generalisation? 

• What forms of interaction between the students and teacher will support the 
generalisation to be more widely communicated? 

• How might the original example space be expanded to incorporate broader 
related generalisations? (Clark-Wilson 2010, p.242-3) 

These questions will be used as a rubric later in this chapter.  
Discussions during the ICMI Study Conference 22 on Task Design (Margolinas 
2013) led Paul Drijvers to contribute a further question: How do you know that 
this generalisation is true for all cases? (Can it be proved?)  
However, these questions only become useful as one begins to consider the study 
of a particular mathematical topic in relation to the teaching context, that is the 
age, prior attainment and prevalent teaching and learning culture for the students 
for whom a task is being designed. 
What follows are two examples of mathematical tasks that have been designed as 
early introductions to linear functions within lower secondary mathematics. The 
first example is a task designed by one of the participating teachers within the 
original research study that used TI-Nspire computer software (the teacher) and 
handheld technology (the teacher and students). The second task was designed to 
be accessed within a web browser for the more recent Cornerstone Maths project 
(a brief description of which is provided below). These examples are used both to 
provide a deeper discussion of the task design rubric and to highlight some of the 
tensions within the process of task design. 

Task examples: Introducing linear functions 

When these tasks were designed, the English National Curriculum (Department 
for Children Schools and Families 2007) stipulated the following content 
knowledge related to linear functions for students aged 11-14 years1: The study of 
mathematics should include linear equations, formulae, expressions and identities 
(2007 p. 145), which was exemplified by the attainment target:  

They [the students] formulate and solve linear equations with whole-number coefficients. 
They represent mappings expressed algebraically, and use Cartesian coordinates for 
graphical representation interpreting general features (2007 p. 150). 

It is from this starting point that teachers make decisions about the tasks they de-
sign and adapt, which requires a consideration of the particular mathematical and 
pedagogic starting points alongside the finer mathematical progression of the stip-
ulated content knowledge.   

                                                             
1 This was replaced by a new National Curriculum in 2013 (Department of Education 2013) 
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Task 1 - Investigating straight lines  

The task that follows was designed by an experienced teacher who was confident 
with a range of existing mathematical technologies and chose to use the TI-Nspire 
PC software with a group of 11-12 year olds to meet her mathematical learning 
objective ‘To be able to discover the gradient and intercept and how they connect 
to the [linear] equation’. She displayed the task instructions as shown in Fig. 1. 
and informed the students to: ‘work with a partner; be systematic; use lots of dif-
ferent pages to record your findings; and experiment with different layouts’. 

 
Fig. 1. Task instructions as displayed to the students  

 

The students, a homogenous2 class of 30 boys and girls, worked in small groups of 
twos and threes around laptop computers in their normal mathematics classroom.  
During the one hour lesson, the teacher moved around the classroom, interacting 
with groups of students to support them to: get started on the task; overcome tech-
nological issues (how to input functions, how to split the page to enable them to 
record their learning notes alongside their graphs, etc.); and to question them 
about their choice of functions and provide motivational encouragement. The 
teacher did not choose to convene a whole-class discussion at any point during 
this particular lesson. Instead, the students posted their task conclusions to the 
school’s virtual learning environment, which the teacher reviewed and responded 
to after the lesson. In the subsequent lesson, the students worked further on the 
task before each group presented their findings to the whole class. 
The work of one pair of students (a boy and a girl), which is typical of the work 
produced by the class in terms of its content, layout, and the informal language 
within the learning notes, is shown below in Figs. 2-5 in the order in which they 
presented to the class. 

 

                                                             
2 The students in most English state schools are organised into setted mathematics classes, ac-
cording to their prior attainment. 
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Fig. 2. 

 

Fig. 3.  

 

Fig. 4. 

 

 

Fig. 5. 

 

 

In her detailed evaluation of the students’ activity during the lesson, the teacher 
concluded the following: 

Previously they had plotted coordinates and joined them up to make a straight line. They 
were first of all quite amazed that they could just type in the equation and the line would 
appear automatically. They began to realise that changing the equation affected the graph 
in different ways, and that the number before the x affected it differently from changing 
the number added on. 
They first of all were very unsure about what to do and needed some prompting, 
especially on how to fix one variable and alter the other so they did not end up with loads 
of random looking lines on the page. Mostly it was just an idea of where to start and what 
equation to type in initially, and then once they had told me what they wanted to fix and 
what they wanted to change they were fine. Most students managed to reach the 
conclusion that as the number before the x gets bigger the line gets steeper, and that the 
number on the end moves the graph and you can make parallel lines. Hardly any had yet 
managed to generalise to look at fractions or negatives. 
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This task design is highly typical of tasks that introduce the gradient and intercept 
properties of linear functions using mathematical technologies, which have pre-
vailed in English classrooms since the late 1980s3. Although the student use of 
technology to explore mathematical concepts is still under-reported in English 
secondary school practice (Office for Standards in Education 2008, 2012), re-
search continues to report similar approaches (Ruthven and Hennessy 2003; 
Godwin and Sutherland 2004). 

Task 2 – Controlling characters with equations 

The example that follows ‘Controlling characters with equations’ is a task from a 
sequence of tasks focused on linear functions - one of three curriculum units de-
veloped during the Cornerstone Maths project (2011-2014). Cornerstone Maths 
(CM) is a collaborative design research project involving colleagues at the London 
Knowledge Lab, UCL Institute of Education and SRI International, USA that has 
the particular aim to widen student access to dynamic mathematical technology in 
lower secondary classrooms across England to support the teaching of ‘hard to 
teach topics’. (For a fuller description of this project and its research outcomes, 
see (Clark-Wilson, Hoyles, Noss, Vahey, and Roschelle 2015; Hoyles, Noss, 
Vahey, and Roschelle 2013) .  Central to its design is the ‘curriculum activity sys-
tem’, which incorporates digital resources, pupil workbooks, teacher guides and 
teacher professional development (Vahey, Knudsen, Rafanan, and Lara-Meloy 
2013). The digital resources for each of the curriculum units have been developed 
in html5 to enable wider access by students through a web browser and so over-
come the need for software to be installed and maintained on school computer 
networks, a known barrier to technology use in English mathematics classrooms. 
In each case a rapid prototyping methodology was adopted to the design of the 
web-based software by taking the desirable features of existing software that had 
already been shown to enhance students’ mathematical learning. In the case of the 
CM curriculum unit on linear functions, its software antecedent was SimCalc, for 
which a body of research exists (Hegedus and Roschelle 2013; Kaput and Schorr 
2008). The curriculum unit includes 14 separate tasks for students, not all of 
which require access to technology. This particular task has been selected as its 
learning objectives most closely align with those of the earlier example. 

Equations are a form of mathematical representation. Graphs and tables are other forms. 
Equations can be written based on tables or graphs. You can “translate” between graphs, 
tables and equations. Time, distance and speed are represented differently in these three 
representations. For equations of the form y = mx, in motion contexts, m is the speed of a 
moving object. (SRI International and Institute of Education 2013, p. iv) 

                                                             
3 From graphing calculators and software packages such as Mouseplotter (BBC Micro), Coypu 
(Acorn/PC), Omnigraph (PC) and Autograph (PC/Mac/iPad). 
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Fig. 6. below shows the digital resource that accompanies the task. When the play 
button is activated, the character (Shakey the robot) moves along the horizontal 
number line, and Shakey’s position and time are highlighted simultaneously on the 
position-time graph and within the table (using colour). In Fig. 6. the animation 
has been paused at t=3 seconds.   
Fig. 6.  The dynamic digital environment that accompanies the task ‘Controlling characters 
with equations’. 

 

In the task, the students adopt the role of a digital games designer. The task narra-
tive informs them that they are learning the underlying mathematics to enable 
them to design interesting computer games for mobile devices.  The pupils are 
asked to edit4 the scenario in Fig. 6 to meet different mathematical constraints (i.e. 
to make ‘Shakey’ move slower and faster) and to record the resulting graph, table 
of values and equation in their workbooks.  The process of editing the software, 
which has the effect of altering the starting position, speed and overall travel time, 
is accomplished in the following ways: 

 
The starting position 
of the character is var-
ied by: dragging the 
character; dragging 
the point representing 

Fig. 7. Varying the charater’s start position. 

                                                             
4 The pupils are not given guidance on how to do this in the pupil workbook. Also, during their 
initial professional development teachers are discouraged from demonstrating the different ways 
to edit the software to pupils before pupils have had an opportunity to explore the editing func-
tionality for themselves. 
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t=0 on the position-
time graph in a verti-
cal direction; and/or 
inputting a numeric 
value representing ‘c’ 
in the equation. 

 

The gradient/speed is 
varied by: dragging 
the end-point of the 
line segment in a ver-
tical direction and/or 
inputting a numeric 
value representing ‘m’ 
in the equation. 

Fig. 8. Varying the speed/gradient. 

 

Dragging the position 
of the ‘hot spot’ on 
the x-axis in a hori-
zontal direction varies 
the overall travel time. 

Fig. 9. Varying the travel time.  

 

Due to the scale of the Cornerstone Maths project, over 180 teachers have taught 
all or some of the linear functions unit to approximately 6000 students. A scrutiny 
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of the pupil workbooks of one particular gender mixed class of twenty-eight 12-13 
year olds revealed that all of the students were able to edit the graph and sketch 
the graphs to meet the given constraints (slower and faster). Furthermore, sixteen 
students gave a written description of the mathematical differences between the 
two scenarios that they had created, which used language such as ‘steeper’, ‘more 
shallow’, ‘more gradient’ to explain the differences between the slower and faster 
scenarios. There was also a great variety in the notations that pupils used to record 
the ‘equation’ and their interpretations of the decimal notation that the software 
displayed. For example, most students recorded the equation exactly as it was dis-
played, i.e. y=8.0x+0, whereas others recorded it as y=8x+0 or y=8x. One student 
represented the equation in a way that was consistent with the table of values, re-
cording the equation as 40x=y (see  Fig. 10.). 
Fig. 10. One student’s own graph of ‘Fast Shakey’ 

 

The diversity of the students’ responses exemplifies the software tool’s role as a 
semiotic mediator supporting the students’ personal constructions of meaning re-
lated to linear functions and related notations. (Bartolini Bussi and Mariotti 2008).  

Post-priori analysis 

The task design rubric is now used to analyse the two tasks, paying attention to 
both the designer’s perspective and the implications of this supported by the evi-
dence of the students’ responses to the tasks in the respective classrooms.  
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Table 1. A post-priori analysis of the two tasks 

Question Task 1: Investigating straight line 
graphs 

Task 2: Controlling characters 
with equations 

What is the generalisable 
property within the mathemat-
ics topic under investigation? 

Designers’ intentions: 

There were two generalizable proper-
ties: The value of m defines the gradi-
ent/steepness of a linear function y = 
mx + c; and the value of c defines the 
position of the intercept on the y-axis.  

In reality the students were required to 
choose which of these properties they 
would investigate first. They were also 
free to choose the type of numbers that 
they input for ‘m’ and ‘c’. (i.e. posi-
tive/negative, integer/fraction/decimal) 

Designers’ intentions: 

For equations of the form y = mx, 
in motion contexts, m is the speed 
of a moving object. 

How might this property man-
ifest itself within the multi-
representational technological 
environment? – and which of 
these manifestations is at an 
accessible level for the stu-
dents concerned? 

The gradient property: 

The appearance of the ‘steepness’ of 
the line within the graph domain. This 
is accessible to the students. 

The value of ‘m’ as displayed in the 
equation. This was visible to the stu-
dents, although as multiple lines were 
on the screen, students would need to 
remember the creation of each line to 
link it to its respective equation. 

The increase in y-value for a unit in-
crease in x-value. This is accessible to 
students through the Table view, how-
ever, in the lesson concerned, the stu-
dents were not made aware of this 
functionality. Although the value of ‘m’ 
defines the gradient, it is not clear 
whether students were able to connect 
the value of ‘m’ in a numeric sense to 
the particular graph that they were 
looking at as the resolution of the 
screen did not allow for accurate inter-
pretations. 

The intercept property 

The real-time speed with which the 
character moves, the line segment 
is highlighted on the graph and the 
corresponding rows are highlighted 
in the table.  Students’ written re-
sponses suggest that that most stu-
dents were able to make sense of 
these different representations. 
 
The value of ‘m’ as displayed in the 
equation.  This was visible to the 
students. 
 
The numeric increase in y-value for 
unitary increases in x-value as high-
lighted within the table of values.  
This was visible to the students. 
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The position of the intercept on the y-
axis. This was accessible to students. 

The value of ‘c’ as displayed in the 
equation. This was visible to the stu-
dents. 

The y-value when x=0, which can be 
observed in the Table view.  This func-
tionality was not used by the students 
during the lesson. 

What forms of interaction with 
the multi-representational 
technology will reveal the de-
sired manifestation? 

Having decided whether to vary the 
value of m or c, students could vary 
these values by: 

Inputting the right hand side of equa-
tions in the form ‘mx + c’  (the left 
hand syntax is given automatically by 
the tool, i.e. fn(x)= where n increases 
by one to define each new function.) 

Dragging the position of the line using 
one of two ‘hotspots. A rotate hotspot - 
to vary the gradient around the point (0, 
c) and a translate hotspot to vary the 
value of c, whilst maintaining the gra-
dient. In the lesson concerned, the stu-
dents did not interact with the graphs 
in this way. 

Editing the graph to vary the gradi-
ent/speed and overall travel time, as 
shown in Figs. 7 and 8. 

Editing the equation to vary the 
gradient/speed. 

What labelling and referencing 
notations will support the ar-
ticulation and communication 
of the generalisation that is be-
ing sought? 

Multiple functions were visible at the 
same time, each with its own reference, 
i.e. f3(x)=2x+3. This could result in a 
‘pile-up’ of representations as seen in 
Figures 2-5. 

The representations referred to a 
single animation of the character 
(Shakey). The initial animation rep-
resented the reference point to 
which the animations of ‘Slow 
Shakey’ and ‘Fast Shakey’ could be 
compared. 

What might the ‘flow’ of 
mathematical representations 
(with and without technology) 
look like as a means to illumi-
nate and make sense of the 
generalisation? 

Function input (using algebraic nota-
tion). 

Observation of resulting graph in 
graphics view. 

Further input(s) of function(s) and ob-
servation/comparison of resulting 
graphs in graphics view. 

Playing of animation. 

Observation of: the emergent trace 
of the line segment; the highlighted 
values in the table; and the overall 
appearance of the graph on the giv-
en axes. 

Varying the animation by editing 
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[Away from the technology] Justifica-
tion of why a higher/lower value of m 
(or c) affects the graph in particular 
ways. 

Reveal the Table view for particular 
equations to identify key features that 
relate to particular values of ‘m’ and 
‘c’. 

one of the variables as described in 
Figs. 7 to 9, which would lead to 
multiple ‘flows’ of representations, 
dependent on the focus of attention. 

 

What forms of interaction be-
tween the students and teacher 
will support the generalisation 
to be more widely communi-
cated? 

Discussion to ensure that students focus 
on varying either ‘m’ or ‘c’ in the first 
instance. Discussion about the notation  

Discussion to highlight how particular 
equations generate particular lines and 
of their distinctive features. This would 
involve direct interaction with the 
software, including inputting equations 
and dragging lines to new positions. 

Discussion to relate the distinctive fea-
tures of the lines and equation to the 
distinctive features of the related func-
tion machine and table of values. 

Discussion to relate the distinctive 
features of the initial animation to 
the graph, table of values and equa-
tion. This would involve direct in-
teraction with the software. 

Discussion to highlight how the dif-
ferent hotspots on the graph affect 
the animation, graph, table of val-
ues and equation. This would in-
volve direct interaction with the 
software to edit the graph and/or 
equation. 

How might the original exam-
ple space be expanded to in-
corporate broader related gen-
eralisations? 

The flexibility of the tool would enable 
the students to: 

• Reveal the table of values in order 
to make generalisations about the 
relationship between the function 
and its displayed values. 

• Input other families of functions, 
such as quadratics and cubics. 

• Explore how ‘zooming’ in and out 
of the graphing window affects the 
gradient both visually and numeri-
cally. 

The flexibility of the tool would 
enable the students to: 

• Edit the scenario to vary the 
start position of the character 
(i.e. to vary ‘c’) and to show 
backward motion, i.e. graphs of 
negative gradient. 

• Explore how ‘zooming’ in and 
out of the graphing window af-
fects the gradient both visually 
and numerically. 
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Conclusions 

The analysis of the two task examples, which had both been designed to introduce 
the concept of linear functions to lower secondary students in a dynamic techno-
logical environment reveals subtle tensions that relate to the mathematical 
knowledge that is being addressed by the task and aspects of the process of task 
design.  

Mathematical knowledge 

It is clear that different aspects of mathematical knowledge concerning linear 
functions were being addressed by the two tasks, with the first task adopting a 
pure mathematical context whereas the second task involved a realistic motion 
context. However, both tasks sought to involve students in explorations of the var-
iant and invariant properties of linear functions.  
The analysis does indicate that the cognitive load for Task 1 is higher as it not on-
ly requires the students to begin by choosing which variable they will focus on but 
the task also relies on them making sense of:  

• which line relates to which function;  
• the particular notation adopted by the tool (i.e. f17(x)= 5!x+2);  
• and the range of values of x that is automatically plotted.  

Consequently, although the task enables students to be ‘successful’ in that they 
can notice the most obvious generalizations – that the value of ‘m’ controls the 
appearance of the graph and that greater values of ‘m’ results in steeper lines – the 
task did not provide opportunities for students to link this with other representa-
tions in the technology, in particular the table of values, which would have ena-
bled a deeper justification5. 
By contrast, even though Task 2 involved more representations on the screen that 
were dynamically linked, each animation generated an example for which the 
links between the representations had been made visually explicit. By looking at 
fewer linear functions in a greater depth, it is possible for students to recognize 
key features within each representation and, therefore be better placed to be able 
to see the connections between them. This presents a tension for the designer. 
Does she offer a task environment that gives a global view of the mathematical 
domain using multiply-linked representations and then ‘zoom’ in on particular fea-
tures to reveal particular variant and invariant properties or does she offer a fo-

                                                             
5 The teacher did begin the lesson by reminding the students that, in order to generate each 
graph, the computer used a ‘function machine’ - an idea and representation that was familiar to 
the students. 
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cused view and subsequently ‘pan-out’ to support the student to connect the vari-
ant and invariant properties within the dynamically connected representations. 

This highlights the complexity of the initial task design process in defining the 
mathematical domain that a task is intended to address, the nature of the initial ex-
ample space and the intended user pathway through this space that incorporates 
different ‘instrument utilization schema’ (Verillon and Rabardel 1995). Increas-
ingly, when designing tasks within dynamic mathematical environments, design-
ers are including follow-on tasks away from the technology that support students 
to make more explicit links with the formal paper and pencil methods. For exam-
ple, in the technology-mediated aspects of Task 2, which emphasizes the mathe-
matical content of position-time graphs and the concept of speed, it was necessary 
to provide accompanying tasks away from the computer. These tasks required stu-
dents to work flexibly from different mathematical starting points to develop a 
complete set of mathematical representations and support them to work fluently 
between these representations. For example, given some key values within the ta-
ble of values, could they construct the related equation and graph? 

Design principles – technology and tasks 

It is important to (re)state that Task 1 was designed by a teacher for use in her own 
classroom as part of her early experiences with a new software tool. This example 
has been selected here as it typifies a genre of tasks that have been prevalent with-
in technology use in English classrooms. However, although prevalent, this task 
approach has not been widely used and, on reflection, the post-priori analysis pro-
vided by the task design rubric may offer some insight into why such tasks have 
not become embedded within localised schemes of work. The very open nature of 
the task coupled with the resulting display of the software may have been suffi-
cient for students to draw a broad conclusion, but there may have been insufficient 
direction in the task design to draw students’ direct attention to key features, that 
is to support them to ‘notice’ important aspects of the graph. Interestingly, the 
functionality is present in the software to support this further work, for example, 
to reveal the table of values. However, in the teacher’s early lesson design, she 
was either unaware or chose not to use this representation within the task.  
 
By comparison, Task 2 was designed by a team that involved software designers, 
researchers and teachers over several years, and the task included multiple dynam-
ic representations of several particular functions. The analysis of Task 2 using the 
design rubric, supported by evidence of students’ outcomes suggest that the cogni-
tive load of Task 2 was manageable for the students. In some ways this could be 
seen as an example of discrepancy potential, as described by Leung and Bolite-
Frank (for publication 2015), whereby the limitations of one tool might be com-
plemented by the affordances of another. The more contained example space in 
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Task 2 enabled students to be successful in their early work, but it may also have 
constrained some students from making other mathematical insights, for example 
exploring non-linear functions. 
 
This highlights a tension when designers choose whether designing a task in an 
existing mathematical technological environment or to create a completely new 
digital space that is wholly ‘bespoke’ for its intended mathematical purposes. Giv-
en the multitude of existing tools that might be suited to early explorations of line-
ar functions (Graphing calculators, Geogebra, Autograph, TI-Nspire, The Geome-
ter’s Sketchpad, SimCalc..), why create another environment? 
 
The task design rubric includes an important consideration that seems critical to 
this early consideration in the design process, ‘ascertaining the forms of interac-
tion with the tool that reveal the desired variant/invariant properties’. This requires 
a deep knowledge of the tool’s mathematical affordances and constraints. For ex-
ample, if, as in Task 1, we choose to explore linear functions using TI-Nspire 
handhelds, there are many alternative tasks that could be designed to explore gra-
dient and intercept properties. The software file could be pre-written with ‘m’ and 
‘c’ predefined and the table of values visible. Students could have a more directed 
task in which they are instructed to change particular values (i.e. vary the value of 
‘m’ by dragging an on-screen slider) to meet certain constraints and to observe 
particular features.  
 
The resolution of this dilemma involves many considerations that include the need 
for the designer’s deep understanding of the mathematical content appropriate to 
the students, its representations and connections alongside a level of familiarity 
with affordances and constraints of existing software tools. However, repeated re-
search studies have shown over many years that, as it is a teacher’s principle role 
to be a task designer, it is important that teachers have opportunities to work 
alongside more experienced colleagues, researchers and task designers to develop 
this aspect of their role (Noss, Sutherland, and Hoyles 1991; Clark-Wilson 2008; 
Artigue 1998). 

Implications and further research 

In concluding this chapter, it is important to highlight one aspect of the task design 
rubric for which there was insufficient data from the post-priori analysis of the 
two tasks to draw any substantial conclusions. This concerns the forms of interac-
tion between teacher and students to support mathematical generalizations. These 
interactions might be evident in teachers’ lesson designs (i.e. a ‘lesson plan’), but 
can only be robustly researched through lesson observations and interviews. With-
in English teaching practices, it is most common for teachers to share teaching re-
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sources with each other and, in the case of digital lesson resources this is usually 
the software file and/or the task ‘idea’. It is far less common for these resources to 
include the teacher’s narrative to accompany how a task is introduced, developed 
and assessed. Hence the ‘blank’ page start with a digital tool adopted by the first 
example is a common one. It required little advanced preparation, that is, the soft-
ware file did not need to be made available to students via the school network for 
the beginning of the lesson.  
Other studies have revealed the subtleties of the teacher’s role within technology-
mediated lessons of this type as it demands a high level of teacher interaction, not 
just with the students but also involving the software tool itself (Aldon 2011; 
Clark-Wilson 2010). The teacher is required to have a depth of instrumentalisation 
with the software such that she can select particular cases, change and display key 
features in order to support the discourse such that generalizations can emerge, be 
formalised and ultimately proven. 
The nature of teachers’ ‘mathematical pedagogic practices’ whilst designing and 
teaching technology-mediated lessons is a research focus for a 3-year study in 
England, funded by the Nuffield Foundation6 and co-directed by Celia Hoyles and 
myself. Set in the context of the Cornerstone Maths project, we have a adopted a 
lesson study approach to the design, implementation and evaluation of ‘landmark 
activities’ (Clark-Wilson, Hoyles, and Noss 2015) within each curriculum unit that 
aims to articulate teachers’ practices.  
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