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ABSTRACT 

Geographical isolation by oceanic barriers and climatic stability has been postulated 

as some of the main factors driving diversification within volcanic archipelagos. However, 

few studies have focused on the effect that catastrophic volcanic events have had on patterns 

of within-island diversification in geological time. This study employed data from the 

chloroplast (cpDNA haplotypes) and the nuclear (AFLPs) genomes to examine patterns of 

genetic variation in Canarina canariensis, an iconic plant species associated with the 

endemic laurel forest of the Canary Islands. We found a strong geographic population 

structure, with a first divergence around 0.8 Ma that has Tenerife as its central axis and 

divides Canarian populations into eastern and western clades. Genetic diversity was greatest 

in the geologically stable "paleo-islands" of Anaga, Teno and Roque del Conde; these areas 

were also inferred as the ancestral location of migrant alleles towards other disturbed areas 

within Tenerife or the nearby islands using a Bayesian approach to phylogeographic 

clustering. Oceanic barriers, in contrast, appear to have played a lesser role in structuring 

genetic variation, with intra-island levels of genetic diversity larger than those between-

islands. We argue that volcanic eruptions and landslides after the merging of the paleo-

islands 3.5 million years ago played key roles in generating genetic boundaries within 

Tenerife, with the paleo-islands acting as refugia against extinction, and as cradles and 

sources of genetic diversity to other areas within the archipelago. 

 

INTRODUCTION     

Due to their small size, discrete geographic boundaries, substantial environmental 

heterogeneity and buffered climates, oceanic islands represent excellent natural laboratories 

to examine the role of ecological adaptations versus geographic isolation as drivers of 

diversification (Carson & Templeton 1984; Gillespie 2004). Patterns of genetic variation are 
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expected to be hierarchical in islands, with between-island genetic differentiation stronger 

than within-islands (Bottin et al. 2005; García-Verdugo et al. 2010), because oceanic barriers 

are generally more effective than topographic barriers at promoting isolation in insular 

systems (Gillespie & Clague 2009). However, the birth and development of volcanic islands 

is usually followed by a large number of destructive events in the form of secondary 

eruptions, landslides, merging of paleo-islands, etc (Carracedo 1994; Fernández-Palacios et 

al. 2011). These events promote habitat fragmentation; the subsequent genetic isolation of 

populations; and they ultimately drive differentiation and speciation within-islands (Carson et 

al. 1990; Gillespie & Roderick 2002, 2014; Macías-Hernández et al. 2013).  Therefore, 

volcanic archipelagos represent an ideal framework for studying patterns of diversification at 

different spatial scales (between- and within-islands) and also over different temporal levels 

(allopatric speciation, extirpations and recolonisations). 

The Canary Islands are a volcanic archipelago formed by a chain of seven islands, 

located 110 km from the north-western coast of Africa. Their geological history and highly 

endemic biota have interested scientists since the early 19th century (von Humboldt 1814; 

Lyell 1855). The islands were formed in the last 21 million years (Ma) with an east to west 

pattern of chronological emergence due to a mantle plume (Carracedo et al. 1998; Zaczek et 

al. 2015) (Figure 1a). They are separated by deep oceanic trenches and have never been 

connected to the mainland. The Canary Islands have long been considered refugia for 

continental lineages that have survived the climatic changes of the Late Cenozoic, but also as 

cradles of biodiversity where multiple in-situ diversification events have taken place (Juan et 

al. 2000; Francisco-Ortega et al. 2000). In addition, these islands are regarded as a hotspot 

for plant diversity (Médail & Quézel 1997): approximately 40% of Canarian vascular plants 

are endemics (Santos-Guerra 2001) and the flora is generally characterised by high levels of 

inter-population differentiation in comparison to other archipelagos (Francisco-Ortega et al. 
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2000; de Paz & Caujapé-Castells 2013). Recently, they have been proposed as reservoirs and 

sources of genetic diversity (García-Verdugo et al. 2015; Patiño et al. 2015).  

Most studies on the Canarian flora have focused on the pattern of inter-island 

diversification, particularly at the species level (Francisco-Ortega et al. 2002; Kim et al. 

2008; Vitales et al. 2014a, b). Nevertheless, the complex topographies and long histories of 

avalanches and secondary eruptions of many of these islands are likely to have favoured 

within-island diversification (Juan et al. 2000; Brown et al. 2006). Tenerife has the most 

complex history of all the islands. It existed at first as three separate islands, dating back to 

the Late Miocene: Roque del Conde (11.9-8.9 Ma) in the southwest, Teno (6.2-5.6 Ma) in the 

northwest, and Anaga (4.9-3.9 Ma) in the northeast. Eruptive central volcanic episodes fused 

these islands 3.5 Ma and gave rise to the present island of Tenerife (Ancochea et al. 1990; 

Fig. 1b). The paleo-islands remained thereafter relatively stable, whereas the central part of 

Tenerife continued to be active until 0.13 Ma (Ancochea et al. 1990, 1999; Cantagrel et al. 

1999; Guillou et al. 2004; Carracedo 2014; see Fig. 1b). Interestingly, the three paleo-islands 

of Tenerife, together with La Gomera – which has also remained geologically stable since the 

Pliocene – are presently home to the highest phylogenetic diversity and endemic richness of 

the Canarian Archipelago (Reyes-Betancourt et al. 2008).  These areas also harbour the best-

preserved laurel forests, considered as an ancient, unique flora restricted to Macaronesia, and 

they share several endemic and restricted species (see Table S1). Besides their geological 

(volcanic) stability, the three paleo-islands of Tenerife also exhibit a topographic complexity 

and variety of micro-climates that might have favoured their role as micro-refugia against 

climate- or human-induced extinction (Harter et al. 2015). 

In reviewing the role of Tenerife paleo-islands as refugia across several plant lineages, 

Trusty et al. (2005) found that species endemic to the paleo-islands often occupied a derived 

position in the lineage's phylogeny. This position argued against the idea of these massifs as 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

ancient refugia. However other studies, especially in animals, have reported ages for 

divergence events between taxa endemic to these paleo-islands, either at the species or at the 

infra-species level (Juan et al. 1996, 2000; Dimitrov et al. 2008; Macías-Hernández et al. 

2013; Puppo et al. 2014;) that are contemporaneous or predate the age of merging of the 

precursor paleo-islands 3.5 million years ago (Ancochea et al. 1990).  Few plant studies 

(Gómez et al. 2003; García-Verdugo et al. 2010) have focused on patterns of within-island 

genetic variation for widespread Canarian endemics, and none of them have provided 

estimates of lineage divergence times, which is necessary to relate within-island patterns to 

the island geological history. Species that are present in multiple islands ("multiple island 

endemics" or MIEs) are especially relevant to understand the role of paleo-islands as 

undisturbed areas that have acted as reservoirs and sources of genetic diversity not only 

within- but between-islands.  

Here, we study patterns of genetic diversity and the demographic and spatial history 

of a multiple island endemic, Canarina canariensis (L.) Vatke. This "flagship" species of the 

Canary Islands, elected as its “national flower” (Kunkel 1991), is a diploid (2n = 34) 

herbaceous plant that grows mostly in cleared areas surrounding the endemic laurisilva forest. 

It presently occurs in the central and western Canary Islands: Gran Canaria, Tenerife, La 

Gomera, La Palma and El Hierro. C. canariensis is a herbaceous plant that occasionally 

climbs on nearby plants; it is pollinated by generalist birds (Rodríguez-Rodríguez & Valido 

2011) and its fleshy fruits are dispersed by vertebrates (Valido et al. 2003, Rodríguez et al. 

2008). Genus Canarina belongs to tribe Platycodoneae, a basal group within family 

Campanulaceae (Olesen et al. 2012; Mansion et al. 2012; Wang et al. 2013; Mairal et al. 

2015). In addition to C. canariensis, the genus comprises two other species inhabiting the 

Afromontane forests of Eastern Africa, C. eminii and C. abyssinica, being this an example of 

a wide, continental-scale disjunction of 7000 km spanning across the Sahara. Mairal et al. 
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(2015) recently reconstructed the phylogeny and spatiotemporal evolution of Canarina. They 

inferred that C. canariensis diverged from its African relatives at the end of the Miocene (c. 7 

Ma). This extraordinary temporal and spatial disjunction was explained as the result of 

vicariance and climate-driven extinction resulting in the fragmentation of an ancient 

widespread distribution. The colonization of the Canary Islands by the ancestors of C. 

canariensis apparently occurred much later, in the Pleistocene, probably from a now extinct 

and geographically closer North African population: the earliest event of population 

divergence is dated at only around 1 Ma (Late Pleistocene) and involved an east-west 

vicariance within Tenerife (Mairal et al. 2015).  

This age and the presence of Canarina canariensis in several islands makes it an ideal 

candidate to evaluate patterns of within-island diversification in relation to the recent 

geological history of the archipelago. Our main aims were to: i) determine the geographic 

distribution of genetic variation within Canarina canariensis, ii) find evidence of extinction 

and diversification processes that may be related to geological events, iii) find ancestral areas 

and reconstruct inter-island migration events, iv) examine the putative role of the paleo-

islands of Tenerife as refugia of genetic diversity, both relictual and recent.  

Haplotype networks are commonly used in population-level studies because they 

provide a clearer picture of the reticulate relationships between genetic pools than a 

branching tree, especially when gene flow is present. These networks are often inferred using 

Statistical Parsimony (SP, Templeton et al. 1992) implemented in the software TCS (Clement 

et al. 2000), which allows estimation of the haplotype network while minimising the number 

of mutation events differing among haplotypes. However, this method fails to incorporate the 

uncertainty associated to the network inference, and therefore does not allow for statistical 

evaluation of alternative phylogeographic scenarios (Bloomquist et al. 2010). Moreover, 

unobserved events such as local population growth or past extinction of haplotypes may 
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mislead inference in parsimony-based methods. Here, we compare results from TCS with 

those obtained from a model-based, Bayesian statistical method, Bayesian Phylogeographic 

and Ecological Clustering (BPEC, Manolopoulou et al. 2011), which allows estimating the 

posterior probabilities for haplotype tree networks under a coalescent-based migration-

mutation model (Manolopoulou & Emerson 2012). To our knowledge, this is the first study 

to use this method for island phylogeography. 

 

MATERIALS AND METHODS 

Population sampling and DNA extraction 

Canarina canariensis has a significantly greater presence on Gran Canaria (GC) and 

Tenerife (TF), in comparison with La Gomera (LG), La Palma (LP) and El Hierro (EH). 

Seventeen populations of C. canariensis were sampled in several fieldtrips between 2009 and 

2012: 4 in GC, 8 in TF, 2 in LG, 2 in LP and 1 in EH. Where possible, we collected a 

minimum of 10 samples per population. To reduce inflation in gene descriptors due to biased 

sampling (Caujapé-Castells 2010), samples were collected from individuals scattered across 

the whole occupancy area of each population. DNA from 160 individuals and preserved in 

silica gel was extracted using the DNeasy Plant Mini Kit (QIAGEN Inc., California, USA), 

from 20-25 mg of silica-gel dried leaves obtained from the fresh plant tissue collected from 

the field expeditions.  

 

Chloroplast DNA sequencing 

We selected three cpDNA intergenic spacers regions for sequencing; these markers 

have proven to be useful for intraspecific analyses of population structure (Mairal et al. 

2015). We generated 432 new sequences: rpl32-trnLUAG (144 sequences), trnSGCU–trnGUCC 

(144 sequences) and petB1365–petD738 (144 sequences). PCR and sequencing protocols 
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followed those of Mairal et al. 2015. The sources of the material examined, the GenBank 

accession numbers and full references are detailed in Table S2. 

 

Haplotype analyses 

 Sequences for each region were aligned using MAFFT 6.814b (Katoh et al. 2002), 

implemented in the software Geneious Pro 5.4.4. (Biomatters Ltd., Auckland, New Zealand). 

Sequences were checked and manually adjusted where necessary by following alignment 

rules described in Kelchner (2000). We analysed the three sequenced regions as three data 

partitions to perform phylogenetic analyses. MrModeltest v.2.2 software (Nylander, 2004) 

was used to determine the best fitting model of sequence evolution of each data partition. 

Summary statistics for within-population genetic diversity were calculated as: the 

number of haplotypes H(n), haplotype diversity (Hd), nucleotide diversity π, nucleotide 

heterozygosity θ, GST and the number of migrants per generation (Nm) were estimated for 

each population using DnaSP (version 5.10; Librado & Rozas 2009).   

The relationships amongst lineages were investigated through haplotype network 

analysis, by using 6-12 individuals from different populations and examining the three 

sequenced regions. Genealogical relationships among haplotypes were inferred via the 

statistical parsimony algorithm (Templeton et al. 1992) implemented in TCS 1.21 (Clement 

et al. 2000). The number of mutational steps resulting from single substitutions among 

haplotypes was calculated with 95% confidence limits, gaps were represented as missing 

data. 

The BPEC method (Manolopoulou et al. 2011; Manolopoulou & Emerson 2012) was 

implemented in the R package (Manolopoulou & Hille, in prep.) to identify genetically 

distinct geographical population clusters and ancestral locations. Like TCS, BPEC relies on 

parsimony in order to reduce the number of candidate trees to a manageable set. The BPEC 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

method, unlike Standard Parsimony, fits a prior over all possible trees in order to identify 

trees with high posterior probability in a fully model-based framework, thus accommodating 

for uncertainty in haplotype relationships, which is one of the main criticisms of TCS 

(Knowles 2008). Each possible tree defines a set of possible migration events that may have 

led to the observed population substructure. Different scenarios of trees and migration events 

are explored through Markov chain Monte Carlo (MCMC), similar to the method proposed 

by Sanmartín et al. (2008) for estimating rates of inter-island dispersal. Migration events 

were assumed to occur when a haplotype (with or without a mutation from its parent 

haplotype) migrates to a new geographical cluster. MCMC simultaneously estimates high 

probability trees, number of migration events and corresponding clusters. The method 

assumes that the migration rate and the population growth are constant. BPEC requires two 

main user-defined inputs: the maximum number of migrations (denoted as “MaxMig” in the 

software) and the parsimony relaxation parameter used to reconstruct the set of possible trees 

(denoted as “ds” in the software). MaxMig allows the user to set the upper bound for the 

number of migration events and hence the maximum number of clusters (MaxMig + 1). 

Larger values include more models but require much greater computation time. As the ds 

value is increased, the parsimony assumption is relaxed: if two observed sets of sequences 

have an unobserved intermediate missing sequence (an unobserved mutation), then any pair 

of sequences of distance {1,…, ds} nucleotides will be considered as the “missing path”. Two 

MCMC chains were run for three million iterations. The results were stable, with ds > 3 

having no effect on the inferred tree, and similarly, any number of migrations above 4 

converging to a 5–cluster model. The phylogeographic clustering obtained was superimposed 

upon a haplotype tree, and used to estimate ancestral locations for migration events. As a 

further exploration, we divided the dataset into two groups (eastern and western clades – for 

details see coalescent dating section in results). Haplotypes sampled from Roque del Conde 
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were quite divergent; thus, separate analyses were run in which we included and excluded 

this location from the two groups. We ran BPEC analysis on each of these four datasets 

(eastern and western groups with and without Roque del Conde). 

Haplotype divergence times were estimated in BEAST v.1.7 (Drummond and 

Rambaut 2007). We carried out a first analysis under a strict clock model and a coalescent 

constant population tree prior, using a secondary age estimate (Mairal et al. 2015; normal 

prior: mean = 0.76 Ma, standard deviation (SD) = 0.327 Ma) to calibrate the root node of the 

“C. canariensis dataset”; this included all haplotypes detected in our sampling (N = 10). This 

analysis gave us very large 95%HPD (High Posterior Density) credibility intervals and poor 

ESS for posterior age estimates, probably due to the low information content at the 

population level (see Results) and presence of a single calibration point. We carried out a 

second analysis applying the “nested dating approach” described in Mairal et al. (2015), in 

which a higher-level dataset including representatives of all three species of Canarina and 9 

outgroup taxa was used to inform the clock rate of a linked population-level dataset (C. 

canariensis) under a mixed Yule-coalescent model (Ho et al. 2005; Pokorny et al. 2011). The 

higher-level dataset was calibrated with fossil-derived secondary age estimates (see Mairal et 

al. 2015), while the tree prior was unlinked to apply a coalescent constant size model to the 

population-level dataset and a stochastic birth-death (Yule) prior to the species-level one 

(Mairal et al. 2015). The clock model was set to an uncorrelated log-normal prior to 

accommodate the change in mutation rate from species to populations, with a uniform 

distribution for the ucld.mean (10-4-10-1) and a default exponential distribution for the 

ucld.stdev; the substitution model was set to GTR+G; choice of priors was based on Bayes 

Factor comparisons using the path sampling method in BEAST (Baele et al. 2012); see Table 

S3 to see results from exploratory analyses to assess the reliability of our date estimates with 

reference to these settings. Two MCMC chains were run for 50 million generations, sampling 
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parameters every 1000 generation. We used Tracer v1.6 (Rambaut et al. 2013) to verify: 

whether a stationary distribution was attained; if there was convergence amongst chains; and 

that effective sample sizes (ESS values) were > 200 for all parameters. A 10% burn-in of the 

sampled populations was discarded (5 million). Post-burn-in trees were summarised into a 

maximum clade credibility tree using TreeAnnotator v.1.6.1, with mean values and 95% 

credible intervals for nodal ages, and were visualised in FigTree 1.3.1 (Rambaut and 

Drummond 2009). The resulting age estimates from this second analysis exhibited 

considerably larger ESS values and narrower 95%HPD intervals than in the first and are the 

ones reported here.     

 

Demographic history. 

Statistics used to describe demographic patterns may be biased by a strong genetic 

structure or lack of panmixia among populations. Since we detected strong genetic structure 

in our dataset (see results), we performed demographic analyses in subsetted datasets that 

were less genetically structured (including approximate panmitic populations). Three groups 

previously recognised by the haplotype network and BEAST analyses were used: ET-GC 

(including populations in east Tenerife and Gran Canaria), TENO-GO (including populations 

in Teno and La Gomera) and LP-EH (including populations in La Palma and El Hierro). For 

the same reasons as described above, the Roque del Conde population was included and 

discluded from the ET-GC and TENO-GO groups. Overall we ran the analyses on five 

groups.  

We used three different approaches to infer the demographic processes shaping the 

genetic structure of C. canariensis. First of all, to test for evidence of population 

expansion, we carried out a neutrality test – Fu and Li´s tests (Fu & Li, 1993; Fu 1996) and 

Tajima´s D test (Tajima, 1989) – for each population group. We used the DNAsp program, 
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version 5.0 (Librado & Rozas 2009) and assessed the significance of each test with 10,000 

coalescent simulations. Secondly, we plotted the mismatch distribution for each group using 

the observed number of differences between all pairs of sequences with the ARLEQUIN 

v.3.0 software (Excoffier et al. 2005). The goodness-of-fit of the observed mismatch 

distribution to the theoretical distribution under a constant population size model was tested 

with the raggedness index (HRag) (Harpending et al. (1994)). Thirdly, i) we created the 

Extended Bayesian Skyline Plot (EBSP), implemented in BEAST, for each population group, 

ii) we performed EBSP analyses for each of the 16 population groups. For each group from i) 

and ii): two independent chains were run simultaneously for 150 million generations, 

sampling every 1000 generations; a strict clock model was used, whereas all other parameters 

were set identical to those described above for the nested dating analysis; the root node was 

calibrated using a normal prior with a mean age estimate and 95% High Posterior Density 

(HPD) credible intervals obtained from this analysis. 

 

AFLP fingerprinting 

For the AFLP analysis we used a total of 97 individuals from 10 populations, which 

covered all of the islands: one population from Gran Canaria, five from Tenerife, one from 

La Gomera, two from La Palma and one from El Hierro. Laboratory molecular protocols for 

the AFLP analysis (Vos et al. 1995) were implemented using the AFLP plant mapping kit 

(Applied Biosystems®). To select the appropriate primers, we first carried out a pilot study 

combining fluorophores and restriction enzymes for five geographically distant individuals 

(one per island), using in total 32 primer combinations. One sample from each individual was 

duplicated as a blind sample to test for reproducibility and contamination. Reproducibility 

and the number of alleles per sample were calculated by choosing three combinations of 

primers: 1-EcoRI6-FAM-ACT/MseI-CAA, 2-EcoRIVIC-AGG/MseI-CTA, and 3-EcoRIVIC-
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AGG/MseI-CTT and using the Genemapper v3.7 software (Applied Biosystems, Foster City, 

CA, USA).  These three primer pairs showed high reproducibility and homogeneously 

scattered bands, and produced polymorphic AFLP profiles and clear fragments. In the 

digestion phase, samples of DNA were digested with the restriction enzymes EcoRI and MseI 

and linked to the primers EcoRI 5’-CTCGTAGACTGCGTACC-

3’/5’AATTGGTACGCAGTCTAC-3’) and MseI (5’- GACGATGAGTCCTGAC-3’/5’-

ATCTCAGGACTCAT-3’). The three different AFLP reactions,were: i) restriction and 

ligation in a single reaction; (ii) and (iii) consecutive PCR amplifications (preselective and 

selective). PCR products were checked on 1% agarose gels.  

 

AFLP data analyses 

The resulting AFLP fragments were analysed using the GeneMapper 3.7 

software. Peaks were recorded in 100 to 500 base pairs ranges. Shorter fragments were 

discarded because the majority of this size class have a high chance of being non-homologous 

fragments (Vekemans et al. 2002). For each primer combination, an automated size detection 

and peak binning was employed followed by manual editing of bins to exclude shoulder 

peaks and unreliable loci (variation between replicates). Peak height data were then exported 

and loaded into the R package AFLPScore version 1.4a (Whitlock et al. 2008) and the AFLP 

profiles were scored and the error rates were estimated. These rates were below the critical 

bound of 5% indicated in previous reports (Bonin et al. 2004) for each primer combination. 

Data reliability was assessed through comparison of duplicates, from one or two individuals 

per population. Data were converted into binary presence ⁄ absence scores for each locus. The 

resulting AFLP presence/absence matrix was analysed using a selection of different analyses. 

The AFLPSURV v.1.0 software (Vekemans et al. 2002) was used to estimate demographic 

statistics such as Nei´s gene diversity (Hj), pairwise differentiation among subpopulations 
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(FST) and the percentage of polymorphic fragments per population (P) (Nei and Li, 1979; 

Lynch and Michigan, 1994). This was done under the assumptions of either the Hardy-

Weinberg equilibrium or partial self-fertilisation, based on a previous study on the 

reproductive biology of C. canariensis (Rodríguez-Rodríguez and Valido 2011). A Bayesian 

method in AFLPSURV was also used to estimate allelic frequencies through employment of 

a non-uniform prior distribution (Zhivotovsky 1999). Ten thousand permutations were run to 

calculate the FST parameter from which genetic distances between individuals, populations 

and geographic groups were calculated. To locate genetic clustering of individuals within the 

AFLP dataset, a pairwise similarity matrix for all individuals using the Dice’s coefficient as 

similarity distance was constructed, and the resulting matrix subjected to a Principal 

Coordinates Analysis (PCA) implemented in Ntsys v.2.1 (Rohlf 1998). Next, genetic 

relationships among samples were visualised in SplitsTree v.4.10 (Huson and Bryant 2006) 

using Neighbour-Net analysis through the use of the split decomposition method. Finally, to 

quantify the amount of genetic differentiation attributable to geographic and population 

subdivision, a hierarchical analysis of molecular variance was performed using ARLEQUIN 

v.3.0 software (Excoffier et al. 2005). Exploratory analyses were performed considering, 

alternately, islands and paleo-islands as geographical units in order to investigate the 

distribution of genetic variance attributable to oceanic barriers.  

           Bayesian clustering methods implemented in STRUCTURE v.2.3 (Pritchard et al. 

2000; Falush et al. 2007) were used to assess the genetic structure of populations. This 

model-based approach assumes that loci are in Hardy-Weinberg equilibrium and linkage 

equilibrium within populations. Analyses were performed under admixture conditions and 

correlated allele frequencies between groups. 500,000 MCMC generations (plus a burn-in of 

100,000) were run for K values of 1-10, with 10 repetitions for each. The most likely K value 

was determined by the method from Evanno et al. (2005), which is implemented in 
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STRUCTURE HARVESTER (Earl 2012). We explored other values of K to detect further 

genetic substructure of populations, especially in Tenerife. To test the effect of the spatial 

distance on the genetic structure of the populations, correlations between genetic (measured 

as FST) and spatial distances between pairs of populations were determined using the Mantel 

permutation procedure implemented in NTSYS v. 2.1. The genetic distance matrix used was 

based on the presence/absence matrix; the geographic distance matrix was based on the 

absolute distances between the geographic coordinates for each collected population. In 

addition, to identify possible geographic locations acting as major genetic barriers among C. 

canariensis populations, we computed barriers on a Delaunay triangulation using 

Monmonier´s algorithm in BARRIER v.2.2 (Manni et al. 2004). The significance was 

examined by the mean of 1000 bootstrapped distance matrices obtained using AFLPsurv. 

Only barriers with support greater than 96% were considered as significant. 

 

RESULTS 

Haplotype network analysis and coalescent dating 

The pet B1365–pet D738 region consisted of 937 sites, rpl32–trnLUAG of 654 sites, 

and trnSGCU –trnGUCC of 658 sites. The final concatenated data matrix consisted of 144 

sequences and 2249 nucleotide sites, of which 9 were polymorphic (Table S4). Among the 

144 individuals sampled from the 16 populations, we observed 10 different plastid DNA 

haplotypes (H1 to H10, Figure 2a) with haplotype diversity of 0.6632. There were three 

haplotypes that dominated and were clearly geographically delimited: H1, H9 and H3. 

 The most frequently observed haplotype was H1 (52.08%), which was dominant in GC and 

east Tenerife (ET). Haplotype H9 was restricted to West Tenerife (WT) and LG. Haplotype 

H3 was present in the western islands of LP and EH. Populations with the commonest and 

rarest haplotypes (frequencies ≤ 2%) were in the most rugged areas of Tenerife: the paleo-
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islands of Anaga (An-W, An-C, An-E – exclusive haplotypes H2 and H5), Teno (Ten-A, 

Ten-Ep – exclusive allele H8 and allele H10 shared with LG) and Roque del Conde (Conde – 

exclusive H7). The small western islands presented one unique haplotype, each: LP (LP-Lt – 

H4) and EH (H6). 

Summary statistics for within-population genetic diversity are shown in Table 1. 

Populations situated in the three paleo-islands (Anaga (An-W), Teno (Ten-A) and Roque del 

Conde (Conde)) showed the highest values for the number of haplotypes H(n), haplotype 

diversity H(d), nucleotide diversity π and nucleotide heterozygosity θ. The least diverse 

population areas were found in Gran Canaria and outside of the paleo-islands regions of 

Tenerife. GST and Nm values indicated high genetic cohesion between some islands: east 

Tenerife populations were highly connected with Gran Canaria populations; west Tenerife 

with La Gomera; and La Palma with El Hierro (Table S5). Interestingly, the highest GST 

values and lowest Nm were found between populations situated east and west of Tenerife, 

with the exception of Anaga An-W. This is the only population in east Tenerife that showed 

some genetic cohesion with populations in west Tenerife, in particular with the Teno and 

Adeje massifs.  

 The haplotype network constructed with TCS (Fig. 2b) shows a loop involving three 

dominant haplotypes, with haplotype H1 as the ancestral root haplotype according to 

coalescent criteria on haplotype frequency (Templeton et al. 1992). Dominant haplotypes at 

each side of Tenerife (East H1 and West H9) were separated by five mutational steps, with 

haplotype H10 as intermediate. Haplotype H3, present in the western islands, was separated 

by four mutational steps from H1 and three from H9.  

BPEC results are summarised in Table 2. With mutational step limit equal to 10 and 

the maximum number of migrations equal to 8, we allowed for high gene flow, genetic 

divergence and numerous hidden mutations, which separate the haplotype clusters. The 
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clustering with high posterior probabilities (pp = 1) showed the existence of five clusters 

(contour regions in Figure 3a). The total number of haplotypes was 10 plus one missing 

haplotype (Fig. 3b). Location of the ancestral populations for migration events and inference 

of the root node were consistent across exploratory analyses of the complete dataset. The root 

node was inferred as missing (H11 – Fig. 3b), and carried a high uncertainty. Haplotypes H1, 

H2, H8 also carried significant posterior mass probabilities (Table 2). The most likely source 

for ancestral migration events within- and between-islands were populations located on: 

Conde (pp = 0.13), An-W (pp = 0.10) and LP-Lt (pp = 0.086). The subsetting analysis, 

including Conde, always recovered this population as the ancestral area with the highest 

probability. Without Conde, other paleo-island populations were recovered as ancestral areas: 

Ten-A for the Western clade; and the three populations of Anaga for the Eastern clade, with 

An-W the most probable (Table 2, Figure S1).  

The Bayesian chronogram of haplotypes showed a geographical pattern of divergence 

congruent with the groups detected by TCS and BPEC (Figure 4). The crown age or first 

divergence event among Canarina haplotypes was estimated to be 0.878 Ma (95% HPD = 

0.452-1.365), corresponding to the Mid-Pleistocene period; it divided haplotypes into an 

eastern and western clade. The first divergence event in the eastern clade was estimated 

at 0.255 Ma (95% HPD = 0.041-0.633), while that in the western clade was dated 

older: 0.522 Ma (95% HPD = 0.161-0.967), separating La Palma and El Hierro from Teno 

and La Gomera. Mean age values and 95% HPD intervals for the BEAST analysis are shown 

in Table S6. 
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Demographic analyses 

Negative values of Fu's and Tajima's indicated a recent population expansion, 

although these values were only significant for the Fu´s test of the East group (Table S7). The 

frequencies of pairwise differences in the mismatch distribution analysis resulted in unimodal 

distributions that were consistent with an expansion model. When we include the population 

of Conde in the East group, we obtained a second small peak. The raggedness statistics 

derived from the mismatch distribution were not significant and thus failed to reject the null 

hypothesis of recent population expansion. EBSP indicated a constant population size (Figure 

S2). EBSP for each of the individual populations also obtained a constant population size 

(results not shown). 

 

AFLP polymorphism, genetic diversity and structure. 

These results are summarised in Table 1. The final dataset, after scoring, comprised 

572 loci from 97 individuals and 10 populations. For AFLP analyses we removed populations 

from Gran Canaria and Roque del Conde, which had been extracted with a different (less 

rigorous) method (CTAB) to standardise the quality of extracted DNA. Hj and P were higher 

in the La Gomera (GO) population, followed by the Teno (Ten-A) population in west 

Tenerife. The largest number of private fragments was detected in Tenerife (7 fragments). In 

La Gomera and El Hierro islands a single fragment was detected. In Tenerife, five private 

fragments were detected in the Anaga massif (specifically in the An-W population – four 

fragments) and two in the Teno massif (Table 1). FST values with the nuclear data (Table S8) 

were consistent with the results obtained from the chloroplast markers (see above GST and 

Nm), and showed the same genetic cohesions between-islands and paleo-islands. 
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A PCA analysis differentiated three groups (Figure S4): i) east Tenerife populations; 

ii) west Tenerife populations; iii) the An-W population, which demonstrate an intermediate 

position between i) and ii). The split network analysis outlined the same divergences between 

the two well separated groups, including the West group An-W population (Figure 5b). 

 

Hierarchical AMOVA analyses showed the largest proportion of genetic variation to 

be found among groups 4 and 5 (Table 3 and S9). By analysing each island separately, we 

observed that differentiation within-islands (24.27%) is greater than between-islands (3.62%). 

A further analysis considering islands and paleo-islands as separate units showed that 

differentiation within-islands and within-paleo-islands is lower (11.30%) than between-

islands and between-paleo-islands (16.63%). According to the method of Evanno et al. 

(2005), STRUCTURE indicated that the most likely number of genetic clusters K = 2 (ΔK= 

460) represented the optimal number of Bayesian groups within C. canariensis, separating 

the east populations from the west, but also detected the presence of admixture in the 

intermediate populations. K levels K = 4 and K = 5 (the latter identified as K = 6, with 5 

defined clusters plus one "ghost" cluster with no individuals assigned so it was ignored, see 

Guillot et al. 2005) revealed a more complex genetic structure in these intermediate 

populations, resulting in additional clusters (Fig. 5a, Figure S5). The STRUCTURE analysis 

using only Tenerife populations also delimited two groups (inset K = 2 in Fig.5a, Fig. 

S5b). Overall, the results revealed a strong inter-island genetic structure (Gran Canaria –

Anaga massif and La Palma – El Hierro), admixture phenomena (among An-W, Teno 

populations, and La Gomera), and an even more complex substructure within the island of 

Tenerife. The STRUCTURE sublevels (K = 4 and K = 5) were consistent with the AMOVA 

analyses. Only La Gomera differed between analyses; this is explained due to its high genetic 

variability and mixed composition. These groups are also congruent with the BARRIER 
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results, which revealed two or four major boundaries (Fig. 5a for K=2 and K = 5). All 

barriers showed values of 100% except LP-EH (96.8%). No linear relationship was found 

between pairwise FST and geographical distance with the Mantel analysis (r = 0.42, p = 1). 

 

DISCUSSION 

Paleo-islands as refugia against volcanic (catastrophic) extinctions 

The strong genetic structure often detected in island endemics has been postulated to 

respond to several interconnected physical and biotic factors (Stuessy et al. 2014); foremost 

among them are geographical isolation and extinction-recolonisation processes (Carson et al. 

1990; Gübitz et al. 2005; Macías-Hernández et al. 2013). The strongest genetic structure and 

levels of genetic variation in C. canariensis were detected between two of the ancient paleo-

islands that currently form Tenerife: Teno in the west and Anaga in the east. Populations in 

other islands were genetically associated to these two lineages: La Palma, La Gomera and El 

Hierro to Teno; and Gran Canaria to Anaga. The fact that these patterns are shared between 

chloroplast (cpDNA, Fig. 2) and nuclear (AFLPs, Fig. 5) markers supports a long history of 

isolation among populations (Zink & Barrowclough 2008). Furthermore, the hierarchical 

AMOVA analysis based on the AFLP data showed that genetic variation was notably higher 

among populations within Tenerife than those located in different islands (Table 3).  This 

pattern has been found in a few other Canarian endemics (Olea europaea 

guanchica and Pinus canariensis), but usually not as marked as here (< 10%: Gómez et al. 

2003; García-Verdugo et al. 2010; see review in García-Verdugo et al. 2014). Interestingly, 

considering the paleo-islands as separate areas reversed the pattern (Table 3). Together with 

our BARRIER analyses (Fig. 5a in K = 5), these results support the hypothesis that the 

geographical distribution of genetic diversity in C. canariensis is structured around the paleo-
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islands, and that these ancient massifs could be considered as separate units in 

phylogeographic analyses, a sort of "islands within-islands". It indicates that geological 

barriers within islands – for example, those associated to catastrophic volcanic events – have 

probably been more important in structuring patterns of genetic differentiation within species 

than the oceanic barriers separating the islands (García-Verdugo et al. 2014).  

 

Unfortunately, we could not obtain AFLP data for the population in Roque del Conde. 

Given the mixed composition of the chloroplast compartment in this population (Fig. 2), it is 

possible that inclusion of this population in our analysis would have led to higher levels of 

genetic admixture and lower K values in the STRUCTURE analyses – though given the 

marked east/west split among the remaining populations (Fig. 5), this is unlikely. On the 

other hand, the two most frequent haplotypes, H1 and H9, in the Conde population are also 

the most frequent or dominant within the eastern and western clades, respectively, while the 

divergence of these two haplotypes in the BEAST tree (Fig. 4) can be traced back to the 

basalmost split in C. canariensis (0.8 Ma). This, together with the presence of a unique 

haplotype (H7) and the fact that the Conde population is identified as the ancestral source of 

westward and eastward migration events in the BPEC analyses, suggests that the admixture 

detected in the chloroplast compartment for Roque del Conde is of ancient rather than recent 

origin. It is thus possible that including this population in the AFLP analysis would have 

increased rather than decreased levels of genetic diversity within Tenerife for C. canariensis. 

 

 Which might have caused this level of within-island genetic structure? Many 

Canarian plant and animal taxa include sister lineages endemic to the Tenerife paleo-islands 

(Juan et al. 2000; Báez et al. 2001), especially among laurel forest species from Teno and 
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Anaga (Table 4). While in some cases, the divergence between these taxa is found at the 

species level (e.g., Trechus, Contreras-Díaz et al. 2007; Pericallis, Jones et al. 2014) and/or 

predates the origin of the paleo-islands (Micromeria, Puppo et al. 2014; Pholcus, Dimitrov et 

al. 2008); in others, it is observed within species (e.g., Tarentola delalandii, Gübitz et al. 

2000), and/or postdates the merging of the paleo-islands (Eutrichopus, Moya et al. 2004; 

Calathus abaxoides, Emerson et al. 1999). The fact that the pattern of divergence is not 

contemporary across taxa suggests that the role of Tenerife paleo-islands in structuring 

genetic variation has been long lasting. In Canarina canariensis the basal divergence 

between the basal eastern and western lineages was dated as 0.878 Ma (Fig. 4) substantially, 

postdating the age of the merging of the paleo-islands (c. 3.5 Ma, Ancochea et al. 1990). This 

‘young’ east-west divergence might be explained by historical dispersal events between 

forest patches followed by in-situ diversification. Alternatively, it could be explained by 

allopatric speciation (vicariance) driven by catastrophic volcanic events within a previously 

more widespread distribution with low or no reconnection. This might explain the ‘young’ (< 

3.5 Ma) east-west Tenerife divergence found in Canarina, and seen in other taxa (Table 4). 

The reciprocal monophyly, similar haplotype diversity levels and deep temporal divergence 

found between the eastern and western clusters of C. canariensis in Tenerife (Fig. 4), favour 

the vicariant, allopatric scenario. In the last one million years, several major landslides and 

volcanic events have affected the north of Tenerife, extending from the summit to the coast 

(Boulesteix et al. 2012, 2013; Carracedo 2014), e.g. the Güimar and La Orotava mega-

landslides (Fig. 1b). These events could have fragmented the ancient laurel forest corridor 

that extended across the northern flank of the island (Moya et al. 2004), interrupting gene 

flow within species associated to this laurel forest (e.g., C. canariensis) and promoting 

differentiation among populations. Several studies have supported debris avalanches as 

important factors driving diversification within terrestrial Canarian organisms (Juan et al. 
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2000; Brown et al. 2006; Macías-Hernández et al. 2013); others have reported a temporal 

divergence within northern Tenerife (Thorpe et al. 1996; Moya et al. 2004) that is similar to 

the one found in C. canariensis and corresponds well with the time of the La Orotava mega-

landslide (Ancochea et al. 1990; Boulesteix et al. 2013). 

Whereas central Tenerife was almost completely covered by catastrophic events until 

as recently as 0.13 Ma (Ancochea et al. 1999), the three paleo-islands of Teno, Anaga, and 

Roque del Conde, remained geologically stable since the mid-Pliocene (see Fig. 1). This 

suggests that these areas could have acted as refugia, allowing the survival of populations that 

otherwise disappeared in other parts of the island that were affected by volcanic activity. 

Support for this suggestion comes from the population genetic analysis. According to the 

central-marginal hypothesis (Eckert et al. 2008), spatial structure and genetic diversity should 

be higher in areas that have acted as refugia for the preservation of genotypes that went 

extinct in other areas and generally  for the long-term persistence of populations (Hewitt 

2000; Tzedakis et al. 2013; Gavin et al. 2014; Feliner 2014). The higher number of ancestral 

and endemic alleles, private fragments, and larger heterozygosity levels exhibited by the 

populations of the paleo-islands of Tenerife (Table 1), are congruent with the idea that these 

massifs acted as reservoirs of ancient genetic diversity and as refugia against volcanically 

induced extinction. Interestingly, La Gomera, an island that has been geologically quiescent 

since the Pliocene (Carracedo & Day, 2002), shows the highest Hj and percentage of 

polymorphic nuclear DNA fragments (Table 1), suggesting that this island might have acted 

in a similar way to the paleo-islands of Tenerife. 

Further support for the extinction hypothesis comes from the BPEC analysis. 

Theoretical predictions of coalescent theory states that high frequency haplotypes have been 

present for a long time, and more recent ones are rare and derived from the commonest 

haplotypes (Posada & Krandall 2001). Additionally, a root haplotype is expected to have a 
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higher number of haplotype connections in the network, rather than being close to the tips. 

However, past extinction of haplotypes can obscure the inference, with younger haplotypes 

becoming the most prevalent, so accurately identifying the root haplotype is a challenging 

task. The fact that BPEC does not provide a single estimate of the haplotype network like 

Statistical Parsimony, but a finite (probability) distribution of haplotype trees - as well as the 

existence of the underlying migration model - allows this method to incorporate the 

uncertainty in the haplotype rooting. BPEC estimates the missing, extinct haplotype H11 as 

the most probable root of the haplotype network (Fig. 3b), although haplotypes H1, H2 and 

H8 are also associated with high posterior probabilities.  

 

Have paleo-islands acted as sources of genetic diversity within and towards other islands? 

The theory of Pleistocene climate refugia (Hewitt 2000) states that historically 

environmentally stable areas can act as sources of genetic diversity exporting migrant alleles 

to other, disturbed regions (Gavin et al. 2014). Paleo-islands could have played the same role 

in volcanic archipelagos, although in this case catastrophic geological events rather than 

climatic changes might be responsible for the observed patterns.  BPEC provides support to 

this hypothesis, identifying the populations in the paleo-islands of Tenerife as the source 

areas of ancestral migration events to other adjacent islands, such as from Teno to La Gomera 

or from Anaga to Gran Canaria (Fig. 3a,b, Table 2). A third dispersal event from west 

Tenerife/La Gomera to La Palma is supported by the BEAST tree (Fig. 4), and a fourth 

dispersal event from La Palma to El Hierro is inferred by the BPEC analysis (Fig. 3). Similar 

patterns with the central Canaries as centres of dispersal events within the archipelago have 

been described in other animal and plant studies (Francisco-Ortega et al. 2002; Gómez et al. 

2003; Sanmartín et al. 2008; Puppo et al. 2015; see also Mairal et al., 2015). Moreover, a 

spatio-temporal pattern of colonization comparable to Canarina, showing Tenerife as the 
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center of dispersal events to adjacent islands in the last 1 Ma, can be found in the Canarian 

lineage of Cistus (0.33 (0.88-0.07) Ma; Guzmán & Vargas 2010), Cheirolophus (1 Ma; 

Vitales et al. 2014a), Cistus monspeliensis (0.93-0.20 Ma; Fernández-Mazuecos & Vargas 

2011), and Gallotia galloti (0.8-0-9 Ma; Cox et al. 2010). This might be a consequence of the 

central geographic position of Tenerife within the archipelago – acting as a crossroad for 

dispersal events – but also of the concentration of plant genetic diversity in the paleo-islands,.  

The case of Gran Canaria is especially interesting. It shares the same haplotype with 

Tenerife (H1, Figs 2, 3). Low haplotypic diversity (Hn and Hd in Table 1) could be explained 

by a recent colonisation after a catastrophic event. The island was subject to intense volcanic 

activity during the Holocene (24 eruption events; Rodríguez-González et al. 2009), so 

extinction might explain its present low genetic diversity. Another possibility is related to the 

topography of Gran Canaria, where a network of ravines (locally known as "barrancos") 

connecting at their summits, could have facilitated gene flow among populations. Dispersal 

of Canarina canariensis seeds by Gallotia lizards (Rodríguez et al. 2008), probably using 

forest gaps and edges of roads as dispersal corridors (Delgado et al. 2007), might have helped 

to connect populations in the highly altered laurel forest of Gran Canaria.  

 

In addition to dispersal events between-islands, the paleo-islands of Tenerife might 

have acted as sources of genetic diversity within Tenerife, exporting migrant alleles to other 

geologically unstable, disturbed areas. Our demographic analyses indicated a recent 

population expansion in two populations of east Tenerife close to Anaga (TF-Br and TF-Bj). 

Although this result should be taken with caution (the EBSP analysis supported a constant 

effective population size; Fig. S2), these two populations exhibited also a single cpDNA 

haplotype, which agrees with the idea of a recent colonisation. The areas where these 

populations are located (La Orotava Valley and Güimar Valley, respectively) have been 
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subjected to catastrophic volcanic events (Fig. 1b). Some authors (Thorpe et al. 1996; Gübitz 

et al. 2000) have proposed the existence of a corridor of suitable habitat along the northern 

coastal fringe of Tenerife to explain migrations of the reptiles Gallotia galloti and Tarentola 

delalandii from Anaga to the west. These dispersal events could also explain the patterns 

found in our BPEC analyses, which suggest Anaga populations as sources of migration 

events to other populations in eastern Tenerife and Gran Canaria (Fig. 3, Table 2). 

Ongoing genetic connectivity between the populations in the paleo-islands of Tenerife 

and those from other areas is supported by the nuclear genome, which shows genetic 

admixture between west-Anaga, Teno and La Gomera (Fig. 5a). Admixture could be 

explained by the carrying of pollen by nectar-feeding birds between forest patches (e.g. 

ringing techniques have confirmed migration of the main pollinator (Phylloscopus 

canariensis) between Teno and Anaga; Alejandro González, pers. comm.). The fact that this 

connectivity is to some extent lost in the cpDNA might be explained by the cpDNA not being 

transported via pollen or, alternatively, by the small size and haploid nature of the chloroplast 

genome, which imply shorter coalescent times and less time to fix novel mutations for 

chloroplast markers (Avise 2000; Jakob & Blattner 2006). On the other hand, the widespread 

distribution of some cpDNA haplotypes across the archipelago (H1, H3 and H9, Fig. 2a) 

supports some gene flow among populations driven by seed dispersal. In the Canary Islands, 

birds have been cited as important vectors for the dispersal of fleshy fruits (Arevalo et al. 

2007; Padilla et al. 2012), and the latter has been associated with frequent gene flow 

preventing speciation within widespread island endemics (García-Verdugo et al. 2014), such 

as in Canarina. This fits with what is known on the reproductive biology of C. canariensis, 

which is pollinated by generalist birds (Rodríguez-Rodríguez & Valido 2011), while its 

fleshy fruits are dispersed by vertebrates such as Gallotia lizards (Valido et al. 2003, 

Rodríguez et al. 2008). An additional factor to explain frequent dispersal between-islands are 
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the eustatic sea-level shifts during the Pleistocene, which might have decreased geographic 

distance between-islands (Rijsdijk et al. 2014).  

Finally, in addition to exporting migrant alleles to other islands and disturbed areas, 

the paleo-islands of Tenerife might have acted as cradles or sources or new genetic diversity. 

The higher haplotype and nucleotide diversity and higher Nei's gene diversity Hj exhibited by 

populations in these areas (Table 1) agree with their role as ancient refugia but also as sources 

of novel genetic diversity. Maximum topographic complexity is one of the main factors 

explaining species richness and high speciation rates within-islands (Whittaker et al. 

2007). The rugged nature of the Tenerife paleo-islands has likely promoted genetic 

differentiation within these massifs. For example, divergences found between populations in 

east and west forest ranges within Anaga have been explained by the existence of deep 

ravines and the volcanic arc of Taganana (Fig. 1b), acting as geographical barrier to gene 

flow (Macías-Hernández et al. 2013). These divergences were also detected in C. 

canariensis.  

 

CONCLUSIONS 

Traditionally, the distribution of genetic diversity within archipelagos is assumed to 

be structured around oceanic barriers, with between-island divergences expected to be larger 

than within-island differentiation. Here, we showed that within-island genetic patterns might 

be as strong as or stronger than those observed between-islands when they are associated with 

historical volcanic events. In Canarina canariensis, geographic patterns of genetic variation 

are structured around the paleo-islands of Tenerife, with a minor secondary effect due to 

oceanic barriers. Carine & Schaefer (2010) argued that although relatively short oceanic 

distances separate the Canary Islands, they might be responsible for the high diversity levels 
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found in the archipelago, acting as effective barriers to dispersal and promoting allopatric 

speciation. However, our results suggest that this hypothesis might not be valid for endemic 

species with widespread distributions across several islands (e.g., Canarina), for whom 

stretches of ocean are apparently less of a barrier than topographic relief within volcanic 

islands. Phylogeographic studies on other MIEs (multiple island endemics) are needed to 

confirm this hypothesis. The paleo-islands of Tenerife have probably acted as both genetic 

refugia and sources of new diversity within- and between-islands.  The preservation of 

genotypes that became extinct everywhere else and the topographic complexity of the paleo-

islands makes them potential “phylogeographical hotspots” (Médail & Diadema 2009) and 

reservoirs of unique genetic diversity, whose conservation should be prioritised.  
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Table 1.  Descriptors of within-population genetic diversity in the cpDNA haplotypes and AFLP markers for each population studied of C. 
canariensis. Abbreviations: H(n): number of haplotypes;, H(d): haplotype diversity; π: nucleotide diversity; θ: nucleotide heterozygosity; Hj 
(se): Nei's gene diversity (standard error). Geographical locations for population codes are shown in Figure 2. 
 

      Haplotypes           AFLPs     

Island (Paleo-island) Population Nº 
samples Haplotype H (n) H (d)  π θ Nº 

samples 

Nº of polymorphic  
fragments           

(% in brackets) 

Hj 
(se) 

Number of
private 

fragments 

Gran Canaria  GC-Cc 8 H1 1 0 0 0 8 409 (68.7) 0.2344 (0.0085) 0 

Gran Canaria GC-Tm 11 H1 1 0 0 0 NA NA NA NA 

Gran Canaria GC-Es 10 H1 1 0 0 0 NA NA NA NA 

Gran Canaria GC-Ag 11 H1 1 0 0 0 NA NA NA NA 

Tenerife (Anaga) An-W 6 H1, H2, H5, H9  4 0.8 0.00112 0.00136 7 401 (67.4) 0.2677 (0.0088) 4 

Tenerife (Anaga) An-E 10 H1, H2 2 0.2 0.00018 0.00031 10 345 (58.0) 0.2303 (0.0080) 0 

Tenerife (Anaga) An-C 11 H1, H5 2 0.327 0.00015 0.00015 11 375 (63.0) 0.2453 (0.0078) 1 

Tenerife  TF-Bj 4 H1 1 0 0 0 NA NA NA NA 

Tenerife  TF-Br 6 H1 1 0 0 0 NA NA NA NA 
Tenerife (Roque del 

Conde) Conde 11 H1, H9, H7 3 0.618 0.00121 0.00091 NA NA NA NA 

Tenerife (Teno) Ten-Ep 8 H9 1 0 0 0 9 351 (59.0) 0.2449 (0.0082) 0 

Tenerife (Teno) Ten-A 7 H8, H9, H10 3 0.524 0.00038 0.00054 7 415 (69.7) 0.2997 (0.0088) 2 

Gomera GO 12 H8, H9 2 0.303 0.00013 0.00015 12 473 (79.5) 0.3012 (0.0077) 1 

La Palma LP-Ba 10 H3 1 0 0 0 9 285 (47.9) 0.1923 (0.0080) 0 

La Palma LP-Lt 10 H3, H4 2 0.2 0.00009 0.00016 10 348 (58.5) 0.2309 (0.0079) 0 

El Hierro EH 9 H3, H6 2 0.5 0.00022 0.00016 9 303 (50.9) 0.2115 (0.0082) 1 
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Table 2. Summary of results from the Bayesian Phylogeographic and Ecological Clustering 
(BPEC) analyses. Selected values for parameters MaxMig (maximum number of migrations) 
and ds (relaxed parsimony assumption) are shown. Ancestral locations (Anc. Loc.) for 
migration events are shown with their associated posterior probabilities. 
 
 

  Maxmig ds 
Anc. Loc. 

1 
Anc. Loc. 

2 
Anc. Loc. 

3 
Root 
node 

Root node 
probability 

nº of 
clusters 

TOTAL 8 10 Conde 
(0.13) 

An-W 
(0.10) 

LP-Lt 
(0.086) 

H11 
(missing) 

0.17 5 

Western Clade 
(WT + LP + GO + EH) 

4 3 Ten-A 
(0.40) 

Lp-Lt 
(0.31) 

EH  
(0.18) 

H11 
(missing) 

0.18 3 

Eastern Clade 
(ET + GC) 1 3 

An-W 
(0.212) 

An-C 
(0.122) 

An-E 
(0.116) 

H11 
(missing) 

0.16 2 

Western Clade + Conde 4 3 Conde 
(0.416) 

Ten-A 
(0.197) 

GO 
(0.190) 

H11 
(missing) 0.18 3 

Eastern Clade + Conde 1 3 Conde 
(0.23) 

An-W 
(0.17) 

An-C 
(0.086) 

H11 
(missing) 

0.16 3 

 
 

 

Table 3. Hierarchical analysis of molecular variance (AMOVA) for C. canariensis based on 
allelic variation at different levels: (A) among groups, (B) among populations within groups 
and (C) within populations.  Geographical locations of populations are shown in Figure 2. 
 
                

AMOVA groups Nº of groups (K)   Levels     F-statistics 

   A B C Fsc Fst Fct 
[GC + Anaga] [An-W + Ten-A]  [Ten-Ep]  
 [GO + LP + EH] 

4 17.44 13.06 69.5 0.15820 0.305 0.17439 

[GC+ An-E] [An-C] [Ten-Ep] [An-W + Ten-A] [GO 
+ LP + EH] 

5 18.92 11.21 69.88 0.13819 0.30123 0.18918 

[GC ]  [TF]  [GO]  [LP]  [EH] 5 3.62 24.27 72.10 0.25186 0.27897 0.03624 

[GC] [An-E + An- C]  [An-W] [Ten-Ep]   
[Ten-A] [GO] [LP] [EH] 

8 16.63 11.30 72.07 0.13558 0.27934 0.16631 

 

 

 

 

 

 

 

  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Table 4. Phylogeographic breaks with divergence times reported in the literature between the 
paleo-islands of Tenerife. 
          

Organism Phylogeographical disjunction 
and groups 

Divergence (Ma) Markers Reference 

Species complex in 
darking beetle 
Pimelia 

East Tenerife / West Tenerife 5.5 Ma 
Mitochondrial (COI) and 
nuclear (ITS-1) 

Juan et al. 1996 

Lizard Gallotia 
galloti 

Western/ North-eastern lineages 0.7 Ma 
Mitochondrial cytochrome 
b 

Thorpe et al. 
1996 

Beetle Calathus 
abaxoides 

Teno / Anaga 350.000 years 
Two mitochondrial (COI 
and COII) 

Emerson et al. 
1999 

Skink Chalcides 
viridanus 

Teno/ Anaga 1.1 Ma 
Two mitochondrial  (12S 
and 16S) 

Brown et al. 
2000 

Gecko Tarentola 
delalandii 

Clade 1. Teno + Roque del 
Conde/Anaga  .  Clade 2. Teno/Roque 
del Conde  

Clade 1.  9–10 Ma  Clade 
2.  7.6 Ma 

Mitochondrial cytochrome 
b 

Gübitz et al. 
2000 

Mite Steganacarus 
carlosi 

Clade 1. Teno/Anaga.   
Clade 2. Roque del Conde / Anaga 

Clade 1. 3.2 Ma  
 Clade 2. 25 - 3.6 Ma 

Mitochondrial  
cytochrome oxidase 1 

Salomone et al. 
2002 

Beetles 
 Eutrichopus  

Teno (E. gonzalezi) / 
 Anaga (E. canariensis) 0.7 Ma 

Mitochondrial  (COII 
marker) Moya et al. 2004 

 species complex in 
beetle Tarphius  

Teno / Anaga 1.2 Ma (1-1.4) 
two mitochondrial (COI 
and COII) 

Emerson & 
Oromí 2005 

Beetle Trechus 

Clade 1. Anaga + Teno (T.antonii, T, 
tenoensis, T.felix) / Anaga (T. 
fortunatus)  
  Clade 2.  T.flavocintus; Teno / East 
Tenerife  

Clade 1. 1.73 Ma 
(HPD:1.48–2.01)     

Clade 2. aprox 0.75 Ma 

Part of mitochondrial 
genes cytochrome oxidase 

I and II (Cox1 and 
Cox2),and nuclear (ITS 2) 

Contreras-Díaz et 
al. 2007 

Spider Pholcus 
Anaga (P. malpaisensis,  P. knoeseli) / 
Teno (P. intricatus, P. mascaensis / P. 
tenerifensis and P. roquensis) 

3.93 Ma (HPD: 2.2–5.88) 

Four mitochondrial (CO1, 
16S, NADH and 

tRNAleu). Morphological 
data. 

Dimitrov et al. 
2008 

Grasshoper  
Arminda brunneri 

Anaga + Güimar / Teno + Roque del 
Conde 

1 – 0.17 Ma 

Two mitochondrial (12s 
rRNA, ND5) and two 
nuclear gene fragments 
(28s rRNA, ITS2) 

Hochkirch & 
Goerzig 2009 

Spider Dysdera 
verneaui 

Teno / Anaga 3.94  Ma (HPD: 5.1-2.7) mitochondrial (cox1) 
Macías-
Hernández  et al. 
2013 

Plant Pericallis 
Teno (P. echinata ) / 
 Anaga (P. tussilaginis) 2.87 Ma (HPD: 1.55–4.76) nuclear ITS Jones et al. 2014 

Plant Micromeria 
Teno (M. densiflora) / Anaga (M. 
teneriffae, M. glomerata and M. rivas-
martinezii) + Central group 

5.2 Ma 8 nuclear loci Puppo et al. 2014

 
 
 
 
Figure Captions 
Figure 1. a) Geographic map of the Canary Island archipelago, with the code for each island 
used in the text and their age of emergence (million years, Ma). b) Map of Tenerife showing 
main Pleistocene landslides and other geological events cited in the text. The old basaltic 
series corresponding to the paleo-islands are shown in the three contoured massifs at the 
edges of the island. Lines show valleys created after landslides.  Dashed lines indicate the 
post-erosional Las Cañadas volcano. Arrows indicate the directions of the landslides. The 
graph on the right shows the main Tenerife catastrophic events that are commented in the 
text; the numbers in the legend refer to those in the map. Ages and maps adapted from: 
Carracedo et al 1998; Ancochea et al. 1999; Cantagrel et al. 1999; Guillou et al. 2004; 
Boulesteix et al. 2012; Zaczek et al.2015.  
 
Figure 2. Haplotype distribution and network inferred for the chloroplast markers by TCS.  
a) Pie charts show the geographical location of populations and the frequency of occurrence 
of each haplotype, circle size is proportional to population size. Population codes are given in 
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Table S2. b) Statistical Parsimony network inferred by TCS. Each haplotype is shown in a 
different colour; circle size is proportional to its frequency among populations.  
 
Figure 3. Results from the Bayesian Phylogeographic and Ecological Clustering (BPEC) 
analyses for the cpDNA markers. a) Phylogeographical clusters (coloured blobs) and 
ancestral location for migration events (denoted by arrows). The contour regions are centred 
at the 'centre' of each population cluster, and the shaded areas show the radius of 50% 
concentration contours around it. Locations situated beyond the clusters could also belong to 
these clusters, but with low probability; in the case of Conde, it suggests a mixed 
composition, with this population as source of migrant alleles to the east and western clusters. 
b) Haplotype network receiving the highest posterior probability. The small black circle H11 
indicates an unobserved (missing) ancestral haplotype. 
  
Figure 4. Maximum Clade Credibility (MCC) tree obtained from the BEAST analysis of 
cpDNA haplotypes, showing mean ages (above branches) and 95% HPD credible intervals. 
Numbers below branches indicate Bayesian posterior clade support values. Codes for tips 
(H1 to H10) correspond to the haplotypes shown in Fig. 2.  
 
Figure 5. Results from the analysis of AFLP markers. a) Histograms showing the Bayesian 
clustering of individuals within populations (STRUCTURE); colours represent the proportion 
of individual membership to each inferred Bayesian group. Dotted lines indicate barriers to 
gene flow and their percentage, as inferred by BARRIER. b) Split network with points 
coloured according to location, as indicated in the legend. Codes for populations found in 
Table S2.  
 
 
SUPPORTING INFORMATION 
Additional supporting information may be found in the online version of this article. 
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