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A STABILIZED NONCONFORMING FINITE ELEMENT

METHOD FOR THE ELLIPTIC CAUCHY PROBLEM

ERIK BURMAN

Abstract. In this paper we propose a nonconforming finite element method

for the solution of the ill-posed elliptic Cauchy problem. The recently derived
framework from [8, 9] is extended to include the case of a nonconforming

approximation space and we show that the use of such a space allows us to

reduce the amount of stabilization necessary for convergence, even in the case
of ill-posed problems. We derive error estimates using conditional stability

estimates in the L2-norm.

1. Introduction

We consider the Cauchy problem for Poisson’s equation in a bounded domain.
This problem is known to be severely ill-posed in the sense of Hadamard [16, 5,
2]. The ill-posedness makes numerical approximation challenging and different
regularization methods have been proposed, such as Tikhonov regularization [26]
or the quasi reversibility method introduced by Lattès and Lions [23].

Various finite element approaches for the solution of the elliptic Cauchy problem
have been suggested in the literature. Some are based on standard Galerkin formu-
lations, but rely on structured meshes or a special form of the continuous problem
for stability [15, 24, 25]. Some use the above mentioned regularization techniques
to ensure stability [3, 4, 6, 7, 13] a related approach is to recast the problem as a
minimization problem [11, 18, 17], possibly with regularization.

The objective of the present work is to draw on the ideas of [8, 9] and propose
a consistent stabilization of a nonconforming finite element method. The upshot
is that the use of nonconforming elements allows us to reduce the stabilization.
Indeed instead of penalizing the jump of the gradient as in [9], we may use the
standard penalty operator acting on the jumps of the solution uh, known from
previous works on well-posed problems [19, 20, 10]. This shows that in spite of the
ill-conditioning of the problem under study, the choice of the finite element spaces
is of importance and leads to methods with different properties.

The structure of the method resembles to that introduced in [6], but the method
proposed in [6], is of the form regularize first and then discretize, whereas we
herein choose to discretize first and then regularize the discrete formulation. The
idea is then to choose a stabilization/regularization that makes sense only for the
discrete solution, indeed it is zero when applied to functions inH1(Ω). The resulting
method is a coupled primal/adjoint formulation where the adjoint solution of the
exact (unperturbed) problem is zero, giving a large flexibility in the stabilization
of the adjoint. The solution to the adjoint problem is the Lagrange multiplier of
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an associated minimization problem (see [8]) and measures the sensitivities of the
system. As we shall see below it plays an important role for the derivation of error
estimates.

The fact that the stabilization is consistent allows us to derive error estimates us-
ing discrete stability and the conditional stability on data of the partial differential
equation. We follow an approach similar to that suggested in [9], but in this case
an inf-sup condition is necessary for the discrete stability. The error bound is in
a posteriori form, using a residual quantity together with the conditional stability.
Thanks to the primal/adjoint stabilization the residual terms can be shown to be
optimally convergent independent of the stability of the underlying problem, for
sufficiently smooth solutions.

We also show how perturbed data can be introduced in the analysis and discuss
how a posteriori control of the mesh refinement may include the effect of perturba-
tions, provided their magnitude is known.

2. The elliptic Cauchy problem

The problem that we are interested in takes the form: find u : Ω 7→ R such that

(2.1)

 −∆u = f, in Ω
u = 0 on ΓD

∇u · n = ψ on ΓN

where Ω ⊂ Rd, d = 2, 3 is a polyhedral (polygonal) domain and ΓN , ΓD denote
polygonal subsets of the boundary ∂Ω, with union ΓB := ΓD∪ΓN and that overlap
on some set of nonzero d − 1 measure, ΓC := ΓD ∩ ΓN 6= ∅. We denote the
complement of the Dirichlet boundary Γ′D := ∂Ω \ ΓD, the complement of the
Neumann boundary Γ′N := ∂Ω \ ΓN and the complement of their union Γ′B :=
∂Ω \ ΓB . To exclude the well-posed case, we assume that the d− 1-measure of Γ′B
is non-zero. The practical interest of (2.1) stems from engineering problems where
the exact boundary condition is unknown on Γ′B , but additional measurements ψ
of the fluxes are available on a part of the accessible boundary ΓC . This results
in an ill-posed reconstruction problem, that in practice most likely does not have
a solution due to measurement errors in the fluxes [5]. However if the underlying
physical process is stable, (in the sense that the problem where full boundary data
are known is well-posed) we may assume that it allows for a unique solution in the
idealized situation of unperturbed data. This is the approach we will take below.
To this end we assume that f ∈ L2(Ω), ψ ∈ H 1

2 (ΓN ) and that a unique u ∈ H2(Ω)
satisfies (2.1). We analyse this idealized situation using conditional stability, the
condition being the existence of u ∈ H1(Ω), and then use a perturbation argument
to include the effect of measurement errors.

For the derivation of a weak formulation we introduce the spaces V := {v ∈
H1(Ω) : v|ΓD = 0} and W := {v ∈ H1(Ω) : v|Γ′N = 0}, both equipped with the

H1-norm and with dual spaces denoted by V ′ and W ′.
Using these spaces we obtain a weak formulation: find u ∈ V such that

(2.2) a(u,w) = l(w) ∀w ∈W,

where

a(u,w) =

∫
Ω

∇u · ∇w dx,
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and

l(w) :=

∫
Ω

fw dx+

∫
ΓN

ψw ds.

We will use the notation (·, ·)X for the L2-scalar product over X and for the associ-

ated norm we write ‖x‖X := (x, x)
1
2

X . The Hs-norm will be denoted by ‖·‖Hs(Ω) and

we identify the norms on V andW with theH1-norm, ‖·‖V = ‖·‖W = ‖·‖H1(Ω). Ob-
serve that we may not assume that the problem is well-posed for general l(·) ∈W ′.
Indeed since u 6∈ W coercivity fails and inf-sup stability does not hold either in
general [5].

Remark 2.1. The restriction to homogeneous Dirichlet conditions in (2.1) is made
only to reduce notation and technical detail. It is straightforward to extend the
formulation and the analysis below to include non-homogeneous Dirichlet data.

2.1. Conditional stability. The problem (2.1) is ill-posed and for our analysis we
will only use a conditional stability result linking the size of some functional of the
solution to the size of data. Consider a functional j : V 7→ R. Let Ξ : R+ 7→ R+ be a
continuous, monotone increasing function with limx→0+ Ξ(x) = 0. The conditional
stability that we need for the analysis may be written on the following abstract
form. We assume that the solution exists in some suitable Sobolev space and that,
if for some sufficiently small ε > 0, there holds

(2.3) ‖l‖W ′ ≤ ε in (2.2) then |j(u)| ≤ Ξ(ε).

It is known [2, Theorems 1.7 and 1.9 with Remark 1.8] that if there exists a solution
u ∈ H1(Ω), with E := ‖u‖H1(Ω) to (2.1), a conditional stability of the form (2.3)
holds for 0 < ε < 1 and

(2.4)
j(u) := ‖u‖L2(ω), ω ⊂ Ω : dist(ω,Γ′B) =: dω,Γ′B > 0

with Ξ(x) = C(E)xς , C(E) > 0, ς := ς(dω,Γ′B ) ∈ (0, 1)

and for

(2.5)
j(u) := ‖u‖L2(Ω) with Ξ(x) = C1(E)(| log(x)|+ C2(E))−ς

with C1(E), C2(E) > 0, ς ∈ (0, 1).

Strictly speaking [2] only considers the case ΓD ≡ ΓN , but the result also holds in
the case with a pure Dirichlet or Neumann boundary part (one only needs to verify
that the extension Theorem 6.2 still holds. See also discussion on page 11 of [2]).
The constants above also depend on the geometry of the problem. Note that to
derive these results l(·) is first associated with its Riesz representant in W (c.f. [2,
equation (1.31)] and discussion.) It should also be noted that the interval (0, 1) for
ε above can be extended provided that the constants in the estimates are rescaled
accordingly.

3. The nonconforming stabilized method

Let {Th}h denote a family of shape regular and quasi uniform tessellations of Ω
into nonoverlapping simplices, such that for any two different simplices κ, κ′ ∈ Th,
κ∩κ′ consists of either the empty set, a common face or edge, or a common vertex.
The diameter of a simplex κ will be denoted hκ and the outward pointing normal nκ.
The family {Th}h is indexed by the maximum element-size of Th, h := maxκ∈Th hκ.
We denote the set of element faces in Th by F and let Fi denote the set of interior
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faces and FΓ the set of faces in some Γ ⊂ ∂Ω. To each face F ∈ F we associate
the mesh parameter hF := diam(F ). We will assume that the mesh is fitted to
the subsets of ∂Ω representing the boundary conditions ΓD and ΓN , so that the
boundaries of these subsets coincide with the boundaries of subsets of element
faces. To each face F we associate a unit normal vector, nF . For interior faces its
orientation is arbitrary, but fixed. On the boundary ∂Ω we identify nF with the
outward pointing normal of ∂Ω. The subscript on the normal is dropped in cases
where it follows from the context.

We define the jump over interior faces F ∈ Fi by [v]|F := limε→0+(v(x|F −
εnF ) − v(x|F + εnF )) and for faces on the boundary, F ∈ ∂Ω, we let [v]|F := v|F .
Similarly we define the average of a function over an interior face F by {v}|F :=
1
2 limε→0+(v(x|F − εnF ) + v(x|F + εnF )) and for F on the boundary we define
{v}|F := v|F . The classical nonconforming space of piecewise affine finite element
functions (see [12]) then reads

XΓ
h := {vh ∈ L2(Ω) :

∫
F

[vh] ds = 0, ∀F ∈ Fi ∪ FΓ and vh|κ ∈ P1(κ), ∀κ ∈ Th}

where P1(κ) denotes the set of polynomials of degree less than or equal to one re-
stricted to the element κ and Γ denotes some portion of the boundary ∂Ω consisting
of a union of a subset of boundary element faces. If Γ is omitted no constraints
are set on the boundary elements. We may then define the spaces Vh := XΓD

h and

Wh := X
Γ′N
h . We recall the interpolation operator rh : H1(Ω)→ Xh defined by the

relation

{rhv}|F := |F |−1

∫
F

{rhv} ds = |F |−1

∫
F

v ds

for every F ∈ F and with |F | denoting the (d − 1)-measure of F . Observe that
rh : W 7→Wh and rh : V 7→ Vh. It is convenient to introduce the broken norms

‖x‖2h :=
∑
κ∈Th

‖x‖2κ, ‖x‖21,h := ‖x‖2h + ‖∇x‖2h and ‖x‖2F :=
∑
F∈F
‖x‖2F .

The following inverse and trace inequalities are well known

(3.1)
‖v‖∂κ ≤ Ct(h

− 1
2

κ ‖v‖κ + h
1
2
κ ‖∇v‖κ),∀v ∈ H1(κ)

hκ‖∇vh‖κ + h
1
2
κ ‖vh‖∂κ ≤ Ci‖vh‖κ, ∀vh ∈ Xh.

Using the inequalities of (3.1) and standard approximation results from [12] it is
straightforward to show the following approximation results of the interpolant rh

(3.2)

‖u− rhu‖+ h‖∇(u− rhu)‖h ≤ Cht|u|Ht(Ω), t ∈ {1, 2}

‖h− 1
2 (u− rhu)‖F ≤ Cht−1|u|Ht(Ω), t ∈ {1, 2}

‖h 1
2n · ∇(u− rhu)‖F ≤ Ch|u|H2(Ω).

It will also be useful to bound the L2-norm of the interpolant rh by its values on
the element faces. To this end we prove a technical lemma.

Lemma 3.1. For any function vh ∈ Xh there holds

‖h−1vh‖Ω ≤ cT

(∑
F∈F

h−1
F ‖{vh}‖

2
F

) 1
2

.
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Proof. It follows by norm equivalence of discrete spaces on the reference element
and a scaling argument (under the assumption of shape regularity) that for all
κ ∈ Th

(3.3) ‖vh‖2κ ≤ C
∑
F∈∂κ

hF ‖vh‖2F .

The claim follows by shape regularity and by summing over the elements of Th and
recalling that ‖vh‖2F = ‖{vh}‖2F . �

Following [6, 8] we propose the formulation: find (uh, zh) ∈ Vh ×Wh such that,

(3.4)
ah(uh, wh)− sW (zh, wh) = l(wh)

ah(vh, zh) + sV (uh, vh) = 0

for all (vh, wh) ∈ Vh ×Wh. Here the bilinear forms are defined by

ah(uh, wh) :=
∑
κ∈Th

∫
κ

∇uh · ∇wh dx,

(3.5) sW (zh, wh) :=
∑
κ∈Th

∫
κ

γW∇zh · ∇wh dx

or alternatively

(3.6) sW (zh, wh) :=
∑

F∈Fi∪FΓ′
N

∫
F

γWh
−1
F [zh][wh] ds

and finally

(3.7) sV (uh, vh) :=
∑

F∈Fi∪FΓD

∫
F

γV h
−1
F [uh][vh] ds.

For cases where the construction of the spaces Vh and Wh with Dirichlet conditions
set on different parts of the boundary is inconvenient we propose the following for-
mulation using weak imposition of the boundary conditions in a fashion reminiscent
of Nitsche’s method. Find (uh, zh) ∈ Xh ×Xh such that,

(3.8)
ah(uh, wh)− bh(uh, wh)− sW (zh, wh) = l(wh)

ah(vh, zh)− bh(vh, zh) + sV (uh, vh) = 0

for all (vh, wh) ∈ Xh ×Xh. The boundary term bh(·, ·) is defined by

(3.9) bh(vh, wh) :=
∑

F∈F∂Ω

(∫
F∩Γ′N

n · ∇vh wh ds+

∫
F∩ΓD

n · ∇wh vh ds

)
and we modify the stabilization sW (·, ·) so that the stabilization parameter may be
chosen differently in the interior and on the boundary,

(3.10) sW (zh, wh) :=
∑
κ∈Th

∫
κ

γW∇zh · ∇wh dx+
∑

F∈FΓ′
N

∫
F

γW,bch
−1
F zhwh ds,
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or alternatively

(3.11) sW (zh, wh) :=
∑
F∈Fi

∫
F

γWh
−1
F [zh][wh] ds+

∑
F∈FΓ′

N

∫
F

γW,bch
−1
F zhwh ds.

For the stabilization term sV (·, ·) of equation (3.7) we may consider a similar dis-
tinction between the penalty parameter in the interior γV and on the boundary
γV,bc. To reduce the notation we will never make a distinction between the penalty
parameter in the bulk and on the boundary in the analysis, but their choice will
be discussed in the numerical section. The penalty parameters γV , γW , γW,bc and
γV,bc are all strictly positive and independent of the mesh size h. They play a
role similar to the regularization parameter in standard Tikhonov regularization,
but the operators they are associated with makes sense only when applied to the
discrete approximation space. Indeed the jump penalty vanishes when applied to
the exact solution.

We also propose the compact form: find (uh, zh) ∈ Vh := Xh ×Xh such that,

Ah[(uh, zh), (vh, wh)] = l(wh)

for all (vh, wh) ∈ Vh. The bilinear form is then given by

Ah[(uh, zh), (vh, wh)] := ah(uh, wh)− bh(uh, wh)− sW (zh, wh)

+ ah(vh, zh)− bh(vh, zh) + sV (uh, vh).

If (uh, zh) and (vh, wh) are restricted to Vh×Wh in (3.8) we recover the formulation
(3.4), since Vh×Wh is in the kernel of the operator bh(·, ·). We therefore present the
analysis for (3.8) however a similar analysis is valid for (3.4), simply by omitting
the contributions from bh(·, ·) and instead using the zero average property to treat
boundary terms. Observe that for (3.5) and (3.10), by Poincaré’s inequality there
exists c1, c2 > 0 so that

c1γ
1
2

W ‖wh‖1,h ≤ sW (wh, wh)
1
2 ≤ c2γ

1
2

W ‖wh‖1,h,∀wh ∈Wh.

This norm equivalence is important for stability when there are perturbations in
data (see Lemma 5.5). For the weaker adjoint stabilization (3.6) only the upper
bound holds. For the part of the analysis considering unperturbed data the stability
obtained by (3.6) is sufficient and the analysis is identical. However in Section 5.1
where perturbed data are considered, the two approaches lead to slightly different
estimates. The operator (3.6) has the advantage of being adjoint consistent, but
since duality arguments are not used herein this has no impact on the results
presented below. The stabilization (3.10) will be considered in the analysis, but we
will outline in remarks how the arguments change if (3.6) is used. We will then
compare the behavior of the two operators numerically.

4. Stability estimates

The issue of stability of the discrete formulation is crucial since we have no
coercivity or inf-sup stability of the continuous formulation (2.2) to rely on. By
taking vh = uh and wh = −zh, and defining the semi-norm

|vh|sV := sV (vh, vh)
1
2 , ∀vh ∈ Vh and the norm ‖wh‖sW := sW (wh, wh)

1
2 , ∀wh ∈Wh

we obtain the stability estimate

(4.1) |uh|2sV + ‖zh‖2sW = −l(zh)
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showing that we have control of zh and of the nonconforming part of the approx-
imation of uh. If the stabilization operator (3.6) is used, ‖ · ‖sW is a semi-norm
similar to | · |sV . The stability (4.1) is of course insufficient for any useful analysis,
however we will use it here as a starting point for an inf-sup argument that implies
existence of a unique discrete solution. To this end we introduce a mesh-dependent
norm

(4.2) |||vh|||V := γ
1
2

V ‖h∇vh‖h + γ
1
2

V ‖h
1
2 [n · ∇vh]‖Fi∪FΓN

+ |vh|sV .

Observe that the first term on the right hand side of (4.2), scales differently than the
two other terms. The reason for this is that stability of the first term is obtained
using a Poincaré inequality, involving a constant with the dimension of a length
scale depending on Ω. To simplify the presentation we have assumed that this
constant is O(1) and do not track it. The following approximation estimate is an
immediate consequence of (3.2),

(4.3) |||v − rhv|||V ≤ Cγ
1
2

V h|v|H2(Ω), ∀v ∈ H2(Ω).

We will also use the composite norm

(4.4) |||(uh, zh)||| := |||uh|||V + ‖zh‖sW .

When the formulation (3.4) is used Dirichlet boundary conditions are set weakly on
ΓD in Vh and on Γ′N in Wh and when formulation (3.8) is used the corresponding
penalty term on Γ′N is included in sW (·, ·), therefore |||(uh, zh)||| is a norm, when
(3.10) is used. When using (3.6), it is only a semi norm, however in that case the
jump of ∇zh and ‖hzh‖1,h can be included in the norm (4.4) above. We now prove
a fundamental stability result for the discretization (3.8) (valid also for (3.4) after
minor modifications).

Theorem 4.1. Assume that (γV γW ) ≤ 1. Then there exists a positive constant cs
independent of γV , γW and h, but not of the mesh geometry, such that there holds

cs|||(xh, yh)||| ≤ sup
(vh,wh)∈Vh

Ah[(xh, yh), (vh, wh)]

|||(vh, wh)|||
.

Proof. First we recall the positivity

|xh|2sV + ‖yh‖2sW = Ah[(xh, yh), (xh,−yh)].

Then observe that by integrating by parts in the bilinear form ah(·, ·), using the
equality ab−cd = 1

2 (a−c)(b+d)+ 1
2 (a+c)(b−d) and the zero mean value property

of the jump of xh on interior faces we have

ah(xh, wh) =
∑
F∈F

∫
F

[nF · ∇xh]{wh} ds.

Define the function ξh ∈Wh such that for every face F ∈ Fi ∪ FΓN

{ξh}|F := γV hF [nF · ∇xh]|F .

This is possible in the nonconforming finite element space since the degrees of
freedom may be identified with the average value of the finite element function on
an element face. Using Lemma 3.1 we have

(4.5) ‖h−1ξh‖2Ω ≤ c2T
∑

F∈Fi∪FC

γ2
V ‖h

1
2

F [nF · ∇xh]‖2F .
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Testing with wh = ξh and vh = 0 we get

(4.6) γV ‖h
1
2 [nF · ∇xh]‖2Fi∪FΓN

= Ah[(xh, yh), (0, ξh)] + bh(xh, ξh) + sW (yh, ξh).

To bound the second term in the right hand side we proceed as follows,

bh(xh, ξh) ≤

 ∑
F∈FΓD

‖h 1
2∇ξh‖2F

 1
2

‖h− 1
2xh‖ΓD

≤ CiCtcT γ
1
2

V ‖h
1
2 [n · ∇xh]‖Fi∪FΓN

|xh|sV

≤ (CiCtcT )2|xh|2sV +
1

4
γV ‖h

1
2 [n · ∇xh]‖2Fi∪FΓN

.

For the stabilization term in the right hand side of (4.6) we have the upper bounds,
using the inverse inequality (trace inequality if (3.6) is used) (3.1)(ii) and (4.5)

sW (yh, ξh) ≤ ‖yh‖sW ‖ξh‖sW ≤ Ci‖yh‖sW γ
1
2

W ‖h
−1ξh‖Ω

≤ CicT ‖yh‖sW (γV γW )
1
2 γ

1
2

V ‖h
1
2 [n · ∇xh]‖Fi∪FΓN

≤ (CicT )2‖yh‖2sW +
1

4
γV ‖h

1
2 [n · ∇xh]‖2Fi∪FΓN

.

Where we used that γV γW < 1 and the arithmetic-geometric inequality for the
third bound. The consequence of this is that for α = 1

2 + (CicT )2 max(1, C2
t ) we

have

(4.7)
1

2

(
|xh|2sV + ‖yh‖2sW + γV ‖h

1
2 [n · ∇xh]‖2Fi∪FΓN

)
≤ Ah[(xh, yh), (αxh,−αyh + ξh)].

To include the control of the gradient of xh we use a well-known discrete Poincaré
inequality for piecewise constant functions [14]

‖∇xh‖2h ≤ C
∑

F∈Fi∪FΓN

h−1
F ‖[∇xh]‖2F .

The right hand side is now upper bounded by decomposing the jump of the gradient
on its normal and tangential part and applying the inverse inequality

‖h 1
2 [(I − nF ⊗ nF )∇xh]‖F ≤ C‖h−

1
2 [xh]‖F

in the latter. Relating the right hand side to the quantities in ||| · |||V already
controlled in (4.7), this leads to the upper bound

‖∇xh‖h ≤ Ch−1(‖h 1
2 [n · ∇xh]‖Fi∪FΓN

+ γ
− 1

2

V |xh|sV ).

and hence

hγ
1
2

V ‖∇xh‖h ≤ C(γ
1
2

V ‖h
1
2 [n · ∇xh]‖Fi∪FΓN

+ |xh|sV ).

We may conclude that there exists a positive constant c0 > 0 independent of γV , γW
and h such that

c0|||(xh, yh)|||2 ≤ Ah[(xh, yh), (αxh,−αyh + ξh)].

To end the proof we need to prove the stability of ξh in the triple norm. By the
triangle inequality

|||(αxh,−αyh + ξh)||| ≤ α|||(xh, yh)|||+ |||(0, ξh)|||.
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Using now an inverse inequality followed by the inequality (4.5) we arrive at

|||(0, ξh)||| = ‖ξh‖sW ≤ γ
1
2

WCi‖h
−1ξh‖Ω ≤ CicT (γW γV )

1
2 |||xh|||V .

Collecting terms we see that

|||(αxh,−αyh + ξh)||| ≤ (α+ CicT )|||(xh, yh)|||.

This concludes the proof with cs = c0/(α+ CicT ). �

Remark 4.2. Observe that the above analysis is restricted to the method using
(3.10). If the stabilization operator defined by equation (3.6) is used the relation
(4.1) and the norm (4.4) only holds on the semi-norm defined by (3.6). A contri-
bution ‖h∇zh‖h may then be included in (4.4) with stability shown using a similar
argument as above. The control of the dual variable in this case is nevertheless
weaker than that provided using (3.11). This will have consequences for the per-
turbation analysis below.

Corollary 4.3. The formulation (3.8) admits a unique solution (uh, zh).

Proof. The system matrix corresponding to (3.4) is a square matrix and we only
need to show that there are no zero eigenvalues. Assume that l(wh) = 0. It then
follows by Theorem 4.1 that for any solution (uh, zh) there holds

cs|||(uh, zh)||| ≤ sup
(vh,wh)∈Vh

Ah[(uh, zh), (vh, wh)]

|||(vh, wh)|||
= 0,

implying that uh = 0, zh = 0 which shows that the solution is unique. �

5. Error estimates

Even though Theorem 4.1 provides us with a stability estimate for the formula-
tion, the norm is not sufficiently strong to allow for a proof of convergence. Indeed
the only notion of stability at our disposal that can allow us to prove error esti-
mates are (2.4) and (2.5). We will follow the approach introduced in [9] and first
prove that |||(u− uh, zh)||| ≤ Ch|u|H2(Ω). This tells us that the stabilization terms
must vanish at an optimal rate for smooth u and that ‖∇uh‖h + ‖∇zh‖h is uni-
formly bounded as h → 0. Using this a priori bound we may conclude that the
H1-conforming part of uh is uniformly bounded in H1. This allows us to write the
error u−uh as u− ũh + ũh−uh = ẽ+ eh, where ũh denotes the V -conforming part
of uh. We may then control the part ẽ using the conditional stability estimates
(2.4) and (2.5), while eh is shown to be bounded by the stabilization.

Before proving the main result we introduce two technical Lemmas that will
be useful in the analysis. Using the regularity assumptions on the data in l(·) it is
straightforward to show that the formulation satisfies the following weak consistency

Lemma 5.1. (Weak consistency) Let u ∈ H2(Ω) be the solution of (2.1), with

f ∈ L2(Ω) and ψ ∈ H 1
2 (ΓN ) and let (uh, zh) ∈ Vh be the solution of (3.4) then, for

all wh ∈Wh, there holds,

(5.1) |ah(uh − u,wh)− bh(uh − u,wh)− sW (zh, wh)|

≤
∑
F∈Fi

inf
νh∈Vh

∫
F

|nF · (∇u− {∇νh})||[wh]| ds.
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Proof. Multiplying (2.1) with wh ∈Wh and integrating by parts we have∫
Ω

fwh dx = −
∫

Ω

∆uwh dx = −
∑
κ∈Th

∑
F⊂∂κ
F 6∈FΓN

∫
F

nκ·∇uwh ds+ah(u,wh)−
∫

ΓN

ψwh ds

or by rearranging terms and using that u|ΓD = 0,

ah(u,wh)− bh(u,wh) = l(wh) +
∑
κ∈Th

∑
F⊂∂κ
F 6∈F∂Ω

∫
F

nκ · ∇uwh ds.

Using (3.8) we obtain

ah(uh − u,wh)− bh(uh − u,wh)− sW (zh, wh) = −
∑
κ∈Th

∑
F⊂∂κ
F 6∈F∂Ω

∫
F

nκ · ∇uwh ds.

By the definition of the finite element space Xh on Fi and since every internal face
appears twice with different orientation of nκ we have for all νh ∈ Xh,∑

F⊂∂κ
F 6∈F∂Ω

∫
F

nκ · ∇uwh ds =
∑
F⊂∂κ
F 6∈F∂Ω

∫
F

nκ · (∇u− {∇νh}) wh ds.

We now observe that by replacing wh with the jump [wh] we may write the sum
over the faces of the mesh, replacing nκ by nF . The conclusion follows by taking
absolute values on both sides and moving the absolute values under the integral
sign creating the desired inequality. �

Lemma 5.2. For any v ∈ H1(Ω) and for all wh ∈ Xh there holds

(5.2) ah(v − rhv, wh) = 0.

For any v ∈ H2(Ω) and for all wh ∈ Xh there holds

(5.3) bh(v − rhv, wh) ≤ Ch|v|H2(Ω)‖h−
1
2wh‖Γ′N .

Proof. By integration by parts we have

ah(v − rhv, wh) =
∑
κ∈Th

∑
F⊂∂κ

∫
F

(v − rhv)nκ · ∇wh ds = 0,

where the last equality is a consequence of the definition of rhv. The inequality
(5.3) follows in a similar fashion observing that by the definition of rhv and the
Cauchy-Schwarz inequality we have

bh(v − rhv, wh) =
∑

F∈FΓ′
N

∫
F

n · ∇(v − rhv)wh ds

≤ ‖h 1
2n · ∇(v − rhv)‖FΓ′

N

‖h− 1
2wh‖Γ′N .

We conclude by applying the second approximation estimate of equation (3.2). �

We now proceed by first showing that the error in the triple-norm must go to
zero and then we use this result together with conditional stability to obtain error
estimates in the L2-norm.
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Proposition 5.3. Let u ∈ H2(Ω) be the solution of (2.1) and (uh, zh) ∈ Vh the
solution of (3.4). Then

(5.4) |||(u− uh, zh)||| ≤ C(γ
1
2

V + c−1
s (γ

− 1
2

W + γ
1
2

V ))h‖u‖H2(Ω)

and

(5.5) ‖∇uh‖h ≤ C(1 + c−1
s (γ

− 1
2

W γ
− 1

2

V + 1))‖u‖H2(Ω).

Proof. Using a triangle inequality and the approximation (4.3) it is sufficient to
consider the discrete error µh = uh − rhu. By Theorem 4.1 we have the stability

(5.6) cs|||(µh, zh)||| ≤ sup
(vh,wh)∈Vh

Ah[(µh, zh), (vh, wh)]

|||(vh, wh)|||
.

By adding and subtracting u in the formulation we observe that

Ah[(µh, zh), (vh, wh)] = ah(uh − u,wh)− bh(uh − u,wh)− sW (zh, wh)

+ ah(u− rhu,wh)− bh(u− rhu,wh)− sV (rhu, vh).

Applying Lemma 5.1 and 5.2 to the right hand side with νh := rhu we obtain

|Ah[(µh, zh), (vh, wh)]| ≤
∑
F∈Fi

∫
F

|nF · (∇u− {∇rhu})||[wh]| ds+ |sV (rhu, vh)|

+ Cγ
− 1

2

W h‖u‖H2(Ω)‖wh‖sW .

We proceed using the Cauchy-Schwarz inequality followed by element wise trace
inequalities and the approximation (3.2) to obtain∑

F∈Fi

∫
F

|nF · (∇u− {∇rhu})||[wh]| ds+ |sV (rhu, vh)|

≤ Cγ−
1
2

W ‖h
1
2nF · (∇u− {∇rhu})‖Fi‖wh‖sW + |u− rhu|sV |vh|sV

≤ C(γ
− 1

2

W + γ
1
2

V )h‖u‖H2(Ω)|||(vh, wh)|||.

Applying the above inequalities in (5.6) completes the proof of (5.4). The inequality
(5.5) then is an immediate consequence of (5.4) and the H1-stability of rh.

‖∇uh‖h ≤ ‖∇µh‖h + ‖∇rhu‖h

≤ C(γ
− 1

2

V h−1|||(µh, zh)|||+ ‖u‖H1(Ω)) ≤ C(1 + c−1
s (γ

− 1
2

W + γ
1
2

V )γ
− 1

2

V )‖u‖H2(Ω).

�

Theorem 5.4. Let u ∈ H2(Ω) be the solution of (2.1) and (uh, zh) ∈ Vh the
solution of (3.4). Then, with j(·) and Ξ(·) defined in (2.4) or (2.5), there exists
h0 > 0 and a constant C > 0 independent of h such that for all h < h0

|j(u− uh)| ≤ Ξ(η(h, l, uh, zh)) + Cγ
− 1

2

V h|uh|sV
where

η(h, l, uh, zh) = C(h‖f‖Ω + γ
− 1

2

V |uh|sV + γ
1
2

W ‖zh‖sW ) + C

 ∑
F∈FΓN

h inf
αF∈R

‖ψ − αF ‖2F

 1
2

.
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In addition the following a priori bound holds

η(h, l, uh, zh) + |uh|sV ≤ Ch(‖f‖Ω + ‖ψ‖
H

1
2 (ΓN )

+ ‖u‖H2(Ω)),

where the constant includes that of (5.4).

Proof. By the definition j(·) is an L2-norm and therefore well defined for functions
in V + Vh. We then consider the decomposition of u − uh into one V -conforming
part and its residual. To this end introduce a function ũh ∈ V ∩ Vh. To get a
V -conforming approximation we define the values of ũh in the vertices xi of the
tessellation Th by ũh|Γ̄D = 0 and,

(5.7) ũh(xi) = C−1
xi

∑
κ:x∈κ

uh(xi)|κ, xi 6∈ Γ̄D,

where Cxi := card({κ ∈ Th : xi ∈ κ}). With this definition it holds that ũh ∈ V ∩Vh.
For the discrete error eh := uh − ũh it is well known that the following estimate
holds (see [1, 22])

(5.8) ‖eh‖+ h‖∇eh‖h ≤ Chγ
− 1

2

V |uh|sV .

We may then construct the H1-conforming part of the error as ẽ := u − ũh ∈ V ,
making it a valid function to use in the conditional stability (2.3). For any w ∈W
there holds

a(ẽ, w) = l(w)− a(ũh, w) =: 〈r, w〉W ′,W
where we have identified r ∈ W ′. To apply (2.3) we need to upper bound ‖r‖W ′ .
To this end we write

(5.9) sup
w∈W
‖w‖W=1

〈r, w〉W ′,W = sup
w∈W
‖w‖W=1

(l(w − rhw) + ah(eh, w)

− sW (zh, rhw)− bh(uh, rhw))

where we have used the symmetry of ah(·, ·) and the relation (5.2). By the definition
of l(·) we see that the first term on the right hand side may be bounded by

l(w − rhw) = (f, w − rhw)Ω +
∑

F∈FΓN

(ψ − αF , w − rhw)F

≤ Ch‖f‖Ω + C

 ∑
F∈FΓN

h inf
αF∈R

‖ψ − αF ‖2F

 1
2

.

To bound the second term in the right hand side of (5.9) we use the Cauchy-Schwarz
inequality and the discrete interpolation result (5.8) to write

ah(eh, w) ≤ ‖eh‖1,h‖w‖H1(Ω) ≤ Cγ
− 1

2

V |uh|sV .

For the second to last term in the right hand side of (5.9) there holds by the
Cauchy-Schwarz inequality (followed by a trace inequality and approximation if
(3.6) is used) and the H1-stability of rh,

|sW (zh, rhw)| ≤ C‖zh‖sW γ
1
2

W ‖∇rhw‖h ≤ Cγ
1
2

W ‖zh‖sW .
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For the last term in the right hand side we similarly obtain using a trace inequality
(recalling that rhw ∈Wh)

|bh(uh, rhw)| = |
∑
F∈ΓD

∫
F

n · ∇rhw uh ds| ≤ CCtγ
− 1

2

V |uh|sV .

It follows from (5.4) and standard approximation that for h small enough, ẽ satisfies
the assumptions of the conditional stability (2.3). However note that in order to
apply (2.4) or (2.5) to ẽ we must show that there exists E > 0 such that the
bound ‖ẽ‖H1(Ω) ≤ E < ∞ holds uniformly in h, since otherwise the constants in
the estimates may blow up. This a priori bound is a consequence of a triangle
inequality, the bound (5.5) and the estimate (5.8) as follows

(5.10) ‖ẽ‖H1(Ω) ≤ ‖u‖H1(Ω) + ‖uh‖1,h + ‖eh‖1,h

≤ ‖u‖H1(Ω) + ‖uh‖1,h + Cγ
− 1

2

V |uh|sV ≤ C(1 + h)‖u‖H2(Ω).

Therefore, under our regularity assumption on the exact solution, the H1-norm of
the conforming part of the error is uniformly bounded for all h. For the case of
(2.4) or (2.5) we note that for all ω ⊂ Ω there holds

‖u− uh‖L2(ω) ≤ ‖ẽ‖L2(ω) + ‖eh‖L2(ω) ≤ Ξ(η(h, l, uh, zh)) + Cγ
− 1

2

V h|uh|sV
where Ξ(·) is defined by (2.4) or (2.5) depending on the choice of ω. The upper
bounds on η(h, l, uh, zh) and |uh|sV are immediate consequences of Proposition 5.3
and the approximation properties of piecewise constant functions. First note that
since u ∈ H1(Ω), by consistency

|uh|sV = |u− uh|sV ≤ |||(u− uh), zh|||

and we may use the upper bound (5.4). For the bound on η we use the approxima-

tion infα∈R ‖ψ − α‖F ≤ Ch
1
2 ‖ψ‖

H
1
2 (F )

and the consistency of sV (·, ·) to obtain

η(h, l, uh, zh) ≤ Ch(‖f‖Ω + ‖ψ‖
H

1
2 (ΓN )

) + (γ
− 1

2

V + γ
1
2

W )|||(u− uh, zh)|||

and conclude once again using (5.4). �

5.1. The case of perturbed data. In this section we consider the realistic case
that we have at our disposal only measurements of the fluxes ψ+δψ on the boundary
part ΓC . In practice these measurements are always polluted by measurement
errors, δψ. It is then of interest to study how fine it is reasonable to make the
mesh, knowing that the perturbed data might not be in the range of the operator.
We assume that δf ∈ L2(Ω) and δψ ∈ L2(ΓN ). The perturbed problem may be
written, find uδ ∈ V such that

(5.11) a(uδ, v) = lδ(w) := l(w) + δl(w)

where

δl(w) :=

∫
Ω

δfw dx+

∫
ΓN

δψ w ds.

We introduce the h-weighted dual norm,

‖(δf, δψ)‖h,W ′ := h‖δf‖Ω + ‖δf‖W ′ + h
1
2 ‖δψ‖ΓN + ‖δψ‖

H−
1
2 (ΓN )

.
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This norm will be used to measure the perturbation induced by errors in measure-
ments. The reason for the combination of strong and weak norms is the following
boundedness results.

Lemma 5.5. Let sW (·, ·) be defined by (3.5). Then

(5.12) sup
wh∈Wh

‖wh‖sW =1

|l(wh)− lδ(wh)| ≤ Cγ−
1
2

W ‖(δf, δψ)‖h,W ′ .

(5.13) sup
w∈W
‖w‖W=1

|l(rhw)− lδ(rhw)| ≤ C‖(δf, δψ)‖h,W ′ .

Proof. By definition δl(wh) = l(wh)− lδ(wh) and by the linearity of the operator

|δl(wh)| ≤ |δl(w̃h)|+ |δl(wh − w̃h)|,
where w̃h ∈ Wh is the H1-conforming part of wh defined similarly as in (5.7), but
with w̃h|Γ′N = 0. We may then use an estimate similar to (5.8), but with ‖ · ‖sW ,
to obtain the bounds

|δl(w̃h)| = | 〈δf, w̃h〉W ′,W + 〈δψ, w̃h〉
H−

1
2 ,H

1
2
|

≤ C(‖δf‖W ′ + ‖δψ‖
H−

1
2

)‖w̃h‖H1(Ω)

≤ C(‖δf‖W ′ + ‖δψ‖
H−

1
2

)(‖w̃h − wh‖1,h + ‖wh‖1,h)

≤ C(‖δf‖W ′ + ‖δψ‖
H−

1
2

)γ
− 1

2

W ‖wh‖sW
and,

|δl(wh − w̃h)| ≤ ‖δf‖Ω‖wh − w̃h‖Ω + ‖δψ‖ΓN ‖wh − w̃h‖ΓN

≤ C(h‖δf‖Ω + h
1
2 ‖δψ‖ΓN )γ

− 1
2

W ‖wh‖sW .
Similarly the bound on |δl(rhw)| is obtained by

|δl(rhw)| = |δl(rhw − w) + δl(w)| ≤ C‖(δf, δψ)‖h,W ′
where we used the approximation (3.2) with t = 1 and the duality pairing δl(w) =
〈δf, w〉W ′,W + 〈δψ,w〉

H−
1
2 ,H

1
2

. �

Remark 5.6. The inequality (5.12) of Lemma 5.5 only holds when the stabilization
of (3.5) is used in (3.8). If instead (3.6) is used, one may only obtain control of
‖h∇wh‖h in the triple norm (see Remark 4.2), leading to an additional factor h−1

in the right hand side of (5.12) above.

Accounting for the perturbed data introduces a minor modification of the weak
consistency that holds for the formulation (3.8), when the right hand side is sub-
stituted for the perturbed functional lδ(wh).

Lemma 5.7. (Weak consistency with perturbed data) Let u be the solution of (2.1),

with f ∈ L2(Ω) and ψ ∈ H 1
2 (ΓN ) and let (uh, zh) ∈ Vh be the solution of (3.8),

with the right hand side given by lδ(wh). Then, for all wh ∈Wh, there holds,

(5.14) |ah(uh − u,wh)− bh(uh − u,wh)− sW (zh, wh)|

≤
∑
F∈Fi

inf
νh∈Vh

∫
F

|nF · (∇u− {∇νh})||[wh]| ds+ |δl(wh)|.
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Proof. Following the proof of Lemma 5.1 we now find that

ah(uh−u,wh)−bh(uh−u,wh)−sW (zh, wh) = −
∑
κ∈Th

∑
F⊂∂κ
F 6∈FΓN

∫
F

nκ·∇uwh ds+δl(wh).

We conclude as in Lemma 5.1. �

It is then straightforward to derive modified versions of Proposition 5.3 and The-
orem 5.4. We give the results for the perturbed case below, detailing only the parts
of the proofs that are modified by the perturbed right hand side in (3.8). Observe
that if the problem (5.11) admits a solution uδ ∈ H2(Ω), then the Proposition 5.3
still holds if u is exchanged with uδ. If on the other hand (5.11) does not have a so-
lution, or ‖uδ‖H2(Ω) is very large, the perturbation can be included in the following
way.

Proposition 5.8. Let u ∈ H2(Ω) be the solution of (2.1) and (uh, zh) ∈ Vh the
solution of (3.8) using (3.10) and with the perturbed right hand side lδ(wh). Then
(5.15)

|||(u− uh, zh)||| ≤ C((γ
1
2

V + c−1
s (γ

− 1
2

W + γ
1
2

V ))h‖u‖H2(Ω) + c−1
s γ

− 1
2

W ‖(δf, δψ)‖h,W ′)

and

(5.16) ‖∇uh‖h ≤ C((1+c−1
s (γ

− 1
2

W γ
− 1

2

V +1))‖u‖H2(Ω) +c−1
s γ

− 1
2

W h−1‖(δf, δψ)‖h,W ′).

Proof. The proof follows the arguments of the proof of Proposition 5.3, but this
time we use the modified weak consistency of Lemma 5.7

(5.17) |Ah[(µh, zh), (vh, wh)]| ≤
∑
F∈Fi

∫
F

|nF · (∇u− {∇rhu})||[wh]| ds+ |δl(wh)|

+ |sV (rhu, vh)|+ Cγ
− 1

2

W h‖u‖H2(Ω)‖wh‖sW .

The second term of the right hand side is then bounded using inequality (5.12).
The bound (5.16) follows as before using the definition of the norm ||| · |||V and the
estimate (5.15). �

We observe that the uniform H1-bound on uh no longer holds. Indeed since it
can not be assumed that the solution uδ of the perturbed problem (5.11) exists the
method can fail to converge in the limit h → 0. Assuming that the contribution
from the discretization error dominates the upper bound (5.15) an error estimate
in the spirit of Theorem 5.4 can nevertheless be derived.

Theorem 5.9. Let u ∈ H2(Ω) be the solution of (2.1) and (uh, zh) ∈ Vh the
solution of (3.8) using (3.10) and with the perturbed right hand side lδ(wh). Assume
that there exists h1 > h0 > 0 such that

(5.18) max(1, γ
− 1

2

W )‖(δf, δψ)‖h,W ′ ≤ h0‖u‖H2(Ω)

and for h ≤ h1

ηδ(h, l, uh, zh) := C(h‖f‖L2(Ω) + |uh|sV + ‖zh‖sW

+

 ∑
F∈FΓN

h inf
αF∈R

‖ψ − αF ‖2F

 1
2

+ ‖(δf, δψ)‖h,W ′) < 1.
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Then, with j(·) and Ξ(·) defined in (2.4) or (2.5) we have for h0 ≤ h ≤ h1

(5.19) |j(u− uh)| ≤ Ξ(ηδ(h, l, uh, zh)) + Ch|uh|sV .

In addition the following a priori bound holds

ηδ(h, l, uh, zh) + |uh|sV ≤ Ch(‖f‖+ ‖ψ‖
H

1
2 (ΓN )

) + Ch0‖u‖H2(Ω),

where the constant includes that of (5.15).

Proof. Under the assumption (5.18) the proof is analogous to that of Theorem 5.4,
since by (5.18) equations (5.15) and (5.16) take the same form as (5.4) and (5.5).
This means that ‖ẽ‖H1(Ω) is uniformly bounded in h under the condition (5.18) and
h0 ≤ h and therefore the constants in (2.4) and (2.5) remain bounded. The only
difference in the proof appears in the estimation of the residual term r ∈W ′, here

sup
w∈W
‖w‖H1(Ω)

〈r, w〉W ′,W = sup
w∈W
‖w‖H1(Ω)

(l(w − rhw)− δl(rhw)︸ ︷︷ ︸
perturbation

+ah(eh, w)

− sW (zh, rhw)− bh(uh, rhw).

The new contribution is the second term of the right hand side due to the perturbed
data. This term is upper bounded using (5.13) and the result follows. �

We see that the estimate only is valid when ‖(δf, δψ)‖h,W ′ is small compared
to h‖u‖H2(Ω). This is not a very useful condition in practice since ‖u‖H2(Ω) is un-
known. However, assuming that ‖(δf, δψ)‖h,W ′ is known, the quantities that form
the upper bound (5.19) are all computable, leading to an a posteriori bound that
allows to monitor the computation adaptively, requiring only the minimal regular-
ity assumption u ∈ H1(Ω) (for the conditional stability). Indeed ηδ(h, l, uh, zh) can
be computed and the bound (5.18) is necessary only to ensure that the H1-norm
of ẽ stays bounded. However this last quantity can also be controlled a posteriori
using (5.10),

‖ẽ‖H1(Ω) ≤ ‖u‖H1(Ω) + ‖uh‖1,h + Chγ
− 1

2

V |uh|sV .
Therefore it follows from Theorem 5.9 that mesh refinement will improve the solu-
tion as long as the following three criteria are satisfied

(1) ‖∇uh‖h stays bounded. This is necessary to ensure the uniformity of the
E-dependent constants of the conditional stability estimate through (5.10).

(2) |uh|sV +‖zh‖sW decreases. This is necessary for the reduction of the a pos-
teriori quantity ηδ(h, l, uh, zh), as well as for the uniformity of the constants
in the conditional stability, through (5.10).

(3) The perturbation error, measured in the discrete dual norm ‖(δf, δψ)‖h,W ′
is dominated by the discretization error:

‖(δf, δψ)‖h,W ′ < h‖f‖L2(Ω) + |uh|sV + ‖zh‖sW

+

 ∑
F∈FΓN

h inf
αF∈R

‖ψ − αF ‖2F

 1
2

.

This is to ensure that ηδ(h, l, uh, zh) decreases significantly under mesh
refinement. When the perturbation dominates the residual the error can
no longer be expected to decrease.
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If one or more of the above criteria fail we can expect the error to remain constant,
or even grow under mesh refinement.

6. Numerical example

As a numerical illustration of the theory we consider the original Cauchy problem
discussed by Hadamard. In (2.1) let Ω := (0, π)× (0, 1), ΓN := {x ∈ (0, π); y = 0},
ΓD := ΓN ∪ {x ∈ {0, π}; y ∈ (0, 1)} and

(6.1) ψ := −An sin(nx).

It is then straightforward to verify that

(6.2) un = Ann
−1 sin(nx) sinh(ny)

solves (2.1). One may easily show show that the choice An = n−p, p > 0 leads to
ψ → 0 uniformly as n → ∞, whereas, for any y > 0, un(x, y) blows up. Stability
can only be obtained conditionally, under the assumption that ‖un‖H1(Ω) < E for
some E > 0, leading to the relations (2.4) and (2.5) (see [2] for detailed proofs and
further discussion of (2.3), (2.4), (2.5).)

We choose An := 1 in (6.1) and study the error in the relative L2-norms,

(6.3)
‖u− uh‖Ωζ
‖u‖Ωζ

, where Ωζ := (0, π)× (0, ζ), ζ ∈ {1/4, 1/2, 1}.

Recall that for ζ < 1 the stability (2.3), holds with (2.4) and for ζ = 1 (2.3) with
(2.5) holds. All computations below were performed using formulation (3.8) in the
package FreeFEM++ [21].

6.1. Tuning of penalty parameters. To tune the parameters we set γV =
γV,bc = γW,bc = 1 and then varied the parameter for the adjoint stabilization
in the bulk γW in the interval [10−8, 1]. Computations were performed with n = 1
on a coarse mesh with h = 0.1. In Figure 1 we report the results for the method
(3.8) using (3.11) in the left plot and using (3.10) in the right plot. The filled line
represents the error in the global L2-norm plotted against γW for unperturbed data
and the dotted line represents the same quantity, but for data perturbed by random
noise at the level of 1%.

For both methods we see that γW can vary over several orders of magnitude while
keeping the error below 2%, both for perturbed and unperturbed data. From Figure
1 we then chose the parameters for the rest of the study below as γW = 5 · 10−4

when the operator (3.11) is used and γW = 5 · 10−5 when (3.10) is used.

Remark 6.1. We do not claim that this choice of parameters results in the smallest
error, but rather that it is one valid choice among many. Indeed for the method
(3.11) numerical experiments indicated that all the penalty parameters could be
chosen to the same value and tuned as one parameter. This was not the case for
(3.10). We chose to use the above simple strategy in both cases to make the results
for the two methods comparable and show that one set of parameters gives good
results for all the numerical experiments considered.
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Figure 1. Study of the global relative L2-error against penalty
parameter γW (γV = γV,bc = γW,bc = 1) for the methods using
(3.11) (left) and (3.10) (right). Dotted lines represent results ob-
tained with 1% random perturbation in data.

6.2. Convergence studies. We performed computations varying n in {1, 3, 5} on
a series of unstructured meshes with approximate mesh sizes in the set,

{0.1, 0.05, 0.025, 0.0125, 0.008333}.

Elevations of the reconstructions using the stabilization (3.10) for n = 5 are given
in Figure 2 with mesh size h = 0.1 (left plot) and h = 0.0125 (middle plot) with
the exact solution interpolated on the finer mesh presented for comparison (right
plot). Some spurious oscillations are present in the coarse mesh computation, but
are completely eliminated on the finer mesh. The convergence results are given
in the graphs of Figure 3. We have studied the relative L2-norms for the three
different values of ζ given in (6.3). Each value of ζ is represented by a different
symbol according to: ζ = 1, symbol: ◦; ζ = 1/2, symbol: �; ζ = 1/4, symbol:
�. As we increase the value of n the H1-norm of the exact solution, denoted E,
increases and is given in the captions of the figures. We see that the error level
increases with increasing E. The full lines refer to the method using (3.10) and the
dashed lines refer to the method using (3.11). The dotted lines are reference curves
defined as follows.

• Left plot, n = 1, from top to bottom: y = −0.02(log(x))−1; y = 0.004x
2
5 ;

y = 0.25x2.

• Middle plot, n = 3, from top to bottom: y = −0.02(log(x))−1; y = 0.024x
2
5 ;

y = 0.75x2.
• Right plot, n = 5, from top to bottom: y = −0.5(log(x))−1; y = 6x;
y = 5x2.

In all three cases we observe the logarithmic convergence given by the stability
(2.5) for the global error. For the local errors we observe the convergence of type
hς obtained from the stability (2.4). In all cases we see that the adjoint consistent
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Figure 2. Comparison of reconstructions using (3.5) for n = 5
with h = 0.1 (left), h = 0.0125 (middle) and interpolated exact
solution (right)
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Figure 3. Relative L2-error against mesh-size, ζ = 1, ζ = 1
2 and

ζ = 1
4 . Left: n = 1 and E = 1.68. Middle: n = 3 and E = 7.27.

Right: n = 5 and E = 41.6

method has superior convergence properties for the local errors, typically ς ∈ [0.5, 1]
for the method using (3.10) and ς ∈ [1, 2] for (3.11).

6.3. Perturbed data. In this section we present some preliminary results using
random perturbations of the Cauchy data ψ. We consider

δψ := %× rand
where % ∈ R+ is the relative strength of the perturbation and rand is a ran-
dom vector taking values in [0, 1], generated in FreeFEM++ using the command
randreal1(). We first study the effect of varying the strength of the perturbation
by generating one random vector for each mesh and then using the same vector in
each computation for the three different cases n = 1 (symbol 4), n = 3 (symbol:
O), n = 5 (symbol: ♦) for the methods using stabilization (3.10) (full line) or (3.11)
(dashed line). The value of % is then varied in the interval [0.01, 0.1] and the mesh
size was fixed to h = 0.025. In the left plot of Figure 4 we see the dependence of
the relative global L2-norm error on the strength of the perturbation %. The depen-
dence varies for the different cases, for n = 1 we see a linear dependence indicating
that the perturbation dominates the residual. For n = 5 the error is relatively
independent of the perturbation, showing that the discretization error dominates
the residual. In the intermediate case n = 3, finally, the behavior appears to change
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Figure 4. Left: Relative global L2-error against size of the ran-
dom perturbation %, h = 0.025, n = 1, n = 3 and n = 5. Middle:
six realizations of perturbation study using different random seeds,
h = 0.025, n = 3, stabilization (3.11), ζ = 1 and ζ = 1

4 in (6.3).
Right: six realizations of perturbation study using different ran-
dom seeds, h = 0.025, n = 3, stabilization (3.10) ζ = 1 and ζ = 1

4
in (6.3).

depending on the size of %, for large values of % the behavior is similar as for n = 1,
indicating that the perturbation is dominating. In the left plot of Figure 5 we re-
port the relative global L2-error against the mesh-size h for three different values
of %. Onset of stagnation of the errors at h ≈ % is clearly visible. When (3.11) was
used we also observe the growth of the error under mesh refinement when h < %
predicted in Remark 5.6.

To assess the robustness for different random data we consider the same compu-
tations as above for a sample of six random vectors rand generated by varying the
random seed (command randinit(seed), with seed ∈ {2, 8, 76, 123, 2749, 31313}).
The results are reported in the middle (stabilization (3.11)) and right (stabilization
(3.10)) plots of Figures 4 and 5. The exact parameters of the different computations
are given in the captions. Once again the superior stability for perturbed data of
the method using (3.10) is clearly visible in the global error. For the local error the
performance of the two methods is very similar.

7. Concluding remarks

We have proposed a nonconforming stabilized finite element method for the ap-
proximation of elliptic Cauchy problems. Two different stabilization operators were
studied and boundary conditions could either be set in the approximation spaces
or introduced weakly in the variational formulation. We proved a posteriori and
a priori error estimates for both approaches under the assumption of conditional
stability. The method using (3.10) showed better stability for perturbed data, both
theoretically and numerically, but needed separate tuning of the parameters γV and
γW , whereas they could be chosen equal for the method using (3.11). The stabi-
lization operator (3.11), which is adjoint consistent, on the other hand produced
more accurate approximations when the data was not perturbed. Numerical tests
using both unperturbed and perturbed data corroborated the theoretical results
and showed the good stability properties of the proposed methods.
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Figure 5. Left: relative global L2-error plotted against h for n =
3 and (top to bottom) % = 0.05(·), 0.025, (×), 0.01(+). Middle:
six realizations of convergence study using different random seeds,
n = 3, % = 0.025, stabilization (3.11), ζ = 1 and ζ = 1

4 in (6.3).
Right: six realizations of convergence study using different random
seeds, n = 3, % = 0.025 stabilization (3.10) ζ = 1 and ζ = 1

4 in
(6.3).

Finally it should be observed that it is straightforward to extend the present
analysis to the interior penalty discontinuous Galerkin method using piecewise affine
polynomials in the spirit of [20].
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