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Abstract

In recent years, there have been significant advances in the technology used to collect

data on the movement and activity patterns of humans and animals. GPS units, which

form the primary source of location data, have become cheaper, more accurate, lighter

and less power-hungry, and their accuracy has been further improved with the addition

of inertial measurement units. The consequence is a glut of geospatial time series data,

recorded at rates that range from one position fix every several hours (to maximise system

lifetime) to ten fixes per second (in high dynamic situations). Since data of this quality and

volume has only recently become available, the analytical methods to extract behavioural

information from raw position data are at an early stage of development. An instance

of this lies in the analysis of animal movement patterns. There are, broadly speaking,

two types of animals: solitary animals and social animals. In the former case, the timing

and location of instances of avoidance and association are important behavioural markers.

In the latter case, the identification of periods and strengths of social interaction is a

necessary precursor to social network analysis. In this dissertation, we present two novel

analytical methods for extracting behavioural information from geospatial time series, one

for each case. For solitary animals, a new method to detect avoidance and association

between individuals is proposed; unlike existing methods, assumptions about the shape of

the territories or the nature of individual movement are not needed. For social individuals,

we have made significant progress in developing a method to test for cointegration; this

measures the extent to which two non-stationary time series have a stationary linear

relationship between them and can be used to assess whether a pair of animals move

together. This method has more general application in time series analysis; for example,

in financial time series analysis.
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Methods for collecting data on the movement of individuals have advanced dramatically

over the last two decades, with GPS and Inertial Measurement Units becoming smaller,

lighter, more energy efficient and more accurate than ever before. These developments

enable the detailed tracking of multiple individuals over long periods of time. To make the

most of these technological advances, methods to analyse large amounts of data efficiently

are essential.

The interactions of animals is one area of application in which vast amounts of data are

collected, yet efficient methods to analyse them are scarce. There are, roughly speaking,

two categories of animal interaction: that of solitary animals and that of social animals.

One method for each of these areas is proposed in this thesis.

When analysing the interaction between solitary animals, the quantification of association

or avoidance between territorial conspecifics would advance our understanding of animal

ecology and, in the long term, the impact of changing environments. Existing forms of

such tests are predicated on assumptions about the shape of the individuals’ territory and

boundaries [48, 19]. Perhaps for that reason, these methods are not often employed, and

avoidance is instead inferred from circumstantial evidence.

In this dissertation a method to detect avoidance and association between solitary animals

is presented, which does not make assumptions about the shape, size or use of the territory.

The method relies purely on the disassociation of individuals by permutations of blocks

(e.g. days) of the observed data. It is possible to create up to N ! permutations to which

to compare the observed data. This enables the assessment of interaction over multiple

inter-individual distances, for each of which the observed number of times the individuals

were within a particular distance of each other, is compared to the expected number.

Part II starts with a comprehensive discussion of the state of the art in testing for avoidance

and association in Section 2.1. The details of the proposed method are presented in Section

2.2 and it is applied to data collected from GPS collars on leopards (Panthera pardus) and

African wild dogs (Lycaon pictus) in Chapter 3. This part concludes with a discussion of
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the advantages and limitations of the suggested method in Section 3.3.

When analysing interactions between gregarious animals, social network analysis has re-

ceived much attention in recent years. For example affiliation networks have been used

in [25, 18, 64], in which the individual animals are represented by nodes and an affilia-

tion between a dyad (something that consists of two elements or parts) is suggested by

edges/links between the corresponding nodes.

To build such an affiliation network, a measure of association between dyads is needed.

This measure depends on the kind of association in question. For example, when inves-

tigating the social behaviour of bottlenose dolphins in [47] all members of a school were

assumed associated, because inter-school associations were of interest. When considering

social dynamics within baboon troops, grooming behaviour and spatial affiliation were

analysed in [32] and shown to give the same outcomes. However, when considering other

animals the social interaction might not be as obvious, for example sheep, or fish. In these

cases, a characteristic called cointegration could be used to find relationships between the

movement of dyads.

Time series are said to be stationary when the time series has a constant mean, constant

variance and time-independent covariance. This is a strong restriction on animal move-

ment, which is not always fulfilled [53]. When testing for dependencies between two or

more time series the Pearson product-moment correlation coefficient is often one of the

first statistics considered. However, correlation only makes sense if the individual series

are stationary and the relationship between the two time series is linear [14]. In practice

there are many time series that are non-stationary, such as the aggressive communication

of the hermit crab Calcinus tibicen [53], exchange rates [41], population and employment

[36], electricity consumption [2], gas prices [27], maize prices [1], dissent rates on the High

Court of Australia [51] and hemispheric temperature [42]. In these cases, a characteristic

called cointegration could be used to find relationships between non-stationary time se-

ries. Cointegration describes a property of two or more time series that are individually

14



non-stationary but for which a linear relationship of the time series is stationary.

Part III startes with a detailed literature review on cointegration in Chapter 4, with some

background information on stationarity, Bayesian statistics and norms (needed for the

understanding of the suggested method). The proposed method is detailed in Chapter 5

and applied to synthetic data in Chapter 6. This part is concluded with a discussion of

the advantages and limitations of the proposed method (see Chatper 7).

The dissertation is concluded with a discussion of the introduced methods in Part IV.

1.1 Contributions

In this dissertation, two novel analytical methods for extracting behavioural information

from geospatial time series are presented, one for solitary and one for social animals. For

solitary animals, a new method to detect avoidance and association between individuals

is proposed. This method creates permutations of the observed data to disassociate dyads

from each other. As a consequence, it is possible to create up to N ! permutations to which

to compare the observed data. This enables the assessment of interaction over multiple

inter-individual distances, for each of which the observed number of times the individuals

were within that distance of each other, is compared to the expected number of times.

For gregarious individuals, a method to test for cointegration has been developed; this

measures the extent to which two non-stationary time series have a stationary linear

relationship between them and can be used to assess whether a dyad of animals move

together. A novel method of testing for cointegration is proposed in this dissertation. To

the best of our knowledge, this is the first method that tests whether the observed time

series are cointegrated, rather than whether they converge towards being cointegrated at

a future point in time.

This is done in three steps. First the posterior probability distribution of the cointegration
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parameters is calculated analytically. Simultaneously, a cointegration tube is estimated,

which describes the combinations of the relevant parameters that suggest cointegration.

Finally the posterior probability distribution is integrated over the cointegration tube to

ascertain what proportion of the posterior probability distribution lies within the cointe-

gration tube, and therefore suggests cointegration.
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Association and Avoidance
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Chapter 2

Test of Temporal Associations
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Chapter 2 2.1 Literature Review on Testing for Avoidance

2.1 Literature Review on Testing for Avoidance

In this chapter, we introduce a general statistical framework to establish whether individ-

uals or groups are more or less often in close proximity of each other than expected by

chance. Existing forms of such tests are predicated on assumptions about the shape of the

individuals’ territory and boundaries [48, 19]. Perhaps for that reason, these methods are

often not employed, and avoidance is instead inferred from circumstantial evidence. For

example, Jackson et al. comment in [38] that ‘judging by the intensity of use of core areas,

the large amount of overlap among individuals, and the relatively small total home areas,

it is remarkable that the tagged cats managed to remain on average > 2km apart. This

implies that the Langu cats actively avoided one another, while sharing the same area’.

There is no explanation as to why an average of 2km could not have occurred purely by

chance; rather, an absence of contacts is seen as evidence of active avoidance.

A test for dynamic interactions was first suggested by MacDonald et al. [48]; this is

based on the application of a quadrivariate normal distribution to the co-ordinates of the

two target individuals. Dunn describes a similar approach that employs a multivariate

Ornstein-Uhlenbeck model rather than a multivariate normal model [19]. Both tests re-

quire that the utilization of each range is distributed about a single centre of activity

and violation of this assumption, which has no obvious biological basis, can produce large

errors [17].

Delgado et al. [16] proposed a functional response in which social behaviour is assumed

to depend on proximity to other individuals. As detailed by the authors, the null model

is supposed to account for all factors influencing movement behaviour apart from con-

specifics. In their method they suggest a null model that is calculated from movements

in a totally random direction with the same step length as the observed movement. This

means that specific habitat areas with higher or lower chances of being visited have to be

specifically incorporated into the null model. As an example a particularly dense areas of

the habitat might be uncomfortable, or an area without any hiding possibilities. If not
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Chapter 2 2.1 Literature Review on Testing for Avoidance

included in the model, these areas could increase false positive results, because both the

focal individual, as well as conspecifics might be more likely to be in a particular area of

their habitat and therefore the observed distances between them would be smaller than

expected by chance.

Elbroch et al. [20] suggested a generalized linear model to test for predictive power of a

number of factors on the number of spatial associations observed. These factors included

number of elk in the study area and mean genetic relatedness between interacting individ-

uals. This is an interesting approach to understand what factors influence associations,

yet does not easily extend to testing whether individuals avoid each other or seek each

others’ proximity.

Doncaster suggested the first non-parametric test in [17]. This compares the empirical

distribution function of the N paired separations with that of the complete set of N2

separations. For this, a critical separation is chosen within which presence of dynamic

interaction is of interest. However, the correct value of this separation might not be easy

to estimate and N would have to be very large to permit an analysis over multiple different

separations. Furthermore, the significance test depends on the independence of successive

data points and is only valid for fixed ranges [17].

In this chapter, we propose a method that creates perturbations of blocks (e.g. days)

of the observed data to obviate the need for independence between measurements. As a

consequence, it is possible to create up to D! (where D is the number of blocks in the

observation period) permutations to which to compare the observed data. This enables

the assessment of interaction over multiple inter-individual distances, for each of which

the observed number of times the individuals were within that distance of each other, is

compared to the expected number of times.

One of the main advantages of this method is that specific geographic areas that are visited

less or more often by the individuals do not have to be included manually. Instead they are

automatically considered in this approach, since the frequency of each location is exactly
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Chapter 2 2.2 Method

the same for the null model (the permutations) as it is for the observed movement.

2.2 Method

Dynamic interactions can be measured in two ways, as defined by Doncaster in [17]. The

first is termed ‘static interaction’, which describes a spatial overlap of home ranges. The

second characterises dependencies between individuals’ movements. This study examines

the latter, ‘dynamic interactions’.

As Doncaster describes in [17] ‘Dependency in the movements of two individuals (dynamic

interaction) [. . . ] can be expressed in terms of probability. Are the animals more likely

to maintain a certain separation (positive dynamic interaction) or less likely (negative dy-

namic interaction) than is expected from the configuration and utilization of their ranges?

At small separations in particular, does there exist a bond of attraction between them or

do they respond to close contact by mutual repulsion?’

The method described in this chapter does not assume any underlying distribution, nor a

particular shape or usage of the individuals’ territories. It does not require independence of

consecutive measurements, nor a constant time difference between the measurements. This

test simply relies on the disassociation of the target individuals by using permutations.

The observation period is divided into blocks, such as days, or weeks. These blocks are then

permuted to obtain the expected distances, if the two individuals/groups did not know

of each other’s whereabouts. If days are permuted, this would imply that the individuals

are equally likely to be at any location at, say, two in the afternoon as any other location

that individual was at two in the afternoon during the observation period. If weeks are

permuted, it would mean that at, say 2pm on a Monday, the permuted individual is as

likely to be anywhere that individual has been at 2pm on a Monday during the observation

period.
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Chapter 2 2.2 Method

Following is a detailed description of the steps taken to test for association or avoidance

using the proposed method:

First, the distance between two individuals is calculated for each measurement. The blocks

(this could be days or weeks) are then permuted randomly 10, 000 times, for one of the

target individuals. Keeping blocks of days or weeks ensures that the diel/weekly movement

stays intact in the permutations. The distance between the target individuals is calculated

again, for each permutation.

The number of times the target individuals are within previously defined distances of each

other is computed for the observed data as well as for each of the permuted sets. In

Section 3.1, the application of this method to data collected from leopards, the intervals

are chosen to be 0− 20m, 20− 40m, 40− 80m, 80− 160m, 160− 320m and 320− 640m.

For each of these intervals, each permutation gives a count for that dyad. These 10, 000

counts are the distribution of the null hypothesis, i.e. for the case in which movement

patterns are independent of one another.

The null hypothesis is that there is no difference between the number of times the target

individuals are within a certain distance interval in the permuted and observed time series.

The two alternatives are that the individuals are (i) more often and (ii) less often in the

distance examined than expected from the permutations.

A p-value is defined to be the probability of obtaining a result at least as extreme as

the one that was observed, assuming that the null hypothesis is true [28]. Therefore the

p-value in this case is the upper bound1 on the proportion of permutations as extreme

as the observation, or more extreme. Say the two target individuals were observed to be

between 20 and 40m of each other five times, then the p-value for the null hypothesis vs

the alternative that the individuals are less often between 20 and 40m of each other than

1as we only have a sample of all possible scenarios
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Chapter 2 2.2 Method

expected by chance lies between:

n1

nperm
≤ p <

n1 + 1

nperm

where nperm is the number of permutations calculated and n1 is the number of permu-

tations in which the dyad was within that distance at most five times. The observed

number of times the individuals were within that particular interval is then compared to

the distribution created by the permutations. Observations lying in the 5
2k% tail of the

permutations will be regarded as evidence that the target individuals were less often in

the distance interval than expected by chance. This percentage is calculated using the

Bonferroni correction [50]; the 5% represent the significance level, which has to be divided

by 2k, where k is the number of distances tested and we test k distances for avoidance and

k distances for association. The Bonferroni inequality balances out the effect of multiple

testing.

If the p-value of a distance tested for is less than 0.05/2k this indicates that there is strong

evidence against the null-hypothesis that the two individuals are within that particular

distance as often as expected by chance. If this occurs when testing whether the individuals

are more often within that particular distance, this would indicate that the individuals

seek each others proximity. If it occurs when testing whether they are less often within

the particular distance, this would indicate that the individuals avoid each other.

The pseudo-code for this method is as follows. The inputs are two n × 4 matrices, y1

and y2, an integer, perm, and a vector, dist. Each of the matrices corresponds to one

individual. The first and second columns of each matrix should be the date and the time

of the observation respectively, and the third and fourth columns are expected be the x

and y coordinate of the individual. The integer should define how many permutations

should be done, the default value is set to 10,000. The vector, dist, lists the distances

that should be tested for association and avoidance, for example if dist = (20, 40, 80, 160)

then the algorithm will test whether the individuals are more or less often within 0-20m,
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Chapter 2 2.2 Method

20-40m, 40-80m and 80-160m of each other. The output is a vector of distances that the

individuals were observed to be more often and a vector of distances within which they

were observed to be less often than expected by chance.

Algorithm 1 Pseudo-code for proposed method to test for avoidance and association

1: procedure AvoidanceTest(v1, v2, perm← 10, 000, dist)
2: DistObs←

√

(v1(:, 3)− v2(:, 3))2 + (v1(:, 4)− v2(:, 4))2

⊲ calculate distance between individuals
3: CountObs(1, 1)← sum(DistObs ≤ dist(1))
4: for j1 from 2 to length(dist) do
5: CountObs(1, j1)← sum(DistObs ≥ dist(j1 − 1)DistObs ≤ dist(j1))

⊲ Count how often individuals were within dist of each other
6: for i from 1 to perm do

⊲ create null distribution through permutations
7: Days← unique(v2(:, 1))

⊲ Get a vector of the days
8: vperm(:, 1)← permute(Days)

⊲ Permute the days
9: vperm(:, 2 : 4)← (v2(:, 2 : 4))

⊲ Add the time and location columns to the permuted matrix
10: vperm ← sort(vperm, by days)

⊲ Sort the matrix by the order of the days
11: DistPerm←

√

(v1(:, 3)− vperm(:, 3))2 + (v1(:, 4)− vperm(:, 4))2

⊲ Calculate Distance between original individual 1 and permuted individual 2
12: CountPerm(i, 1)← sum(DistPerm ≤ dist(1))

⊲ Count how often permuted individuals were within dist of each other
13: for j2 from 2 to length(dist) do
14: CountPerm(i, j2) ← sum((DistPerm ≥ dist(j2 − 1))(DistPerm ≤

dist(j2)))

15: for j3 from 1 to length(dist) do
⊲ Compare observed count for each distance with the distribution of the permuted
data

16: p(j3, 1)← 2 length(dist)sum(CountPerm(:, j3) ≤ CountObs(1, j3))/perm
⊲ Calculate the p-value for each distance for avoidance

17: p(j3, 1)← 2 length(dist)sum(CountPerm(:, j3) ≥ CountObs(1, j3))/perm
⊲ Calculate the p-value for each distance for association

18: return p

This approach has the added benefit of ensuring that the same physical locations are

visited at the same frequencies as the observed individuals and, because intra-day or week

movement is unaffected, that diel or weekly patterns of movement and rest are maintained.
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Chapter 2 2.2 Method

2.2.1 Graphical and Seasonal Associations

As Doncaster mentions in [17], ‘A positive component is likely to arise particularly when

the two animals have separate resting sites at which they regularly begin and end their

cycles of activity.’ The implication of Doncaster’s statement is that colocation, when

associated with a geographic point, is of a different nature to colocation in featureless areas

because it could occur by chance. The technique we propose here directly discounts chance

interactions of this form. Assume that two individuals meet regularly at a waterhole each

morning. Since we do not disrupt the diurnal cycle in permuting days, those individuals

will meet regularly at that waterhole in the permuted time series as well. Consequently,

to establish that a statistically significant interaction occurred in the observed data, the

number of occurrences of observed colocation would need to be very high; much higher

than might be accounted for by the number that occur by chance alone. Conversely,

in areas in which few meetings occur by chance, a smaller number of meetings will be

considered significant.

Doncaster’s comments, do however, point towards a need for care in the application of our

test. If the waterhole is available only for part of the year, and permutations occur across

the entire year, then the interactions could appear to be significant. Consequently, it is

important to ensure that permutations occur only between days/weeks that are equivalent.

For example, permuting days that have very different seasonal features may well lead to

spurious results.

Such seasonal features could include seasons of drought, where for example a waterhole

that both individuals generally use does not exist. Seasons of very high rain fall could also

change the behavioural pattern, for example by forcing one or both of the individuals to

find a different resting site. Such examples illustrate when care should be taken.

To investigate such dependencies in our case, the locations of the dyads that were signif-

icantly more often colocated were plotted (see Figure 2.1 for an example). To examine
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F1M2 when at M2M3 when at F2M3 when at
0-10m 20-30m 200-250m

Figure 2.1: This figure shows examples of the geographic locations at which leopards are
found when separated by a statistically significant distance. An estimate of the extent of
each leopards territory is given using the convex hull of the full set of observations.

possible seasonal effects, the distances between each dyad were plotted over time (see Fig-

ures 2.2 and 3.2 for examples). From these graphs it can be seen that there is no particular

seasonal clustering of the small number of observed colocations.

When there are observation periods in which the location of the two observed individuals is

not known in enough detail (when at least one of the two individuals’ locations is recorded

less than every six hours), that period is excluded from the analysis. This is shown in

the time series plots, 2.2 and 3.2, by periods of missing data, such as that towards the

beginning of plot M3M6 in Figure 2.2.

Other confounding factors, such as two individuals following a third conspecific or het-

erospecific that has not been fitted with a GPS collar, cannot be ruled out as possible

explanations for an observed relationship. But this is simply a restatement of the truism

that correlation and causation are different and that causations can generally not be tested

for without a randomised experiment, which is not possible in observational studies.
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Figure 2.2: This figure shows examples of the time series plots referred to in Section 3.1.
They show the distance between individuals in a dyad over time.

2.3 Simulations

To demonstrate the accuracy of this method, neighbouring leopard movements were sim-

ulated, with associations as well as without associations. The test was applied to these

simulated movements and the proportion of correctly identified associations and non-

associations were calculated.

Movements were simulated using simple random walk processes. These processes are

defined by an equal probability of moving in any direction at each step (the direction is

chosen from a uniform distribution on the range from 0 to 2π). The shape of the territory

was assumed to be elliptical with radii of 9km and 4km. These parameters are roughly

estimated from the observations collected on one of the leopards (randomly selected) used

in Section 3.1. Figure 2.3 shows the areas visited by this individual (blue solid line) and
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its neighbour (red dashed line) during the observation period.

The territories of both the simulated movements have the same size and shape. The second

territory is shifted by 6km along the axis of the minor radius. Therefore the overlap is

similar to that of the observed individuals. An example of the simulations is given in Figure

2.4. It is clear that the simulations are very different to the observed movement patterns,

however mimicking the movement of the leopards is not the aim of these simulations. The

method should be capable of finding associations between any sort of movement, as long

as there are no major changes in the movement during the observation period.
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Figure 2.3: Movement of the individuals used

for approximate territory size/shape/overlap

and step size distribution.

10,080 simulations were run without

any association between the dyad and

10,080 simulations in which the in-

dividuals seek each other’s proximity

if they are within a certain distance

of each other (from here on referred

to as the outer association distance).

In the simulations in which there is

no association between the individu-

als, both processes are simple random

walks with elliptical boundaries. In

the cases with association the general

movement is again a simple random

walk except when they are within the

outer association distance of each other. In that case, they move directly towards each

other and stay at one unit less than half the association distance from each other (this

will be referred to as the inner association distance). The individuals stay within that

distance of each other between 1 and 5 steps (this number of steps they stay within the

inner association distance will be referred to as the association time).
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Within the 10,080 simulations with associations, the association time is varied from 1 to

5 steps and the outer association distance is varied from 250 to 500 metres. For both the

simulations with association as well as the simulations without association the observation

period is varied from 100 to 350 days. For each of the simulations the method proposed

in this thesis is applied and it is documented whether the method correctly detects an

association in the distances containing the inner association distance, or correctly detects

that there is no association.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

Example of simulated movements

Distance in km

D
is

ta
n
c
e
 i
n
 k

m

Figure 2.4: This graph shows an example of

the simulations.

For each simulation four distances are

tested for associations. In the associ-

ation scenario, one of these distances

contains the inner association distance

and should therefore test positive for a

‘more than association’, i.e. the indi-

viduals are more often within those dis-

tances than expected by chance. The

distance that contains the outer associ-

ation distance should test positive for

a ‘less than association’, i.e. the indi-

viduals are less often within those dis-

tances, since they move straight to the

inner association distance, as soon as they are within the outer association distance. Si-

multaneously, the distance containing the inner association distance should test negative

for a ‘less than association’ and the distance containing the outer association distance

should test negative for a ‘more than association’.

The other two distances tested are greater than the outer association distance and should

therefore test negative for both the ‘more than association’ as well as for the ‘less than

association’. In the no association scenario, all of the distances should test negative for

both the ‘more than association’ as well as for the ‘less than association’.
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This means that the total number of distances tested for an association in each of the two

scenarios is 40,320 (= 4×10, 080). In the scenario with association 30,240 distances should

test negative for a ‘less than association’ (NLT - correctly identified as not being within

those distances less often than expected by chance), whereas 10,080 should theoretically

test positive for a ‘less than association’ (PLT - correctly identified as being less often in

those distances). Simultaneously 30,240 should test negative for a ‘more than association’

(NMT - correctly identified as not being more often within those distances than expected),

and 10,080 should test positive for a ‘more than association’ (PMT - correctly identified

as being more often with those distances). However, for the association to present itself,

the two individuals need to move within the outer association distance of each other by

chance. Therefore, the number of distances that should test positive for a ‘less than’ or a

‘more than association’ is below 10,080. When there is no association, all 40,320 distances

should test negative for a ‘more than association’ (NMT) and negative for a ’less than

association’ (NLT).

In the following two sections the results are detailed. First the results of the scenario in

which there is an association is described in Section 2.3.1. This is followed by a discussion

of the results of the scenario in which there is no association (Section 2.3.2).

2.3.1 Association Scenario

This section discusses the results in the scenario in which there is an association between

the two simulated individuals. Overall, out of the 30,240 NLT distances tested, 27,899

(92%) were correctly identified as not being less often within close proximity of each other

than expected by chance. Out of the 8,975 PLT distances tested, 39 (0%) were correctly

identified as being less often within close proximity of each other than expected by chance.

Out of the 30,240 NMT distances 29,761 (98%) were correctly identified as not being more

often within close proximity of each other. And, out of the 8,975 PMT distances 7,250

(81%) were correctly identified as being more often within close proximity of each other

30



Chapter 2 2.3 Simulations

than expected.
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Figure 2.5: This figure details how many of

the simulations were correctly classified as

having a NLT association (correctly identi-

fied no less-than association), a NMT asso-

ciation (correctly identified no more-than as-

sociation), a PLT association (correctly iden-

tified less-than association), and a PMT as-

sociation (correctly identified more-than as-

sociation) depending on the number of time

steps (x-axis) spent in the inner association

distance of each other.

Figure 2.5 shows the results broken

down by the association time, i.e. by

how many steps the individuals stay

within the inner association distance

of each other, before they go back to

a random walk. The results are de-

tailed in Tables A.1 and A.2 in the

Appendix, with the number of simula-

tions and correctly identified distances

listed.

The NLT and NMT results are contin-

uously very high, with false positives

in less than 13% of cases. This demon-

strates, that the test very rarely sug-

gests that there is an association, when

there is none. The NLT and NMT re-

sults should not be affected by the time

spent within the inner association dis-

tance, since they check the distances

that are outside the association dis-

tances. This can be seen in the results, as the NLT and NMT lines are close to horizontal.

The general upward trend of the PMT line is to be expected. The more time the individuals

spend within a certain distance of each other, the higher the likelihood of the test detecting

an association. The PLT is consistently around 0% suggesting that none of the individuals

were detected as being within close proximity of each other more often than would be

expected by chance.
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This is most likely due to the fact that the ‘less than’ association is very weak. This asso-

ciation is a by-product of the ‘more than’ association built into the simulations. When the

individuals are within the outer association distance of each other they move directly into

the inner association distance of each other. Therefore it is expected that the individuals

are less often in the outer association distance of each other. However, the step size of the

individuals movement is 300m and the distance between the inner and outer association

distance varies between 125m and 250m. Therefore the individuals would be very likely

to move out of the outer association distance by chance.

The breakdown of the results with respect to the varying sizes of the association distance

and lengths of observation period are presented in Figure 2.6 (i) and (ii) respectively. The

absolute number of simulations and number of correctly identified simulations are listed

in Tables A.3, A.4, A.5 and A.6 in the Appendix.
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(i) Association Distance (ii) Observation Period Length

Figure 2.6: This figure shows how many of the simulations were correctly classified as hav-
ing a NLT, NMT, PLT, and PMT association depending on (i) the size of the association
distance and (ii) the length of the observation period.

The results are very similar to those detailed by the association time. False positive

results (NMT and NLT) were suggested in less than 11% of the cases. The PMT results

show that with a larger association distance, or with a longer observation period, the test

is more likely to detect an association correctly. This is probably the case, because the

individuals are more likely to be within the outer association distance of each other during
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the simulations and therefore show an association more often than in the cases where the

association distance is small or the observation period is short.

2.3.2 No Association Scenario

This section discusses the results in the scenario in which there is no association between

the two individuals. In this case all 40,320 distances tested should indicate that the

individuals were not less often within the distances tested of each other (NLT) and that

they were not more often within those distances of each other (NMT).
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Figure 2.7: Observation Period

Length Effect for no Association:

This figure details how many of

the simulations were correctly clas-

sified as having a negative less than

(NLT) association and a negative

more than (NMT) association de-

pending on the length of the obser-

vation period.

Overall, out of the 40,320 NLT tests 39,915

(99%) were correctly identified as not being less

often within the distances tested of each other

than expected. And out of the 40,320 NMT

tests 39,455 (98%) were correctly identified as

not being more often within those distances of

each other than expected by chance.

The break down of the results with respect to

the length of observation period is presented

in Figure 2.7 and detailed, including absolute

number of distances tested and number of cor-

rectly identified significant distances, in Table

A.7 in the Appendix.

The results are consistently high, with accura-

cies between 97% and 99%. This suggests that

the method has a small type I error (false pos-

itive) between 1% and 3%.

In summary, the results demonstrate that false positives (type I error) are rare, which
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means that the test rarely suggests that there is an association if there is none. When

there is no association, between 88% and 99% of cases are correctly identified as not

having an association. The results for PLT and PMT, i.e. the correct identification of

an association, are consistently lower than the results for NLT and NMT (the correct

identification of no association). We believe that a small false positive result is more

important than a small false negative result, i.e. suggesting that the individuals do not

show an association when there is one, is favoured over suggesting that the individuals

show an association when there is none.
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Application of the Associations

Test
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The method described in Chapter 2 has been applied to location data collected from eight

resident neighbouring leopards and eight packs of African wild dogs in Northern Botswana.

In the former case, each of the leopards was fitted with a GPS collar and the aim of the

test was to identify whether the individual leopards avoided each other. For African wild

dogs, one individual in each pack was fitted with a GPS collar. The purpose in this case

was to determine whether neighbouring packs avoided each other or sought each other’s

proximity.

3.1 Leopards

Between 2007 and 2012 two female and six male leopards were fitted with GPS collars. Not

all collars were fitted for the entire study period, therefore only periods of simultaneous

tagging were used. The number of days each dyad was simultaneously tagged varied

between 119 and 406. Locations were measured at least four times a day. As leopards are

generally active at night and least active in the middle of the day [5] a day was considered

to run from midday to midday for the purposes of permutation.

None of the dyads were shown to spend less time within close proximity of each other

than they would by chance. This observation conflicts with the conclusions of studies

suggesting that male leopards dynamically avoid one another [59, 38, 35] to reduce the

likelihood of violent or fatal conflicts [11, 5]. The data demonstrate that not only do these

leopards not actively avoid one another, they have no need to do so since they are highly

unlikely to encounter one another by chance.

As expected, two of the six male-female dyads (F1M2 and F2M3) were significantly more

often in close proximity to each other (F1M2: 0-160m and F2M3: 0-80m, 160-640m of

each other) than expected by chance1. This is most likely due to courtship and mating

[5].

1The following intervals were tested: 0 − 20m, 20 − 40m, 40 − 80m, 80 − 160m, 160 − 320m and
320− 640m
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More surprisingly, two of the five male-male dyads (M2M3 and M3M6) were highly signifi-

cantly more often in close proximity of each other (both M2M3 and M3M6 between 0-80m

of each other). The individuals in both of these dyads happen to be of similar size and

similar weight and are in their prime2. M2 and M3 are also the only males that were shown

to be significantly more often in close proximity of the two females. Unfortunately M6

was only collared simultaneously with M3, so associations between M6 and the females,

or M6 and M2 could not be tested.

None of the location plots (see Figure 2.1) or time series plots (see Figure 2.2) showed any

particular geographic location as being the source of the significant proximities, and there

was no obvious seasonal pattern (such as might happen if both leopards had a certain

pattern of moving around their territories and would therefore be more likely to have a

certain distance from each other more often than by chance).

For each dyad, the p-values per distance were plotted and the four plots belonging to

F1M2, F2M3, M2M3 and M3M6 are shown in Figure 3.1.

3.2 African Wild Dogs

The eight packs of African wild dogs were collared between May 2011 and May 2014.

As for the leopards, the wild dog packs were not all collared simultaneously. Therefore

packs were only considered if they were tagged simultaneously for at least 100 days. The

resulting 14 neighbouring pack dyads were collared for between 108 and 402 days.

African wild dogs are territorial and have mean annual home ranges of 739 square kilome-

tres at this study site3, with the ranges of neighbouring packs overlapping. None of the

dyads showed any significant distance patterns, neither being less often, nor more often in

2It can not be ruled out that they are related
3Unpublished: Pomilia, M.A., McNutt, J.W. and Jordan, N.R. Ecological predictors of African

wild dog ranging patterns in northern Botswana.
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Figure 3.1: This figure shows four examples of the p-value plots mentioned in Section
3.1. The red line with stars gives p-values associated with the alternative hypothesis that
the dyad is found less often within a given range of distances than would be expected by
chance. The blue line with circles gives p-values associated with the hypothesis that dyads
are found within a range more often than would be expected by chance. The black dashed
line gives the level under which the results are assumed to be significant.

close proximity to each other over the distances measured4. Three of the p-value Figures,

as described in Section 3.1, are shown in Figure 3.3.

In general, our results support the finding of previous work on mutual avoidance/attraction

between neighbouring wild dog packs [49]. As previous data was acquired by VHF tracking

collars, it was limited to relatively few near-simultaneous locations of neighbouring packs

acquired by physically tracking the animals [49]. However, despite significant overlap

between their ranges (ca. 35%; [57]), observed packs were seen to meet very rarely but

it was not possible to determine whether this occurred by active avoidance or by random

movement.

4The distance intervals used are 0-500m, 500m-1km, 1-1.5km, 1.5-2km

38



Chapter 3 3.2 African Wild Dogs

Dec 11 Jan 12 Feb 12
0

10

20

30

40

50
D

is
ta

nc
e 

in
 K

ilo
m

et
er

s

May 12 Jun 12 Jul 12 Aug 12 Sep 12 Oct 12
0

10

20

30

40

50

Jan 12 Mar 12 May 12
0

10

20

30

40

50

P4P10 P5P7 P7P10

Figure 3.2: Examples of time series plots of distance between wild dog packs: This figure
shows examples of the time series plots referred to in Section 3.2. They show the distance
between packs in a dyad over time. The straight lines that are close to horizontal are due
to the two individuals not being tagged simultaneously, in which case that period was not
included in the analysis. This is particularly visible in (b).

In our study, using larger volumes of data acquired remotely using GPS radiocollars, we

found no evidence of active spatial avoidance or association between neighbouring packs.

As can be seen from the p-value plots in Figure 3.3, our close proximity counts could have

happened by chance alone at all measured distances. Spatial interactions (though not

necessarily direct interactions) at our measured scales were no more or less likely to occur

than would be expected by chance. In fact our data suggest that only one dyad ever came

within 250m of one another, suggesting that direct physical encounters were rare.

Although it is not yet clear by what mechanism wild dogs establish and maintain terri-

tories, there is strong evidence they do so based on chemical signalling using scent marks

[37, 40]. It is possible that scent, which can be encountered without being simultaneously

colocated, holds sufficient information to indicate the continued presence of a neighbour-

ing pack and so may reduce the frequency and cost/benefit ratio of direct encounters. It

would therefore be of great interest to investigate the temporal association/avoidance in

more detail, particularly delayed association/avoidance (visiting areas in which another

pack has recently been) of neighbouring packs, and indeed to assess the responses of wild

dogs to direct and indirect (olfactory) inter-pack encounters.
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Figure 3.3: This figure shows four examples of the p-value plots mentioned in Section
3.2. The red line with stars gives p-values associated with the alternative hypothesis that
the dyad is found less often within a given range of distances than would be expected by
chance. The blue line with circles gives p-values associated with the hypothesis that dyads
are found within a range more often than would be expected by chance. The black dotted
line (not visible here, because it is so close to the x-axis) gives the level under which the
results are assumed to be significant.

3.3 Contributions in the Associations Test

The rate of growth in the availability of GPS data from free-ranging animals has not been

matched by progress in the development of mathematical techniques for analysing that

data. In this thesis, a new method for detecting avoidance and association is presented.

Unlike previous work, the method makes no assumption about the shape or size of the

territories, nor about the way that individuals move. It relies purely on the disassociation

of the individuals’ movement through permutations.

Amongst other things, this new method permits the analysis of territorial behaviour in

animals. When trying to detect avoidance and association, a simple heuristic would be

to define a distance and time and to assume avoidance if the two observed individuals

are never within that distance of each other for at least the defined amount of time.

Choosing the relevant combination of distance and time is crucial, yet not well defined. The

results can change dramatically when a different distance and time is chosen. The method

proposed in Section 2.2 gives a simple way to calculate the distance/time combination

from the observed movement and territory used for each dyad.

Both the presence and absence of positive spatial association between individuals or groups
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are biologically interesting phenomena. In Chapter 3, the method was applied to data

collected from GPS collars on individual leopards in which significant positive association

was established between some male-male as well as male-female leopard dyads, and to

African wild dogs, in which there was no significant dynamic interaction between packs.

For the leopards, two out of six male-female dyads were more often within close proximity

of each other than would be expected by chance. This is most likely related to courtship

and mating, and supports biological expectations. Interestingly, it was also shown that

two out of five male-male dyads were more often within close proximity of each other.

This observation is in opposition to conclusions from previous work [59, 35], but could be

due to mutual evaluation, family relationships, or a range of unknown factors.

None of the wild dog packs were more or less often within close proximity of each other

than would be expected by chance. It is possible that, although the movement patterns of

individual packs bring neighbours into relatively close proximity, the risk and occurrence

of direct encounters may be reduced by remote inter-pack information exchange, probably

via fresh scent signals in these areas.

In using this method, it is important to ensure that data from both members of the

dyad are as closely matched in time as possible in order to allow robust conclusions to be

drawn on any spatial interactions between them. Temporal differences between compared

locations within dyads do not preclude the use of the method, but in such circumstances

it is essential to temper conclusions accordingly.

More generally, our method for movement and associations could be applied to epidemi-

ological concerns. If individuals are more often within close proximity of each other than

expected by chance, the transmission rate of diseases would be higher than that estimated

using random movement models. The method could also be extended straightforwardly

to include a time lag to determine whether individuals are more often in an area recently

occupied by another animal than might be explained by chance. This could be important

in cases of geo-located time-limited phenomena such as scent marking or the transmission
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of parasites or infectious agents through the environment.
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When testing for dependencies between two or more time series, the Pearson product-

moment correlation coefficient, commonly called ‘the correlation coefficient’, is often one

of the first statistics considered. However, correlation only makes sense if the individual

series are stationary and the relationship between the two time series is linear [14]. In

practice there are a lot of time series that are non-stationary, such as exchange rates [41],

population and employment [36], electricity consumption [2], gas prices [27], dissent rates

on the High Court of Australia [51] and hemispheric temperature [42]. In these cases,

a characteristic called cointegration, could be beneficial. Cointegration describes two or

more time series that are individually integrated (i.e. non-stationary and therefore do not

have a constant mean, variance or covariance), although a linear relationship of the time

series is stationary.

In this dissertation a new fully Bayesian method to test for cointegration is presented.

A Bayesian approach is advantageous for many reasons: it produces whole probability

distributions for each unknown parameter and these distributions are valid for any sample

size. Furthermore, it allows straightforward updates when more data becomes available,

by using the posterior as the new prior distribution.

4.1 Contributions

The main advantage of the cointegration test proposed in this thesis is that it fully exploits

the benefits of the Bayesian method. A cointegration tube is created, which describes the

combinations of parameters that indicate cointegration of the two time series being com-

pared. This allows us to test whether say 95% of the posterior lies within the cointegration

tube, rather than using a point estimate, such as the maximum likelihood of the posterior.

Significant progress has been made in calculating a hard upper bound on the integration

error. An upper bound on the error would lead to an upper and lower bound on the

integration itself and therefore give a better understanding of how certain the result is.
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The hard lower bound on the integration means that the integral is greater or equal to

the lower bound. This means that if the lower bound suggests that 95% of the posterior

probability density lies within the cointegration tube, then you can be sure that at least

95% lies within the cointegration tube.

Additionally this method is, to the best of my knowledge, the only one that tests whether

the time series are cointegrated during the observation period. Other methods use only one

parameter which is indicative of the time series becoming cointegrated at some future point

in time [29, 39, 21]. The method we propose considers three parameters (introduced in

Section 5.2) which allows us to test for cointegration of the observed time series themselves.

This is particularly useful when change points are present in the data. Change points are

not uncommon in long term observations. They have, for example, been used to study

surface temperature [43] and oceanographic time series [44].

4.2 Mathematical and Statistical Background Information

Underpinning the idea of cointegration is stationarity. The joint distribution of any subset

of the points of a stationary time series does not change when the subset is shifted in time.

Therefore its mean, variance and auto-covariance do not depend on time. Most statistical

forecasting methods are based on the assumption that the time series can be transformed

into an approximately stationary time series through the use of transformations, such as

removing trend or seasonality. As a result, this report starts with a detailed explanation

of stationarity and its implications (Section 4.2.1). We then introduce some models used

to represent stationary times series, called AR models (see Section 4.2.2). This is followed

by an explanation of the new cointegration model in Chapter 5.
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4.2.1 Stationarity

When analysing time series, an important simplifying assumption is that of stationarity.

A realisation of a stochastic process, say y = (y1, y2, . . . , yT ), can be described by a T-

dimensional probability distribution p(y). The relationship between a realisation and a

stochastic process is analogous to the relationship between a sample and a population in

classical statistics.

From the realisation we cannot estimate all the first- and second-order moments, since we

have T (means) + T (variances) + T × (T − 1)/2 (covariances) = 1
2(T

2 +3T ) parameters

to be estimated, yet only T observations. Therefore we need further assumptions. For

example that of stationarity, as described in Chapter 3.1 of Hamilton’s book on Time

Series Analysis [30].

Definition 4.1. A process is said to be strictly stationary if, for any values of j1, j2, ..., jn

the joint distribution of (Y t,Y t+j1 ,Y t+j2 , . . . ,Y t+jn) depends only on the intervals sepa-

rating the dates (j1, j2, . . . , jn) and not on the dates themselves (t, t+ j1, . . . , t+ jn).

Specifying the complete form of the distribution is impossible in most cases so attention is

often focused on the first and second moments. As a result a weaker form of stationarity

[30] is generally used.

Definition 4.2. If neither the mean nor the auto-covariances depend on the date, then

the process for Y t is said to be covariance-stationary or weakly stationary .

If not specified differently, stationarity generally implies weak stationarity. The simplest

example of a weakly stationary stochastic process is a sequence of uncorrelated random

variables with constant zero mean and constant variance σ2. A process like this is known

as white noise and will be denoted by η for the remainder of this dissertation. Because

the variables in a white noise sequence are uncorrelated, the auto-covariances are all zero

for a lag greater than 0.
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Stationary processes are also often denoted as I(0), which means that the time series is

integrated of order zero. A time series, which is stationary after differencing d times, is

said to be integrated of order d and denoted as I(d). White noise is a typical example of

a time series which is integrated of order zero and a random walk is an example of a time

series integrated of order one, since its difference is white noise.

4.2.2 Autoregressive Processes

The model proposed in Chapter 5 uses an AR(1) process. This is defined as ǫt = φǫt−1+ηt,

where η is white noise, and is often also called a Markov process. For simplicity, and

without loss of generality, this model is assumed to be a zero-mean process.

To study this process, note that it can be rewritten as

ǫt = φkǫt−k +
k−1∑

j=0

φjηt−j

which is only well-defined as k →∞ if |φ| < 1. In that case it can be simplified to

ǫt =
∞∑

j=0

φjηt−j (4.1)

Taking the expectation on both sides of Equation 4.1 gives E(ǫt) = 0. Taking the variances

gives V ar(ǫt) =
∑∞

j=0 φ
2jV ar(ηt−j) = σ2

1−φ2 , again requiring |φ| < 1. Similarly, the

covariance between ǫt and ǫt−k can be derived as:

Cov(ǫt, ǫt−k) =
σ2φk

1− φ2
(4.2)

as shown in Appendix B.1 which once more provides the same restriction.

Looking at all these results, we see that:
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1. The single condition under which all the results can be derived is that |φ| < 1.

2. None of the expressions depends on t, and therefore the AR(1) process must be

weakly stationary provided |φ| < 1. The requirement |φ| < 1 is called the stationarity

condition.

4.2.3 Bayes Factor

The Bayes Factor plays a similar role in Bayesian statistics to the likelihood ratio in

frequentist statistics. Instead of comparing the maximum likelihood of two models, as

is done in the likelihood ratio, the Bayes factor compares the integrated likelihoods [9].

This is a very familiar difference when comparing frequentist to Bayesian models. Where

frequentist methods generally compare point estimates, the Bayesian methods investigate

the whole probability distribution. This causes Bayesian methods to be generally higher

in computational cost, but to retain more information.

The definition of the Bayes factor as per Bernardo and Smith [9], is:

Definition 4.3 (Bayes factor). Given two hypotheses Hi and Hj corresponding to as-

sumptions of alternative models, Mi and Mj, for data x, the Bayes factor in favour of Hi

(against Hj) is given by the posterior to prior odds ratio.

Bij(x) =
p(x|Mi)

p(x|Mj)
=

{
p(Mi|x)
p(Mj |x)

}/{
p(Mi)

p(Mj)

}

4.2.4 Riemann Sum

The Riemann Sum is used in Section 5.7, so the basics of this method are explained in

this section. The idea of the Riemann Sum is that the integral can be divided into small

areas (intervals in the one dimensional case, squares in two dimensions, etc.). For the rest

of this section, the one dimensional case will be considered; however, extensions to higher

dimensions can be made easily.

49



Chapter 4 4.2 Mathematical and Statistical Background Information

Once the overall interval is divided into several small intervals, the value of the integral

within each interval is estimated and an upper bound on the error is calculated. An

estimate of the overall integral is then computed by adding up the estimated integrals for

each interval and the upper bound on the error can be found similarly.

The integral within each interval is estimated by multiplying the length of the interval

with the value of the function to be integrated over, at a certain point of the interval. One

version of this, and the version used in this thesis, is that the left-endpoint of the integral

(i.e. the point closest to −∞), is used [61].

The formal definition is:

Definition 4.4 (One dimensional Riemann sum). Let f : D → R be a function defined

on a subset, D, of the real line, R. Let I = [a, b] be a closed interval in D, and let

P = {[x0, x1], [x1, x2], . . . , [xm−1, xm]}, be a partition of I, where a = x0 < x1 < x2 <

· · · < xm = b. The Riemann sum of f over I with partition P is defined as

S =
m∑

i=1

f(x∗i )(xi − xi−1),

with xi−1 ≤ x∗i ≤ xi.

For the left Riemann sum x∗i = xi−1 ∀i.

4.2.5 Operator Norm

The operator norm is used to calculate the effect of perturbations on matrices in Section

5.7.1.1. The information needed for this is summarised here. First the definition of the

operator norm, as detailed in [3], is:

Definition 4.5 (Operator Norm). Let L(V,W ) denote the set of all the continuous linear

operators from a normed space V to another normed space W . In the special case W = V ,
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L(V ) replaces L(V, V ). If L ∈ L(V,W ):

||L||V,W = sup
06=v∈V

||Lv||W
||v||V

.

This norm is usually called the operator norm of L.

As shown in [3] the operator norm has the following properties:

||L||V,W = sup
||v||V =1

||Lv||W

and

||Lv||W ≤ ||L||V,W ||v||V ∀v ∈ V.

The spaces dealt with in this thesis are all of the form V = R
n, W = R

m and therefore

|| · ||V,W will be denoted by || · ||OP when referring to the operator norm, as long as the

spaces V andW are clear from the context. The operator norm will generally be used when

working with matrices. When the vector norm is not specified explicitly, the Euclidean

vector norm will be used and will be denoted by || · ||.

4.2.5.1 Bounds on the Operator Norm of a Perturbed Inverse Matrix

It was shown by Dirk Ferus [22] that for invertible matrices G and F in finite Banach

spaces V , W , and given ||F −G||OP < 1
||F−1||OP

, then

∣
∣
∣
∣G−1 − F−1

∣
∣
∣
∣
OP
≤
∣
∣
∣
∣G−1

∣
∣
∣
∣
OP
||F −G||OP

∣
∣
∣
∣F−1

∣
∣
∣
∣
OP

. (4.3)

A second result [22] says that for G and F as previously defined,

∣
∣
∣
∣G−1v

∣
∣
∣
∣ ≤

(
1

||F−1||OP

− ||G− F ||OP

)−1

||v|| . (4.4)
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These two results will be used in Section 5.7.1.1, to calculate the effect of a small pertur-

bation on the inverse of matrices.

4.2.5.2 Sub-Multiplicativity of the Operator Norm

The characteristic of a sub-multiplicative norm is the additional property that ||AB|| ≤

||A|| ||B||. Here we show that the operator norm is a sub-multiplicative norm.

As defined at the beginning of Section 4.2.5, the operator norm is defined as ||A||OP =

sup||v||V =1 ||Av||W where A ∈ L(V,W ). The second matrix is defined as B ∈ L(U, V ).

Then AB ∈ L(U,W ) and

||AB||OP = sup
||u||U=1

||A(Bu)||W .

This can be multiplied by 1 in the form of ||Bu||V /||Bu||V

||AB||OP = sup
||u||U=1

||A(Bu)||W
||Bu||V

||Bu||V .

Since
∣
∣
∣

∣
∣
∣Bu/||Bu||V

∣
∣
∣

∣
∣
∣ = 1 and ||A||OP ≥ ||Av|| when ||v||V = 1 (as detailed in Section

4.2.5)

||AB||OP ≤ sup
||u||U=1

||A||OP||Bu||V

= ||A||OP sup
||u||U=1

||Bu||V .

which is, by definition,

||AB||OP ≤ ||A||OP||B||OP

as desired.
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4.3 Literature Review

As mentioned previously, cointegration describes two or more time series that are individ-

ually integrated (i.e. non-stationary and therefore do not have a constant mean, variance

or covariance), although a linear relationship of the time series is stationary. This is com-

mon both in and outside biology and therefore represents a valuable technique, one for

which advances are valuable in a wide variety of areas, such as animal behaviour [53],

econometrics [1, 2, 27, 36, 41] and weather [42].

For a more detailed definition, let Y = (y1, . . . ,yn)
′ denote an (n× T ) matrix, where row

i represents the ith time series yi of length T . Each yi is integrated of order d (denoted

by I(d) for d ≥ 1), this means that the time series has to be differenced d times before

it becomes stationary. The rows of Y are cointegrated if there exists an (n × 1) vector

β = (β1, . . . , βn)
′ such that

β′Y = β1y1 + · · ·+ βnyn ∼ I(d∗) (4.5)

where d∗ < d. Often d = 1 and d∗ = 0, which means that the individual time series

are integrated of order 1 and the resulting linear relationship is stationary. This will be

assumed for the rest of the thesis.

The cointegrating vector β in Equation 4.5 is not unique since, for any scalar c, the linear

combination cβ′Y = β∗′Y . Hence, some normalization assumption is required to uniquely

identify β. A typical normalization is

β = (1,−β2, . . . ,−βn)′

so that the cointegration relationship may be expressed as

β′Y = y1 − β2y2 − · · · − βnyn ∼ I(0)
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or

y(1,t) = β2y(2,t) + · · ·+ βny(n,t) + ǫt

where ǫ = (ǫ1, ǫ2, . . . , ǫT )
′ ∼ I(0) [58].

As soon as more than two time series are being examined the cointegration tests can be

approached from two angles:

• There is at most one cointegrating vector

• There are possibly 0 ≤ r < n cointegrating vectors

The first case was originally considered by Engle and Granger [21] who developed a simple

two-step residual-based testing procedure based on regression techniques. The second

case was originally considered by Johansen [39] who developed a sophisticated sequential

procedure for determining the existence of cointegration and for determining the number of

cointegrating relationships based on maximum likelihood techniques. Most frequentist as

well as Bayesian methods to test for cointegration have been based on either the Engle and

Granger [10, 15, 24] or the Johansen approach [46, 60]. So far these methods have focused

on finding suitable priors [8, 45], or suggesting varying numerical integration methods [7].

In this dissertation the focus will be on the Engle and Granger approach, as it is more

flexible and allows testing of time series of any order of integration. We will first examine

the Frequentist procedure of testing for cointegration in Section 4.4, which will be followed

by a description of the Bayesian methods in Section 4.5, before describing the new method

proposed in concluding with a discussion in Chapter 5.

4.4 Frequentist Cointegration

The null hypothesis in the Engle-Granger [21] procedure is no-cointegration, which is

tested against the alternative hypothesis of cointegration. Engle and Ganger devised a
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two-step procedure for determining if the (n× 1) vector β is a cointegrating vector:

• Run a regression of β′Y = ǫ.

• Carry out a unit root test on the residuals ǫ. If the unit root hypothesis is rejected

then conclude that the rows of Y are cointegrated.

Recall, that cointegration means that the linear relationship of the time series is stationary

(see Section 4.3). The unit root test is a common way of testing individual time series for

stationarity. Typical methods are the Dickey-Fuller Test, the Augmented Dickey-Fuller

Test and the Phillips Perron test [30, 23, 56].

There are two cases to consider. In the first case, the proposed cointegrating vector β

is pre-specified (not estimated). For example, economic theory may imply specific values

for the elements in β such as β = (1,−1)′. The cointegrating residual is then readily

constructed using the pre-specified cointegrating vector and any unit root test statistic

may be used.

In the second case, the proposed cointegrating vector is estimated from the data and

an estimate of the cointegrating residual β̂
′
Y = ǫ̂ is formed. The pseudo-code for this

approach is listed below. The inputs are the two time series, y1 and y2, that are to be

tested for cointegration and the output is the p-value corresponding to the null-hypothesis

that the time series are not cointegrated vs. the alternative hypothesis that the time series

are cointegrated.

Algorithm 2 Pseudo-code for Engle and Granger Test for Cointegration

1: procedure Engle and Granger Test for Cointegration(y1, y2)
2: Estimate α and β in y1 = α+ βy2 + ǫ through ordinary least squares
3: ǫ̂← y1 − α̂− β̂y2
4: Use any unit root test (for example the Augmented Dickey Fuller Test) to test

whether ǫ̂ is stationary

Tests for cointegration using a pre-specified cointegrating vector are generally much more

powerful than tests employing an estimated vector, yet the cointegration vector is rarely
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known, which is why we will concentrate on the second case.

The hypotheses to be tested are

H0 : ǫ = β′Y ∼ I(1) (no cointegration)

H1 : ǫ = β′Y ∼ I(0) (cointegration).

Since β is unknown, it must be estimated from the data to be able to use the Engle-Granger

procedure. As mentioned at the beginning of this chapter, a normalization assumption

must be made to identify β uniquely. A common normalization is to specify the first row in

Y as the dependent variable and the rest as the explanatory variables. Then Y = (y1, Y
′
2)

′

where Y2 = (y2, . . . ,yn)
′ is an (n−1)×T matrix and the cointegrating vector is normalized

as β = (1,−β′
2)

′.

For simplicity the rest of this method will be presented for n = 2 time series; however, all

aspects can be easily extended to the more general case of n time series.

y(1,t) = α+ β2y(2,t) + ǫt

The unit root test is then based on the estimated cointegrating residual

ǫ̂t = y(1,t) − α̂− β̂2y(2,t)

where α̂ and β̂2 are the least squares estimates of α and β2.

4.5 Bayesian Cointegration

A Bayesian approach is advantageous for many reasons: it produces whole probability

distributions for each unknown parameter that are valid for any sample size and it allows

straightforward updates when more data becomes available, by using the posterior as the
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new prior distribution.

Most of the existing Bayesian cointegration methods follow the principle of either Jo-

hansen’s [7, 8, 46] or Engle and Granger’s [10, 15, 45] frequentist cointegration test. In

this work we will focus on the methods based on Engle and Granger’s approach, as the

methods based on Johansen’s work assume that the observed time series are integrated

of order one and face an identification problem [15], which is not present in Engle and

Granger’s approach.

The assumption of first order integration in Johansen’s method causes the differenced

series to be stationary and allows the focus on a single matrix they call the coefficient

matrix. The rank of this matrix then gives the number of cointegration vectors. However,

as soon as the original time series are of a higher order of integration, the differenced series

are not stationary and there is no way of identifying whether there are any cointegrating

vectors.

Engle and Granger’s approach [21] is considerably more flexible than the Johansen ap-

proach and allows expansion into higher orders of integration. There is no assumption

that the original time series are of any particular order of integration. On the other hand,

the main criticism of the Engle and Granger method is that the coefficients of the linear

relationship need to be estimated before the resulting error is tested for stationarity and

that therefore cointegration is tested for only one particular equation. A Bayesian ap-

proach would allow us to integrate over all possible coefficients during the calculation of

the posterior probability, which means that cointegration is tested for all possible linear

relationships and therefore overcomes the principal criticism of this approach.

The first Bayesian Cointegration test was suggested by Koop [45]. This test is based on

the Engle and Granger approach [21] and compares three hypotheses (H1: the two time

series follow random walks with drift and are cointegrated, H2: the two time series follow

random walks and are not cointegrated and H3: the two time series do not follow random

walks with drift and are not cointegrated). They specified the three hypotheses so they
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are nested within each other and, consequently, use the bivariate odds ratio technique to

decide which hypotheses to reject.

To calculate the odds ratios a multidimensional integration needs to be performed. Koop

[45] uses a Monte Carlo method of integration, for which it is not possible to calculate

hard bounds on the error [65].

De la Croix and Lubrano [15] test for cointegration by computing the posterior probabil-

ity that a certain parameter is greater or equal to one, which is assumed to indicate that

the time series are not cointegrated. This probability is then compared to a pre-assigned

probability value like 5%. The posterior density is again computed using numerical inte-

gration. Focusing on that one parameter means that it is tested whether the time series

would become cointegrated at a future point in time, not whether the observed time series

are cointegrated.

One of the most recent Bayesian methods based on the Engle and Granger approach

[21] is proposed by Bracegirdle and Barber in [10]. Similar to Koop’s Bayesian approach

Bracegirdle and Barber [10] suggest the likelihood ratio test to compare the model of

no cointegration to the model of cointegration. The maximum likelihood is estimated

using the Expectation-Maximisation algorithm; however, there is no guarantee that the

algorithm converges to a maximum likelihood estimator. For multi-modal distributions it

could converge to a local maximum.
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Test of Cointegration
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5.1 Overview

In this chapter the new method to detect cointegration is introduced. This method is the

only method, to the best of our knowledge, that detects whether the observed time series

are cointegrated, as opposed to whether they will become cointegrated at a future point

in time. This could be particularly useful when change points are present.

An example application domain that would benefit from this approach might be the anal-

ysis of position data from sheep with a neuro degenerative disease. One of the symptoms

of this type of disease can be seen in gradual changes to the social behaviour of the affected

animals. In such a situation, it might be possible to detect a slight change in the social

behaviour by comparing several short periods, for which it would be important to detect

whether the observed time series are cointegrated.

To achieve this, three steps are proposed: first, the posterior pdf of the relevant param-

eters (described in Section 5.2), given the observed data, is calculated analytically (see

Section 5.5). Simultaneously, the combinations of the parameters is calculated that suggest

cointegration in Section 5.6; these combinations are called the Cointegration Tube in the

remainder of this dissertation. Finally, the posterior probability distribution is integrated

over the Cointegration Tube to ascertain the proportion of the posterior probability that

lies within the cointegration tube. If the proportion is above a predefined threshold, say

90%, then the two time series are assumed to be cointegrated.

The pseudo-code for the method is as follows. The input is the two time series, y1 and y2,

the maximum error for the numerical integration, Emax, that is accepted (default value

set to 0.01), and the size of the cointegration tube parameter, ζ, which defines how wide

the cointegration tube is (default value set to 0.75). By default, the prior distributions for

φ, σ2 and σ2
1, the cointegration parameters, are set to N (µφ, σ

2
φ), InvGamma(τ, κ) and

InvGamma(τ1, κ1), with default values for µφ, σ
2
φ, τ , κ, τ1 and κ1 set to 0, 1, 1, 1, 1 and

1 respectively. However, as described in Section 5.4 these should be adapted depending
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Chapter 5 5.2 Model Description

on any prior information about the data. The output is the proportion of the posterior

that lies within the cointegration tube and therefore suggests cointegration.

Algorithm 3 Pseudo-code for proposed method to test for cointegration

1: procedure CointegrationTest(y1, y2, Emax ← 0.01, ζ ← 0.75, p(φ) ←
1

σφ

√
2π

exp

{

− (φ−µφ)
2

2σ2
φ

}

, p(σ2)← τκσ2(−κ−1)e−τ/σ2

Γ(κ) , p(σ2
1)←

τ
κ1
1 σ

2(−κ1−1)
1 e−τ1/σ

2
1

Γ(κ1)
, µφ ← 0,

σ2
φ ← 1, τ ← 1, κ← 1, τ1 ← 1, κ1 ← 1)

2: D1 ← 0.2

3: E ←∞
4: while E > Emax do

5: S ← 0

6: N ← 0

7: E ← 0

8: D1 ← D1/2

9: for φ from -2 in D1 to 2 do

10: for σ2 from 0 in D1 to 2 do

11: for σ2
1 from 0 in D1 to 2 do

12: Calculate p(θ|y1,y2, φ, σ
2, σ2

1) (see Section 5.5)

13: Sn ← D3
1p(θ|y1,y2, φ, σ

2, σ2
1)

14: N ← N + Sn

15: Calculate hard upper bound on the error of the integral within the
current block (see Section 5.7.1.2)

16: E ← E + En

17: if ζ ≥ maxt,k

∣
∣
∣φk
(

(1− φ2(t−1))σ2
1 −

∑t−2
i=0 φ

2iσ2
)∣
∣
∣ then

18: S ← S + Sn

19: p← S/N

20: return p

5.2 Model Description

This chapter focuses on the proposed method that detects cointegration between two time

series, denoted by Y 1 = (Y1,1, . . . , Y1,T )
′ and Y 2 = (Y2,1, . . . , Y2,T )

′. Two time series are
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Chapter 5 5.2 Model Description

cointegrated if a linear combination of them is stationary.

We assume the two time series are given by:

Y1,t = A+BY2,t + Et (5.1)

where t ∈ {1, ..., T} and
(
A
B

)
∼ N

((
µα

µβ

)
,Ω
)

. Noise in the system is modelled as

Et = ΦEt−1 +Ht , (5.2)

with

Φ ∼ N (µφ, σ
2
φ) , Ht ∼ N (0, S2) , E1 ∼ N (0, S2

1) (5.3)

and S2 ∼ InvGamma(κ, τ), S2
1 ∼ InvGamma(κ1, τ1), µφ ∈ R, σ2

φ ∈ [0,∞[ and κ, τ , κ1,

τ1 > 0.

The process Y 2 is described by a first-order Markov model

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−1.1
−0.9
−0.7
−0.5
−0.3
−0.1

0.1
0.3
0.5
0.7
0.9
1.1

σ2

φ

Figure 5.1: Example of a heat map of the

posterior probability density overlaid with a

Cointegration Tube. The white dashed line

is the line of perfect cointegration and the

yellow solid lines are the upper and lower

bounds.

Y2,t = φyY2,t−1 +Wt, (5.4)

with Y2,1 ∼ N (0, σ2
y), Wt ∼ N (0, σ2

w),

φy ∈ R and σ2
y , σ

2
w ∈ [0,∞[.

The linear relationship between the

two time series is described in Equa-

tion 5.1. The intercept and the gradi-

ent of this relationship have a bivariate

normal prior distribution. The noise

in the system is described by Et (Eq.

5.2) which follows a first-order Markov

model. Y 2 also follows a first-order

Markov model (Eq. 5.4), which is a
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Chapter 5 5.3 Identification

simple model often used for time series, when the following observation is expected to

depend only on the previous one. It also allows for the possibility that the time series does

not depend on the previous observations in which case φy would be 0.

In addition to the posterior probability density function a ‘cointegration tube’, such as

in Figure 5.1, is needed. The combinations of S1, S and Φ that cause Y 1 and Y 2 to be

cointegrated lie on a line in R
3. However the posterior mass of a line in a three dimensional

space is 0.

Because of this, a margin ζ, as described in Section 5.6, is incorporated. This variable

influences how close to ‘perfectly’ cointegrated the time series must be before they are

assumed to be cointegrated. Summed up, the ‘cointegration tube’ depicts the area in

which the particular value of Θ = (Φ, S2, S2
1) indicates approximate cointegration of y1

and y2. This is detailed in Section 5.6.

After the cointegration tube has been identified, the posterior is integrated over this area

to determine what proportion of the posterior probability mass function lies within the

cointegration tube, as is demonstrated in Section 5.7. This includes the significant progress

in calculating a strict upper bound on the error of this integral.

5.3 Identification

An identification problem exists when y2 is close to constant over time. In that case the

effect of A and B cannot be distinguished. Take the simple example of y2 = 1. Then

A+B1 = (A+ a) + (B − a)1 = A∗ +B∗1 for any a ∈ R.

Similarly, when Ω, the prior covariance matrix of A and B is positive semidefinite rather

than positive definite, there is an identification problem associated with A and B. This

could happen if the prior variances as well as prior covariances are set to the same value,

say 1 for example. Therefore the method requires a positive definite prior covariance
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Chapter 5 5.4 Prior Distributions

matrix for
(
A
B

)
.

A further potential problem arises when the sum of two matrices is not invertible. This

cannot occur when both matrices are positive definite, because the sum of positive definite

matrices is again positive definite. In this thesis, when the sum of two matrices is required

to be invertible, the individual matrices are shown to be positive definite.

5.4 Prior Distributions

For the remainder of the thesis, the following short form of the densities will be used,

unless stated otherwise. Instead of for example p(Y 1 = y1) and p(Θ = θ), p(y1) and

p(θ), will be used.

A prior for Θ = (Φ, S2, S2
1), the vector of cointegration parameters, needs to be defined.

It is assumed that Φ, S2 and S2
1 are independent, which results in p(θ) = p(φ)p(σ2)p(σ2

1).

For the individual priors the following distributions are chosen:

Φ ∼ N (µφ, σ
2
φ),

S2 ∼ Inv-Gamma(κ, τ), (5.5)

S2
1 ∼ Inv-Gamma(κ1, τ1)

with µφ ∈ ] − ∞,∞[, σ2
φ ∈ [0,∞[ and κ, τ, κ1, τ1 ∈ ]0,∞[. The normal distribution

for the prior of Φ is believed to be a good fit, as the prior should be symmetric around

the most expected value1, since we have no reason to believe that Φ should be skewed in

any particular direction. We also believe that all values should be available, although it is

much more likely that φ lies between −1 and 1 because if it were very large, the chances

are small that people would even want to test for cointegration.

The Inverse Gamma distribution is used as prior for both S2 and S2
1 , since it is the most

1which will most often probably be 0
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Chapter 5 5.5 Posterior Probability Density Function

common prior distribution chosen for variances and it is stated that for a simple two-level

hierarchical model typically there is enough data to estimate the variance parameter well

with any reasonable non-informative prior distribution [26].

This results in

p(θ) = p(φ)p(σ2)p(σ2
1)

=
1

σφ
√
2π

exp

{

−(φ− µφ)
2

2σ2
φ

}

τκσ2(−κ−1)e−τ/σ2

Γ(κ)

τκ1
1 σ

2(−κ1−1)
1 e−τ1/σ2

1

Γ(κ1)
(5.6)

=
τκσ2(−κ−1)τκ1

1 σ
2(−κ1−1)
1

σφ
√
2πΓ(κ)Γ(κ1)

exp

{

−(φ− µφ)
2

2σ2
φ

− τ

σ2
− τ1

σ2
1

}

.

5.5 Posterior of θ Given y1 and y2

To compute the posterior probability density function, Bayes’ Theorem is initially used

p(θ|y1,y2) =
p(θ,y1|y2)

p(y1|y2)
=

p(y1|θ,y2)p(θ|y2)

p(y1|y2)
. (5.7)

This will always be defined since p(y1|y2) 6= 0, as shown in Appendix C.1.

Therefore

p(θ|y1,y2) ∝ p(y1|θ,y2)p(θ|y2).

with the normaliser

N = p(y1|y2) =

∫

θ

p(y1,θ|y2) dθ (5.8)

which is equivalent to the numerator of Equation 5.7 integrated over Θ.

From the law of total probability it is known that

p(y1|θ,y2) =

∫

(α,β)
p
(
y1, α, β|θ,y2

)
d(α, β)
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Chapter 5 5.5 Posterior Probability Density Function

taking the integral over all possible pairs of α and β. This can be rewritten as

p(y1|θ,y2) =

∫

(α,β)
p
(
y1|α, β,θ,y2

)
p
(
α, β|θ,y2

)
d(α, β).

As the following transformation can get slightly confusing the extended format of proba-

bilities is used:

p(Y 1 = y1|A = α,B = β,Y 2 = y2,Θ = θ) = p(E = y1 − α1− βy2|Θ = θ) (5.9)

since E = Y 1 − A − BY 2 as defined in Equation 5.1, where Y 1, Y 2, A, B, Θ, E are

random variables.

In addition p(Θ = θ|Y 2 = y2) = p(Θ = θ), as shown in C.2, and

p (A = α,B = β|Θ = θ,Y 2 = y2) = p (A = α,B = β), as shown in Appendix C.3, from

which follows:

p(Θ = θ|Y 1 = y1,Y 2 = y2) ∝

p(Θ = θ)

∫

(α,β)
p
(
E = y1 − α1− βy2|Θ = θ

)
p (A = α,B = β) d(α, β)

and, as shown in Appendix C.4, this is equivalent to

p(Θ = θ|Y 1 = y1,Y 2 = y2) ∝

p (Θ = θ)

∫

(α,β)
p
(
E1 = y(1,1) − α− βy(2,1)|Θ = θ

)

T∏

s=2

p
(
Es = y(1,s) − α− βy(2,s)|Es−1 = y(1,s−1) − α− βy(2,s−1),Θ = θ

)

p (A = α,B = β) d(α, β)

(5.10)

Furthermore, the following is shown in Appendix C.5

p
(
Es = y(1,s) − α− βy(2,s)|Es−1 = y(1,s−1) − α− βy(2,s−1),Θ = θ

)
∼ N (φǫs−1, σ

2).
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Chapter 5 5.5 Posterior Probability Density Function

The product of multiple normally distributed random variables is again normally dis-

tributed and therefore the mean and covariance matrix of Et are 0 and Σ respectively,

where

Σ =












σ2
1 φσ2

1 · · · φT−1σ2
1

φσ2
1 φ2σ2

1 + σ2 · · · φTσ2
1 + φT−2σ2

...
...

. . .
...

φT−1σ2
1 φTσ2

1 + φT−2σ2 · · · φ2(T−1)σ2
1 + σ2

∑T−2
i=0 φ2i












, (5.11)

as shown in Appendix C.6 and C.7. Since Σ is a covariance matrix it is positive semi-

definite and is therefore invertible.

We can rearrange p(ǫ1 = y(1,1) − α − βy(2,1)|θ)
∏T

s=2 p(ǫs = y(1,s) − α − βy(2,s)|ǫs−1 =

y(1,s−1) − α− βy(2,s−1),θ), from Equation 5.10, into the matrix form as:

p(ǫ1|θ)
T∏

s=2

p(ǫs|ǫs−1,θ) =
1

√

(2π)T |Σ|
exp

{

−1

2
ǫ′Σ−1ǫ

}

=
1

√

(2π)T |Σ|
exp

{

−1

2
(y1 − α1− βy2)

′Σ−1 (y1 − α1− βy2)

}

where |Σ| is the determinant of Σ and 1 is a T × 1 vector of ones. This can be rewritten

as

C1C2 exp

{

−1

2

(
α− µ∗

α

β − µ∗
β

)′
Λ−1

(
α− µ∗

α

β − µ∗
β

)}

with

C1 =
1

(2π)T/2|Σ|1/2 and (5.12)

C2 =exp

{

−1

2

[

y′
1Σ

−1y1 −
(
µ∗
α

µ∗
β

)′
Λ−1

(
µ∗
α

µ∗
β

)

+ 2α
[
cα + µ∗

α(Λ
−1)11 + µ∗

β(Λ
−1)12

]

+ 2β
[
cβ + µ∗

α(Λ
−1)12 + µ∗

β(Λ
−1)22

]
]}

,

where

c =

(
cα
cβ

)

=

(
1′

y′
2

)

Σ−1 (−y1) (5.13)
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and

Λ−1 =






1′Σ−11 1′Σ−1y2

y′
2Σ

−11 y′
2Σ

−1y2




 =

(
1′

y′
2

)

Σ−1(1 y2), (5.14)

as shown in Appendix C.8. N.B. that 1′Σ−1y2 = y′
2Σ

−11 and that the matrix is therefore

symmetric and positive definite, since Σ−1 is positive definite.

This is the case ∀ µ∗
α and µ∗

β which can be chosen to be

µ∗ =

(
µ∗
α

µ∗
β

)

= −Λc (5.15)

which results in:

C2 = exp

{

−1

2

[

y′
1Σ

−1y1 − µ∗′Λ−1µ∗
]}

, (5.16)

as detailed in Appendix C.9.

As previously described, the prior of A and B, was chosen to be bivariate normally dis-

tributed with mean µ =
(
µα

µβ

)
and covariance matrix Ω, and thus has the form

p (α, β) =
1

√

(2π)2|Ω|
exp

{

−1

2

(
α− µα

β − µβ

)′
Ω−1

(
α− µα

β − µβ

)}

(5.17)

Therefore p(ǫ1|θ)
∏T

s=2 p(ǫs|ǫs−1,θ)p (α, β) is equivalent to

C1C2 exp

{

−1

2

(
α− µ∗

α

β − µ∗
β

)′
Λ−1

(
α− µ∗

α

β − µ∗
β

)}

C3 exp

{

−1

2

(
α− µα

β − µβ

)′
Ω−1

(
α− µα

β − µβ

)}

with

C3 =
1

√

(2π)2|Ω|
, (5.18)

which is again independent of either A or B. The two parts inside the exponential functions
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can be combined and rewritten as:

−1

2

[(
α

β

)′
(Λ−1 +Ω−1)

(
α

β

)

− 2

(
α

β

)′
(Λ−1 +Ω−1)

(
να
νβ

)

+ µ∗′Λ−1µ∗ + µ′Ω−1µ

]

with

ν :=

(
να
νβ

)

= (Λ−1 +Ω−1)−1
[
Λ−1µ∗′ +Ω−1µ

]
(5.19)

as demonstrated in Appendix C.10. This can be rewritten as:

exp

{

−1

2

[(
α

β

)′
(Λ−1 +Ω−1)

(
α

β

)

− 2

(
α

β

)′
(Λ−1 +Ω−1)ν + ν∗′(Λ−1 +Ω−1)ν

]}

C4

= C4 exp

{

−1

2

[(
α− να
β − νβ

)′
(Λ−1 +Ω−1)

(
α− να
β − νβ

)]}

with

C4 = exp

{

−1

2

[
−ν ′(Λ−1 +Ω−1)ν + µ∗′Λ−1µ∗ + µ′Ω−1µ

]
}

(5.20)

This gives:

p(ǫ1|θ)
T∏

s=2

p(ǫs|ǫs−1,θ)p (α, β)

= C1C2C3C4 exp

{

−1

2

[(
α− να
β − νβ

)′
(Λ−1 +Ω−1)

(
α− να
β − νβ

)]}

where C1, C2, C3 and C4 as detailed in Equations 5.12, 5.16, 5.18 and 5.20 respectively,

which are all independent of A and B. This means that

∫

(α,β)∈R2p(ǫ1|θ)
T∏

s=2

p(ǫs|ǫs−1,θ)p (α, β) d(α, β)

= C1C2C3C4

∫

(α,β)∈R2

exp

{

−1

2

[(
α− να
β − νβ

)′
(Λ−1 +Ω−1)

(
α− να
β − νβ

)]}

d(α, β)

= C1C2C3C4

as the pdf in the integral is a bivariate normal distribution over A and B, with mean να

and νβ and covariance matrix (Λ−1 +Ω−1)−1 and therefore integrates to 1.
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The form of p(θ|y1,y2) follows:

p(θ|y1,y2)

=
p(θ,y1|y2)

N
=

1

N
p(θ)C1C2C3C4

=
1

N
p(θ)

1

(2π)T/2|Σ|1/2 exp
{

−1

2

[

y′
1Σ

−1y1 − µ∗′Λ−1µ∗
]}

1
√

(2π)2|Ω|

exp

{

−1

2

[
−ν ′(Λ−1 +Ω−1)ν + µ∗′Λ−1µ∗ + µ′Ω−1µ

]
}

which is equivalent to

1

N
p(θ)

1

(2π)
T
2
+1
√

|Σ||Ω|
exp

{

−1

2

[

y′
1Σ

−1y1 − ν ′(Λ−1 +Ω−1)ν + µ′Ω−1µ

]}

(5.21)

with p(θ), N , Σ, c, Λ−1, µ and ν as detailed in Equations 5.6, 5.8, 5.11, 5.13, 5.14, 5.17

and 5.19 respectively and Ω the prior covariance matrix of
(
A
B

)
, as described in Section

5.4.

Now that the posterior for the cointegrating parameters given the data is known, the

next step is to define the area in which these cointegrating parameters would indicate

cointegration. Once this area is known, the proportion of the posterior consistent with y1

and y2 being cointegrated can be calculated by integrating the posterior over this area.

In this report we call this area the ‘cointegration tube’ and it is defined and detailed in

the next section.

5.6 Cointegration Tube

The definition of cointegration is based on weak stationarity2. Weak stationarity itself is

characterised by a constant mean and variance and a covariance that only depends on lag,

not on the time point (see Section 4.2.1). These three constraints define a curved plane

2weak stationarity is an approximation of strict stationarity, which can only be tested in the rarest
cases [30]
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in a three dimensional space (see Appendix C.11) and the posterior probability mass of a

curved plane in a three dimensional space is zero.

Figure 5.2: Sketch of the area

around the line that describes per-

fect cointegration, which might in-

clude 95% of the posterior pdf.

Even if two time series were perfectly cointe-

grated we would expect the posterior pdf not

to lie perfectly on a curved plane. With more

samples the posterior will concentrate around

this plane and we expect that a suitably scaled

tube around this plane will contain most of the

posterior probability mass if the time series are

in fact cointegrated. Such a tube could look

similar to the sketch in Figure 5.2.

Because of this, a parameter ζ is introduce to

allow for small deviations from perfect cointe-

gration. ζ defines the width of what we call the

cointegration tube. If say 90% of the probability mass of the combination of the three

parameters lies within the cointegration tube, the null hypothesis that the two time series

are not cointegrated is rejected. If less than that lies within the cointegration tube, the

null hypothesis is not rejected.

To recap, the stationarity restrictions mentioned at the beginning of this section are that

the linear combination of the two time series has a constant mean, constant variance and

time independent covariance.

The constant mean does not create a restriction on the parameters, because E(E1) = 0,

as defined in Equation 5.3. This means that E(Et) = 0 for all t, since E(Et) = φE(Et−1)+

E(Ht) = · · · = φt−1
E(E1) = 0, and therefore the mean will always be constant. Further-

more, variance is a special case of covariance and, therefore, will be dealt with as part of

the restrictions associated with the constant covariance.
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The constraints on the parameters come from the need for constant covariance over time.

If we allow the covariances to deviate slightly (ζ) from being perfectly constant we get:

ζ ≥ max
t,k
|Cov(E1, E1+k)− Cov(Et, Et+k)|

= max
t,k
|Cov(E1,ΦEk +Hk+1)− Cov(Et,ΦEt+k−1 +Ht+k)|

= max
t,k
|ΦCov(E1,ΦEk−1 +Hk)− ΦCov(Et,ΦEt+k−2 +Ht+k−1)|

...

= max
t,k
|ΦkCov(E1, E1)− ΦkCov(Et, Et)|

= max
t,k
|Φk (Var(E1)−Var(Et)) |

since Var(Ht) = S2, Var(E1) = S2
1 and Cov(Et−k, Ht) = 0 (as detailed in Equation 5.3).

In Appendix C.12 we show that this is equivalent to

⇒ ζ ≥ max
t,k

∣
∣
∣
∣
∣
Φk

(

(1− Φ2(t−1))S2
1 −

t−2∑

i=0

Φ2iS2

)∣
∣
∣
∣
∣

(5.22)

The three defining parameters in this constraint are Φ, S2 and S2
1 . We say y1 and y2

are approximately cointegrated if Equation 5.22 is fulfilled. Figure 5.3 shows an example

of heat maps of cointegrated and not cointegrated time series, with the cointegration line

(white dashed line) and the boundaries of the cointegration tube (yellow solid lines).

The first is from cointegrated time series, the combination of (Φ, S2, S2
1) used to create the

time series related to the second heat plot are 0.1 units away from the cointegration line,

and the parameters linked to the third heat map are 0.2 units away from the cointegration

line. A sketch of this set up is displayed in Figure 5.4(i).

The choice of ζ is crucial in the analysis. If it is chosen too large, the probability of a

type I error3 increases. Conversely, if it is chosen too narrowly, the probability of a type

3the type I error is the incorrect rejection of the null hypothesis, i.e. rejecting no cointegration, although
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Figure 5.3: This plot shows the realisation of the Sketch in Figure 5.4(i). (i) The two plots
on the left show an example of a heat map (top) and the top 95% of points that make up
the heat map (bottom) for cointegrated time series. (ii) The two middle plots show the
same graphs for time series that were created from parameters 0.1 units away from the
cointegration line. (iii) The two plots on the right shows the graphs for time series created
from parameters 0.2 units away from the cointegrated line. The numbers underneath the
plots show the proportion of the posterior within the cointegration tube.

II error4 increases and small amounts of noise in the measurements could result in failing

to reject the null hypothesis, even though y1 and y2 are cointegrated.

To get an estimate of an appropriate ζ cointegrated time series are simulated. The pos-

terior probability density is then calculated for each of the simulations and the average

over all the simulations is plotted on a heat map. The heat map is then overlaid with

the boundaries implying the cointegration tube for various values of ζ, to find the ζ that

approximates the cointegration tube the best. The combinations of Θ = (Φ, S2, S2
1) inside

this cointegration tube indicate approximate cointegration given ζ. An example of these

plots is shown in Figure 5.3. Here the time series were simulated with φ = 0.704, σ2 = 0.51

and σ2
1 = 1.01 and the cointegration tube was calculated using ζ = 0.75. This was found

the time series are not cointegrated
4the type II error is the failure to reject a false null hypothesis.
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Figure 5.4: (i) This sketch shows the setup of the graphs in Figure 5.3. Time series are
simulated that are cointegrated, i.e. the combination of the parameters used to create the
time series, lie on the cointegration line. Two more pairs of time series are created which
are 0.1 and 0.2 units away from the cointegration line and are therefore not cointegrated.
(ii) This graph shows a collection of the top 90% of the heat maps of posterior densities
of cointegrated time series with σ2

1 fixed at 1.01.

to be the best fit given the obeserved time series are of length T = 100, and that the true

prior distributions of φ, σ2 and σ2
1 are N (0, 1), InvGamma(1, 1) and InvGamma(1, 1)

respectively.

For a further visualisation, σ2
1 was fixed at 1.01 and the posterior density was calculated

for 21 cointegrated combinations of φ and σ2. The collection of the top 90% of the heat

maps of the posteriors is shown in Figure 5.4(ii).

To create the cointegrated time series, first two of the three parameters, Φ, S2 and S2
1 ,

are chosen and the third is calculated. In this thesis we chose S2 and S2
1 and calculated

Φ, as described in Appendix C.11. This was done for all S2 running from 0.01 to 2.01 in

steps of 0.01. For each combination, the time series y1 and y2 are generated according

to the data generating equations described in Section 5.2. Following this, the posterior

probability is calculated as described in Section 5.5.

For each of the combinations the points that make up the top 90% of the heat map are

selected and plotted on a figure. A collection of the resulting posterior densities is plotted

in Figure 5.4(ii).
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5.7 Numerical Integration

Now that we have the posterior probability density function of (Φ, S, S1) given the data

and the cointegration tube, the next step is to integrate the posterior over the cointegration

tube.

The Riemann sum [62] is used for this integration, as an upper bound on the error can

be calculated using no more than the first derivative. The one dimensional Riemann sum

is defined in Section 4.2.4. The general idea is that the volume over which we wish to

integrate is divided into sub-blocks. For each of the sub-blocks the area under the surface

we wish to integrate over is estimated by multiplying the size of the sub-block by the value

of the surface at a previously defined point of the sub-block. In our case this will be the

corner closest to (−∞,−∞,−∞).

Once the estimates and the upper bounds on the errors for each sub-block have been

calculated, the error is compared to a predefined threshold. If the upper bound on the error

is greater than that threshold, the sub-block with the greatest error is divided into eight

equally sized sub-blocks and the estimate and upper bound on the error is recalculated.

5.7.1 Error Estimates

The estimate of the integral per sub-block is the pdf at the point of the sub-block that is

the closest to (−∞,−∞,−∞) multiplied by the size of the sub-block. Therefore an upper

bound on the error (Em) is the greatest possible change in the value of the pdf within the

sub-block, again multiplied by the size of the sub-block.

Em =

∫ b1

a1

∫ b2

a2

∫ b3

a3

f(x)dx− S

=
m∑

j

(b1,j − a1,j)
2(b2,j − a2,j)

2(b3,j − a3,j)
2f ′(c),
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where m is the number of sub-blocks, S is the left-endpoint Riemann sum, a = (a1, a2, a3)

and b = (b1, b2, b3) are the endpoints of the sub-block and c is the point where the

derivative of f is at its maximum between a and b [31], or equivalently where the norm

between f(a) and f(c) is the greatest, within the sub-block.

It is not feasible to compute the second and third derivative of the posterior pdf, to be able

to calculate the maximum first derivative within each sub-block. Instead an upper bound

on the error of this estimate is calculated using perturbation theory [52]. It is added to

and subtracted from the estimate to achieve the upper- and lower- bound on the integral,

which in turn tells us what proportion of the posterior density lies within the cointegration

tube.

5.7.1.1 Upper Bound on the Error

The bound on the effect a small change in θ has on the posterior pdf p(θ|y1,y2) is

calculated for each sub-block. This will be indicated by

∣
∣
∣p(θ̃i|y1,y2)− p(θi|y1,y2)

∣
∣
∣ (5.23)

where θ̃i represents any point θ within the ith sub-block and θi stands for the corner

point of the ith sub-block that is closest to (−∞,−∞,−∞).

As p(θ|y1,y2) = p(θ,y1|y2)/N , where N =
∫

θ
p(θ,y1|y2) as described in Equations 5.7

and 5.8, Equation 5.23 can be rewritten as

∣
∣
∣p(θ̃i|y1,y2)− p(θi|y1,y2)

∣
∣
∣ =

∣
∣
∣
∣
∣

p(θ̃i,y1|y2)− p(θi,y1|y2)

N

∣
∣
∣
∣
∣
.

A lower bound on N is

∫

θ

p(θ,y1|y2) ≥
∑

i

µ(Wi)

(

p(θi,y1|y2)− sup
θ̃i∈Wi

∣
∣
∣p(θ̃i,y1|y2)− p(θi,y1|y2)

∣
∣
∣

)
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where Wi represents the ith sub-block and µ(Wi) the area of the ith sub-block. Which

means that calculating
∣
∣
∣p(θ̃i,y1|y2)− p(θi,y1|y2)

∣
∣
∣ per sub-block will suffice to get a lower

bound on N and together this will give the upper bound on
∣
∣
∣p(θ̃i|y1,y2)− p(θi|y1,y2)

∣
∣
∣.

Because of the nested nature of the posterior it is necessary to first examine what effect a

small change in θ has on Σ and the prior p(θ). Similarly to the chain-rule for derivatives

of nested functions, the effect has to then be calculated up the chain step by step.

Before going into the details of this a high-level overview of this chain is given and the

main steps in the calculation of the upper bound on
∣
∣
∣p(θ̃i,y1|y2)− p(θi,y1|y2)

∣
∣
∣. Figure

5.5 visualises the chain of upper bounds calculated in the following sections and their

dependencies on each other.

12

4
3

5a

5b

7

3

6b

6b

7

8 8

8

6a 6a

Figure 5.5: Flowchart of the Chain of Upper Bounds

1. The first upper bound on |p(θ̃i)− p(θi)| is fairly straight forward as it can be calcu-

lated directly from θi ≤ θ̃i ≤ θi + δ.
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2. When dealing with matrix norms, such as ||Σ(θ̃)−Σ(θ)||, the operator norm, defined

in Section 4.2.5, is used. In this case the definition of the operator norm was used to

get ||A||OP = sup||v||=1{||Av||} = sup||v||=1

{
sup||w||=1{w′Av}

}
. An upper bound

is then calculated by first finding the maximum with respect to w and then with

respect to v.

3. When calculating ||Σ̃−1
i −Σ−1

i ||OP and ||Λ̃i−Λi||OP (see Sections 5.7.1.1.3 and C.15)

the following two inequalities are used, for which the conditions are detailed in

Section 4.2.5.

(i)
∣
∣
∣
∣G−1 − F−1

∣
∣
∣
∣
OP
≤
∣
∣
∣
∣G−1

∣
∣
∣
∣
OP
||F −G||OP

∣
∣
∣
∣F−1

∣
∣
∣
∣
OP

(ii)
∣
∣
∣
∣G−1v

∣
∣
∣
∣ ≤

(
1

||F−1||OP
− ||G− F ||OP

)−1
||v||

These inequalities require F and G to be invertible and that ||F−G||OP ≤ ||F−1||−1
OP.

These requirements put restrictions on the size of the sub-blocks which are detailed

in Section 5.7.1.1.11.

4. For the upper bound on |
√

det Σ̃i −
√
detΣi| (see Section 5.7.1.1.4) the fact that

the determinant of a matrix is equivalent to the product of its eigenvalues is used.

How much the eigenvalues of Σ̃ can vary is determined using eigenvalue perturbation

theory.

5. The upper bound on ||Σ̃−1
i − Σ−1

i ||OP is then used to calculate the upper bound

on both ||Λ̃−1 − Λ−1||OP (arrow 5a; see Section 5.7.1.1.5) and ||c̃i − ci|| (arrow 5b;

see 5.7.1.1.6), where Λ is a 2 × 2 covariance matrix and c is a 2 × 1 vector. Both

depend on y1, y2 and Σ−1 and therefore present a large reduction in dimensionality

from a T × T matrix and T × 1 vector to a 2 × 2 matrix and a 2 × 1 vector. For

the upper bound on ||Λ̃−1 − Λ−1||OP the distributive property of matrices and the

sub-multiplicativity of the operator norm are used. The upper bound on ||c̃i − ci||

is calculated by first using the definition of the operator norm, as described in the

next paragraph, which is followed by using the sub-multiplicativity of the operator

norm.
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To relate the upper bounds on the vectors to the previously calculated upper bounds on

the matrices the definition of the operator norm is used. Let A ∈ R
n×n and a ∈ R

n×1.

Further assume an upper bound on ||Aa|| is needed and both ||A||OP and ||a|| are known.

Then we can use the definition of the operator norm, defined in Section 4.2.5.

||Aa|| =
∣
∣
∣

∣
∣
∣A

a

||a||
∣
∣
∣

∣
∣
∣ ||a|| ≤ sup

||u||=1
||Au|| ||a|| = ||A||OP||a||.

6. This method is used to calculate ||µ̃∗
i − µ∗

i || (arrow 6a; see Section 5.7.1.1.7) from

||Λ̃ − Λ||OP and ||c̃i − ci||, and ||ν̃i − νi|| (arrows 6b; see Section 5.7.1.1.8) from

||Λ̃−1 − Λ−1||OP and ||µ̃∗
i − µ∗

i ||, where µ∗ and ν are again 2× 1 vectors dependent

on Λ and c, and Λ−1 and µ∗ respectively. The calculations cause further restrictions

on the size of the sub-blocks, for example because Λ̃ needs to be invertible.

7. An upper bound on the exponential function of a difference, denoted by exp{ãi−ai}

(see Section 5.7.1.1.9), is calculated next. a, a scalar, depends on Σ−1 and ν and

|ãi− ai| therefore depends on ||Σ̃−1
i −Σ−1

i ||OP and ||ν̃i−νi||. First the triangle rule

is used then the Cauchy-Schwarz inequality, |〈x, y〉| ≤ ||x|| ||y|| [54], and then again

the definition of the operator norm is used.

8. Finally, the upper bound on the exponential function together with the upper bound

on |
√

det Σ̃i −
√
detΣi| and |p(θ̃i) − p(θi)| are used to get the upper bound on

∣
∣
∣p(θ̃i,y1|y2)− p(θi,y1|y2)

∣
∣
∣ (see Section 5.7.1.1.10). This is done by again first using

the triangle rule followed by the sub-multiplicativity of the absolute value.

Following are the details of the calculations of each of the upper bounds.

5.7.1.1.1 Upper bound on the effect of a small change in θ on p (θ): The size

of the change in θ = (φ, σ2, σ2
1)

′ is defined by the size of the sub-blocks described at the

beginning of Section 5.7. For the rest of this section let δ = (δ1, δ2, δ3)
′ denote the size of
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the sub-block such that

φi ≤ φ̃i ≤ φi + δ1,

σ2
i ≤ σ̃2

i ≤ σ2
i + δ2 , and

σ2
1,i ≤ σ̃2

1,i ≤ σ2
1,i + δ3.

(5.24)

To quantify the effect a small change in θi has on p(θi) the absolute value of the difference

between p(θ̃i), the perturbed probability, and p(θi), the known value, is used, i.e.

∣
∣
∣ p(θ̃i)− p

(
θi

)
∣
∣
∣ .

As detailed in Equation 5.6 p(θ) =
τκσ−κ−1τ

κ1
1 σ

−κ1−1
1

σφ

√
2πΓ(κ)Γ(κ1)

exp

{

− (φ−µφ)
2

2σ2
φ
− τ

σ − τ1
σ1

}

which

means that

∣
∣
∣ p
(
θ̃i

)
− p
(
θi

)
∣
∣
∣

=

∣
∣
∣
∣
∣

τκτκ1
1

(
σ̃2
i

)−κ−1 (
σ̃2
1,i

)−κ1−1

σφ
√
2πΓ(κ)Γ(κ1)

exp

{

−(φ̃i − µφ)
2

2σ2
φ

}

exp

{

− τ

σ̃2
i

}

exp

{

− τ1
σ̃2
1,i

}

−
τκτκ1

1

(
σ2
i

)−κ−1 (
σ2
1,i

)−κ1−1

σφ
√
2πΓ(κ)Γ(κ1)

exp

{

−(φi − µφ)
2

2σ2
φ

− τ

σ2
i

− τ1
σ2
1,i

}∣
∣
∣
∣
∣

From Equation 5.24 it is known that σ2
i ≤ σ̃2

i ≤ σ2
i + δ2 which means that

(
σ2
i + δ2

)−κ−1 ≤
(
σ̃2
i

)−κ−1 ≤
(
σ2
i

)−κ−1
(5.25)

since κ > 0 and therefore −κ− 1 < −1.

Furthermore, because the exponential function increases monotonically

exp

{

− τ

σ2
i

}

≤ exp

{

− τ

σ̃2
i

}

≤ exp

{

− τ

σ2
i + δ2

}

. (5.26)

Both Equations (5.25) and (5.26) are trivially adapted to give the bounds on
(
σ̃2
1,i

)−κ1−1
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and exp

{

− τ1
σ2
1,i

}

. Additionally we define

f1 :=







exp
{

− (φi−µφ)
2

2σ2

φ

}

if µφ < φi

exp
{

− (φi+δ1−µφ)
2

2σ2

φ

}

if µφ > φi + δ1

1 if φi ≤ µφ ≤ φi + δ1

which is an upper bound on exp

{

− (φ̃i−µφ)
2

2σ2
φ

}

.

From this follows the upper bound on
∣
∣
∣ p(θ̃i)− p (θi)

∣
∣
∣

∣
∣
∣
∣
∣

τκτκ1
1

(
σ2
i

)−κ−1 (
σ2
1,i

)−κ1−1

σφ
√
2πΓ(κ)Γ(κ1)

(

f1 exp

{

− τ

σ2
i + δ2

− τ1
σ2
1,i + δ3

}

− exp

{

−(φi − µφ)
2

2σ2
φ

− τ

σ2
i

− τ1
σ2
1,i

})∣
∣
∣
∣
∣
.

5.7.1.1.2 Upper bound on the effect of a small change in θ on Σ(θ): To

quantify the effect a small change in θi has on Σ(θi) we calculate an upper bound on the

operator norm (introduced in Definition 4.5) of the difference between Σ(θ̃i) and Σ(θi).

From Equation 5.11 the form of Σ(θi) and therefore Σ(θ̃i)− Σ(θi) is known.

In Appendix C.13 it is shown that an upper bound on ||Σ̃ − Σ||OP is
√
∑T

i=1

∑T
j=1 a

2
ij ,

where aij is the element of Σ(θ + δ)− Σ(θ) on the ith row and the jth column.

5.7.1.1.3 Upper bound on the effect of a small change in θ on Σ(θ)−1: The

next step is to get an upper bound on the effect a small change in θ has on the inverse of

Σ(θ), i.e.
∣
∣
∣

∣
∣
∣Σ(θ̃i)

−1 − Σ(θi)
−1
∣
∣
∣

∣
∣
∣
OP

.

For this, the following inequality, based on a result by Ferus [22] which has been detailed

in Equation 4.3, is used. It gives an upper bound on the operator norm of the difference
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between two invertible matrices5.

∣
∣
∣

∣
∣
∣Σ(θ̃i)

−1 − Σ(θi)
−1
∣
∣
∣

∣
∣
∣
OP
≤
∣
∣
∣

∣
∣
∣Σ(θ̃i)

−1
∣
∣
∣

∣
∣
∣
OP

∣
∣
∣

∣
∣
∣Σ(θ̃i)− Σ(θi)

∣
∣
∣

∣
∣
∣
OP

∣
∣
∣
∣Σ(θi)

−1
∣
∣
∣
∣
OP

. (5.27)

An upper bound on
∣
∣
∣

∣
∣
∣Σ(θ̃i)− Σ(θi)

∣
∣
∣

∣
∣
∣
OP

has been calculated in Section 5.7.1.1.2.
∣
∣
∣
∣Σ(θi)

−1
∣
∣
∣
∣
OP

is also known, as it is just the inverse of the smallest eigenvalue of Σ(θi) as detailed in

Section 4.2.5.1.

To get
∣
∣
∣

∣
∣
∣Σ(θ̃i)

−1
∣
∣
∣

∣
∣
∣
OP

a different result from Ferus [22] (detailed in Equation 4.4) is needed

as well as the definition of the operator norm6

∣
∣
∣
∣G−1

∣
∣
∣
∣
OP

= sup
||v||=1

∣
∣
∣
∣G−1v

∣
∣
∣
∣

≤
(

1

||F−1||OP

− ||G− F ||OP

)−1

sup ||v||
︸ ︷︷ ︸

=1

=

(
1

||F−1||OP

− ||G− F ||OP

)−1

which means that

∣
∣
∣

∣
∣
∣Σ(θ̃i)

−1
∣
∣
∣

∣
∣
∣
OP
≤
(

1

||Σ(θi)−1||OP

−
∣
∣
∣

∣
∣
∣Σ(θ̃i)− Σ(θi)

∣
∣
∣

∣
∣
∣
OP

)−1

=

(

min
1≤j≤T

|λi,j | −
∣
∣
∣

∣
∣
∣Σ(θ̃i)− Σ(θi)

∣
∣
∣

∣
∣
∣
OP

)−1
(5.28)

where λi,j is the jth eigenvalue of Σ(θi) and an upper bound on
∣
∣
∣

∣
∣
∣Σ(θ̃i)− Σ(θi)

∣
∣
∣

∣
∣
∣
OP

has

been calculated in Section 5.7.1.1.2.

In summary this shows that an upper bound on
∣
∣
∣

∣
∣
∣Σ(θ̃i)

−1 − Σ(θi)
−1
∣
∣
∣

∣
∣
∣
OP

is

(

min
1≤j≤T

|λi,j | −
∣
∣
∣

∣
∣
∣Σ(θ̃i)− Σ(θi)

∣
∣
∣

∣
∣
∣
OP

)−1 ∣
∣
∣

∣
∣
∣Σ(θ̃i)− Σ(θi)

∣
∣
∣

∣
∣
∣
OP

1

min1≤j≤T |λi,j |
(5.29)

5Since the size of the boxes used to get an upper bound on the integral is calculated to make sure that
both Σi and Σ̃i are invertible (5.7.1.1.11) this result can be used

6The definitions of ||A||OP is sup{||Av|| : v ∈ V with ||v|| = 1} (see Section 4.2.5)
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where now all the individual components are known.

5.7.1.1.4 Upper bound on the effect of a small change in Σ on
√

det(Σ): For

clarity a shorthand for Σ(θi) =: Σi and Σ(θ̃i) =: Σ̃i is introduced here. Similar abbrevia-

tions will be used in the following sections and should be intuitive from the context.

To quantify the effect a small change in Σi has on
√

det(Σi) the absolute value is used,

since the determinant of a matrix is a scalar.

∣
∣
∣
∣

√

det(Σ̃i)−
√

det(Σi)

∣
∣
∣
∣
=
∣
∣
∣

√

det(Σi)
∣
∣
∣

∣
∣
∣
∣
∣
∣

√

det(Σ̃i)

det(Σi)
− 1

∣
∣
∣
∣
∣
∣

The determinant of a matrix is equivalent to the product of the eigenvalues of that matrix,

counting multiplicity [4]

∣
∣
∣
∣

√

det(Σ̃i)−
√

det(Σi)

∣
∣
∣
∣
=
∣
∣
∣

√

det(Σi)
∣
∣
∣

∣
∣
∣
∣
∣
∣

√
√
√
√

T∏

j=1

λ̃i,j

λi,j
− 1

∣
∣
∣
∣
∣
∣

where λi,j represents the jth eigenvalue of Σi.

The definition of the absolute value is used:

∣
∣
∣
∣

√

det(Σ̃i)−
√

det(Σi)

∣
∣
∣
∣

= max







∣
∣
∣

√

det(Σi)
∣
∣
∣





√
√
√
√

T∏

j=1

λ̃i,j

λi,j
− 1



 ,
∣
∣
∣

√

det(Σi)
∣
∣
∣



1−

√
√
√
√

T∏

j=1

λ̃i,j

λi,j











Since Σi is positive definite, all its eigenvalues are greater than 0 and therefore

∣
∣
∣
∣

√

det(Σ̃i)−
√

det(Σi)

∣
∣
∣
∣

= max







∣
∣
∣

√

det(Σi)
∣
∣
∣





√
√
√
√

T∏

j=1

|λ̃i,j |
|λi,j |

− 1



 ,
∣
∣
∣

√

det(Σi)
∣
∣
∣



1−

√
√
√
√

T∏

j=1

|λ̃i,j |
|λi,j |










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This allows the inequality
∏T

j=1
|λi,j−ei|
|λi,j | ≤ ∏T

j=1
|λ̃i,j |
|λi,j | ≤

∏T
j=1

|λi,j+ei|
|λi,j | computed in the

Appendix C.14 to be used to get:

∣
∣
∣
∣

√

det(Σ̃i)−
√

det(Σi)

∣
∣
∣
∣

≤ max







∣
∣
∣

√

det(Σi)
∣
∣
∣





√
√
√
√

T∏

j=1

|λi,j + ei|
|λi,j |

− 1



 ,
∣
∣
∣

√

det(Σi)
∣
∣
∣



1−

√
√
√
√

T∏

j=1

|λi,j − ei|
|λi,j |











with ei =
∣
∣
∣

∣
∣
∣Σ̃i − Σi

∣
∣
∣

∣
∣
∣
OP

as detailed in C.14 and all other components are known.

5.7.1.1.5 Upper bound on the effect of a small change in Σ−1 on Λ−1: As

defined in Equation 5.14, Λ−1 is equivalent to
(
1
′

y′

2

)
Σ−1(1 y2). Due to the distributive

property of matrices, the operator norm of the difference is

∣
∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣
∣
OP

=

∣
∣
∣
∣

∣
∣
∣
∣

(
1′

y′
2

)
(
Σ̃−1
i − Σ−1

i

)
(1 y2)

∣
∣
∣
∣

∣
∣
∣
∣
OP

and the sub-multiplicativity of the operator norm, as detailed in Section 4.2.5.2, gives an

upper bound for which all the individual elements are known

∣
∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣
∣
OP
≤
∣
∣
∣
∣

∣
∣
∣
∣

(
1′

y′
2

)∣
∣
∣
∣

∣
∣
∣
∣
OP

∣
∣
∣

∣
∣
∣Σ̃−1

i − Σ−1
i

∣
∣
∣

∣
∣
∣
OP
||(1 y2)||OP . (5.30)

5.7.1.1.6 Upper bound on the effect of a small change in Σ−1 on c: c, as

defined in Equation 5.13, can be decomposed into a product of the matrices (1,y2) and

Σ−1 and the vector −y1:

c =

(
1′

y′
2

)

Σ−1 (−y1)

This is used to calculate an upper bound on the perturbation of ci

||c̃i − ci|| =
∣
∣
∣
∣

∣
∣
∣
∣

(
1′

y′
2

)

Σ̃−1
i (−y1)−

(
1′

y′
2

)

Σ−1
i (−y1)

∣
∣
∣
∣

∣
∣
∣
∣

=

∣
∣
∣
∣

∣
∣
∣
∣

(
1′

y′
2

)(

Σ̃−1
i − Σ−1

i

)

(−y1)

∣
∣
∣
∣

∣
∣
∣
∣
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Multiplying this equation by 1 in the form of ||y1||/||y1|| lets us use the definition of the

operator norm

||c̃i − ci|| =
∣
∣
∣
∣

∣
∣
∣
∣

(
1′

y′
2

)(

Σ̃−1
i − Σ−1

i

) (−y1)

||y1||

∣
∣
∣
∣

∣
∣
∣
∣
||y1||

≤ sup
||u||=1

∣
∣
∣
∣

∣
∣
∣
∣

(
1′

y′
2

)(

Σ̃−1
i − Σ−1

i

)

u

∣
∣
∣
∣

∣
∣
∣
∣
||y1||

=

∣
∣
∣
∣

∣
∣
∣
∣

(
1′

y′
2

)(

Σ̃−1
i − Σ−1

i

)
∣
∣
∣
∣

∣
∣
∣
∣
OP

||y1||

As the operator norm is a sub-multiplicative norm (as detailed in Section 4.2.5.2) we can

use the fact that ||AB||OP ≤ ||A||OP||B||OP which results in

||c̃i − ci|| ≤
∣
∣
∣
∣

∣
∣
∣
∣

(
1′

y′
2

)∣
∣
∣
∣

∣
∣
∣
∣
OP

∣
∣
∣

∣
∣
∣Σ̃−1

i − Σ−1
i

∣
∣
∣

∣
∣
∣
OP
||y1||

5.7.1.1.7 Upper bound on the effect of a small change in Λ and c has on µ∗:

The next step is to estimate the effect of a perturbation on µ∗, which has been defined in

Equation 5.15 to be µ∗ = −Λc. From this follows

||µ̃∗
i − µ∗

i || =
∣
∣
∣

∣
∣
∣Λ̃ic̃i − Λici

∣
∣
∣

∣
∣
∣

Zero can be added in the form of −Λic̃i + Λic̃i:

||µ̃∗
i − µ∗

i || =
∣
∣
∣

∣
∣
∣Λ̃ic̃i − Λic̃i + Λic̃i − Λici

∣
∣
∣

∣
∣
∣

=
∣
∣
∣

∣
∣
∣

(

Λ̃i − Λi

)

c̃i + Λi (c̃i − ci)
∣
∣
∣

∣
∣
∣

and again in the form of −
(

Λ̃i − Λi

)

ci +
(

Λ̃i − Λi

)

ci

||µ̃∗
i − µ∗

i ||

=
∣
∣
∣

∣
∣
∣

(

Λ̃i − Λi

)

c̃i + Λi (c̃i − ci)−
(

Λ̃i − Λi

)

ci +
(

Λ̃i − Λi

)

ci

∣
∣
∣

∣
∣
∣

=
∣
∣
∣

∣
∣
∣

(

Λ̃i − Λi

)

(c̃i − ci) + Λi (c̃i − ci) +
(

Λ̃i − Λi

)

ci

∣
∣
∣

∣
∣
∣

85



Chapter 5 5.7 Numerical Integration

Now the triangle rule is applied to get:

||µ̃∗
i − µ∗

i || ≤
∣
∣
∣

∣
∣
∣

(

Λ̃i − Λi

)

(c̃i − ci)
∣
∣
∣

∣
∣
∣+ ||Λi (c̃i − ci)||+

∣
∣
∣

∣
∣
∣

(

Λ̃i − Λi

)

ci

∣
∣
∣

∣
∣
∣ .

For the final step a similar method to the one used in Section 5.7.1.1.6 is used. We first

divide by the norm of the vector c̃ − c, and c respectively to get a unit length vector in

the three norms in the equation above and then multiply by the same norm to keep the

equation unchanged

∣
∣
∣
∣

∣
∣
∣
∣

(

Λ̃i − Λi

) c̃i − ci

||c̃i − ci||

∣
∣
∣
∣

∣
∣
∣
∣
||c̃i − ci||+

∣
∣
∣
∣

∣
∣
∣
∣
Λi

c̃i − ci

||c̃i − ci||

∣
∣
∣
∣

∣
∣
∣
∣
||c̃i − ci||+

∣
∣
∣
∣

∣
∣
∣
∣

(

Λ̃i − Λi

) ci

||ci||

∣
∣
∣
∣

∣
∣
∣
∣
||ci|| .

This is of course less than or equal to the supremum taken over the norms

||µ̃∗
i − µ∗

i || ≤ sup
||u||=1

∣
∣
∣

∣
∣
∣

(

Λ̃i − Λi

)

u
∣
∣
∣

∣
∣
∣ ||c̃i − ci||+ sup

||u||=1
||Λiu|| ||c̃i − ci||

+ sup
||u||=1

∣
∣
∣

∣
∣
∣

(

Λ̃i − Λi

)

u
∣
∣
∣

∣
∣
∣ ||ci|| .

The definition of the operator norm gives the following upper bound

||µ̃∗
i − µ∗

i || ≤
∣
∣
∣

∣
∣
∣Λ̃i − Λi

∣
∣
∣

∣
∣
∣
OP
||c̃i − ci||+ ||Λi||OP ||c̃i − ci||+

∣
∣
∣

∣
∣
∣Λ̃i − Λi

∣
∣
∣

∣
∣
∣
OP
||ci|| .

where an upper bound on
∣
∣
∣

∣
∣
∣Λ̃i − Λi

∣
∣
∣

∣
∣
∣
OP

has been calculated in Appendix C.15, an upper

bound on ||c̃i − ci|| was calculated in Section 5.7.1.1.6 and ||Λi|| and ||ci|| are known

values.
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5.7.1.1.8 Upper bound on the effect of a small change in Λ−1 and µ∗ has on

ν: From the definition of ν in Equation 5.19 the following is given

||ν̃i − νi||

=

∣
∣
∣
∣

∣
∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1 [

Λ̃−1
i µ̃∗ +Ω−1µ

]

−
(
Λ−1
i +Ω−1

)−1 [
Λ−1
i µ∗ +Ω−1µ

]
∣
∣
∣
∣

∣
∣
∣
∣

=
∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1
Λ̃−1
i µ̃∗ −

(
Λ−1
i +Ω−1

)−1
Λ−1
i µ∗

+

[(

Λ̃−1
i +Ω−1

)−1
−
(
Λ−1
i +Ω−1

)−1
]

Ω−1µ
∣
∣
∣

∣
∣
∣

A similar method to the one in the previous sections is used to relate the required upper

bound to upper bounds that have already been calculated. This is done by adding zero

in useful forms, using the triangle rule to divide the norm of sums into the sum of norms

and finally using the definition of the operator norm and the sub-multiplicativity of the

operator norm.

Adding zeros in convenient forms gives

||ν̃i − νi||

=
∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1 (

Λ̃−1
i − Λ−1

i + Λ−1
i

)

(µ̃∗ − µ∗ + µ∗)−
(
Λ−1
i +Ω−1

)−1
Λ−1
i µ∗

+

[(

Λ̃−1
i +Ω−1

)−1
−
(
Λ−1
i +Ω−1

)−1
]

Ω−1µ
∣
∣
∣

∣
∣
∣

=
∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1 (

Λ̃−1
i − Λ−1

i

)

(µ̃∗ − µ∗) +
(

Λ̃−1
i +Ω−1

)−1
Λ−1
i (µ̃∗ − µ∗)

+
(

Λ̃−1
i +Ω−1

)−1 (

Λ̃−1
i − Λ−1

i

)

µ∗ +
(

Λ̃−1
i +Ω−1

)−1
Λ−1
i µ∗

−
(
Λ−1
i +Ω−1

)−1
Λ−1
i µ∗ +

[(

Λ̃−1
i +Ω−1

)−1
−
(
Λ−1
i +Ω−1

)−1
]

Ω−1µ
∣
∣
∣

∣
∣
∣
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Now the triangle rule can be used to pull the Euclidean norm apart

||ν̃i − νi||

≤
∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1 (

Λ̃−1
i − Λ−1

i

)

(µ̃∗ − µ∗)
∣
∣
∣

∣
∣
∣

+
∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1
Λ−1
i (µ̃∗ − µ∗)

∣
∣
∣

∣
∣
∣+
∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1 (

Λ̃−1
i − Λ−1

i

)

µ∗
∣
∣
∣

∣
∣
∣

+
∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1
Λ−1
i µ∗ −

(
Λ−1
i +Ω−1

)−1
Λ−1
i µ∗

+

[(

Λ̃−1
i +Ω−1

)−1
−
(
Λ−1
i +Ω−1

)−1
]

Ω−1µ
∣
∣
∣

∣
∣
∣

As was described at the beginning of Section 5.7.1.1, the definition of the operator norm,

detailed in Section 4.2.5, is used to get

∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1 (

Λ̃−1
i − Λ−1

i

)

(µ̃∗ − µ∗)
∣
∣
∣

∣
∣
∣

=
∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1 (

Λ̃−1
i − Λ−1

i

) µ̃∗ − µ∗

||µ̃∗ − µ∗||
∣
∣
∣

∣
∣
∣||µ̃∗ − µ∗||

≤ sup
||u||=1

∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1 (

Λ̃−1
i − Λ−1

i

)

u
∣
∣
∣

∣
∣
∣||µ̃∗ − µ∗||

=
∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1 (

Λ̃−1
i − Λ−1

i

) ∣
∣
∣

∣
∣
∣
OP
||µ̃∗ − µ∗||.

Since the first norm is the operator norm the sub-multiplicativity, as detailed in Section

4.2.5.2, can be used to divide it into the product of two norms

∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1 (

Λ̃−1
i − Λ−1

i

)

(µ̃∗ − µ∗)
∣
∣
∣

∣
∣
∣

≤
∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1 ∣∣
∣

∣
∣
∣
OP

∣
∣
∣

∣
∣
∣

(

Λ̃−1
i − Λ−1

i

) ∣
∣
∣

∣
∣
∣
OP
||µ̃∗ − µ∗||

Exactly the same method is used for the second and third norm in the sum, which culmi-
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nates in

||ν̃i − νi||

≤
∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1 ∣∣
∣

∣
∣
∣
OP

[∣
∣
∣

∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣

∣
∣
∣
OP
||µ̃∗ − µ∗||+ ||Λ−1

i ||OP||µ̃∗ − µ∗||

+ ||Λ̃−1
i − Λ−1

i ||OP||µ∗||
]

+

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[(

Λ̃−1
i +Ω−1

)−1
−
(
Λ−1
i +Ω−1

)−1
]
(
Λ−1
i µ∗ +Ω−1µ

)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

It has been shown in Section 5.3 that the sum of positive definite matrices is again positive

definite. Ω is the prior covariance matrix of
(
A
B

)
and is required to be positive definite, as

described in Section 5.3. In Appendix C.16 it is shown that Λ−1
i is also positive definite.

Therefore Λ−1
i + Ω−1 is positive definite and invertible and subsequently it is shown in

Section 5.7.1.1.11 that Λ̃−1
i +Ω−1 is also invertible.

Given the invertibility of the sum we can use a theorem from Dirk Ferus [22], which has

been detailed in Section 4.2.5.1. If G and F are invertible matrices in a finite dimensional

Banach space, as long as ||F −G||OP < 1/||F−1||OP
, then

||G−1v|| ≤
(
1/||F−1||OP

− ||G− F ||OP

)−1 ||v||.

This means that if we substitute G with Λ̃−1
i +Ω−1 and F with Λ−1

i +Ω−1 the following

holds

∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1 ∣∣
∣

∣
∣
∣
OP

= sup
||v||=1

∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)

v
∣
∣
∣

∣
∣
∣

≤




1

∣
∣
∣

∣
∣
∣

(
Λ−1
i +Ω−1

)−1
∣
∣
∣

∣
∣
∣
OP

−
∣
∣
∣

∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣

∣
∣
∣
OP





−1

.
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An upper bound on ||ν̃i − νi|| is therefore




1

∣
∣
∣

∣
∣
∣

(
Λ−1
i +Ω−1

)−1
∣
∣
∣

∣
∣
∣
OP

−
∣
∣
∣

∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣

∣
∣
∣
OP





−1

[∣
∣
∣

∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣

∣
∣
∣
OP
||µ̃∗ − µ∗||+ ||Λ−1

i ||OP||µ̃∗ − µ∗||+ ||Λ̃−1
i − Λ−1

i ||OP||µ∗||
]

+
∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)−1
−
(
Λ−1
i +Ω−1

)−1
∣
∣
∣

∣
∣
∣
OP

∣
∣
∣

∣
∣
∣Λ−1

i µ∗ +Ω−1µ
∣
∣
∣

∣
∣
∣

for which upper bounds on
∣
∣
∣
∣Λ̃−1

i −Λ−1
i

∣
∣
∣
∣
OP

, ||µ̃∗
i − µ∗

i || and
∣
∣
∣

∣
∣
∣

(

Λ̃−1
i +Ω−1

)
−1

−
(
Λ−1
i +Ω−1

)
−1
∣
∣
∣

∣
∣
∣
OP

have been calculated in Sections 5.7.1.1.5, 5.7.1.1.7 and C.17 respectively, and the rest of

the terms are known values. Since the operator norm of the inverse of a matrix is just

the inverse of the smallest eigenvalue, in absolute terms, of that matrix, as shown in Sec-

tion 4.2.5.1, 1
/∣
∣
∣
∣
(
Λ−1
i +Ω−1

)−1 ∣
∣
∣
∣
OP

is equivalent to the smallest eigenvalue, in absolute

terms, of Λ−1
i +Ω−1

5.7.1.1.9 Upper bound on the effect of a small perturbation on exp{ã − a}:

The next step is to calculate an upper bound on the absolute value of

exp

{

− 1

2

[

y′
1Σ̃

−1y1 − ν̃ ′(Λ̃−1 +Ω−1)ν̃ + µ′Ω−1µ

]

+
1

2

[

y′
1Σ

−1y1 − ν ′(Λ−1 +Ω−1)ν + µ′Ω−1µ

]}

.

As the exponential function is always positive the absolute value is not needed. To explain

the general idea, let ai := −1
2

[

y′
1Σ

−1
i y1 − ν ′

i(Λ
−1
i +Ω−1)ν + µ′Ω−1µ

]

.

Using this notation the perturbation is:

exp{ãi − ai} ≤ exp{|ãi − ai|}
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with

|ãi − ai|

=

∣
∣
∣
∣
∣
− 1

2

[

y′
1Σ̃

−1
i y1 − ν̃ ′

i(Λ̃
−1
i +Ω−1)ν̃i + µ′Ω−1µ

]

+
1

2

[

y′
1Σ

−1
i y1 − ν ′

i(Λ
−1
i +Ω−1)νi + µ′Ω−1µ

]
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
− 1

2
y′
1

(

Σ̃−1
i − Σ−1

i

)

y1 +
1

2

[

ν̃ ′
i(Λ̃

−1
i +Ω−1)ν̃i − ν ′

i(Λ
−1 +Ω−1)νi

]
∣
∣
∣
∣
∣

The triangle rule can be used to get the following upper bound:

|ãi − ai| ≤
1

2

∣
∣
∣y′

1

(

Σ̃−1
i − Σ−1

i

)

y1

∣
∣
∣+

1

2

∣
∣
∣
∣
ν̃ ′
i(Λ̃

−1
i +Ω−1)ν̃i − ν ′

i(Λ
−1
i +Ω−1)νi

∣
∣
∣
∣
.

Now y′
1

(

Σ̃−1
i − Σ−1

i

)

y1 can be interpreted as an inner product between y′
1 and

(

Σ̃−1
i − Σ−1

i

)

y1 which would allow the use of the Cauchy-Schwarz inequality |〈x, y〉| ≤

||x|| ||y|| [54]. Together with the definition of the operator norm this gives the following

upper bound

|ãi − ai| ≤
1

2

T∑

j=1

y1,j

∣
∣
∣

∣
∣
∣

(

Σ̃−1
i − Σ−1

i

) ∣
∣
∣

∣
∣
∣
OP

+
1

2

∣
∣
∣
∣
ν̃ ′
i(Λ̃

−1
i +Ω−1)ν̃i − ν ′

i(Λ
−1
i +Ω−1)νi

∣
∣
∣
∣
.

since ||y′
1|| ||y1|| =

∑T
j=1 y

2
1,j .

Putting this back into the original equation results in

|exp{ãi − ai}|

≤
∣
∣
∣
∣
∣
exp

{

1

2

T∑

j=1

y21,j

∣
∣
∣

∣
∣
∣

(

Σ̃−1
i − Σ−1

i

) ∣
∣
∣

∣
∣
∣
OP

+
1

2

∣
∣
∣
∣
ν̃ ′
i(Λ̃

−1
i +Ω−1)ν̃i − ν ′

i(Λ
−1
i +Ω−1)νi

∣
∣
∣
∣

}∣
∣
∣
∣
∣
.

for which upper bounds on
∣
∣
∣
∣Σ̃−1

i − Σ−1
i

∣
∣
∣
∣
OP

and
∣
∣ν̃ ′

i(Λ̃
−1
i + Ω−1)ν̃i − ν ′

i(Λ
−1
i + Ω−1)νi

∣
∣

have been calculated in Sections 5.7.1.1.2 and C.18 respectively.
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5.7.1.1.10 Effect of a small change in p(θ), Σ and a have on p(y1, θ|y2): As

is known from Equation 5.21 p(y1, θ̃|y2) = p(θ) exp {a} /
(

(2π)
T
2
+1
√

det(Σ) det(Ω)
)

with

a defined as in 5.7.1.1.9. Therefore

∣
∣
∣p(y1, θ̃i|y2)− p(y1,θi|y2)

∣
∣
∣

=

∣
∣
∣
∣
∣
∣

p(θ̃i) exp {ãi}
(2π)

T
2
+1
√

det(Σ̃i) det(Ω)
− p(θi) exp {ai}

(2π)
T
2
+1
√

det(Σi) det(Ω)

∣
∣
∣
∣
∣
∣

This can be rearranged to:

∣
∣
∣
∣
∣

exp {ai}
(2π)

T
2
+1
√

det(Ω)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

1
√

det(Σ̃i)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

p(θ̃i) exp {ãi − ai} − p(θi)

√

det(Σ̃i)

det(Σi)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣

√

det(Σ̃i)

∣
∣
∣
∣

−1

can be rewritten as

∣
∣
∣
∣

√

det(Σ̃i)−
√

det(Σi) +
√

det(Σi)

∣
∣
∣
∣

−1

for which an up-

per bound is the inverse of a lower bound on

∣
∣
∣
∣

√

det(Σ̃i)−
√

det(Σi) +
√

det(Σi)

∣
∣
∣
∣
which

is
∣
∣
√

det(Σi)
∣
∣ −

∣
∣
∣

√

det(Σ̃i) −
√

det(Σi)
∣
∣
∣, provided

∣
∣
∣

√

det(Σ̃i) −
√

det(Σi)
∣
∣
∣ <

∣
∣
√

det(Σi)
∣
∣

which is the case as detailed in Section 5.7.1.1.11. Therefore

∣
∣
∣
∣

√

det(Σ̃i)

∣
∣
∣
∣

−1

≤
(
∣
∣
√

det(Σi)
∣
∣−
∣
∣
∣

√

det(Σ̃i)−
√

det(Σi)
∣
∣
∣

)−1

.

An upper bound on
∣
∣
∣

√

det(Σ̃i) −
√

det(Σi)
∣
∣
∣ has been calculated in Section 5.7.1.1.4 and

∣
∣
√

det(Σi)
∣
∣ is known, as it is unperturbed.

Therefore, an upper bound on

∣
∣
∣
∣
p(θ̃i) exp {ãi − ai} − p(θi)

√

det(Σ̃i)/ det(Σi)

∣
∣
∣
∣
can be found

by using the triangle rule and the sub-multiplicativity of absolute values

∣
∣
∣
∣
∣
∣

p(θ̃i) exp {ãi − ai} − p(θi)

√

det(Σ̃i)

det(Σi)

∣
∣
∣
∣
∣
∣

≤
(∣
∣
∣p(θ̃i)− p(θi)

∣
∣
∣+ |p(θi)|

)

|exp {ãi − ai}|+ |p(θi)|

∣
∣
∣
∣
∣
∣

√

det(Σ̃i)

det(Σi)

∣
∣
∣
∣
∣
∣

.
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An upper bound on

∣
∣
∣
∣

√

det(Σ̃i)/ det(Σi)

∣
∣
∣
∣
has been shown to be

√
∏T

j=1 |λi,j + ei|/|λi,j | in

the Appendix C.19 with ei defined as ei =
∣
∣
∣

∣
∣
∣Σ̃i − Σi

∣
∣
∣

∣
∣
∣
OP

in the Appendix C.14.

Summarising all of this, an upper bound on
∣
∣
∣p(y1, θ̃i|y2)− p(y1,θi|y2)

∣
∣
∣ is

∣
∣
∣
∣
∣

exp {ai}
(2π)

T
2
+1
√

det(Ω)

∣
∣
∣
∣
∣

(
√

det(Σi)−
∣
∣
∣

√

det(Σ̃i)−
√

det(Σi)
∣
∣
∣

)−1

[
(∣
∣p(θ̃i)− p(θi)

∣
∣+ p(θi)

)

exp {ãi − ai}+ p(θi)

√
∏T

j=1
|λi,j + ei|/|λi,j |

]

for which upper bounds on
∣
∣
∣p(θ̃i)−p(θi)

∣
∣
∣ and |exp {ã− a}| have previously been calculated

in 5.7.1.1.1 and 5.7.1.1.9 and the rest of the terms are unperturbed values and therefore

known.

5.7.1.1.11 Size of boxes used to get an upper bound on the integral As men-

tioned previously, the three dimensional space over which we are integrating is divided

into sub-blocks. Within each sub-block the integral is estimated and an upper bound on

the absolute error is calculated. Dividing the space into sub-blocks reduces the error of

the overall integral. The sub-blocks with an error greater than a certain threshold, are

further divided into smaller sub-blocks and the estimate and upper bound on the error

are recalculated.

The initial size of the sub-blocks depends on a series of restrictions that are necessary to

be able to use the previously calculated upper bound on the error. These restrictions are

that the sub-blocks need to be small enough such that:

i) Σ̃i is invertible:
∣
∣
∣
∣Σ̃i − Σi

∣
∣
∣
∣
OP

< 1/||Σ−1
i ||OP

- needed in Sections 5.7.1.1.3, C.14 and

C.19

ii)
∣
∣
∣

√

det(Σ̃i)−
√

det(Σi)
∣
∣
∣ <

∣
∣
√

det(Σi)
∣
∣ - needed in Section 5.7.1.1.10

iii) (Ω−1 + Λ̃−1
i )−1 is invertible:

∣
∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣
∣
OP

< 1/||(Ω−1+Λ−1
i )−1||OP

- needed in
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Sections 5.7.1.1.8 and C.17

iv) Λ̃i is invertible:
(∣
∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣
∣
OP

< 1/||Λi||OP

)
- needed in Section C.15

5.7.1.2 Accumulation of the Error in the Upper Bound

As described in Section 5.7.1.1, the posterior pdf relies on the three cointegration parame-

ters, Φ, S2 and S2
1 , through a long chain of transformations. The upper bound on the error

of the integral within each sub-block needs to be calculated up this chain, which means

that at each step the error in the upper bound gets multiplied with various constants.

In addition to this, one of the last steps involves taking the exponential function, which

causes the error of the upper bound to explode.

To better understand which steps of the chain increase the error the most, the values along

the chain are calculated for the point of the sub-block that is the closest to (−∞,−∞,−∞)

as well as at the point that is the farthest from (−∞,−∞,−∞). This difference is com-

pared to the upper bound on the error of the integral.

Table 5.1: This table compares the calculated upper bound (column two), to the difference
between the values at the corner points closest and furthest away from (−∞,−∞,−∞)
(column three) at various steps along the chain to calculate the upper bound on the error
of the integral. Column four gives the relative difference between the upper bound and
the difference between the corners. In this example the upper bound is numerically not
∞.
Point in Chain Upper Bound Corner Difference Relative Difference

|p(Θ̃i)− p(Θi)| 1.4 1.1e− 14 1.2e+ 14

||Σ̃i − Σi||OP 1.2e− 11 5.0e− 12 2.4

||Σ̃−1
i − Σ−1

i ||OP 3.8e− 10 4.5e− 13 8.5e+ 02

||
√

det(Σ̃i)−
√

det(Σ̃)i|| 5.8e− 24 3.3e− 26 1.8e+ 02

||Λ̃−1
i − Λ−1

i ||OP 3.5e− 06 1.4e− 09 2.5e+ 03

||Λ̃i − Λi||OP 2.8e− 07 1.4e− 13 2.0e+ 06
||c̃i − ci|| 5.6e− 07 2.0e− 10 2.8e+ 03
||µ̃∗

i − µ∗
i || 6.7e− 05 2.2e− 13 3.1e+ 08

||ν̃i − νi|| 2.6e− 02 1.9e− 13 1.4e+ 11
| exp(ãi − ai)| 4.2e+ 17 8.6e− 24 4.9e+ 40

|p(Θ̃i,y1|y2)− p(Θi,y1|y2)| 6.3e− 21 3.3e− 51 1.9e+ 30
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Tables 5.1 and 5.2 are two examples of the points in the chain where these values are

calculated (column one), the calculated upper bound on the error of the integral at these

points (column two), the difference between the point farthest away from (−∞,−∞,−∞)

and the one closest to (−∞,−∞,−∞) (column three), and the relative differences by

which the upper bound is greater than the difference between the two corners of the

sub-block (column four).

Table 5.2: This table compares the calculated upper bound (column two), to the difference
between the values at the corner points closest and furthest away from (−∞,−∞,−∞)
(column three) at various steps along the chain to calculate the upper bound on the error
of the integral. Column four gives the relative difference between the upper bound and
the difference between the corners. In this example the upper bound is numerically ∞.
Point in Chain Upper Bound Corner Difference Relative Difference

|p(Θ̃i)− p(Θi)| 4.0e+ 09 6.6e− 89 6.1e+ 97

||Σ̃i − Σi||OP 1.1e− 10 1.0e− 10 1.04

||Σ̃−1
i − Σ−1

i ||OP 1.7e− 05 4.1e− 09 4.2e+ 03

||
√

det(Σ̃i)−
√

det(Σ̃)i|| 1.1e− 106 5.0e− 110 2.2e+ 03

||Λ̃−1
i − Λ−1

i ||OP 1.6e− 01 3.7e− 05 4.3e+ 03

||Λ̃i − Λi||OP 7.4e− 09 2.2e− 15 3.4e+ 06
||c̃i − ci|| 2.5e− 02 5.2e− 06 4.9e+ 03
||µ̃∗

i − µ∗
i || 3.8e− 03 3.0e− 15 1.3e+ 12

||ν̃i − νi|| 3.0 2.2e− 15 1.4e+ 15
| exp(ãi − ai)| ∞ 0 ∞
|p(Θ̃i,y1|y2)− p(Θi,y1|y2)| NaN 0 NaN

In the first example (Table 5.1) the upper bound is calculated for the sub-block starting

at φ = 0.704, σ2 = 0.51, and σ2
1 = 1.01. In this example the upper bound exists and is not

numerically infinity. However, the difference between the upper bound and the difference

between the corners of the sub-block increases continuously and the upper bound is several

magnitudes larger than the difference between the corners.

In the second example (Table 5.2) the upper bound is calculated for the sub-block starting

at φ = −1, σ2 = 0.01, and σ2
1 = 0.01. In this example the upper bound does not exist,

because the one but last upper bound is numerically ∞ and is multiplied with a value

that is numerically 0. The difference between the two corners is numerically zero for the

one but last and last step.
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To quantify the accuracy of the cointegration test proposed in the previous chapter (Chap-

ter 5) cointegrated time series were simulated. These time series were then tested for

cointegration using the above described method. The data generating process is described

in Section 6.1. This is followed by a discussion of the results in Section 6.2. Section 6.3

describes how the method could be applied to real-world animal movement data.

6.1 Data Generating Process

As described in Section 5.6 there are three parameters, (Φ, S2, S2
1), which are key to

detecting whether time series are cointegrated or not. For perfect cointegration, these

three parameters lie on a curved plane in a three dimensional space. This means that

for any combination of two of the parameters, the value of the third parameter is nearly

uniquely defined (if S2 and S2
1 are chosen, Φ can take up to 2 values), by the following

equation (derived in the Appendix C.11).

Φ = ±
√

1− S2/S2
1

For the simulations here S2 and S2
1 are varied from 0.01 to 1.01 in steps of 0.1. For each

combination of S2 and S2
1 one or two values of Φ are calculated. When S2 is equal to S2

1 ,

then Φ = 0. In all other cases there is a negative and a positive value of Φ. Since the

posterior and the cointegration tube are symmetric, the simulations were run only for the

cases in which φ is greater or equal to 0. In total 66 simulations were run.

Given these parameters, the assumptions described in Section 5.2 are used to generate the

data. The details are explained in the remainder of this section.

Recall that cointegration describes two time series that have a stationary linear relation-

ship. The linear relationship is defined by the following equations, first introduced in
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Section 5.2.

Y1,t = A+BY2,t + Et

Et = ΦEt−1 +Ht

where t ∈ {1, ..., T}. The unknown variables in this relationship are assumed to have the

following underlying distributions

(
A
B

)
∼ N

((
µα

µβ

)
,Ω
)

Ht ∼ N (0, S2)

E1 ∼ N (0, S2
1).

Y 2 is assumed to follow a first-order Markov model

Y2,t = φyY2,t−1 +Wt,

with Y2,1 ∼ N (0, σ2
y), Wt ∼ N (0, σ2

w), φy ∈ R and σ2
y , σ

2
w ∈ [0,∞[.

The first step is to draw A and B, the starting values for Y 2, E and H from the defined

distributions. For this the necessary parameters are defined as follows:

µα = 1, µβ = 1, Ω =

(
1 0

0 1

)

, σ2
y = 1.

It would be useful to run the same test with varying values for these starting parameters.

This would help understand the sensitivity of the method towards the prior information.
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6.2 Results

As described in the previous section, 66 pairs of cointegrated time series were simulated.

Each of these pairs were tested for cointegration using the method above. At a threshold

of 24% (16/66)of the time series were correctly identified as being cointegrated.

To get a better understanding of the results, Figure 6.1 (i) shows a heat map of the positive

values of φ, that make up the cointegrated tripple, given the values of σ2 and σ2
1. Figure

6.1 (ii) then shows the proportion of the posterior within the cointegration tube for the

simulated time series. See Tables D.1 to D.8 in the Appendix for the full set of results.
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Figure 6.1: These plots show (i) the combinations of φ, σ2 and σ2
1 that cause cointegration

and (ii) the proportion of the posterior that lies within the cointegration tube.

The test proposed in this thesis suggests that two time series are cointegrated if more

than 90% of the posterior probability density lies within the cointegration tube. The two

heat maps show that the test detects cointegration well when σ2 and σ2
1 are large. This is

most likely because ζ, the parameter that defines the width of the cointegration tube, was

primarily estimated from time series with σ2 = 0.51 and σ2
1 = 1.01. In the area around

this point the test detects cointegration well.

Furthermore the shape of the posterior density when the time series are cointegrated

needs to be examined at more detail. The average heat map in Figure 5.4 was created
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with σ2
1 = 1.01 and it shows that the cointegration tube is a lot wider for large values of

σ2 than for small ones, which means that it is unlikely that cointegrated time series with

small values of σ2 will be detected as being cointegrated.

It would be of great advantage to examine the cointegration tube in more detail in the

future.

6.3 Application

As described in Chapter 1 the method to test cointegration proposed in Chapter 5 could

be used to identify a change in behaviour of social animals. This change in behaviour

could be an indicator of certain diseases, such as Huntington’s disease [13] or Batten’s

[33].

To ascertain whether there has been a change in group dynamics or of the behaviour of

certain individuals within a group, for example in a flock of sheep, social network analysis

could be used. In such a social network the individuals are represented by nodes, and

a link exists between two nodes if they are associated with one another. In this case,

cointegration could be used as a measure of association, since it represents a level of

confidence that animals move together.

A sample of social networks could be estimated from several samples of the sheep’s move-

ments, using the cointegration method proposed in Chapter 5. This sample could be

compared to similar samples of social networks based on the behaviour of individuals

at different stages of the development of symptoms. Significant differences between the

groups’ structures could be identified, which could help in the analysis of treatment efficacy

in the long term.

In these situations it would be of particular interest whether the observed behaviour is

cointegrated, as opposed to becoming cointegrated at a future point. To the best of our
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knowledge, the method proposed in Chapter 5 is the only method that tests the observed

time series.
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7.1 Discussion

In this dissertation a new method to test for cointegration is presented. A Bayesian ap-

proach is advantageous for many reasons: it produces whole probability distributions for

each unknown parameter and these distributions are valid for any sample size. Further-

more, it allows straightforward updates when more data becomes available, by using the

posterior as the new prior distribution.

The main advantage of the cointegration test proposed in this thesis is that it fully exploits

the benefits of the Bayesian method. A cointegration tube is created, which describes the

combinations of parameters that indicate cointegration of the two time series being com-

pared. This allows us to test whether say 90% of the posterior lies within the cointegration

tube, rather than using a point estimate, such as the maximum likelihood of the posterior.

In Appendix D, the results of the method proposed here are compared to the results of

the traditional Engle and Granger approach. The Engle and Granger method correctly

identifies 39 out of the 66 simulations, as opposed to 16 that are correctly identified by the

method proposed here. Despite these results, it should be noted that the proposed method

is likely to be improved greatly by further research into the shape of the cointegration tube.

The Bayesian method is simultaneously a significant advantage, because it has the po-

tential to allow us to reason more fully about a cointegrated system, and a significant

limitation, because prior distributions need to be chosen for the parameters of interest.

Choosing a wrong prior could bias the result, however the more data is used the smaller

the bias will be.

7.2 Future Work

To establish this method as a viable alternative to existing techniques two areas of work

need to be addressed.
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As described in Section 5.6, the cointegration tube is estimated by allowing small imper-

fections (ζ) in the stationarity constraint of the time independent covariance. The current

shape of the so called cointegration tube, fits very well for some combinations of the coin-

tegration parameters (see top right-hand corner of Figure 6.1 (ii) and tables D.6, D.7 and

D.8), but does not fit particularly well in other areas. It would be of great advantage to

study the shape of the posterior probability distributions resulting from cointegrated time

series. This could greatly improve the accuracy of the method.

Section 5.7 describes the numerical integration used in the proposed method. The Rie-

mann sum was used to allow the calculation of the hard upper bound on the error of the

integration. However, the upper bound is larger than expected and future research into

alternative numerical quadrature methods may be needed.
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The interactions of animals is an area in which vast amounts of data are collected, yet

efficient methods to analyse them are scarce. There are, roughly speaking, two categories

of animal interaction: that of solitary animals and that of social animals. One method for

each of these areas is proposed in this thesis.

When analysing the interaction between solitary animals, the quantification of association

or avoidance between territorial conspecifics would advance our understanding of animal

ecology and, in the long term, the impact of changing environments. Existing forms of

such tests are predicated on assumptions about the shape of the individuals’ territory and

boundaries [48, 19].

In this dissertation, a new method for detecting avoidance and association is presented.

Unlike previous work, the method makes no assumption about the shape or size of the

territories, nor about the way that individuals move. It relies purely on the disassociation

of the individuals’ movement through permutations.

Amongst other things, this new method permits the analysis of territorial behaviour in

animals. Both the presence and absence of positive spatial association between individuals

or groups are biologically interesting phenomena. In Chapter 3, the method was applied

to data collected from GPS collars on individual leopards in which significant positive

association was established between some male-male as well as male-female leopard dyads,

and to African wild dogs, in which there was no significant dynamic interaction detected

between packs.

For the leopards, two out of six male-female dyads were more often within close proximity

of each other than would be expected by chance. This is most likely related to courtship

and mating, and supports biological expectations. Interestingly, it was also shown that

two out of five male-male dyads were more often within close proximity of each other.

This observation is in opposition to conclusions from previous work [59, 35], but could be

due to mutual evaluation, family relationships, or a range of unknown factors.
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None of the wild dog packs were more or less often within close proximity of each other

than would be expected by chance. It is possible that, although the movement patterns of

individual packs bring neighbours into relatively close proximity, the risk and occurrence

of direct encounters may be reduced by remote inter-pack information exchange, probably

via fresh scent signals in these areas.

In using this method, it is important to ensure that data from both members of the

dyad are as closely matched in time as possible in order to allow robust conclusions to be

drawn on any spatial interactions between them. Temporal differences between compared

locations within dyads do not preclude the use of the method, but in such circumstances

it is essential to temper conclusions accordingly.

More generally, our method for movement and associations could be applied to epidemi-

ological concerns. If individuals are more often within close proximity of each other than

expected by chance, the transmission rate of diseases would be higher than that estimated

using random movement models. The method could also be extended straightforwardly

to include a time lag to determine whether individuals are more often in an area recently

occupied by another animal than might be explained by chance. This could be important

in cases of geo-located time-limited phenomena such as scent marking or the transmission

of parasites or infectious agents through the environment.

When examining the interaction between social individuals, the relationships between non-

stationary time series is important. Time series are said to be stationary when the time

series has a constant mean, constant variance and time-independent covariance. This is a

strong restriction on animal movement, which is not always fulfilled [53]. When testing for

dependencies between two or more time series the Pearson product-moment correlation

coefficient is often one of the first statistics considered. However, correlation only makes

sense if the individual series are stationary and the relationship between the two time

series is linear [14].

In practice there are many time series that are non-stationary, such as the aggressive
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communication of the hermit crab Calcinus tibicen [53], exchange rates [41], population

and employment [36], electricity consumption [2], gas prices [27], maize prices [1], dissent

rates on the High Court of Australia [51] and hemispheric temperature [42]. In these

cases, a characteristic called cointegration could be used to find relationships between

non-stationary time series. Cointegration describes a property of two or more time series

that are individually non-stationary but for which a linear relationship of the time series

is stationary.

In this thesis a new fully Bayesian method to test for cointegration is presented. A Bayesian

approach is advantageous for many reasons: it produces whole probability distributions

for each unknown parameter and these distributions are valid for any sample size. Fur-

thermore, it allows straightforward updates when more data becomes available, by using

the posterior as the new prior distribution.

The main advantage of the cointegration test proposed in this thesis is that it fully exploits

the benefits of the Bayesian method. A cointegration tube is created, which describes the

combinations of parameters that indicate cointegration of the two time series being com-

pared. This allows us to test whether say 90% of the posterior lies within the cointegration

tube, rather than using a point estimate, such as the maximum likelihood of the posterior.

Significant progress has been made in calculating a hard upper bound on the integration

error. An upper bound on the error would lead to an upper and lower bound on the

integration itself and therefore give a better understanding of how certain the result is.

The hard lower bound on the integration means that the integral is greater or equal to

the lower bound. This means that if the lower bound suggests that 90% of the posterior

probability density lies within the cointegration tube, then you can be sure that at least

90% lies within the cointegration tube.

Additionally this method is, to the best of my knowledge, the only one that tests whether

the time series are cointegrated during the observation period. Other methods use only one

parameter which is indicative of the time series becoming cointegrated at some future point
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in time [29, 39, 21]. The method we propose considers three parameters (introduced in

Section 5.6) which allows us to test for cointegration of the observed time series themselves.

This is particularly useful when change points are present in the data.
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A.1 Tables of Proportions of Simulations Correctly Identi-

fied as having, or not having, an Association

Association No. correctly No. correctly
Time identified identified
(in steps) as PLT (%) as PMT (%)

1 1073/1795 (60%) 8/1795 (0%)
2 1405/1795 (78%) 8/1795 (0%)
3 1513/1795 (84%) 8/1795 (0%)
4 1601/1795 (89%) 7/1795 (0%)
5 1658/1795 (92%) 8/1795 (0%)

Table A.1: Effect of Association Time Within Distances Inside the Association Distance:
This table details how many of the simulations were correctly classified as being less (PLT)
or more (PMT) often within the distances tested than expected by chance. The results
are divided into the number of time steps (first column) the individuals spent in the inner
association distance of each other. In each column the number before the forward-slash
is the number of correctly classified distances, the number after the forward-slash is the
number of distances that should be flagged, and the number in brackets is the proportion
of correctly identified distances.

Association No. correctly No. correctly
Time identified identified
(in steps) as NLT (%) as NMT (%)

1 5927/6048 (98%) 5872/6048 (97%)
2 5945/6048 (98%) 5717/6048 (95%)
3 5951/6048 (98%) 5564/6048 (92%)
4 5962/6048 (99%) 5431/6048 (90%)
5 5976/6048 (99%) 5315/6048 (88%)

Table A.2: Effect of Association Time Outside of the Association Distances: This table
details how many of the simulations were correctly classified as not being less (NLT) or
more (NMT) often within the distances tested than expected by chance. The results are
divided into the number of time steps (first column) the individuals spent in the inner
association distance of each other. In each column the number before the forward-slash
is the number of correctly classified distances, the number after the forward-slash is the
number of distances that should be flagged, and the number in brackets is the proportion
of correctly identified distances.
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Association No. correctly No. correctly
Distance identified identified
(in meters) as PLT (%) as PMT (%)

250 1046/1410 (74%) 0/1410 (0%)
300 1116/1465 (76%) 5/1465 (0%)
350 1173/1495 (78%) 10/1495 (1%)
400 1248/1510 (83%) 0/1510 (0%)
450 1350/1540 (88%) 10/1540 (1%)
500 1317/1555 (85%) 14/1555 (1%)

Table A.3: Effect of Association Distance Within Distances Inside the Association Dis-
tance: This table details how many of the simulations were correctly classified as being
less (PLT) or more (PMT) often within the distances tested than expected by chance.
The results are divided into the outer association distance (first column). In each column
the number before the forward-slash is the number of correctly classified distances, the
number after the forward-slash is the number of distances that should be flagged, and the
number in brackets is the proportion of correctly identified distances.

Association No. correctly No. correctly
Distance identified identified
(in meters) as NLT (%) as NMT (%)

250 4996/5040 (99%) 4752/5040 (94%)
300 4976/5040 (99%) 4755/5040 (94%)
350 4949/5040 (98%) 4692/5040 (93%)
400 4923/5040 (98%) 4610/5040 (91%)
450 4965/5040 (99%) 4564/5040 (90%)
500 4952/5040 (98%) 4526/5040 (90%)

Table A.4: Effect of Association Distance within Distances Outside of the Association
Distance: This table details how many of the simulations were correctly classified as not
being less (NLT) or more (NMT) often within the distances tested than expected by
chance. The results are divided into the outer association distance (first column). In each
column the number before the forward-slash is the number of correctly classified distances,
the number after the forward-slash is the number of distances that should be flagged, and
the number in brackets is the proportion of correctly identified distances.
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Observation No. correctly No. correctly
Length identified identified
(in days) as PLT (%) as PMT (%)

100 749/1080 (69%) 0/1080 (0%)
150 1121/1465 (77%) 0/1465 (0%)
200 1252/1590 (79%) 0/1590 (0%)
250 1298/1555 (83%) 5/1555 (0%)
300 1415/1665 (85%) 9/1665 (1%)
350 1415/1620 (87%) 25/1620 (2%)

Table A.5: Effect of Observation Length within distances inside the association distance:
This table details how many of the simulations were correctly classified as being less (PLT)
or more (PMT) often within the distances tested than expected by chance. The results are
divided into the observation length (first column). In each column the number before the
forward-slash is the number of correctly classified distances, the number after the forward-
slash is the number of distances that should be flagged, and the number in brackets is the
proportion of correctly identified distances.

Observation No. correctly No. correctly
Length identified identified
(in days) as NLT (%) as NMT (%)

100 4982/5040 (99%) 4863/5040 (96%)
150 4933/5040 (98%) 4734/5040 (94%)
200 4949/5040 (98%) 4595/5040 (91%)
250 4961/5040 (98%) 4578/5040 (91%)
300 4969/5040 (99%) 4578/5040 (91%)
350 4967/5040 (99%) 4551/5040 (90%)

Table A.6: Effect of Observation Length within distances outside the association distance:
This table details how many of the simulations were correctly classified as not being less
(NLT) or more (NMT) often within the distances tested than expected by chance. The
results are divided into the observation length (first column). In each column the number
before the forward-slash is the number of correctly classified distances, the number after
the forward-slash is the number of distances that should be flagged, and the number in
brackets is the proportion of correctly identified distances.
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Observation No. correctly No. correctly
Length identified identified
(in days) as NLT (%) as NMT (%)

100 6670/6720 (99%) 6685/6720 (99%)
150 6535/6720 (98%) 6615/6720 (98%)
200 6585/6720 (98%) 6680/6720 (99%)
250 6560/6720 (98%) 6645/6720 (99%)
300 6550/6720 (97%) 6670/6720 (99%)
350 6555/6720 (98%) 6620/6720 (99%)

Table A.7: Effect of Observation Length when there is no association: This table details
how many of the simulations were correctly classified as not being less (NLT) or more
(NMT) often within the distances tested than expected by chance in the no association
scenario. The results are divided into the observation length (first column). In each column
the number before the forward-slash is the number of correctly classified distances, the
number after the forward-slash is the number of distances that should be flagged, and the
number in brackets is the proportion of correctly identified distances.
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σ2φk

1−φ2

B.1 Proof that Cov(ǫt, ǫt−k) = σ2φk

1−φ2

Cov(ǫt, ǫt−k) = Cov





∞∑

j=0

φjηt−j ,
∞∑

j=0

φjηt−k−j





= Cov





∞∑

j=0

φjηt−j ,
∞∑

l=k

φl−kηt−l





= Cov
(

φkηt−k, ηt−k

)

+ Cov
(

φk+1ηt−k−1, φηt−k−1

)

+ Cov
(

φk+2ηt−k−2, φ
2ηt−k−2

)

+ . . .

= σ2
(

φk + φk+2 + φk+4 + . . .
)

=
σ2φk

1− φ2

�

B.2 Solving Maximisation using Lagrange Multiplier

The equation to be maximised is

L(b1, . . . , bn, µ) =
√

b21
λ2
1

+ · · ·+ b2n
λ2
n

+ µ

(

1−
√

b21 + · · ·+ b2n

)

.

The partial derivatives are

δL
δµ

= 1−
√

b21 + · · ·+ b2n

δL
δbi

=
bi

λ2
i

√

b21/λ
2
1 + · · ·+ b2n/λ

2
n

− µ
bi

√

b21 + · · ·+ b2n

Setting the first partial derivative to 0 results in the constraint, i.e.
√

b21 + · · ·+ b2n = 1.

This simplifies the partial derivative with respect to bi to
δL
δbi

= bi
λ2
i

√
b21/λ

2
1+···+b2n/λ

2
n

− µbi.
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Setting this to 0 results in either bi = 0 or µ = 1

λ2
i

√
b21/λ

2
1+···+b2n/λ

2
n

. From the first deriva-

tive (i.e. the constraint) it is know that
√

b21 + · · ·+ b2n = 1 which means that for at

least one j ∈ {1, . . . , n} bj 6= 0. For that particular partial derivative, i.e. for δL
δbj

µ = 1

λ2
i

√
b21/λ

2
1+···+b2n/λ

2
n

. Since there is only one µ, which means that, as long as λi 6= λj

∀i 6= j, all other bis have to be 0. However, again due to the constraint
√

b21 + · · ·+ b2n = 1,

this means that bj = 1.
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C.1 Proof that p(y1|y2) 6= 0

First we will show that p
((

α
β

)
|y2

)
= p
((

α
β

))
, which will then be used to show that p(y1|y2)

is the integral of a product of two normal distributions, which by definition is > 0 every-

where [63].

For the first part we use the fact that the prior information for Y 2 is independent of the

prior information for
(
A
B

)
. For clarity of the proof we will abbreviate the prior information

about Y 2 (φy, σ
2
y and σ2

w) as γ.

Proof. Using Bayes’ Theorem as well as the law of total probability

p
((

α
β

)
|y2

)
=

p
(
y2|
(
α
β

))
p
((

α
β

))

p(y2)
=

p
((

α
β

))

p(y2)

∫

γ

p
(
y2,γ|

(
α
β

))
dγ

=
p
((

α
β

))

p(y2)

∫

γ

p
(
y2|γ,

(
α
β

))
p
(
γ|
(
α
β

))
dγ

This is equivalent to p
((

α
β

))
/p(y2)

∫

γ
p(y2|γ)p

(
γ|
(
α
β

))
dγ, since Y 2 given γ is independent

of
(
A
B

)
, as defined in Section 5.2. This in turn is equivalent to p

((
α
β

))
/p(y2)

∫

γ
p(y2|γ)p(γ) dγ,

because
(
A
B

)
is independent of γ by assertion (Section 5.2). From this follows

p
((

α
β

)
|y2

)
=

p
((

α
β

))

p(y2)

∫

γ

p(y2,γ) dγ =
p
((

α
β

))

p(y2)
p(y2) = p

((
α
β

))

Using the law of total probability p(y1|y2) =
∫

(αβ)
p
(
y1,
(
α
β

)
|y2

)
. Using Bayes’ Theorem

this can be rewritten as
∫

(αβ)
p
(
y1|
(
α
β

)
,y2

)
p
((

α
β

)
|y2

)
. We have just shown that the second

part is equivalent to p
((

α
β

))
, which is known, from Section 5.2, to be a bivariate Normal,

which is by definition never 0. Additionally p
(
y1|
(
α
β

)
,y2

)
also follows a Gaussian distri-

bution and is 6= 0. Therefore the product of the two can never be 0, and neither can the

integral over this product.
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C.2 Proof of p(θ|y2) = p(θ)

For clarity of the proof we will abbreviate the prior information about Y 2 (φy, σ
2
y and σ2

w)

as γ.

Proof. Using Bayes’ Theorem

p(θ|y2) =
p(y2|θ)p(θ)

p(y2)
=

p(θ)

p(y2)

∫

γ

p(y2,γ|θ) dγ =
p(θ)

p(y2)

∫

γ

p(y2|γ,θ)p(γ|θ)) dγ

This is equivalent to p(θ)/p(y2)
∫

γ
p(y2|γ)p(γ|θ) dγ, since Y 2 given γ is independent of

Θ, as defined in Section 5.2. This in turn is equivalent to p(θ)/p(y2)
∫

γ
p(y2|γ)p(γ) dγ,

because Θ is independent of γ by assertion (Section 5.2). From this follows

p(θ|y2) =
p(θ)

p(y2)

∫

γ

p(y2,γ) dγ =
p(θ)

p(y2)
p(y2) = p(θ)

C.3 Proof of p (α, β|θ, y2) = p (α, β)

Proof. Similarly to C.2 Bayes’ Theorem and the law of total probability is used

p (α, β|θ,y2) =

∫

ξ

p (α, β, ξ|θ,y2) dξ =

∫

ξ

p (α, β|ξ,θ,y2) p(ξ|θ,y2) dξ

where ξ = (µα, µβ ,Ω) is the prior information for
(
A
B

)
. Since

(
A
B

)
given ξ is independent

of Θ and ξ is independent of Θ (see Chapter 5), this is equivalent to

∫

ξ

p (α, β|ξ,y2) p(ξ|y2) dξ =

∫

ξ

p (α, β, ξ|y2) dξ = p (α, β|y2)
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This can be rewritten, using Bayes’ Theorem, as

p (α, β,y2)

p(y2)
=

p (y2|α, β) p (α, β)
p(y2)

(C.1)

Now p (y2|α, β) can be rewritten, using the law of total probability as

p (y2|α, β) =
∫

γ

p (y2,γ|α, β) dγ =

∫

γ

p (y2|γ, α, β) p (γ|α, β) dγ

and because Y 2 given γ is independent of (A,B) this is

p (y2|α, β) =
∫

γ

p (y2|γ) p (γ|α, β) dγ (C.2)

Using Bayes’ Theorem again

p (γ|α, β) = p (γ, α, β)

p (α, β)
=

p (α, β|γ) p(γ)
p (α, β)

(C.3)

and again using the law of total probability

p (α, β|γ) =
∫

ξ

p (α, β, ξ|γ) dξ =

∫

ξ

p (α, β|ξ,γ) p(ξ|γ) dξ

Similarly to the previous calculation we use that (A,B) given ξ is independent of γ and

that ξ is independent of γ and therefore

p (α, β|γ) =
∫

ξ

p (α, β|ξ) p(ξ) dξ =

∫

ξ

p (α, β, ξ) dξ = p (α, β) .

Plugging this back into equation C.3 gives

p (γ|α, β) = p (α, β) p(γ)

p (α, β)
= p(γ)
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which in turn can be plugged into equation C.2 giving

p (y2|α, β) =
∫

γ

p(y2|γ)p(γ) dγ =

∫

γ

p(y2,γ) dγ = p(y2).

This can be inserted into equation C.1 proving that

p (α, β|θ,y2) =
p(y2)p (α, β)

p(y2)
= p (α, β)

C.4 Expansion of p (E = y1 − α1 − βy2|θ)

Proof. First p
(
E = y1 − α1− βy2|Θ = θ

)
is transformed into

∫

ηT

. . .

∫

η2

p
(

E1 = y1,1−α−βy2,1, . . . , ET = y1,T−α−βy2,T ,H2:T = η2:T |Θ = θ
)

dη2 . . . dηT

by applying the law of total probability T − 1 times. The definition of conditional proba-

bility, i.e. p(A,B) = p(A|B)p(B), gives:

∫

η2:T

p
(

ET = y1,T − α− βy2,T |E1:(T−1) = y1,1:(T−1) − α1− βy2,1:(T−1),H2:T = η2:T ,

Θ = θ
)

p
(

E1:(T−1) = y1,1:(T−1) − α1− βy2,1:(T−1),H2:T = η2:T |Θ = θ
)

dη2:T

As described in Equation 5.9 the probability of Y 1 given A, B and Y 2 is the same as the

probability of E given A, B and Y 2. Et also depends on Φ ∈ Θ, Et−1 and Ht as described

in Equation 5.2, however it does not depend on any Es further in the past, or on any

previous Hs or Y2s. Therefore, simplifying the conditional probabilities and repeating the

123



Chapter C C.4 Expansion of p (E = y1 − α1− βy2|θ)

law of total probability, gives:

p
(
E = y1 − α1− βy2

∣
∣Θ = θ

)

=

∫

ηT

p
(

ET = y1,T − α− βy2,T |ET−1 = y1,T−1 − α− βy2,T−1, HT = ηT ,Θ = θ
)

∫

η2:(T−1)

p
(

E1:(T−1) = y1,1:(T−1) − α1− βy2,1:(T−1),H2:T = η2:T |Θ = θ
)

dη2:(T−1) dηT

and using the definition of conditional probability again gives:

p
(
E = y1 − α1− βy2

∣
∣Θ = θ

)

=

∫

ηT

p
(

ET = y1,T − α− βy2,T |ET−1 = y1,T−1 − α− βy2,T−1, HT = ηT ,Θ = θ
)

∫

ηT−1

p
(

ET−1 = y1,T−1 − α− βy2,T−1|ET−2 = y1,T−2 − α− βy2,T−2, HT−1 = ηT−1,Θ = θ
)

∫

η2:(T−2)

p
(

E1:(T−2) = y1,1:(T−2) − α1− βy2,1:(T−2),H2:T = η2:T |Θ = θ
)

dη2:(T−2) dηT−1 dηT

Repeating these steps another T − 2 times results in

p
(
E = y1 − α1− βy2

∣
∣Θ = θ

)

=

∫

ηT

p
(

ET = y1,T − α− βy2,T |ET−1 = y1,T−1 − α− βy2,T−1, HT = ηT ,Θ = θ
)

. . .

∫

η2

p
(

E2 = y1,2 − α− βy2,2|E1 = y1,1 − α− βy2,1, H2 = η2,Θ = θ
)

p
(

E1 = y1,1 − α− βy2,1,H2:T = η2:T |Θ = θ
)

dη2 . . . dηT

Now the definition of conditional probability can be used on p
(

E1 = y1,1−α−βy2,1,H2:T =

η2:T |Θ = θ
)

to get

p
(

E1 = y1,1 − α− βy2,1|H2:T = η2:T ,Θ = θ
)

p
(

H2:T = η2:T |Θ = θ
)

.
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However, since E1 does not depend on any Hs, as defined in Equation 5.3, p
(

E1 =

y1,1 − α− βy2,1|H2:T = η2:T ,Θ = θ
)

can be simplified to

p
(

E1 = y1,1 − α− βy2,1|H2 = η2,Θ = θ
)

.

The same definition of conditional probability can be used on p
(

H2:T = η2:T |Θ = θ
)

to

show that:

p
(

H2:T = η2:T |Θ = θ
)

= p
(

H2 = η2|H3:T = η3:T ,Θ = θ
)

p
(

H3:T = η3:T |Θ = θ
)

...

= p
(

H2 = η2|Θ = θ
)

. . . p
(

HT = ηT |Θ = θ
)

which results in

p
(
E = y1 − α1− βy2

∣
∣Θ = θ

)

=

∫

ηT

p
(

ET = y1,T − α− βy2,T |ET−1 = y1,T−1 − α− βy2,T−1, HT = ηT ,Θ = θ
)

. . .

∫

η2

p
(

E2 = y1,2 − α− βy2,2|E1 = y1,1 − α− βy2,1, H2 = η2,Θ = θ
)

p
(

E1 = y1,1 − α− βy2,1|H2 = η2,Θ = θ
)

p
(

H2 = η2|Θ = θ
)

dη2 . . . p
(

HT = ηT |Θ = θ
)

dηT

The inner most product p
(

E1 = y1,1 − α− βy2,1|H2 = η2,Θ = θ
)

p
(

H2 = η2|Θ = θ
)

can

be rewritten as

p
(

E1 = y1,1 − α− βy2,1, H2 = η2|Θ = θ
)

which results in the following for the inner most integral:

∫

η2

p
(

E2 = y1,2 − α− βy2,2|E1 = y1,1 − α− βy2,1, H2 = η2,Θ = θ
)

p
(

E1 = y1,1 − α− βy2,1, H2 = η2|Θ = θ
)

dη2

=

∫

η2

p
(

E2 = y1,2 − α− βy2,2, E1 = y1,1 − α− βy2,1, H2 = η2|Θ = θ
)

dη2
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Chapter C C.4 Expansion of p (E = y1 − α1− βy2|θ)

According to the law of total probability this is equivalent to

p
(

E2 = y1,2 − α− βy2,2, E1 = y1,1 − α− βy2,1|Θ = θ
)

= p
(

E2 = y1,2 − α− βy2,2|E1 = y1,1 − α− βy2,1,Θ = θ
)

p
(

E1 = y1,1 − α− βy2,1|Θ = θ
)

This can now be brought outside all the integrals, as it does not depend on η any more:

p
(
E = y1 − α1− βy2

∣
∣Θ = θ

)

= p
(

E1 = y1,1 − α− βy2,1|Θ = θ
)

p
(

E2 = y1,2 − α− βy2,2|E1 = y1,1 − α− βy2,1,Θ = θ
)

∫

ηT

p
(

ET = y1,T − α− βy2,T |ET−1 = y1,T−1 − α− βy2,T−1, HT = ηT ,Θ = θ
)

. . .

∫

η3

p
(

E3 = y1,3 − α− βy2,3|E2 = y1,2 − α− βy2,2, H3 = η3,Θ = θ
)

p
(

H3 = η3|Θ = θ
)

dη3 . . . p
(

HT = ηT |Θ = θ
)

dηT

NB that p(ηt|θ) = p(ηt|ǫt−1,θ), since ηt given θ, does not depend on any other variable,

and therefore

∫

η3

p
(

E3 = y1,3 − α− βy2,3|E2 = y1,2 − α− βy2,2, H3 = η3,Θ = θ
)

p
(

H3 = η3|E2 = y1,2 − α− βy2,2,Θ = θ
)

dη3

=

∫

η3

p
(

E3 = y1,3 − α− βy2,3, H3 = η3|E2 = y1,2 − α− βy2,2,Θ = θ
)

dη3

= p
(

E3 = y1,3 − α− βy2,3|E2 = y1,2 − α− βy2,2,Θ = θ
)
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This can again be pull outside of the integrals. This process can be repeated until the last

integral,
∫

ηT
. . . dηT , is evaluated.

p
(
E = y1 − α1− βy2

∣
∣Θ = θ

)

= p
(

E1 = y1,1 − α− βy2,1|Θ = θ
)

p
(

E2 = y1,2 − α− βy2,2|E1 = y1,1 − α− βy2,1,Θ = θ
)

. . . p
(

ET = y1,T − α− βy2,T |ET−1 = y1,T−1 − α− βy2,T−1,Θ = θ
)

C.5 Computation of p(ǫt|ǫt−1, θ)

Since Ht ∼ N (0, S2) and E1|Θ ∼ N (0, S2
1) as defined in Equation 5.3, the distribution of

Et given Et−1 and Θ is again a normal distribution, since a linear combination of normally

distributed random variables is again normal. Due to equation 5.2, i.e. Et = ΦEt−1 +Ht,

the expected value of Et given Et−1 and Θ is

E(Et|ǫt−1,θ) = φǫt−1

Similarly, given that Et−k is independent of Ht, for k > 0,

V ar(Et|ǫt−1,θ) = φ2V ar(Et−1|ǫt−1) + V ar(Ht|θ) + φCov(Et−1, Ht)

= 0 + σ2 + 0

for all t > 1.
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C.6 Proof that E(Et) = 0 ∀t

Proof. As E1|Θ ∼ N (0, S2
1) and Et = ΦEt−1 +Ht, as defined in Equations 5.2 and 5.3:

E(Et) = E(ΦEt−1 +Ht) = ΦE(Et−1) = · · · = Φt−1
E(E1) = 0.

C.7 Computation of Σ

Again ǫ1|θ ∼ N (0, σ2
1) and ǫt = φǫt−1 + ηt are the main underlying equations used in this

proof, as well as the fact that ηt is independent of ǫt−k ∀t, k. From these it is easy to see

that:

V ar(ǫ1) = σ2
1

V ar(ǫt) = Cov(ǫt, ǫt) = E(ǫ2t ) = E((φǫt−1 + ηt)
2) = φ2

E(ǫ2t−1) + 2φE(ǫt−1ηt) + E(η2t )

= φ2
E(ǫ2t−1) + σ2 = φ2(t−1)σ2

1 +
t−2∑

k=0

φ2kσ2

Cov(ǫt, ǫ1) = Cov(φǫt−1 + ηt, ǫ1) = Cov(φǫt−1, ǫ1) + Cov(ηt, ǫ1) = φCov(ǫt−1, ǫ1)

= · · · = φt−1V ar(ǫ1)

Cov(ǫt+k, ǫt) = Cov(φǫt+k−1 + ηt+k, ǫt) = Cov(φǫt+k−1, ǫt) + Cov(ηt+k, ǫt)

= φCov(ǫt+k−1, ǫt) = · · · = φkV ar(ǫt)

Which fully defines the covariance matrix of ǫt, Σ.
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C.8 Computation of C2

The initial equation to start with is

p(ǫ1|θ)
T∏

s=2

p(ǫs|ǫs−1,θ) =
1

√

(2π)T |Σ|
exp

{

−1

2
ǫ′Σ−1ǫ

}

=
1

√

(2π)T |Σ|
exp

{

−1

2
(y1 − α1− βy2)

′Σ−1 (y1 − α1− βy2)

}

The choice of C1 = 1√
(2Π)T |Σ|

is clear, however to acchieve C2 the part within the expo-

nential function has to be rewritten:

ǫ′Σ−1ǫ = (y1 − α1− βy2)
′Σ−1(y1 − α1− βy2)

= y′
1Σ

−1y1 − y′
1Σ

−1α1− y′
1Σ

−1βy2 − (α1)′Σ−1y1 + (α1)′Σ−1α1+ (α1)′Σ−1βy2

− (βy2)
′Σ−1y1 + (βy2)

′Σ−1α1+ (βy2)
′Σ−1βy2

= y′
1Σ

−1y1 + αcα + βcβ + αcα + α2(Λ−1)11 + αβ(Λ−1)12 + βcβ + αβ(Λ−1)21 + β2(Λ−1)22

= y′
1Σ

−1y1 +

(
α

β

)′
Λ−1

(
α

β

)

−
(
µα

µβ

)′
Λ−1

(
µα

µβ

)

+

(
µα

µβ

)′
Λ−1

(
µα

µβ

)

+ 2cαα+ 2cββ

where (Λ−1)11 = 1′Σ−11, (Λ−1)22 = y′
2Σ

−1y2, (Λ−1)12 = (Λ−1)21 = 1′Σ−1y2, cα =

−y′
1Σ

−11 and cβ = −y′
1Σ

−1y2 as listed in equations 5.14 and 5.13.

Therefore

exp

{

−1

2
ǫ′Σ−1ǫ

}

=exp

{

−1

2

[

y′
1Σ

−1y1 +

(
α

β

)′
Λ−1

(
α

β

)

−
(
µα

µβ

)′
Λ−1

(
µα

µβ

)

+

(
µα

µβ

)′
Λ−1

(
µα

µβ

)

+ 2cαα+ 2cββ

]}

=exp

{

− 1

2

[

y′
1Σ

−1y1 −
(
µα

µβ

)′
Λ−1

(
µα

µβ

)

+ 2cαα+ 2cββ + 2

(
α

β

)

Λ−1

(
µα

µβ

)]

− 1

2

[(
α

β

)′
Λ−1

(
α

β

)

+

(
µα

µβ

)′
Λ−1

(
µα

µβ

)

− 2

(
α

β

)

Λ−1

(
µα

µβ

)]}
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α and µ∗

β

Which is just C2 exp
{

−1
2

(
α−µα

β−µβ

)′
Λ−1

(
α−µα

β−µβ

)}

with

C2 =exp

{

−1

2

[

y′
1Σ

−1y1 −
(
µα

µβ

)′
Λ−1

(
µα

µβ

)

+ 2α
[
cα + µα(Λ

−1)11 + µβ(Λ
−1)12

]

+ 2β
[
cβ + µα(Λ

−1)12 + µβ(Λ
−1)22

]
]}

∀ µα and µβ .

C.9 Computation of µ∗
α and µ∗

β

We have two equations and two unknowns, µ∗
α and µ∗

β :

cα + µ∗
α(Λ

−1)11 + µ∗
β(Λ

−1)12
!
= 0

∧ cβ + µ∗
α(Λ

−1)12 + µ∗
β(Λ

−1)22
!
= 0

Which can be rewritten in matrix format as

(
0

0

)

!
=

(
cα
cβ

)

+






(
Λ−1

)

11

(
Λ−1

)

12
(
Λ−1

)

12

(
Λ−1

)

22






(
µ∗
α

µ∗
β

)

=

(
cα
cβ

)

+ Λ−1

(
µ∗
α

µ∗
β

)

Which can easily be solved for
(µ∗

α
µ∗

β

)

(
µ∗
α

µ∗
β

)

= −Λ
(
cα
cβ

)
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)

C.10 Computation of
(
να

νβ

)

Combining the two inner parts of the exponential function gives:

(
α− µ∗

α

β − µ∗
β

)′
Λ−1

(
α− µ∗

α

β − µ∗
β

)

+

(
α− µα

β − µβ

)′
Ω−1

(
α− µα

β − µβ

)

=

(
α

β

)′
Λ−1

(
α

β

)

+

(
α

β

)′
Ω−1

(
α

β

)

+

(
µ∗
α

µ∗
β

)′
Λ−1

(
µ∗
α

µ∗
β

)

+

(
µα

µβ

)′
Ω−1

(
µα

µβ

)

− 2

(
α

β

)′
Λ−1

(
µ∗
α

µ∗
β

)

− 2

(
α

β

)′
Ω−1

(
µα

µβ

)

The identity matrix can be inserted into the combined mixed element,
(
α
β

)′
Λ−1

(µ∗

α
µ∗

β

)
+

(
α
β

)′
Ω−1

(
µα

µβ

)
, in form of (Λ−1 +Ω−1)(Λ−1 +Ω−1)−1, (this is possible, since both Λ and Ω

are square positive definite matrices and therefore their sum is again positive definite as

described in Observation 7.1.3 on p.430 in Horn’s book called Matrix Analysis [34]) which

results in:

(
α

β

)′
(Λ−1 +Ω−1)(Λ−1 +Ω−1)−1

[

Λ−1

(
µ∗
α

µ∗
β

)

+Ω−1

(
µα

µβ

)]

=

(
α

β

)′
(Λ−1 +Ω−1)

(
να
νβ

)

with
(
να
νβ

)
:= (Λ−1 +Ω−1)−1

[

Λ−1
(µ∗

α
µ∗

β

)
+Ω−1

(
µα

µβ

)]

.

Therefore

(
α− µ∗

α

β − µ∗
β

)′
Λ−1

(
α− µ∗

α

β − µ∗
β

)

+

(
α− µα

β − µβ

)′
Ω−1

(
α− µα

β − µβ

)

=

(
α

β

)′
(Λ−1 +Ω−1)

(
α

β

)

+

(
µ∗
α

µ∗
β

)′
Λ−1

(
µ∗
α

µ∗
β

)

+

(
µα

µβ

)′
Ω−1

(
µα

µβ

)

− 2

(
α

β

)′
(Λ−1 +Ω−1)

(
να
νβ

)

.
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C.11 Calculation of Relationship between the Cointegration

Parameters given that the two time series are Cointe-

grated

As shown in Section 5.6 two time series are cointegrated if a linear relationship of the two

time series is stationary, and therefore, if Cov(E1, E1+k)−Cov(Et, Et+k) = 0 ∀t, k. It has

also been shown that

Cov(E1, E1+k)− Cov(Et, Et+k) = Φk

(

(1− Φ2(t−1))S2
1 −

t−2∑

i=0

Φ2iS2

)

.

Assume first that t = 2. Then we have

0 = Cov(E1, E1+k)− Cov(E2, E2+k) = Φk
(

(1− Φ2)S2
1 − S2

)

.

Since t = 2, k can either be 0, or 1. If k = 0 the equation simplifies to

0 = (1− Φ2)S2
1 − S2

which results in

Φ = ±
√

1− S2/S2
1
.

When k = 1 there are two solutions

Φ = 0 and Φ = ±
√

1− S2/S2
1
.

However, since the equation needs to hold for all k, the only solution is

Φ = ±
√

1− S2/S2
1
.
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Furthermore, note that 1− Φ2(t−1) =
∑t−2

i=0 Φ
2i(1− Φ2) since

(

1 + Φ2 +Φ4 + · · ·+Φ2(t−2)
)

(1− Φ2)

=
(

1− Φ2 +Φ2 − Φ4 +Φ4 − · · · − Φ2(t−2) +Φ2(t−2) − Φ2(t−1)
)

=
(

1− Φ2(t−1)
)

.

Given this, it is easily shown that

(1− Φ2(t−1))S2
1 −

t−2∑

i=0

Φ2iS2 = 0

is equivalent to

S2

S2
1

=
1− Φ2(t−1)

∑t−2
i=0 Φ

2i
= 1− Φ2

and therefore the same solution holds for all t, i.e.

Φ = ±
√

1− S2/S2
1
.

This indicates that S2
1 needs to be greater than S2, as we would get complex results

otherwise. This makes sense, since the variance of the white noise process H would

overpower the variance of the process E, which is the process being tested for stationarity.
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C.12 Calculation of |Var(E1) − Var(Et)|

Et is defined recursively as ΦEt−1 +Ht in Equation 5.2. Therefore we have

|Var(E1)−Var(Et)| = |Var(E1)−Var(ΦEt−1 +Ht)|

= |Var(E1)−
(
Φ2Var(ΦEt−2 +Ht−1) + S2

)
|

...

= |Var(E1)− Φ2(t−1)Var(E1)−
t−2∑

i=0

Φ2iS2|

= |(1− Φ2(t−1))S2
1 −

t−2∑

i=0

Φ2iS2|

since Var(Ht) = S2, Var(E1) = S2
1 and Cov(Et−k, Ht) = 0 ∀k > 0.

C.13 Calculation of the bounds on
∣
∣
∣
∣Σ(θ̃i) − Σ(θi)

∣
∣
∣
∣
OP

From the definition of the operator norm, detailed in Definition 4.5, it is known that

||A||OP = sup
||v||=1

{||Av||} = sup
||v||=1

{
sup

||w||=1
{w′Av}

}
.

An upper bound on this can be found by calculating the maximum with respect to w

for each individuals part of the sum, and then the full sum, including the results of the

previous maxima, with respect to v, each with the respective restrictions. For this the

Lagrangian method for constrained maximisation is used [55].

Let the element of A in the ith row and the jth column be denoted by aij . Then an upper

bound on the maximum of w′Av = v1
∑T

j=1 aj1wj + v2
∑T

j=1 aj2wj + · · ·+ vT
∑T

j=1 ajTwj

with the constraint that ||w|| = 1 is done by finding the maxima of

Li :=
T∑

j=1

ajiwj − λi(w
2
1 + w2

2 + · · ·+ w2
T − 1)
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j=1
|λi,j−ei|
|λi,j | ≤

∏T
j=1

| ˜λi,j |
|λi,j | ≤

∏T
j=1

|λi,j+ei|
|λi,j |

for 1 ≤ i ≤ T . The values of wji that maximise these equations are easily shown to be

wji = aji

/√
∑T

j=1 a
2
ji.

Updating w′Av with these values for the wji’s gives v1

√
∑T

j=1 a
2
j1 + · · ·+ vT

√
∑T

j=1 a
2
jT

and therefore the final equation to maximise is

L :=
T∑

i=1

vi

√
√
√
√

T∑

j=1

a2j1 − λ(v21 + v22 + · · ·+ v2T − 1).

This is done in the same fashion as the previous maximisation and results in vi =
√
∑T

j=1 a
2
ji/
∑T

i=1

∑T
j=1 a

2
ji. This results in an upper bound on ||A||OP being

√
∑T

i=1

∑T
j=1 a

2
ji.

And therefore an upper bound on ||Σ̃i−Σi||OP is the square root of the sum of the square

of all the elements of Σ(θ + δ)i − Σ(θ)i.

C.14 Computation of
∏T

j=1
|λi,j−ei|

|λi,j|
≤
∏T

j=1
| ˜λi,j|

|λi,j|
≤
∏T

j=1
|λi,j+ei|

|λi,j|

The Bauer-Fike theorem on eigenvalue perturbation [6] gives an absolute upper bound for

the difference between a known eigenvalue of a matrix to the eigenvalue of a perturbation

of the same matrix. The matrix has to be complex-valued and diagonalizable, which is

the case for the covariance matrix Σ [12], as it is symmetric and real. The theorem states:

Theorem C.1 (Bauer-Fike theorem). A ∈ C
n×n diagonalizable matrix, V ∈ C

n×n non-

singular eigenvector matrix such that A = V ΛV −1. Let µ be an eigenvalue of A + δA;

then an eigenvalue λ ∈ σ(A) exists such that |λ − µ| ≤ κp(V )||δA||p where κp(V ) =
∣
∣
∣
∣V
∣
∣
∣
∣
p

∣
∣
∣
∣V −1

∣
∣
∣
∣
p
is the so called condition number in p-norm.

The matrix p-norm referred to is ||A||p = supx 6=0
||Ax||p
||x||p , corresponding to the p-norm

for vectors. Therefore this theorem is consistent for the operator norm when using the

euclidean vector norm. Additionally, because Σ is a real symmetric matrix it can be
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j=1
|λi,j−ei|
|λi,j | ≤

∏T
j=1

| ˜λi,j |
|λi,j | ≤

∏T
j=1

|λi,j+ei|
|λi,j |

decomposed as Σ = V ΛV ′ [12]. In the notation used so far this surmounts to:

|λ̃i,j − λi,j | ≤
∣
∣
∣
∣Vi

∣
∣
∣
∣
OP

∣
∣
∣
∣V ′

i

∣
∣
∣
∣
OP

∣
∣
∣
∣Σ̃i − Σi

∣
∣
∣
∣
OP

where Vi is the eigenvector matrix associated with the unperturbed matrix and is therefore

known, and an upper bound on
∣
∣
∣
∣Σ̃i − Σi

∣
∣
∣
∣
OP

is given in Sections 5.7.1.1.2. Therefore

λi,j − ei ≤ λ̃i,j ≤ λi,j + ei

where ei =
∣
∣
∣
∣Vi

∣
∣
∣
∣
OP

∣
∣
∣
∣V ′

i

∣
∣
∣
∣
OP

∣
∣
∣
∣Σ̃i − Σi

∣
∣
∣
∣
OP

.

Additionally we can show that the operator norm of V is equal to 1 and that therefore

ei =
∣
∣
∣
∣Σ̃i − Σi

∣
∣
∣
∣
OP

: Let V = (v1, · · · ,vn) which is a basis and therefore orthogonal.

Without loss of generality, assume V is an orthonormal basis. If they are not, it can easily

be induced by dividing the eigenvectors by their norm. Similarly, let x be a unit length

vector in the space spanned by V . Then x =
∑

i aivi for some a = (a1, · · · , an). The

euclidean norm of x is then

1 = ||x|| =
√

〈x,x〉 =
√
∑

i

a2i 〈vi,vi〉 =
√
∑

i

a2i .

The operator norm is defined in Definition 4.5 and from this we know that

||V ||OP = sup
||x||=1

||V x|| = ||V x̂||,

for a point x̂ with ||x̂|| = 1. From the previous calculation we know that

V x̂ = (v1, · · · ,vn)
∑

i

âivi =
∑

i

âi(v1, · · · ,vn)vi.

Since V is orthonormal V vi is a vector of zeros with a one at the ith point. Therefore
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∣
∣
∣
∣Λ̃i − Λi

∣
∣
∣
∣

∑

i âiV vi = (a1, · · · , an)′ and finally this gives

||V ||OP = ||(a1, · · · , an)′|| =
√
∑

i

a2i = 1.

And therefore
T∏

j=1

|λi,j − ei|
|λi,j |

≤
T∏

j=1

|λ̃i,j |
|λi,j |

≤
T∏

j=1

|λi,j + ei|
|λi,j |

. (C.4)

as long as λi,j ≥ ei, with ei =
∣
∣
∣
∣Σ̃i − Σi

∣
∣
∣
∣
OP

, which is the case, since in Section 5.7.1.1.11

it is shown that
∣
∣
∣
∣Σ̃i − Σi

∣
∣
∣
∣
OP

is smaller than the smallest Eigenvalue of Σi.

C.15 Calculation of upper bound on
∣
∣
∣
∣Λ̃i − Λi

∣
∣
∣
∣

Following the same method as in Section 5.7.1.1.3 it is known that, since
∣
∣
∣
∣Λ̃i

−1−Λ−1
i

∣
∣
∣
∣
OP

<

1/||Λi||OP, as detailed in Section 5.7.1.1.11,

∣
∣
∣
∣Λ̃i − Λi

∣
∣
∣
∣
OP
≤
∣
∣
∣
∣Λi

∣
∣
∣
∣
OP

∣
∣
∣
∣Λ̃i

−1 − Λ−1
i

∣
∣
∣
∣
OP

∣
∣
∣

∣
∣
∣Λ̃i

∣
∣
∣

∣
∣
∣
OP

and

∣
∣
∣
∣Λ̃i

∣
∣
∣
∣
OP
≤
(

1

||Λi||OP

−
∣
∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣
∣
OP

)−1

=

(

min
1≤j≤2

|li,j | −
∣
∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣
∣
OP

)−1

where li,j is the jth eigenvalue of Λ−1
i . So in total

∣
∣
∣
∣Λ̃i − Λi

∣
∣
∣
∣
OP
≤ ||Λi||OP

∣
∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣
∣
OP

(

min
1≤j≤2

|li,j | −
∣
∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣
∣
OP

)−1

of which an upper bound on
∣
∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣
∣ has been calculated in Section 5.7.1.1.5.
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C.16 Proof that Λ−1 is Positive Definite

As detailed in Equation 5.14 Λ−1 is defined as

Λ−1 =

(
1′

y′
2

)

Σ−1(1 y2).

Σ has been shown to be positive definite in Section 5.5. This means that

z′Λ−1z = z′
(
1′

y′
2

)

Σ−1(1 y2)z = s′Σ−1s > 0,

which means that Λ−1 is also positive definite.

C.17 Upper bound on
∣
∣
∣

∣
∣
∣

(

Λ̃−1 + Ω−1
)−1

−
(
Λ−1 + Ω−1

)−1
∣
∣
∣

∣
∣
∣
OP

For this the two results from Dirk Ferus [22] as detailed in Equations 4.3 and 4.4 are used.

For the first theorem
(

Λ̃−1
i +Ω−1

)−1
and

(
Λ−1
i +Ω−1

)−1
are required to be invertible.

This is the case, since both Λ−1
i and Ω are positive definite (see Sections 5.3 and 5.5)

and therefore their sum is also positive definite and invertible. Additionally the size of the

sub-blocks is restricted such that
(

Λ̃−1
i +Ω−1

)−1
is also invertible (see Section 5.7.1.1.11).

Furthermore, it is necessary that ||Λ̃−1
i −Λ−1

i ||OP < 1/||Λ−1+Ω−1||OP, which is a require-

ment for both results used here. This is again included as a constraint to the size of each

sub-block in Section 5.7.1.1.11.

Hence,

∣
∣
∣

∣
∣
∣

(

Λ̃−1 +Ω−1
)−1
−
(
Λ−1 +Ω−1

)−1
∣
∣
∣

∣
∣
∣
OP

≤
∣
∣
∣

∣
∣
∣

(

Λ̃−1 +Ω−1
)−1 ∣∣

∣

∣
∣
∣
OP

∣
∣
∣

∣
∣
∣

(

Λ̃−1 +Ω−1
)

−
(
Λ−1 +Ω−1

)
∣
∣
∣

∣
∣
∣
OP

∣
∣
∣

∣
∣
∣

(
Λ−1 +Ω−1

)−1
∣
∣
∣

∣
∣
∣
OP

=
∣
∣
∣

∣
∣
∣

(

Λ̃−1 +Ω−1
)−1 ∣∣

∣

∣
∣
∣
OP

∣
∣
∣

∣
∣
∣Λ̃−1 − Λ−1

∣
∣
∣

∣
∣
∣
OP

∣
∣
∣

∣
∣
∣

(
Λ−1 +Ω−1

)−1
∣
∣
∣

∣
∣
∣
OP
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∣
∣
∣ν̃ ′i(Λ̃

−1
i +Ω−1)ν̃i − ν ′i(Λ

−1
i +Ω−1)νi

∣
∣
∣

Here
∣
∣
∣

∣
∣
∣

(
Λ−1 +Ω−1

)−1
∣
∣
∣

∣
∣
∣
OP

is known and
∣
∣
∣

∣
∣
∣Λ̃−1 −Λ−1

∣
∣
∣

∣
∣
∣
OP

has been previously calculated

in Equation 5.30. To be able to get an upper bound on
∣
∣
∣

∣
∣
∣

(

Λ̃−1 +Ω−1
)−1 ∣∣

∣

∣
∣
∣
OP

the second

result by Ferus [22], detailed in Equation 4.4, is used

∣
∣
∣

∣
∣
∣

(

Λ̃−1 +Ω−1
)−1 ∣∣

∣

∣
∣
∣
OP
≤




1

∣
∣
∣

∣
∣
∣ (Λ−1 +Ω−1)−1

∣
∣
∣

∣
∣
∣
OP

−
∣
∣
∣

∣
∣
∣

(

Λ̃−1 +Ω−1
)

−
(
Λ−1 +Ω−1

)
∣
∣
∣

∣
∣
∣
OP





−1

=




1

∣
∣
∣

∣
∣
∣ (Λ−1 +Ω−1)−1

∣
∣
∣

∣
∣
∣
OP

−
∣
∣
∣

∣
∣
∣Λ̃−1 − Λ−1

∣
∣
∣

∣
∣
∣
OP





−1

where 1
/∣
∣
∣

∣
∣
∣

(
Λ−1 +Ω−1

)−1
∣
∣
∣

∣
∣
∣
OP

is the smallest absolute eigenvalue of Λ−1 + Ω−1 and an

upper bound on
∣
∣
∣

∣
∣
∣Λ̃−1 − Λ−1

∣
∣
∣

∣
∣
∣
OP

has been calculated in Equation 5.30.

Overall this gives:

∣
∣
∣

∣
∣
∣

(

Λ̃−1 +Ω−1
)−1
−
(
Λ−1 +Ω−1

)−1
∣
∣
∣

∣
∣
∣
OP

≤




1

∣
∣
∣

∣
∣
∣ (Λ−1 +Ω−1)−1

∣
∣
∣

∣
∣
∣
OP

−
∣
∣
∣

∣
∣
∣Λ̃−1 − Λ−1

∣
∣
∣

∣
∣
∣
OP





−1
∣
∣
∣

∣
∣
∣Λ̃−1 − Λ−1

∣
∣
∣

∣
∣
∣
OP

∣
∣
∣

∣
∣
∣

(
Λ−1 +Ω−1

)−1
∣
∣
∣

∣
∣
∣
OP

C.18 Upper bound on
∣
∣
∣ν̃′

i(Λ̃
−1
i + Ω−1)ν̃i − ν′

i(Λ
−1
i + Ω−1)νi

∣
∣
∣

This calculation is very long and tedious is is purely based on adding zeros in convenient

forms, sich as −ν̃ ′
i(Λ

−1
i +Ω−1)ν̃i+ν̃ ′

i(Λ
−1
i +Ω−1)ν̃i, to expand the sum into non-perturbed

parts and the norm of the difference between perturbed and non-perturbed variables, which

have already been calculated previously.

Once the sum has been expanded sufficiently, the triangle rule, as well as the sub-

multiplicativity of the operator norm and absolute value, are used to achieve the final

upper bound.

The details of the initial transformation are not included fully, only the first couple of lines
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∣
∣
∣ν̃ ′i(Λ̃

−1
i +Ω−1)ν̃i − ν ′i(Λ

−1
i +Ω−1)νi

∣
∣
∣

and the final result are presented, to give an idea of the method used.

∣
∣
∣ν̃ ′

i(Λ̃
−1
i +Ω−1)ν̃i − ν ′

i(Λ
−1
i +Ω−1)νi

∣
∣
∣

=
∣
∣
∣ν̃ ′

i(Λ̃
−1
i +Ω−1)ν̃i − ν̃ ′

i(Λ̃
−1
i +Ω−1)νi + ν̃ ′

i(Λ̃
−1
i +Ω−1)νi − ν ′

i(Λ
−1
i +Ω−1)νi

∣
∣
∣

=
∣
∣
∣ν̃ ′

i(Λ̃
−1
i +Ω−1)(ν̃i − νi) + ν̃ ′

i(Λ̃
−1
i +Ω−1)νi − ν ′

i(Λ
−1
i +Ω−1)νi

∣
∣
∣

=
∣
∣ν̃ ′

i(Λ̃
−1
i +Ω−1)(ν̃i − νi)− ν̃ ′

i(Λ
−1
i +Ω−1)(ν̃i − νi) + ν̃ ′

i(Λ
−1
i +Ω−1)(ν̃i − νi)

...

=
∣
∣(ν̃ ′

i − ν ′
i)(Λ̃

−1
i − Λ−1

i )(ν̃i − νi) + ν ′
i(Λ̃

−1
i − Λ−1

i )(ν̃i − νi)

+ (ν̃ ′
i − ν ′

i)(Λ
−1
i +Ω−1)(ν̃i − νi) + ν ′

i(Λ
−1
i +Ω−1)(ν̃i − νi)

+
(

(ν̃ ′
i − ν ′

i)(Λ̃
−1
i − Λ−1

i ) + ν ′
i(Λ̃

−1
i − Λ−1

i ) + (ν̃ ′
i − ν ′

i)(Λ
−1
i +Ω−1)

)

νi

∣
∣

Now the triangle rule can be applied to achieve

∣
∣
∣ν̃ ′

i(Λ̃
−1
i +Ω−1)ν̃i − ν ′

i(Λ
−1
i +Ω−1)νi

∣
∣
∣

≤
∣
∣(ν̃ ′

i − ν ′
i)(Λ̃

−1
i − Λ−1

i )(ν̃i − νi)
∣
∣+
∣
∣ν ′

i(Λ̃
−1
i − Λ−1

i )(ν̃i − νi)
∣
∣

+
∣
∣(ν̃ ′

i − ν ′
i)(Λ

−1
i +Ω−1)(ν̃i − νi)

∣
∣+
∣
∣ν ′

i(Λ
−1
i +Ω−1)(ν̃i − νi)

∣
∣

+
∣
∣(ν̃ ′

i − ν ′
i)(Λ̃

−1
i − Λ−1

i )νi

∣
∣+
∣
∣ν ′

i(Λ̃
−1
i − Λ−1

i )νi

∣
∣+
∣
∣(ν̃ ′

i − ν ′
i)(Λ

−1
i +Ω−1)νi

∣
∣

The product of two vectors, which is equivalent to the norm of a row vector multiplied

with a matrix and multiplied with a column vector, can be interpreted as an inner product
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∣
∣
∣ν̃ ′i(Λ̃

−1
i +Ω−1)ν̃i − ν ′i(Λ

−1
i +Ω−1)νi

∣
∣
∣

and therefore the Cauchy-Schwarz inequality, |〈x, y〉| ≤ ||x|| ||y|| [54], can be used to get

∣
∣
∣ν̃ ′

i(Λ̃
−1
i +Ω−1)ν̃i − ν ′

i(Λ
−1
i +Ω−1)νi

∣
∣
∣

≤
∣
∣
∣
∣(ν̃ ′

i − ν ′
i)
∣
∣
∣
∣
∣
∣
∣
∣(Λ̃−1

i − Λ−1
i )(ν̃i − νi)

∣
∣
∣
∣+
∣
∣
∣
∣ν ′

i

∣
∣
∣
∣
∣
∣
∣
∣(Λ̃−1

i − Λ−1
i )(ν̃i − νi)

∣
∣
∣
∣

+
∣
∣
∣
∣(ν̃ ′

i − ν ′
i)
∣
∣
∣
∣
∣
∣
∣
∣(Λ−1

i +Ω−1)(ν̃i − νi)
∣
∣
∣
∣+
∣
∣
∣
∣ν ′

i

∣
∣
∣
∣
∣
∣
∣
∣(Λ−1

i +Ω−1)(ν̃i − νi)
∣
∣
∣
∣

+
∣
∣
∣
∣(ν̃ ′

i − ν ′
i)
∣
∣
∣
∣
∣
∣
∣
∣(Λ̃−1

i − Λ−1
i )νi

∣
∣
∣
∣+
∣
∣
∣
∣ν ′

i

∣
∣
∣
∣
∣
∣
∣
∣(Λ̃−1

i − Λ−1
i )νi

∣
∣
∣
∣

+
∣
∣
∣
∣(ν̃ ′

i − ν ′
i)
∣
∣
∣
∣
∣
∣
∣
∣(Λ−1

i +Ω−1)νi

∣
∣
∣
∣

Now the definition of the operator norm can be used again to separate the norm of a

product of a matrix and a vector. The following transformation is used:

||Aa|| =
∣
∣
∣

∣
∣
∣A

a

||a||
∣
∣
∣

∣
∣
∣ ||a|| ≤ sup

||u||=1
||Au|| ||a|| = ||A||OP||a||.

Applying this culminates in the following upper bound on
∣
∣
∣ν̃ ′

i(Λ̃
−1
i +Ω−1)ν̃i − ν ′

i(Λ
−1
i +Ω−1)νi

∣
∣
∣:

∣
∣
∣
∣ν̃i − νi

∣
∣
∣
∣2
∣
∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣
∣
OP

+ 2
∣
∣
∣
∣νi

∣
∣
∣
∣
∣
∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣
∣
OP

∣
∣
∣
∣ν̃i − νi

∣
∣
∣
∣+
∣
∣
∣
∣νi

∣
∣
∣
∣2
∣
∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣
∣
OP

+
∣
∣
∣
∣ν̃i − νi

∣
∣
∣
∣2
∣
∣
∣
∣Λ−1

i +Ω−1
∣
∣
∣
∣
OP

+ 2
∣
∣
∣
∣νi

∣
∣
∣
∣
∣
∣
∣
∣Λ−1

i +Ω−1
∣
∣
∣
∣
OP

∣
∣
∣
∣ν̃i − νi

∣
∣
∣
∣

where an upper bound on
∣
∣
∣

∣
∣
∣Λ̃−1

i − Λ−1
i

∣
∣
∣

∣
∣
∣
OP

and ||ν̃i − νi|| have been calculated in Sections

5.7.1.1.5 and 5.7.1.1.8 respectively and the rest of the terms are known, unperturbed values.
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∣
∣
∣
∣

√
det Σ̃i
detΣi

∣
∣
∣
∣

C.19 Upper bound on

∣
∣
∣
∣

√
det Σ̃i

detΣi

∣
∣
∣
∣

The determinant of a matrix is just the product of its eigenvalues and therefore

∣
∣
∣
∣
∣
∣

√

det Σ̃i

detΣi

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

√
√
√
√

T∏

j=1

λ̃i,j

λi,j

∣
∣
∣
∣
∣
∣

=

√
√
√
√

T∏

j=1

|λ̃i,j |
|λi,j |

because Σi and Σ̃i are positive definite, as detailed in Sections 5.5 and 5.7.1.1.11, and

therefore have all positive eigenvalues.

Additionally from Equation C.4 it is known that
∏T

j=1
|λ̃i,j |
|λi,j | ≤

∏T
j=1

|λi,j+ei|
|λi,j | which results

in ∣
∣
∣
∣
∣
∣

√

det Σ̃

detΣ

∣
∣
∣
∣
∣
∣

=

√
√
√
√

T∏

i=1

|λ̃i|
|λi|
≤

√
√
√
√

T∏

i=1

|λi + ei|
|λi|

with ei =
∣
∣
∣

∣
∣
∣Σ̃i − Σi

∣
∣
∣

∣
∣
∣
OP

as defined in C.14.
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D.1 Tables of Proportions of Simulations Correctly Identi-

fied as having, or not having, an Association

Φ σ2
1 σ2 Proportion within CT Engle and Granger p-value

0 0.01 0.01 0.0233 0.0010
0.9535 0.11 0.01 0.0266 0.7260
0.9759 0.21 0.01 0.0302 0.7935
0.9837 0.31 0.01 0.2115 0.8033
0.9877 0.41 0.01 0.4180 0.8078
0.9901 0.51 0.01 0.5646 0.8110
0.9918 0.61 0.01 0.5382 0.8136
0.9929 0.71 0.01 0.1263 0.8156
0.9938 0.81 0.01 0.0647 0.8173
0.9945 0.91 0.01 0.5278 0.8186
0.9950 1.01 0.01 0.2061 0.8198

Table D.1: Results of the proposed Cointegration Test and Engle and Granger method:
This table details the proportion of the posterior that was within the cointegration tube
(CT - column 4) for the different combinations of φ, σ2 and σ2

1 which produce cointegrated
time series. It also gives the results In this table σ2

1 is kept constant at 0.01.

Φ σ2
1 σ2 Proportion within CT Engle and Granger p-value

0 0.11 0.11 1.705e-07 0.0010
0.6901 0.21 0.11 0.0236 0.0010
0.8032 0.31 0.11 0.0890 0.0270
0.8554 0.41 0.11 0.1956 0.1244
0.8856 0.51 0.11 0.1164 0.2794
0.9054 0.61 0.11 0.2975 0.4157
0.9193 0.71 0.11 0.3767 0.5136
0.9296 0.81 0.11 0.1903 0.5851
0.9376 0.91 0.11 0.4388 0.6375
0.9440 1.01 0.11 0.4758 0.6761

Table D.2: Results of the Cointegration Test: This table details the proportion of the
posterior that was within the cointegration tube (CT - column 4) and the p-value from
the Engle and Granger method (column 5) for the different combinations of φ, σ2 and σ2

1

which produce cointegrated time series. In this table σ2
1 is kept constant at 0.11.
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Φ σ2
1 σ2 Proportion within CT Engle and Granger p-value

0 0.21 0.21 5.165e-08 0.0010
0.5680 0.31 0.21 0.0094 0.0010
0.6984 0.41 0.21 0.0320 0.0010
0.7670 0.51 0.21 0.0903 0.0087
0.8098 0.61 0.21 0.3202 0.0330
0.8392 0.71 0.21 0.0457 0.0791
0.8607 0.81 0.21 0.7372 0.1435
0.8771 0.91 0.21 0.5513 0.2223
0.8900 1.01 0.21 0.2621 0.3091

Table D.3: Results of the Cointegration Test: This table details the proportion of the
posterior that was within the cointegration tube (CT - column 4) and the p-value from
the Engle and Granger method (column 5) for the different combinations of φ, σ2 and σ2

1

which produce cointegrated time series. In this table σ2
1 is kept constant at 0.21.

Φ σ2
1 σ2 Proportion within CT Engle and Granger p-value

0 0.31 0.31 2.022e-06 0.0010
0.4939 0.41 0.31 0.0273 0.0010
0.6262 0.51 0.31 0.4579 0.0010
0.7013 0.61 0.31 0.3127 0.0010
0.7506 0.71 0.31 0.6851 0.0049
0.7857 0.81 0.31 0.7499 0.0155
0.8120 0.91 0.31 0.8041 0.0353
0.8325 1.01 0.31 0.2700 0.0652

Table D.4: Results of the Cointegration Test: This table details the proportion of the
posterior that was within the cointegration tube (CT - column 4) and the p-value from
the Engle and Granger method (column 5) for the different combinations of φ, σ2 and σ2

1

which produce cointegrated time series. In this table σ2
1 is kept constant at 0.31.
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Φ σ2
1 σ2 Proportion within CT Engle and Granger p-value

0 0.41 0.41 0.0021 0.0010
0.4428 0.51 0.41 0.4845 0.0010
0.5726 0.61 0.41 0.8356 0.0010
0.6500 0.71 0.41 0.8871 0.0010
0.7027 0.81 0.41 0.8720 0.0010
0.7412 0.91 0.41 0.8983 0.0041
0.7708 1.01 0.41 0.4196 0.0096

Table D.5: Results of the Cointegration Test: This table details the proportion of the
posterior that was within the cointegration tube (CT - column 4) and the p-value from
the Engle and Granger method (column 5) for the different combinations of φ, σ2 and σ2

1

which produce cointegrated time series. In this table σ2
1 is kept constant at 0.41.

Φ σ2
1 σ2 Proportion within CT Engle and Granger p-value

0 0.51 0.51 0.8310 0.0010
0.4049 0.61 0.51 0.8983 0.0010
0.5307 0.71 0.51 0.9125 0.0010
0.6086 0.81 0.51 0.9113 0.0010
0.6630 0.91 0.51 0.9084 0.0010
0.7036 1.01 0.51 0.9025 0.0010

Table D.6: Results of the Cointegration Test: This table details the proportion of the
posterior that was within the cointegration tube (CT - column 4) and the p-value from
the Engle and Granger method (column 5) for the different combinations of φ, σ2 and σ2

1

which produce cointegrated time series. In this table σ2
1 is kept constant at 0.51.

Φ σ2
1 σ2 Proportion within CT Engle and Granger p-value

0 0.61 0.61 0.9087 0.0010
0.3753 0.71 0.61 0.9210 0.0010
0.4969 0.81 0.61 0.8880 0.0010
0.5742 0.91 0.61 0.9169 0.0010
0.6293 1.01 0.61 0.9140 0.0010

Table D.7: Results of the Cointegration Test: This table details the proportion of the
posterior that was within the cointegration tube (CT - column 4) and the p-value from
the Engle and Granger method (column 5) for the different combinations of φ, σ2 and σ2

1

which produce cointegrated time series. In this table σ2
1 is kept constant at 0.61.
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Φ σ2
1 σ2 Proportion within CT Engle and Granger p-value

0 0.71 0.71 0.9166 0.0010
0.3514 0.81 0.71 0.9114 0.0010
0.4688 0.91 0.71 0.8386 0.0010
0.5450 1.01 0.71 0.7844 0.0010

0 0.81 0.81 0.9075 0.0010
0.3315 0.91 0.81 0.9033 0.0010
0.4450 1.01 0.81 0.9186 0.0010

0 0.91 0.91 0.9156 0.0010
0.3147 1.01 0.91 0.9135 0.0010

0 1.01 1.01 0.9035 0.0010

Table D.8: Results of the Cointegration Test: This table details the proportion of the
posterior that was within the cointegration tube (CT - column 4) and the p-value from
the Engle and Granger method (column 5) for the different combinations of φ, σ2 and
σ2
1 which produce cointegrated time series. This table shows the results for σ2

1 from 0.71,
0.81, 0.91 and 1.01.
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