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ABSTRACT 

This thesis presents theoretical and computational studies of four major evolutionary 

transitions in which cellular membranes and their embedded proteins played crucial 

roles: 

1)The divergence of archaea and bacteria 

Archaea and bacteria are the basal domains of life, so it is important to understand how 

they came to diverge. They share several core traits, such as transcription, translation, 

and the genetic code. They also share the chemiosmotic exploitation of ion gradients 

across membranes, yet they do not share the membranes themselves. Notably, the 

phospholipid backbone is sn-glycerol-1-phosphate in archaea but the enantiomer sn-

glycerol-3-phosphate in bacteria. The synthesising enzymes are unrelated. I used 

mathematical modelling to propose an explanation for this divergence in the context 

of natural proton gradients in alkaline hydrothermal vents, plausible scenarios for an 

autotrophic origin of life. Results show that early membranes had to be leaky, so both 

pumping and glycerol-phosphate backbones (which drastically decrease permeability) 

evolved later, and independently, in archaea and bacteria. 

2)The evolution of Homochirality 

The “dual homochirality” of lipids suggests that the stereospecificity of bioorganic 

catalysis itself, not prebiotic physics or chemistry, is behind the origin of handedness 

in life’s molecules (e.g. L-amino acids and D-sugars). 

3)The evolution of membrane proteins 

I report that membrane proteins are less shared across the tree of life. Faster evolution 

of outside-facing regions and true gene losses point to a common cause: as cells adapt 

to new environments selective pressure is stronger on the outside, while the inside, 

subject to strong homeostasis, evolves more slowly. 

4)The bacterial nature of eukaryotic membranes 

Eukaryotes arose from a merger of a bacterium into an archaeon, so the first eukaryote 

must have had an archaeal plasma membrane and bacterial (proto)mitochondrial 

membranes; yet all modern eukaryotes have exclusively bacterial membranes. I 

suggest that archaeal membranes were lost and bacterial ones kept because of the 

bioenergetic adaptation of mitochondrial proteins to the bacterial membrane.
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Every one knows how greedily a theorist pounces on a fact, 

highly favourable to his views (…) 

Charles Darwin (1845)  
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GLOSSARY AND ABBREVIATIONS 

amphiphile: a molecule with two regions, one of which has an affinity to water (is hydrophilic), while the 

other is apolar and typically rich in C-C and C-H bonds, with low affinity for water (hydrophobic) but 

relatively high affinity to similar regions within the same or in other molecules. Many amphiphiles, 

including fatty acids and phospholipids, spontaneously self-assemble into micelles (spheres with apolar 

ends pointing inwards and polar ends facing the solvent) or vesicles (bilayers that wrap an aqueous core 

inside, such as in a cell). 

archaea (singular: ‘archaeon’; adjective ‘archaeal’): one of the three domains of life, and members within, 

referred to either as individual organisms, species, or higher taxa. Also called ‘archaebacteria’ in the 

literature for historical reasons. See bacteria. 

archaeal: pertaining to the archaea. Not to be confused with ‘Archean’, a geological eon.  

archaeon: singular of ‘archaea’, i.e. one organism or species thereof. Not to be confused with ‘Archean’, a 

geological eon. 

Archean: the second of the four major geological eons of Earth’s history, between 4 Ga and 2.5 Ga, 

following the Hadean and preceding the Proterozoic, together forming the Pre-Cambrian super-eon. 

Not to be confused with ‘archaea’, ‘archaeal’ or ‘archaeon’. Also spelled ‘Archaean’, but this spelling is 

avoided here as it can lead to confusion due to the use of the exact same term in some of the literature to 

refer to ‘archaeal’ (pertaining to the archaea). 

ATPase: adenosine triphosphate (ATP) synthase. Throughout this document the ATPase is assumed to have 

been operating as an ATP-synthesising enzyme unless otherwise noted. 

bacteria (singular: ‘bacterium; adjective ‘bacterial): one of the three domains of life, and one of the two 

prokaryotic domains, together with the archaea. In this document, ‘bacteria’ is never used to refer to the 

archaea, although such indiscriminate usage is unfortunately still common in the literature. For historical 

reasons bacteria are also called ‘eubacteria’ in the literature, to distinguish them from the ‘archaebacteria’ 

(i.e. archaea). In this document only ‘archaea’ and ‘bacteria’ are used. 

BLAST: Basic Local Alignment Search Tool, a bioinformatics algorithm used to detect homologous 

sequences in a database (the ‘targets’), by their similarity to a reference sequence (the ‘query’). Variants 

used in this thesis include: blastp, for detecting homologous protein sequences using a protein sequence 

as query, and tblastn, for searching a protein sequence query against all 6 possible reading frames in a 

database of nucleotide sequences. 

domain: used in this document to refer to any of the three main sub-types of life on Earth: the archaea, 

bacteria, and eukaryotes. The term “domain” is also used independently in structural biology to describe 

functional sub-portions of proteins, but this usage is avoided here in favour of the phylogenetic one, to 

avoid confusion. 

Ech: the energy-converting hydrogenase, an enzyme involved in carbon and energy metabolism in several 

microoganisms. In this document, Ech is suggested to have been in LUCA, where it operated as a gradient-

exploiting bioenergetic enzyme, reducing ferredoxin for carbon fixation in a natural ion gradient. 

Methanogens (considered here to be the ancestors of all archaea) would keep this ancestral function and 

evolved a separate ion pump. Conversely, acetogens (which would be the ancestors of all bacteria) 

reversed flux, converting Ech into a membrane pump, in turn being forced to evolve a new pathway for the 

reduction of ferredoxin and for carbon fixation. 

endosymbiotic gene transfer (EGT): a transfer of genetic material from an “endosymbiont” genome to a 

“host” genome, such as from mitochondria and plastids to the nucleus in the evolution of eukaryotes. 

eukaryotes: The group that contains all known complex cells and organisms. Chronologically the third 

domain of life, assumed here to have originated from an endosymbiotic association of a bacterium into an 

archaeon, the first of which would gradually evolve into the mitochondrion. See FECA and LECA for the 

first and last eukaryotic common ancestors, respectively. 

FECA: The first eukaryotic common ancestor. Throughout this document generally considered to have 

arisen directly after the endosymbiotic association between an archaeal host and a bacterial endosymbiont 

that would become the mitochondrion. It therefore had an archaeal plasma membrane and bacterial proto-

mitochondrial membranes. See LECA. 
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G1P: sn-glycerol-1-phosphate, the moiety at the backbone of most archaeal phospholipids, in contrast to the 

enantiomer G3P, prevalent in bacteria (and eukaryotes by inheritance). 

G1PDH: sn-glycerol-1-phosphate dehydrogenase. The enzyme that in archaea catalyses the stereospecific 

synthesis of G1P from dihydroxyacetone phosphate and NAD(P)H. Unrelated to bacterial G3PDH, 

although both use the same pair of substrates. 

G3P: sn-glycerol-3-phosphate, the moiety at the backbone of bacterial (and by inheritance eukaryotic) 

phospholipids, in contrast to the enantiomer G1P, present in archaea. 

G3PDH: sn-glycerol-3-phosphate dehydrogenase. The enzyme that in bacteria catalyses the stereospecific 

synthesis of G3P from dihydroxyacetone phosphate and NAD(P)H. Unrelated to archaeal G1PDH, 

although both use the same pair of substrates. 

Ga: Giga-annum; one thousand million (one billion, 109) years; in this document, always in reference to the 

past (i.e. numbers are implicitly negative). Also in the literature as Gy (Giga-years), or Gya (Giga-years 

ago). 

Hadean: First of the geological eons of the Earth, leading from the formation of the planet approximately 

4.5 Ga to the beginning of the Archean’ eon ~4 Ga. Life is thought to have arisen at some point in or 

shortly following the late Hadean, but the eon is characterised by an equivocal or inexistent rock record. 

Heterotypic: of different kinds. In this document used to refer to lipids of the archaea and bacteria, in 

particular with regards to the origin of eukaryotes: a membrane composed purely of archaeal lipids would 

be homotypic, while a hybrid membrane composed of archaeal and bacterial lipids would be heterotypic. 

homologous: see homologue. 

homologue: two genes (or proteins, structures, etc.) are homologues if they share common ancestry, i.e. if 

the two sequences are descended from one same ancient sequence. If this relation is by a gene-duplication 

event, the genes are termed paralogues, and they can either retain the same function or perform different 

functions within the same species. If, on the other hand, the relation between the two genes is by a speciation 

event, the genes are said to be orthologues, and often (but not necessarily) they perform the same function 

in two related species. The term xenologue is some times (but much less frequently) used to refer to genes 

that were acquired by a horizontal gene transfer, and thus have no vertical ancestry in the ancestors of the 

recipient species, but in a foreign species. This type of ancestry is remarkably common across the tree of 

life and often confounds phylogenetic analyses. There are other types of homologues, such as epaktologues, 

which share ancestry only of fragments of the full sequence, such that two or more different and 

independently derived portions are assembled into a gene product of complex ancestry. This type of 

homology can arise through a combination of acquisitions of any the other three types, followed by 

independent remodelling of the whole composite sequences, which share only partial ancestry. 

homotypic: of the same kind. See heterotypic. 

hydrophilic: a molecule or part of a molecule with high affinity to water, e.g. the polar headgroups at one 

end of a phospholipid.  

hydrophobic: a molecule or part of a molecule with low affinity to water, e.g. the apolar tails at one end of 

a phospholipid or fatty acid. 

LECA: The last eukaryotic common ancestor. This cellular form gave rise to all extant eukaryotes, and is 

thought to have been fully eukaryotic in possessing traits such as a nucleus, actin/tubulin cytoskeleton with 

associated kinesin and dynein motors, flagellum, mitosis and meiosis, sexual reproduction, mitochondria, 

Golgi apparatus, endoplasmic reticulum, endocytosis and phagocytosis, bacterial-type membrane lipids, 

(largely) bacterial-type metabolism, and (largely) archaeal-type information processing. See FECA. 

LUCA: the last universal common ancestor of all life on Earth. The term has different meanings to different 

researchers. Some assume it to necessarily have been a cellular organism, and indeed some claim the ‘C’ 

in the acronym to mean ‘cellular’, whereas others see it as an intermixing population either without clear-

cut boundaries (cellular membranes), or with individual boundaries but genetic and reproductive 

commonness and fluidity, such that modern cells do not descend from any particular one of them, but from 

the group as a whole. In this work, LUCA is deduced to have been cellular, but with membranes leaky to 

protons and other small ions, unlike the modern impermeable phospholipid membranes of extant archaea, 

bacteria and eukaryotes. 

Ma: Mega-annum; one million (106) years; in this document, always in reference to the past (i.e. numbers 

are implicitly negative). Also in the literature as My (Mega-years), or Mya (Mega-years ago). 
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MBGD: the Microbial Genome Database. A database of homologous sequences with a very wide sampling 

of species of all three domains (mostly microbial), hosted at mbgd.genome.ad.jp. 

mito-nuclear transfer: the transfer of genes from the mitochondrial to the nuclear genomes in the evolution 

of eukaryotes. Modern mitochondrial genomes have few genes (37 in the case of humans), but the nuclear 

genomes retain many of the ancestrally bacterial genes, which are deduced to have been imported from the 

proto-mitochondrion after the endosymbiotic origin of eukaryotes. More generally, mito-nuclear transfers 

are referred to as endosymbiotic gene transfers, as are transfers from the plastids in plants and algae. 

monophyletic, paraphyletic, polyphyletic: members of a group are monophyletic if they all cluster 

together in a tree, i.e. if they all have a single common ancestor, and the tree (or tree section) includes only 

members of the group. If a group is defined independently (e.g. "reptiles") and there is at least one member 

in a tree that is not also a member of the group as defined (e.g. "birds"), the distribution of the containing 

group is said to be paraphyletic (the internal group may itself be monophyletic, such as in birds, which all 

cluster together within the reptiles, but are not considered to be reptiles themselves). If the members of the 

group have different ancestors in the tree, their distribution is polyphyletic. See section 1.3.2 for further 

details. 

MP: Membrane protein, as opposed to WS, a water-soluble protein. 

OMA: from ‘Orthologous MAtrix'. A database of orthologous genes used in this work (chiefly in Chapter 

5) and created in the group of Christophe Dessimoz, collaborator in Chapters 4 and 5 of this work. 

orthologue (U.S. spelling: ‘ortholog’): see homologue. 

paralogue (U.S. spelling: ‘paralog’): see homologue. 

paraphyletic: See monophyletic. 

polyphyletic: See monophyletic. 

Precambrian (alternative spelling: ‘Pre-Cambrian’): the super-eon composing the first three of the four 

eons of Earth’s geological history, in successive order the Hadean, Archean and Proterozoic. At the end 

of the latter, approximately 542 Ma, complex life including animals and plants became abundant, a 

phenomenon termed the “Cambrian explosion” (giving the super-eon its name). 

SPAP: sodium-proton antiporter. Also be abbreviated in the literature as SPA, NHE (for Na/H+ exchanger), 

or NHA (for Na/H+ antiporter). 

TACK: a super-phylum of archaea that contains the Thaumarchaeota, Aigarchaeota, Crenarchaeota, and 

Korarchaeota, where the acronym is derived from, in addition to other recently discovered phyla, such as 

Lokiarchaeota. 

TMH: trans-membrane helix, or a trans-membrane helical protein. Typically a protein with α-helices that 

span a biological membrane. In Chapters 4 and 5 of this document, TMH proteins are used as a proxy for 

membrane proteins. 

TMHMM: trans-membrane helix Markov model. An algorithm that detects trans-membrane α-helical 

structures in proteins. It was used in this thesis (Chapters 4 and 5) as a proxy to infer membrane proteins. 

It is accessible online, although in this thesis a locally run version was used on a computation cluster due 

to the vast amounts of data involved. 

TOPCONS: a website that includes results from multiple software packages for the detection of trans-

membrane α-helical structures in proteins (not including TMHMM). 

tree of life: an attempt to depict the relationships between all living species on Earth, in its simplest form 

intrinsically assuming one single common origin of life and binary speciation processes. The widespread 

horizontal and endosymbiotic gene transfers between all domains of life cause the relationships between 

the clades to not be tree-like. For simplicity, however, the phrase ‘tree of life’ is used generically in this 

document to refer to the relationships between all clades and chiefly between the three domains (archaea, 

bacteria and eukaryotes), regardless of whether or not they are strictly tree-like. 

WS: water-soluble protein, as opposed to MP, a membrane protein. 

xenologue (U.S. spelling: ‘xenolog’): see homologue. 
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1 INTRODUCTION 

This thesis discusses the role of cellular and organellar membranes in defining 

the shape of the tree of life. In this introduction, I first discuss the unsuccessful quest 

for a satisfying definition of life. Although lacking a definition as such, I observe that 

life is typically characterised by membranes and the disequilibria across them, which 

is the overarching topic of this thesis. I then go on to discuss the single origin of life 

on Earth and the three domains that arose from it, namely the archaea, bacteria, and 

eukaryotes (or eukaryota). I discuss some common and differing traits among the three 

domains, and how they relate to each other in the tree of life. Next I take a brief look 

at some phylogenetics definitions relevant to this work, and then discuss membranes 

and membrane bioenergetics, the main theme of this work. I close this introduction 

with a brief overview of each subsequent chapter. There are more specific 

introductions at the beginnings of each of the chapters of this thesis. 

1.1 Life 

The quest for a satisfying definition of life is perhaps one of the least successful 

endeavours in the history of theoretical biology. Although multiple attempts exist, 

none enjoys universal acceptance. In terms of everyday language, the Oxford English 

Dictionary defines life as: 

The condition that distinguishes animals and plants from 

inorganic matter, including the capacity for growth, 

reproduction, functional activity, and continual change 

preceding death. 

Oxford Dictionaries (2015a) 

Although nothing in the definition is intrinsically wrong, it is more a description 

of what life is not than of what it actually is. Inorganic matter is of course not alive, 

while plants and animals almost tautologically are; similarly, only things that have 

been alive can die, so these elements of the definition take the reader no closer to 

enlightenment. The other elements are more useful: the capacity for growth, 

reproduction, functional activity, and continual change, are indeed good descriptors of 
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life, although none is unequivocal. Not even the combination is: fire, for example, 

would fit the definition rather well in that it grows, reproduces, can be said to have 

many a function, and changes continually until it is put out (or “dies”). Yet, intuitively, 

fire is not alive. 

Definitions from within the field are hardly any better. In the 1990s scientists at 

NASA famously defined life as “a self-sustained chemical system capable of 

Darwinian evolution” (Joyce 1994). Although useful for astrobiologists seeking life 

elsewhere in the Universe, this “working definition” eschews the central aspect of 

energy flows: life is not self-sustained (Schrödinger 1944; Lane 2010; Lane 2015); the 

thermodynamic working of the universe implies that it cannot be. Heterotrophs depend 

on autotrophs, and autotrophs depend on external sources of energy, be it the sun, 

simple inorganic chemicals, or rocks. Life thus depends on sources of energy that are 

always foreign to the living being itself (Skulachev 1988), and everything that happens 

in everything that lives involves the flow of energy down a gradient. 

These energy fluxes come closer to, if not a definition, at least a significant 

descriptive aspect of life. Sustained disequilibrium across boundaries, or homeostasis, 

is a remarkable trait common to all life, be it parasitic, autotrophic, or heterotrophic, 

and it may indeed have arisen on the early Earth as part of the geochemical processes 

that led to the origin of life (Allen 2010).  

1.1.1 A timeline for the geological evolution of Earth and life on it 

The Earth has existed for approximately 4.54 Ga (thousand million, or U.S. 

billion, years) (Dalrymple 2001). The early past of the planet has been divided by 

geologists into three “eons”: Hadean, Archean, and Proterozoic, which together span 

the first 4 billion years of the planet’s history and form the Precambrian super-eon. 

This was followed by the current Phanerozoic eon, which started some 541 million 

years ago. Life is thought to have arisen early on, at some point between the Hadean 

and Archaean, approximately 4 Ga in the past. Figure 1 summarises a number of key 

events in the evolution of the Earth and life on it. 
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Figure 1. A brief chronology of earth’s bio-geological history 

The inference of geological dates depends on processes such as fossilisation (which 

involves more than one element of luck) and mineral deposition (which is often 

difficult to interpret). Many of the dates for events denoted with arrows are highly 

contentious. Times are in millions of years (Ma), with a non-linear scale. Adapted 

from the International Commission on Stratigraphy (Cohen et al. 2013). 

Notably, the date of origin of eukaryotes is so contentious that it is challenging 

to assign a date in the chart above; recent estimates for the last eukaryotic common 
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ancestor (LECA) range extremely widely between 943 and 2,094 Ma (Eme et al. 

2014), while the first eukaryote (FECA) may have been as early as 2.2 Ga - 2.7 Ga 

(Brocks 1999). Another major unknown date is the origin of life, which occurred at 

some point between the late Hadean and early Archean, a period from which the rock 

record is either equivocal or inexistent. 

1.1.2 The Origin of Life (OoL) 

Historically, theories for the origin of life have focused mostly on the chemical 

problem of bio-organic synthesis from inorganic material, namely the origins of 

monomers of proteins and nucleotides from simple chemical precursors (Miller 1953). 

Although crucial, this is only one aspect of the problem, and one that can render 

misleading conclusions altogether by fostering the consideration of environments that 

could have provided the chemistry to synthesise the molecules, but not the energy to 

actually bring them to life. 

Life is about disequilibrium (Harold 1986), and all life on Earth is constantly in 

chemiosmotic and redox disequilibria, with sustained electrochemical gradients across 

cellular membranes (Allen 2010; Lane and Martin 2012; Sousa et al. 2013). Many of 

the core bioenergetic traits are shared across all domains of life. In fact, the ATP 

synthase, the enzyme used by all three domains in the synthesis of life’s chief “energy 

currency”, ATP, is thought to be ancestral to all extant life (Gogarten et al. 1989; 

Hilario and Gogarten 1993). So, it is reasonable to extrapolate that the first cells were, 

like all modern organisms, chemiosmotic (Lane and Martin 2012; Sojo et al. 2014). 

But there are crucial problems with this theory, main of which is a chicken-or-

egg conundrum: did early life waste vast amounts of energy by generating a gradient 

before it had the enzymes to exploit it, or did it start exploiting a gradient before it had 

the ability to generate it? Such a wasteful scenario as the one presented by the first 

option would seem unlikely to provide an ecological advantage, but the alternative 

seems like a dead end. A possible explanation is that the ATP synthase is indeed 

ancestral, but its job was as a proton pump in adaptation to acidic environments (de 

Duve 1995); yet this leaves the question of the ubiquitous distribution of chemiosmosis 

unanswered. 
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One elegant solution to this puzzle has come from the prediction (Russell et al. 

1989; Russell et al. 1993; Russell et al. 1994) and later finding (Kelley et al. 2001) of 

alkaline hydrothermal vents. In the context of an early Earth, these geological systems 

would have provided not only a natural proton gradient at the interface between their 

alkaline fluid and the relatively acidic ocean, but also the chemical reagents needed to 

start the abiotic production of biochemical material (Martin and Russell 2003; Martin 

and Russell 2007). Nevertheless, details of the specific processes, as well as 

experimental demonstration, are notably lacking (Sojo et al. 2016). 

In this document in general, the Origin of Life as an on-going evolutionary 

process is loosely considered to span from the advent of the first replicating units to 

the Last Universal Common Ancestor (LUCA) and the origin of the first true modern 

cells. It is considered throughout this document that Russell and co-workers’ alkaline-

vent theory provides the most plausible suggested scenario for the origin of life on the 

early Earth. 

Whatever the details of the origin, there is no question that all life on Earth is 

related. As far as can be traced, there is only one common type of life that survived to 

this day. Whether this says something about chemistry or about ecology is difficult to 

ascertain, due to the impossibility of drawing conclusions from negatives in science. 

It is possible that life was a “lucky” combination of chemical events, and that we are 

largely or even entirely alone in the universe, which would in turn explain why more 

than 60 years of prebiotic chemistry research have come nowhere close to producing 

a fully-fledged independently living cell in the lab. Alternatively, it is possible that the 

unity of life on Earth is a matter of ecology, and that extant life either wiped out any 

independently derived competitors, or has perpetually prevented them from ever 

arising. Darwin favoured this latter view, when considering the spontaneous abiotic 

formation of the first biological molecules: 

(…) at the present-day such matter would be instantly 

devoured or absorbed, which would not have been the case 

before living creatures were formed (…) 

Charles Darwin (1863) 
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If this were so, then the as-yet limited success of prebiotic chemists could be 

simply because we have been asking the wrong questions, or just haven’t yet come up 

with the right answers. 

Either way, and whether life is a “lucky accident” or essentially inevitable 

wherever the right conditions are met, it is evident that there is only one type of life 

on Earth. This single form of life is divided into three sub-types or “domains”, and 

their similarities are as stunning as their differences. 

1.2 The three domains of life: archaea, bacteria, and 

eukaryotes 

While all life on Earth is related, there are three main sub-types, or “domains”: 

the archaea, the bacteria, and the eukaryotes (also frequently called “eukaryota”, and 

somewhat less frequently “eukarya” or “eucarya”). The first two domains together are 

called the “prokaryotes”, a term that in itself has different meanings to different 

researchers within the field. 

Literally, “prokaryote” is Greek for “before the nucleus” so, like in the case of 

“life” above, it could actually be considered an anti-definition that simply alludes to 

the fact that species of these two domains are not eukaryotes. But it is the “before” 

part that has historically led to bitter arguments, mainly because consensus on the 

branching pattern of the three main arms of the tree of life remains unattainable. In 

fact, this confusion chiefly stems from the shared and unshared properties between the 

three domains of life, and the further sub-groups (or “phyla”) within them. 

1.2.1 Some differences and similarities between the three domains 

Inferring phylogenetic relationships between branches that not only diverged 

billions of years ago, but that have been exchanging genes on a frequent basis ever 

since, is not a trivial task. Table 1 below, although not fully inclusive, attempts to show 

a general picture of some seemingly clear-cut similarities and differences between the 

three domains, extracted from diverse sources in the literature. 
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Table 1. Some relevant differences and similarities between the three domains  

Trait Archaea (A) Bacteria (B) Eukaryota (E) Comments 

Lipid membrane A B E  

Phospholipid 

backbone 

sn-glycerol-1-

phosphate in most, 

but 4-carbon and 5-

carbon alternatives 

have been reported, 

potentially in 

crenarchaeota (Zhu 

et al. 2014) 

 

sn-glycerol-3-

phosphate 

(Like B) ABE all have glycerol-

phosphate as lipid 

backbone, but A have 

mirror structure of that 

used by BE. Synthetic 

enzymes are unrelated 

(Koga et al. 1998). 

Phospholipid tail 

(or chain) linkage 

Typically ether Typically ester, but 

ether has been 

observed (Lombard 

et al. 2012a) 

 

(Like B)  

Phospholipid tail 

(or chain) 

composition 

Typically polymers 

of isoprene 

Fatty acids 

synthesised from 

acetyl-CoA (Nelson 

and Cox 2013) 

(Like B) BE: di-fatty acid 

esters. No cyclic 

hydrocarbons. BE do 

use isoprene units 

when synthesising 

steroids (e.g. 

cholesterol) (Madigan 

et al. 2011: 81) 

Cycles in tails Chains may have 

cyclic hydrocarbons 

Not observed (like B)  

Bilayer joining Lipids from opposite 

sides of the bilayer 

can be covalently 

joined (e.g. 

crenarchaeol, 

biphytanyl). 

Membranes can be 

composed of these or 

mix of both. 

Monolayers provide 

stability at high 

temperatures. 

Always bilayers (no 

monolayers 

observed) 

(like B) A can form 

monolayers by 

covalently joining the 

tails of two opposing 

lipids (Hanford and 

Peeples 2002). 

BE membranes are 

always bilayers; 

covalently joined 

monolayers have not 

been observed. 

Polar heads & 

Glycolipids 

Most are 

phospholipids, as in 

B, but in 

Euryarchaeota, 

particularly 

methanogens, the 

polar head is 

commonly a 

carbohydrate 

 

Phospholipids: the 

polar head is 

typically composed 

of a phosphate 

bound to an organic 

molecule, e.g., 

choline  

Often like B, but 

polar headgroup can 

be composed of 

sugar polymers 

(glycolipids as 

opposed to 

phospholipids), 

similar to some A. 

Cardiolipin has two 

lipids joined by an 

isopropanol moiety 

at the polar head 

Although mostly 

bacterial, eukaryotic 

lipids have some 

elements in common 

with some archaea, 

such as sugar polar 

heads 

Cholesterol Absent, but 

cholesterol is related 

to isoprenoids, the 

typical archaeal 

phospholipid tail 

Almost entirely 

absent, but e.g. 

Mycoplasma require 

cholesterol for 

growth (Razin and 

Tully 1970) 

One of the three 

main types of E 

lipids, the other two 

being glycolipids 

and phospholipids 

Chiefly eukaryotic, but 

built from largely 

archaeal components 

(isoprenoids). Also 

observed in a few 

bacteria 
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Beyond the 

plasma 

membrane 

A B E  

Peptidoglycan 

Composition 
Have 

pseudomurein (aka 

pseudopeptidoglycan

) instead, which is 

similar, but has a β-

1,3-glycosidic bond 

as opposed to β-1,4-

glycosidic bonds of 

peptidoglycan, and N-

acetyltalosaminuronic 

acid is used instead 

of N-acetylmuramic 

acid. 

Some have different 

wall (remarkably, 

Methanosarcina), 

and a few have no 

wall at all 

(Thermoplasma). 

 

Peptidoglycan is 

made of N-

acetylglucosamine in 

β-1,4-glycosidic 

bond to N-

acetylmuramic acid. 

A tetrapeptide is 

attached, made of L-

Ala, D-Ala, D-Glu, 

Lys/diaminopimelic 

acid (DAP) 

 

D- amino acids and 

DAP have never 

been observed in AE 

 Bacterial 

Peptidoglycan and 

archaeal pseudo-

peptidoglycan seem 

convergent and 

entirely unrelated 

(Madigan et al. 2011) 

S-layer Found in 

representatives of 

most groups of A. 

Cell wall of 

methanogen 

Methanococcus 

jannaschii consists 

only of the S-layer 

(i.e., it is enough to 

withstand osmotic 

pressure) 

Present in several 

species of bacteria, 

both Gram-positives 

and negatives 

  S-layer is always the 

outermost layer. 

Composed of 

interlocking proteins 

or glycoproteins, 

arranged in 

paracrystalline 

structures. Can 

withhold osmotic 

pressure and filter out 

viruses. Reportedly, S 

layers could hold or at 

least help hold a H+ or 

Na+ gradient (Arbing 

et al. 2012). 

Some of the proteins 

and glycoproteins of A 

and B may be related 

(Baranova et al. 2012; 

Rohlin et al. 2012), but 

mostly they are not, 

even within domains. 

 

Flagellum Archaellum. ATP-

powered. Several 

types of proteins, 

independent from 

those of B, but 

related to Type-IV 

pilins of B. 

Flagellum of 

Halobacterium (A) 

seems to be H+-

powered, like that of 

B (Streif et al. 2008). 

One type of proton-

powered flagellin, 

unrelated to that of 

A.  

The “9+2” structure 

is different from 

those in known A 

and B, and appears 

to have evolved 

independently, 

although several 

proteins have 

homologues in 

archaea (Spang et al. 

2015) 

Although several 

involved proteins have 

homologues across the 

tree of life, ABE 

flagella seem unrelated 

(Zillig 1991; Madigan 

et al. 2011). 

Haloarchaea might be 

an exception, but this 

is likely due to HGT 

from bacteria (Nelson-

Sathi et al. 2012). 
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Outer membrane Outer membranes 

are not observed in 

general, but 

Ignicoccus has an 

outer sheath 

resembling the B 

outer membrane 

(Rachel et al. 2002). 

In gram-negative B. Not observed in the 

plasma membranes, 

but both 

mitochondria and 

chloroplasts are 

evidently derived 

from outer-

membrane-bearing 

bacteria. 

 

 

DNA A B E  

DNA replication 

origin 

Multiple (Kelman 

and Kelman 2004) 

Multiple replisomes 

have been observed, 

but typically single 

origin (Mott and 

Berger 2007) 

 

Multiple  

DNA repair shared with E independent shared with A AE share replication 

and repair mechanisms 

for the most part 

 

Supercoiling Most A do negative, 

but  some 

hyperthermophilic A 

do positive 

supercoiling 

(Forterre et al. 1996) 

 

Negative Negative Mostly negative in 

ABE, but some A do 

positive 

Chromosomes One circular (Allers 

and Mevarech 2005) 

Typically one 

circular (although 

some with more than 

one and some linear 

are known) 

Multiple linear, 

mitochondrial and 

plastid circular 

AB share circular 

chromosomes 

E are linear 

Plasmids ✓  ✓  ✓ (some species)  

Histones ✓  ✖ 

have different 

packing proteins 

called “histone-like” 

proteins 

✓ 

except dinoflagellates, 

the only eukaryotes 

known to lack 

histones (Rizzo 

2003)  

 

Nucleus ✖ ✖ 

but planctomycetes 

surround their 

chromosome with 

membranes; known 

to be completely 

independent from 

eukaryotic nucleus 

(McInerney et al. 

2011) 

✓ 
 

Despite membranes 

observed around the 

chromosomes of some 

prokaryotes (e.g. 

planctomycetes), the 

nucleus is a purely 

eukaryotic trait, 

unrelated to any 

known prokaryotic 

structure 

 

RNA primers in 

DNA synthesis 
✓  ✓  ✓  DNA synthesis never 

starts de novo; DNA 

polymerases require a 

3’ end to attach to 

(Alberts et al. 2007). 

Conversely, RNA 

polymerases only need 

a template strand. 
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Introns & 

splicing 

Intragenic non-

translated sequences 

exist, but no formal 

spliceosomal 

machinery exists. 

Intragenic non-

translated sequences 

exist, but no formal 

spliceosomal 

machinery exists. 

Have typically many 

more and much 

longer introns than 

AB. Spliceosome is 

exclusive to E. 

Although AB have 

non-translated 

intragenic sequences 

akin to introns, the 

spliceosomal machine-

ry is exclusive to E 

 

Discontinuous 

lagging-strand 

synthesis 

(Okazaki 

fragments) 

✓  ✓  ✓  Okazaki fragments are 

universal, but not 

necessarily 

homologous (Leipe et 

al. 1999). 

 

DNA replication 

enzymes 
A B E  

Primase  Homologous to E, 

not to B 

dnaG 

Primes new strands 

of DNA 

 

Homologous to A, 

not to B 

B primase is related to 

topoisomerases type I, 

II, VI but not to 

primases of AE 

 

DNA polymerase 

III [B] DNA 

polymerase B 

[AE] 

Homologous to E, 

not to B 

Non homologous Homologous to A, 

not to B 

 

DNA polymerase 

I  

 polA 

Excises RNA primer 

and fills in gaps 

 Only the 3'→5' 

exonuclease domain is 

conserved. Everything 

else seems unrelated to 

AE 

 

Information 

flow 
A B E  

Translation 

origin 
First Met is 

formylated, like in B 
First Met is 

formylated (N-

formylmethionine) 

Met is first, but 

tRNA for first Met is 

different 

AB: N-formylated 

Met is start of 

translation 

E: Translation initiated 

at normal Met with 

special tRNA. 

Significantly, Met is 

suggested to be a late 

addition to the code 

Operons & 

Polycistronic 

mRNA 

✓  ✓  ✖  

tRNA There are post-

modifications of the 

tRNAs. The 7-

deazaguanosine 

derivative 

archaeosine (G+) is 

always at position 15 

in A tRNAs (Phillips 

et al. 2010) 

 

Largely homologous 

to those of AE, but 

less related 

Cytosolic are related 

to those of A, 

whereas 

mitochondrial ones 

are B 

 

Ribosomes Similar in size to B 

but in sequence to E 

Similar in size to A Similar in sequence 

to A 

Shared between AE, 

but clearly related to B 

(Woese et al. 1990) 
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Horizontal Gene 

Transfer (HGT) 

Widespread Widespread Rare in macroscopic 

eukaryotes, 

importance still 

controversial in 

microscopic ones, 

but present (Katz 

2015) 

AB have undergone 

large amounts of HGT 

(Doolittle et al. 2003; 

Dagan and Martin 

2007) 

Others A B E  

Replication Asexual by fission 

(or fragmentation 

/budding) 

 

Like A Mostly sexual by 

meiosis and cell 

fusion 

No meiosis or true 

recombination-sex in 

AB 

Spores Not observed Some Some, but unrelated A do not appear to 

form endospores, like 

B and some E do 

 

General 

phylogenetics 

Appear to be as 

ancient as bacteria. 

Some clades are 

closely related to 

eukaryotes 

As ancient as 

archaea. Similarly, 

some clades are 

closely related to 

eukaryotes 

More recent than 

archaea and bacteria. 

Chimeric genomes 

with archaeal, 

bacterial, and unique 

components 

Although the data 

overwhelmingly 

shows that A and B are 

older and E arose from 

a merger of the other 

two (Williams et al. 

2013; Ku et al. 2015; 

McInerney et al. 

2015), the topic is still  

debated by some (e.g. 

Doolittle and Mariscal 

2015) 

General 

Metabolism 
A B E  

Energy and 

chemical sources 
Typically 

chemotrophic. 

Although some, like 

Halobacterium, can 

use light in the 

production of ATP. 

Methanogenesis 

present in some, but 

not acetogenesis 
 

As well as 

chemotrophy, B 

developed 

photosynthesis. They 

are extremely 

versatile 

biochemically, but 

no B are known to 

be methanogens 

(Baymann et al. 

2003). Some 

perform the similar 

process of 

acetogenesis 

Most phyla are 

heterotrophs. 

Plants and algae 

inherited 

photosynthetic 

carbon-autotrophy 

from cyanobacteria 

by endosymbiosis; 

however, they 

cannot fix nitrogen 

 

No A has been found 

that fixes carbon using 

energy from light 

(photosynthesis) 

(Madigan et al. 2011). 

Similarly, no 

methanogenic bacteria 

are known, but 

acetogens (B) perform 

a chemically similar 

pathway, which may 

be related (Sojo et al. 

2016). The acetyl-CoA 

pathway is the only 

CO2-fixation pathway 

common to A and B 

(Fuchs 2011), 

suggesting it may have 

been ancestral in an 

autotrophic origin of 

life 

 

Photosynthesis No photosynthesis, 

but Halobacterium 

have 

bacteriorhodopsins 

and halorhodopsins 

that pump ions 

Green (non)sulphur, 

purple (non)sulphur 

do anoxygenic. 

Cyanobacteria do 

oxygenic 

Oxygenic, inherited 

from 

cyanobacteria[B] in 

plants and algae, and 

by secondary 

endosymbiosis in 

Although many A can 

fix carbon directly 

from simple sources 

such as CO2 or CH4, 

and others get energy 
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across the membrane 

due to light-driven 

conformation 

changes (Lanyi 

1998). However, this 

is not directly 

coupled to carbon 

fixation, so it is 

photo-

phosphorylation but 

not photosynthesis. 

Also, it is clearly 

horizontally acquired 

from bacteria 

(Nelson-Sathi et al. 

2012) 

 

e.g. euglena (Henze 

et al. 1995) 

from light, none is 

truly photosynthetic. 

Calvin cycle Not observed (Berg 

et al. 2010) 

Common in 

cyanobacteria. 

Chlorobium do 

reverse Krebs cycle 

as opposed to Calvin 

cycle (Fuchs et al. 

1980) 

In plants and algae, 

inherited from 

cyanobacteria 

(Martin and 

Schnarrenberger 

1997) 

Some E inherited from 

B. No A are known 

that do it. 

ATP synthases V-type, as in 

organelles of E 

(except mitochondria 

or chloroplasts, 

which have B-like F 

type) 

Type F, like in 

mitochondria and 

chloroplasts of E 

Archaeal V type 

operates as a pump 

(breaking up ATP) 

in vacuoles, 

endosomes, 

lysosomes, and 

secretory vesicles. 

Bacterial F type is 

main ATP 

synthesiser in 

mitochondrial inner 

membranes and 

chloroplast thylakoid 

membranes 

All ATPases are 

related (Mulkidjanian 

et al. 2007). E have 

bacterial-like F-

ATPases in 

mitochondria and 

chloroplasts, but 

archaeal-like V-

ATPases in their other 

organelles (Senior and 

Wise 1983). 

Only the B-derived 

ATPases produce ATP 

in E; the A-derived V-

ATPases consume 

ATP as proton pumps, 

e.g. in acidifying the 

vacuole 

Carbon 

metabolism 
A B E  

Glycolysis and 

gluconeogenesis 

Saccharolytic A do 

variations of the 

Embden-Meyerhof-

Parnas (EMP) and 

Entner-Doudoroff 

(ED) pathways that 

seem to have 

evolved 

independently 

(Verhees et al. 

2003). 

Gluconeogenesis 

appears to (largely) 

be shared with BE 

EMP pathway, 

which yields 2 ATP 

and 2 NADH, is 

more common, but 

the ED pathway, 

which yields half the 

ATP, is also 

observed 

Mostly EMP 

pathway, with 

enzymes 

homologous to those 

of B, except for 

enolase, which is A 

(Hannaert et al. 

2000) 

The observation that 

gluconeogenesis 

enzymes (with only 

one exception) are 

shared across the tree 

of life but glycolysis 

enzymes are not 

(Verhees et al. 2003; 

Siebers and Schönheit 

2005; Bräsen et al. 

2014) suggests that 

glycolysis is a later 

development than 

gluconeogenesis  
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Fatty acid 

synthesis 

FAS (fatty-acid 

synthase) is not 

present, but there are 

homologues that 

suggest fatty-acid 

synthesis may be 

ancestral (Lombard 

et al. 2012a; 

Lombard et al. 

2012b) 

✓  ✓  E inherited fatty acid 

synthesis from B. A 

don’t normally 

synthesise fatty acids, 

but they may have 

done so ancestrally 

 

The constant discovery and re-classification of clades in all branches of the tree 

of life attests that the diversity of all three domains remains massively undersampled. 

As a simple demonstration, at the beginning of the work described in this thesis the 

NCBI taxonomy browser (www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi) 

reported 5 distinct top-level archaeal groups (or “phyla”). Towards the second year, 

the number had increased to 10. At the time of writing it stood at 13, including the 

recent discovery of the Lokiarchaeota, considered to be the closest known living 

relative of the original eukaryotic host (Spang et al. 2015); and by the time this 

document was being proof-read prior to submission the number had been collapsed 

back to only three major branches (the classic Euryarchaeota and TACK groups, plus 

the notoriously challenging (Williams and Embley 2014) DPANN groupi. 

One major endeavour of biology is thus to elucidate the relationships between 

the different organisms that live and have lived on the Earth, a discipline called 

“phylogenetics”. 

1.3 Phylogenetics 

Phylogenetics seeks to infer the evolutionary history and relationships between 

organisms, both extant and extinct. It is as such one of the two parts of the discipline 

of systematics, the other part being taxonomy, i.e. the assignment of names, 

description of the properties, and classification of the different organisms, without 

                                                 
i The branches leading to members of the DPANN group are particularly long, potentially leading to 

classification artifacts. Depending on the method and model used, the DPANN branch as sisters of the 

euryarchaeota, within the euryarchaeota (together with all other archaea), or as sisters of all archaea (Williams 

and Embley 2014). In this latter scenario they would currently be the closest known group to the original 

archaeal root, the last archaeal common ancestor (LACA). 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
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regards to their evolutionary relationships (Michener et al. 1970, p. 3). In spite of the 

name, phylogenetics is not limited to using nucleotide sequences; in fact the use of the 

term “gene” in the name is far older than the modern discovery of genetic sequences, 

and relates instead to the inference of genealogies (e.g. Haeckel 1874). Literally, the 

word stems from the greek φῦλον (phýlon) for tribe, or clan, and γένεσις (génesis) for 

source or origin (Oxford Dictionaries 2016). Because of the degeneracy of the genetic 

code and the fact that only four options exist in each position of a DNA sequence 

versus twenty in amino-acid polymers, protein sequences tend to accumulate changes 

more slowly than nucleotide sequences, and are therefore useful for inferring 

relationships between more diverged sequences and species. 

Morphological data is also often used in the analysis of evolutionary relations, 

and for a long time it was the only way of addressing the question of the relationships 

between species. Lamarck, Darwin and Wallace were of course unaware of the 

information in genetic sequences when they started making some of the first formal 

attempts at drawing out these relationships. Morphological data has however the 

caveats of convergence: multiple independent lineages can arrive at the same solution 

through independent means (such as wings in insects, pterosaurs, birds, and bats), a 

problem that extends into protein structure (Lupas et al. 2001). This problem is less 

common in biopolymer sequences, but it is by no means absent. For example, since 

only four bases exist in DNA sequences, a position can change from A to G, then to C, 

and then back to A (with any other succession in between), and therefore look to be 

ancestrally identical to a truly non-diverged sequence. Conversely, when two unrelated 

or distantly related biological sequences evolve rapidly, they can accumulate multiple 

identical changes due to convergence or sheer chance. A direct consequence of this 

phenomenon is long-branch attraction (LBA), a type of systematic error present in all 

types of phylogenetic tree-reconstruction methods (Philippe et al. 2005). In analyses 

affected by LBA, sequence positions that are identical due to chance or convergence 

can occlude the true phylogenetic relationship by being confused for common 

ancestry. This causes distantly related sequences to incorrectly appear to be close to 

each other in a tree. This type of error is of great importance in phylogenetic analyses, 

and it has confounded and may continue to confound the inference of ancient 

relationships (Lake 2015). 
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The comparative analysis of biological sequences leads to the identification of 

sequence homology, i.e. the detection of individual ancestral relationships between 

genes or proteins within and between species. There are multiple types of homology, 

the main of which are discussed in the next section. 

1.3.1 Homologues, Orthologues, Paralogues, Xenologues 

Homologue 

The most generic of the terms discussed in this section, homologue simply defines two 

sequences that share an ancestry, whichever that may be. They can be sequences within 

the same genome, or in genomes from different species. At the simplest, homologues 

can be classified into three main sub-classes: paralogues arise by a gene-duplication 

event, orthologues arise by a speciation event, and xenologues by a horizontal transfer 

of genetic material. Importantly, two sequences (or portions of a sequence) that are 

similar (or even identical) by chance are analogous, not homologous, although 

technically they may be indistinguishable from such (Zhang and Kumar 1997). 

Paralogue 

Gene duplications are major forces of evolution (Ohno et al. 1968; Conant and Wolfe 

2008). After a gene duplication event, the genome has two copies of the original 

sequence; these are said to be paralogous. The new copy may retain the original 

function, or it may acquire a new role. If the gene-duplication event occurred at the 

level of the whole genome, the term ohnologue (in honour of Susumu Ohno) is 

sometimes used; these large-scale gene duplications can have major effects in the 

evolution of complexity and novel traits, chiefly in eukaryotes (Ohno et al. 1968). 

Orthologue 

After two species diverge, many genes will be shared. These genes, derived by shared 

inheritance from a common ancestor following a speciation event are called 

orthologues. The identification of orthologues is confounded by gene duplications and 

gene losses, both before and after species divergence. 

Xenologue 

This term, less frequently used than those above, denotes genes that have been 

acquired by horizontal gene transfer. If undetected, these have a strong potential to 
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confound the inference of phylogenetic relationships between species (i.e. they may 

appear to be orthologues, acquired by common inheritance). 

There are other more complex types of homologous relationships not further 

discussed in this document. For example, epaktologues share an ancestry through the 

common independent acquisition of fragments of genetic material that are remodelled 

into a final product. This type of relationship is observed in the independent acquisition 

of protein domains followed by reshuffling into full proteins that therefore share an 

ancestry only partially (Haggerty et al. 2014). 

1.3.2 Monophyly, Paraphyly, and Polyphyly 

The members of a group or “clade” (including genes, species, families, or taxa 

in general) are monophyletic if they all cluster together in a section of a phylogenetic 

tree, i.e. if they all have a single common ancestor, and if the section of the tree that 

contains all of them includes only members of the clade. For example, in the animal 

tree all mammals cluster together under a common ancestor, and there are no members 

of this sub-tree that aren’t mammals themselves. 

If there is at least one taxon in the section of the tree that contains the clade that 

is not also a member of the clade as it was defined, then the tree is paraphyletic. For 

example, all the birds cluster together under a common ancestor that lies within the 

reptiles, but they are not themselves regarded as reptiles. Therefore, the tree is 

paraphyletic for the reptiles and monophyletic for the birds. 

If two or more members of a defined group have different ancestors, the group 

is said to have a polyphyletic distribution. This happens frequently with artificially 

defined groups; for example, bats, insects, pterosaurs and birds constitute the “flying 

animals”, yet naturally they do not cluster together in the tree of animals. Although 

obvious in this case, assigning members to groups is much less trivial in prokaryotes 

and the basal branches of the eukaryotes. Uncertain groupings are common in deep 

evolutionary analyses. Computational artefacts such as long-branch attraction, and 

biological phenomena such as horizontal and endosymbiotic gene transfers, can 

obscure the inference of relationships between species, the most fundamental of which 

is the search for a common ancestor of all extant species on Earth. 
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1.3.3 LUCA: the last universal common ancestor 

Darwin was quick to realise that extrapolating backwards in time his theory of 

natural selection, by which common descent with modification underlies the origin of 

new species, inevitably led to few and possibly only one common ancestor of all life: 

Analogy would lead me one step further, namely, to the 

belief that all animals and plants have descended from 

some one prototype. But analogy may be a deceitful guide. 

Nevertheless all living things have much in common, in 

their chemical composition, their germinal vesicles, their 

cellular structure, and their laws of growth and 

reproduction. We see this even in so trifling a circumstance 

as that the same poison often similarly affects plants and 

animals; or that the poison secreted by the gall-fly 

produces monstrous growths on the wild rose or oak-tree. 

Therefore I should infer from analogy that probably all the 

organic beings which have ever lived on this earth have 

descended from some one primordial form, into which life 

was first breathed. 

Charles Darwin (1859 p. 484) 

 This “primordial form” has received several other names, including simply 

“universal ancestor” (e.g. Woese 1998), “cenancestor” (e.g. Edgell and Doolittle 

1997), “progenote” (e.g. Woese 1998), “commonote” (e.g. Kagawa et al. 1995), “last 

universal ancestor” (LUA, e.g. Brooks and Fresco 2002), “last universal cellular 

ancestor” (LUCA, e.g. O’Donnell et al. 2013), “last universal cellular ancestral state” 

(LUCAS, e.g. Koonin 2009), and “last universal common ancestor” (e.g. Penny and 

Poole 1999). Although the different terms can have very different meanings, not 

discussed in this document, here the last of these will be used to refer simply to the 

last ancestor from which all extant life arose. In this thesis LUCA is assumed to have 

been cellular in nature, although its membranes and topology were unlike those of any 

living cell today. This is discussed in detail in Chapter 2. 
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1.3.4 The tree of life 

The idea of the tree of life is familiar to biologists, dating back decades before 

the publication of the Origin, the only illustration of which is famously an evolutionary 

tree. Darwin himself, however, might have preferred a different analogy: 

The tree of life should perhaps be called the coral of life, 

base of branches dead; so that passages cannot be seen.– 

this again offers contradiction to constant succession of 

germs in progress (…) 

Charles Darwin (1838, pp. 25-26) 

Darwin’s preoccupation follows from the potential confounding effect of a 

limited sample, taken from modern life, to infer the characteristics of the ancestors. 

Darwin, being a respected geologist long before achieving acclaim in biology (Herbert 

2005), was well aware of multiple extinctions of entire clades of animals in the 

geological record, and the implication that unseen extinctions had on his theory. His 

concern translates directly into modern systematics: since so many branches of the 

‘coral’ are dead, and the ‘bases’ and ‘passages’ leading to those that live today have 

been obliterated by evolution itself, drawing relationships between the deepest 

traceable branches is far from a trivial task. The three extant domains of life may have 

arisen in a number of ways, some of which are described in Figure 2.  
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Figure 2. Possible branching patterns for the three domains of life in 

strictly vertical tree-like diagrams 

The many shared and unique characteristics of the three domains (Table 1) confound 

the inference of their ancestral relationships. With all trees rooted at the lowest vertex, 

in the simplest possible scenario (A) the three domains arose directly from the same 

common ancestor (LUCA). (B) shows a “eukaryotes-first” scenario in which both 

the archaea and bacteria arose from within branches of the eukaryotes by reductive 

simplification and are thus convergently prokaryotic; this would explain why 

eukaryotes share some traits with archaea and others with bacteria (Table 1). (C) is 

also eukaryotes first, but a now extinct “last prokaryotic common ancestor” evolved 

initially, which underwent reduction and later gave rise to the archaea and bacteria; 

alternatively, the common prokaryotic ancestor could have arisen directly from 

LUCA (diagram not shown), i.e. the inner eukaryotic branch in (C) would be absent 

and eukaryotes are sister to the prokaryotic ancestor, as opposed to ancestral 

themselves. In (D) and (E) the eukaryotes are sister taxa to one of the two prokaryotic 

domains, and they share a now extinct common ancestor that was itself sister to the 

other prokaryotic domain; (E) is equivalent to Woese’s ribosomal-based 3-domains 

tree, described below. Similar to (D) and (E), in (F) and (G) the eukaryotes are sister 

to one of the two prokaryotes, but the other prokaryotic domain is more recent, arising 

from within the eukaryotes. Finally, (H) and (I) have the eukaryotes being derived 

from bona fide members of the bacteria or the archaea, respectively. None of these 

branching patterns can readily explain all the similarities and differences in traits 

between the three domains. Several other scenarios are not shown (e.g. archaea 

arising from within bacteria or vice versa). 

The three domains share multiple properties and their corresponding genes 

(Table 1). In general, eukaryotic genomes are more complex and seem to share several 

core traits with the archaea (mostly in information processing, i.e. DNA replication, 

transcription, and translation), and several equally important others with the bacteria 

(notably metabolism and membranes). All three domains have multiple unique traits, 
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many of them fundamental. In the scenario of Figure 2A, the three domains arose 

essentially simultaneously from a common ancestor that would have had all the 

features that extant organisms share at present, and potentially others that are now lost. 

This ancestor was not necessarily a cellular independent entity in the modern sense, 

but may have instead been an unstructured population with vast horizontal transfer of 

genetic material, and in which genotype and phenotype were not clearly differentiated; 

that is, LUCA was a ‘progenote’ (Woese 1987; Woese 1998). The first archaeon 

picked some of the traits, the first bacterium some others (part of which were shared 

with the archaeon), and the first eukaryote picked more than its two sisters’ share, 

ending up having more in common with both. This option has the problem of 

inevitably leading to a ‘genome of Eden’ (Doolittle et al. 2003): the LUCA that this 

scenario requires would have had copies of essentially every common gene in present-

day organisms, which would have made it far more complex than any creature that 

followed. Although the idea of a progenote population with vast horizontal transfers 

makes this problem more tractable and is still prevalent in work by leading researchers 

in the field (e.g. Damer et al. 2016), a genetically undifferentiated progenote poses 

problems for a selective interpretation of life’s origins. A population with vast and 

essentially uncontrolled horizontal transfers would be prone to invasion by ‘cheats’ 

(Maynard Smith and Szathmáry 1999), and therefore unviable. LUCA must have been 

both individual and cellular. 

Alternatively, the eukaryotes may have been the earliest domain of life, such that 

essentially eukaryotes were LUCA. In this scenario, presented in Figure 2B, archaea 

and bacteria may have arisen by posterior simplification or ‘streamlining’, and they 

are as such “convergently prokaryotic” (i.e. the nucleus, mitochondria, Golgi, meiosis, 

and many other features were lost in parallel). Although far from being mainstream, 

this convoluted scenario is still considered plausible by some researchers (Doolittle 

and Mariscal 2015). A slight modification (Figure 2C) would consider the possibility 

that there was a common prokaryotic ancestor from which both the archaea and the 

bacteria arose, but the drastically different genetics of the two domains would rule this 

out immediately. 

Coming into more mainstream views, another possibility is that the eukaryotes 

share a common ancestor with one of the two prokaryotic domains, and that this 

ancestor was itself sister to the other of the prokaryotic domains (Figure 2D-E). The 
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familiar modern tree of life, as introduced by Woese and collaborators (1990), follows 

such a pattern, specifically the one in Figure 2E. The three distinct branches have the 

archaea and eukaryotes as sister clades, and their common ancestor stemming near the 

base, as a sister group to the bacteria (Figure 3). 

 

Figure 3. Woese’s ribosomal RNA tree of life (the “3-domains” tree) 

According to Woese’s small-ribosomal-subunit tree (Woese et al. 1990), the archaea 

and eukaryotes are sister clades, and their common ancestor was in turn sister to the 

bacteria. If so, the eukaryotes are indeed more recent than the bacteria, but no earlier 

than the archaea, such that the “pro” in “prokaryotes” is unjustified and they should 

perhaps be called “akaryotes” instead. As discussed below, Woese’s three distinct 

domains hold, but the branching pattern has been overthrown by recent findings: 

prokaryotes are indeed more ancient than eukaryotes. Adapted from the original by 

Woese and collaborators (1990). 

This seminal work by Carl Woese and collaborators elaborated on Pauling and 

Zuckerkandl’s (1965) ideas of molecular phylogeny, becoming the first formal attempt 

to classify all of life using genetic data in a systematic way. Woese used the small 

ribosomal subunit because of its distinctive domain-defining characteristics, and 

because of its high level of conservation when compared to most other genes (Woese 

et al. 1990). Similarly, the small ribosomal subunit, Woese assumed, is such an 

important gene that every living being will have a copy, and this copy will have been 

inherited ancestrally with little chance of horizontal gene transfer, so it should betray 

the evolutionary history of the species as a whole. With the data and methods available 

at the time, Woese’s tree was a solid effort that painted the diversity of Earth’s life 

into three well-defined colours that survive to this day. The strokes, however, have 

changed since. 

Although still prevalent in modern reference textbooks (e.g. Lehninger’s 

Principles of Biochemistry by Nelson and Cox 2013 p. 4), a reinterpretation of 
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ribosomal sequences with modern available genomes and methods unequivocally 

places the eukaryotes within the archaea (Williams et al. 2012). Beyond this purely 

vertical view, it now seems clear that the relationships are more complex than Woese’s 

original tree suggests, if however the clear-cut separations between the three domains 

that he and his colleagues introduced still remain. 

In recent years, the evidence is becoming overwhelming that the basis of the 

eukaryotic cell was a fully-formed archaeon. The recent discovery of the 

Lokiarchaeota, an archaeal group that is closest in many traits to the eukaryotes than 

any other known prokaryotic lineage (Spang et al. 2015), seems to rule out the basal 

sisterhood of archaea and eukaryotes as domains, apparently making the scenario in 

Figure 2I the most likely. Lokiarchaea do not stem at the base of archaea, belonging 

instead to a branch well within the TACK superphylum. 

However, the unequivocal assignment of eukaryotes to a branch within the 

archaea (Figure 2I) leaves out an equally crucial portion of the eukaryotic genome, 

namely and largely, phospholipid membranes and bioenergetic metabolism. In fact, 

archaeal-ancestry genes constitute the minority of the eukaryotic genome: most 

eukaryotic genes with a detectable prokaryotic ancestor are actually bacterial (Esser et 

al. 2004). And just as there is now very little doubt that the genome of modern 

eukaryotes, and therefore LECA, was archaeal in its information-processing 

machinery, it is equally clear that its membrane-forming and metabolic enzymes, 

including most of those for glycolysis, gluconeogenesis, fatty-acid synthesis and 

breakage, the citric acid cycle, and oxidative phosphorylation and respiration, are 

largely bacterial. The relation is again not one of sisters at the deepest level of the tree 

(Figure 2D), as it is clear that the eukaryotic bacterial ancestor was a proteobacterium, 

and likely an α-proteobacterium (Gray et al. 1999; Pisani et al. 2007), although 

potentially with a complex ancestry itself. This makes scenario H instead of I in Figure 

2 more likely. So, do the eukaryotes branch within the archaea or within the bacteria? 

The answer is the simplest one, given the complexity of the data: both. 

1.3.5 The ring of life 

The dual archaeal and bacterial ancestry of eukaryotes suggests that the genomes 

of the latter evolved from a merger of genomes from the two prokaryotic domains. 

This resonated with the endosymbiotic theory of Lynn Margulis (Sagan 1967), 
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elaborated on the work of Mereschkowski, who had introduced the ideas of 

symbiogenesis and endosymbiosis by considering that chloroplasts constituted a 

‘double plasma’ in plant cells (Mereschkowsky 1905; Mereschkowsky 1910). 

Margulis successfully and correctly argued that both mitochondria and chloroplasts 

(amongst, incorrectly, other parts of the eukaryotic cell) had originated by 

endosymbiosis from bacteriaii (Sagan 1967). 

The view gradually emerged that not only eukaryotic genomes but eukaryotes 

themselves as a domain are hybrid, and so there can be no tree of life, assuming 

traditional tree branches that can only depict vertical inheritance (Figure 2). Instead, 

the chimeric nature of eukaryotes turns the deepest relations between the three 

domains into a ‘ring’ as opposed to a tree (Rivera and Lake 2004) (Figure 4). 

 

Figure 4. Lake and Rivera’s “ring of life” (a “2-domains” tree) 

This metaphor takes into account the contributions of both clades into forming the 

chimeric eukaryotic cell and genome. Due to their endosymbiotic origin, eukaryotes 

branch within both the archaea and the bacteria. The host of the endosymbiosis was 

an archaeon, specifically an “eocyte” (most simply in modern terms, a member of 

the archaeal TACK superphylum), while the endosymbiont was bacterial, 

specifically an alpha-proteobacterium. Adapted from the original by the authors. 

Although some researchers still consider that the idea of eukaryotes arising first 

(earlier than the prokaryotes) may have some credence (Doolittle and Mariscal 2015), 

                                                 
ii The discussion of endosymbiosis is continued in more detail in the introduction to Chapter 4. 
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evidence in favour of the ring-of-life hypothesis is becoming too overwhelming to 

deny (Williams et al. 2013; McInerney et al. 2015). 

Throughout this thesis, Rivera and Lake’s ring (Figure 4) is assumed to be the 

one correct depiction of the broad relationships between the three domains of life. The 

main goal of this thesis is to shed light on some of the causes for this peculiar shape. 

1.3.6 Horizontal (or Lateral) gene transfer (HGT/ LGT) and the “web” of life 

Even if consensus about the general shape of the tree or ring of life were to be 

reached soon, an additional confounding factor in the inference of phylogenetic 

relationships is the widespread occurrence of horizontal gene transfer amongst 

prokaryotes (Doolittle et al. 2003; Martin and Roettger 2012; Koonin 2015). To a 

lesser extent, this phenomenon also has a role in the evolution of eukaryotic genomes, 

including multicellular (Katz 2015; Soucy et al. 2015). 

Although known since before the structure of DNA (Tatum and Lederberg 

1947), and indeed long before then (Griffith 1927), the massive phylogenetic 

significance of horizontal transfers became apparent towards the turn of the century 

(Aravind et al. 1998; W.F. Doolittle 1999; W. Doolittle 1999) with the advent of the 

genomics revolution, when closer analysis of individual gene trees failed to produce 

the expected pattern of canonical ribosomal species trees such as Woese’s. Several of 

these conflicting trees had very strong support, so it was apparent that the 

discrepancies were not due to methodological errors (Koonin et al. 2001). 

These transfers often have an ecological role; for example, the genomes of a 

number of hyperthermophilic bacteria show more imported archaeal genes than the 

average bacterium (Aravind et al. 1998), and the medical significance of horizontal 

mechanisms in the acquisition of bacterial resistance have been known for decades 

(Griffith 1927; Maynard Smith 1993). Both archaea and bacteria have evolved 

multiple dedicated mechanisms that mediate the acquisition of genes from the 

environment (Koonin 2015), which allows them to escape genome degeneration into 

“mutational meltdown” (or “Muller’s ratchet”). Eukaryotes do not have these; the role 

of avoidance of Muller’s ratchet is taken over by sex. However, massive horizontal 

transfers at the origin of the domain are evidenced by the chimeric nature of eukaryotic 

genomes discussed above. These large-scale influx of foreign genes from the symbiont 
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into the host at the base of the eukaryotes is referred to as “endosymbiotic gene 

transfer” (Timmis et al. 2004), a sub-class of horizontal gene transfers (although the 

distinction is not always made in the literature). A further endosymbiotic transfer 

would occur later in the evolution of some eukaryotic branches, after the acquisition 

and endosymbiotic association of a cyanobacterium that would evolve into the 

modern-day plastids of plants, algae, and others. 

Extensive horizontal gene transfers were recently suggested to have played a 

crucial ecological role in the evolution and remarkable adaptation to tolerance of 

environmental extremes in the multicellular eukaryote Hypsibius dujardini (Boothby 

et al. 2015), a tardigrade (a group of animals related to the arthropods). These animals 

tolerate extreme temperatures, radiation, and pressure, so it was suggested that HGTs 

from multiple organisms could allow them to survive in these environments, and that 

this should be a common mechanism in extremophilic animals (Boothby et al. 2015). 

However, these results were quickly and emphatically challenged by a separate group 

working on the genome of the same organism (Koutsovoulos et al. 2015). At the time 

of writing, the importance and extent, if any, of horizontal gene transfers in the 

evolution of modern eukaryotic multicellular lineages, and in particular animals, 

remains to be elucidated. 

Conversely, the extent of horizontal transfers in archaea and bacteria is so large 

that early researchers wondered whether it was even possible to define the 

relationships between the clades (Stanier and van Niel 1962). In fact, the mechanisms 

of gene gain and loss play a greater role in prokaryotic evolution than point mutations 

(Koonin 2015). This massive and constant exchange of genetic material across 

unrelated branches means that the links between the varied species of life on Earth 

may resemble a “web” or “network” more than a tree or ring after all (W.F. Doolittle 

1999; Doolittle 2000). This makes the prospect of phylogenetic analysis daunting and 

advances the question of whether phylogenetic analyses of microscopic organisms is 

a worthy use of researcher and computer time. It is, but with caveats. 

In spite of widespread horizontal transfers, there is still an inherent verticality to 

the processes of inheritance and speciation in a large number of cases. Case-by-case 

gene transfers don’t exhibit the same systematic patterns as the simple bifurcations of 

vertical inheritance. Consequently, their effect on the shape of an overall species tree 
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is not as strong. This translates into a “statistical” tree of life (Koonin 2015), i.e. an 

underlying vertical pattern that can generally be recovered for a full genome even if 

some or even all of its genes don’t fully exhibit it (Figure 5). 

 

Figure 5. A “statistical” tree of life for full genomes, and trees for several 

genes with individual HGTs 

The box at the top left represents a purely binary and vertical species-divergence tree. 

Even though all of the genes (subsequent diagrams) have an instance of horizontal 

transfer (coloured dashed branches) and therefore none reproduce the original tree, 

the overall tree (grey background pattern in all trees) can still be recovered from the 

ensemble. HGTs will weaken the support for the branches in the overall tree, 

represented in each individual gene tree by an empty grey branch in the position of 

the species branch in the overall tree. Since the transfers are not systematic across all 

genes, the tree at the top left still emerges. Sporadic gene losses have a similar effect 

to HGTs in that they weaken support overall. 

Nevertheless, when transfers are systematic or massive, such as those in 

endosymbiotic events, or those suggested at the origin of most if not all modern 

archaeal clades (Nelson-Sathi et al. 2012; Nelson-Sathi et al. 2015), the inference of 

such a statistical tree becomes impossible, and models that allow for non-vertical 

inheritance become necessary (McInerney et al. 2015). 

Energy underlies the advantages and consequent spread of many evolutionary 

innovations, both through vertical and horizontal mechanisms. The following section 

discusses bioenergetics and the roles that biological membranes play in it. 
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1.4  Membrane bioenergetics 

Bioenergetics can be defined as the study of the transduction of energy from 

external sources into forms that can be utilised by the organism in performing various 

types of work (Skulachev 1988). This immediately makes bioenergetics a matter of 

membranes, since any source of energy, including light, will first encounter the 

exterior of the cell. It is then no surprise that membrane proteins typically play crucial 

roles directly in most and ultimately in all energy-transduction mechanisms across the 

tree of life. 

The role of membrane bioenergetics in the major evolutionary transitions was 

pointed out over half a century ago (Mitchell 1957), but it has generally received 

limited attention until recently (Lane and Martin 2010; Lane and Martin 2012). Life is 

about disequilibrium; living beings are kept steadily at their far-from-equilibrium 

states by a continuous flow of both matter and energy (Harold 1986) that is operated 

across membranes, typically by membrane proteins. Energy flows in particular are 

mediated in the vast majority of cases through the generation, homeostatic 

maintenance, and exploitation of electrochemical and redox gradients across 

membranes (Harold 1986; Skulachev 1988; Allen 2010) or, in bioenergetic 

terminology, chemiosmotic coupling (Mitchell 1961; Nicholls and Ferguson 2013). 

1.4.1 Chemiosmosis 

The process of chemiosmosis was first discovered and advocated by Mitchell 

(1961; 1966), who broke away from what at the time was the consensus idea of 

substrate-level phosphorylation as the main (and only) source of ATP in the cell. 

Mitchell argued that the non-stoichiometric relation between oxygen and phosphorous 

in respiration, and the association of phosphorylation to membranes in mitochondria 

(amongst other observations), suggested a mechanism in which transfer of protons and 

electrons across the membrane was coupled to the production of ATP. In this process, 

protons are imported spontaneously into the mitochondrion (in the case of eukaryotes) 

down a pH and electrochemical gradient through the ATP synthase (ATPase). The 

influx of protons in turn decreases the strength of the gradient, which is recovered by 

pumping the protons back out (or by neutralising them) in a process powered by the 

spontaneous oxidation of a substrate. In this way, phosphorylation of ADP into ATP 

is coupled to the oxidation of a substrate, but the relation is not direct. The oxidation 
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of the substrate can occur in multiple steps catalysed by independent proteins, each of 

which acts as a redox pump that uses the energy released by oxidation to extrude 

protons (Figure 6). This is termed an “electron transport chain”. 

 

Figure 6. A simplified view of chemiosmotic coupling and the electron 

transport chain in oxygen-respiring mitochondria 

Protons (H+) travel through the ATP synthase (ATPase) from a region of high to a 

region of low H+ concentration; the spontaneous flux is used to synthesise ATP. The 

two regions are separated by a H+-impermeable membrane. Imported protons are 

then exported by redox pumps, which are powered by the multi-step oxidation of a 

reduced substrate, with oxygen as the final electron (e–) acceptor. Adapted from the 

original by Mitchell (1961). 

Mitchell’s contributions, revolutionary in themselves, also served to highlight 

the importance of membranes to energy transduction and therefore life in general as 

more than simple containers of biological material. 

1.4.2 Membranes 

Membranes and their embedded proteins play a major role in most cellular 

processes (Singer and Nicolson 1972). All living organisms have at least one 

membrane composed of amphiphilic iii molecules, most generally phospholipids. A 

typical membrane phospholipid has four parts: a polar headgroup, a backbone that 

holds the different parts together, the links to the tails, and the tails themselves (Figure 

7). 

                                                 
iii An amphiphile or amphiphilic molecule has two ends, one of which is hydrophilic, i.e. has an affinity 

to water, while the other is hydrophobic, i.e. it is generally apolar and has no affinity to water. Although 

related to solubility, the terms are not equivalent. Multiple salts (e.g. BaSO4, AgCl, or FeS) are made of polar 

ions, yet have very low solubility in water; importantly, these salts are not hydrophobic, in spite of their poor 

affinity for water. The term hydrophobic is generally used to describe interactions such as van der Waals 

forces between apolar organic molecules or portions of these molecules. 
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Figure 7. The four parts and two ends of a typical membrane 

phospholipid 

The figure shows a typically eukaryotic phosphatidylcholine membrane 

phospholipid. The lipids of bacteria share a generally similar composition 

(although phosphatidylcholines are rare). Archaeal lipids are similar in overall 

structure in that two ends and four main components are present and have the 

same functions, but the biochemistry and genetics are entirely different 

(Chapter 2). More complex lipids exist, including dimeric structures joined at 

the heads (e.g. cardiolipin in mitochondria) or at the tails (e.g. crenarchaeol in 

crenarchaeota), multimeric structures with polysaccharic heads (in archaea 

and some bacteria), and others, but the general amphiphilic construction is 

retained. 

The amphiphilic nature of phospholipids makes them assemble spontaneously 

into shapes that minimise energy. This can happen in a number of ways, chiefly 

micelles (simple spheres in which every polar headgroup faces outward towards the 

aqueous solvent, and every tail faces inward into each other) or, in the case of cellular 

membranes, by tightly packing lipids into parallel layers or sheaths, and two sheaths 

in an anti-parallel fashion. In this arrangement, the polar headgroups of one sheath 

face into the aqueous cytosol, while those in the opposing sheath face out toward the 

also aqueous environment; meanwhile, each hydrophobic tail is surrounded by the 

hydrophobic tails within its own sheath, and at the far end is met by the far end of the 

tails in the opposing sheath. This produces a “fluid mosaic” bilayer, into which 

membrane proteins are typically embedded (Figure 8). 
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Figure 8. “Fluid mosaic” model of a membrane bilayer (section) with an 

embedded trans-membrane protein 

Membranes work as “fluid mosaics” (Singer and Nicolson 1972), in which 

each phospholipid (green spheres with green tails) would be analogous to a 

tile. Membrane proteins (purple) can be embedded as active parts of this 

mosaic. The figure shows only one protein; the density of proteins in a real 

biological membrane can be expected to be higher than depicted. 

In spite of vast differences in the lipids of archaea, bacteria, eukaryotes, and also 

within domains and even within different cells of the same individual in multicellular 

eukaryotes, the traditional model in Figure 8 is maintained throughout. 

The role of embedded membrane proteins is central to life, be it in transport, 

cell-to-cell communication, cell division, and, crucially, bioenergetics. This thesis 

attempts to contribute to the emerging view of the central importance of membranes, 

their embedded proteins, and the disequilibria across these to life and living. 

1.5 A brief outline of this thesis 

This PhD thesis addresses the role of membranes and membrane proteins in 

shaping the evolution of life on Earth. Although connected by the common thread of 

membrane bioenergetics, the chapters are generally meant to stand on their own. A 

reader following the thesis from cover to cover will therefore encounter a number of 

repetitions throughout the document. 
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A number of questions remain unanswered in deep evolutionary biology; 

broadly, the details of the origin of life, the divergence of domains and species, and 

the origin of eukaryotes. The chapters in this thesis seek to contribute to elucidating 

these processes in the following ways: 

Chapter 2 deals with the deepest split in the tree of life, namely the origin of archaea 

and bacteria from the last universal common ancestor (LUCA), and in particular the 

differences in their membranes. I explain the construction of and show results of a 

mathematical model that allows me to argue that the membranes of LUCA had to be 

leaky to H+. 

Chapter 3 is a theoretical work that follows the arguments in  Chapter 2 to tackle the 

evolution of homochirality in general. After analysing relevant elements in the 

literature, I conclude that invocations to neither physical nor chemical prebiotic 

mechanisms are necessary to explain the origin of single-handedness in biochemistry. 

The dual homochirality of phospholipid backbones in archaea and bacteria suggests 

that homochirality is indeed the simplest evolutionary scenario, an intrinsic result of 

biochemical catalysis. 

Chapter 4 returns to the differences between archaeal and bacterial membranes in 

relation to the origin of the eukaryotic cell. If eukaryotes arose from the endosymbiosis 

of a bacterium into an archaeon, then the first eukaryotic common ancestor (FECA) 

must have had an archaeal plasma membrane and bacterial proto-mitochondrial 

membranes. Yet, all modern eukaryotes have exclusively bacterial membranes. I argue 

that the reason for this convoluted evolutionary process was bioenergetic: as the 

mitochondrion became specialised as the powerhouse of the eukaryotic cell, energy 

production came to rely increasingly upon it, and the physiological adaptation of its 

bioenergetic proteins to the bacterial membrane became correspondingly crucial. I 

argue that replacing the original mitochondrial membranes with archaeal ones would 

have led to decreased fitness, so the bacterial membranes were retained, and the 

archaeal ones lost. 

Chapter 5 closes this thesis by discussing adaptation in general in the context of 

membrane proteins and homeostasis. I report that membrane proteins have on average 

fewer detectable orthologues than water-soluble proteins, across the tree of life. I 
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demonstrate that both divergence beyond sequence recognition and true gene losses 

have occurred. I conclude that, as emerging species specialise in new environments 

and functions, selective pressure is stronger on the outside. This leads to faster 

evolution outside the cell, and to the loss of a number of membrane proteins that are 

rendered useless in the new environment. 

A general discussion of how each of these topics fit into and have contributed to 

the shape of the tree of life as we know it is presented in the final discussion in Chapter 

6, along with a number of open questions that stem from the results of this thesis. 
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2 THE DIVERGENCE OF ARCHAEAL AND 

BACTERIAL MEMBRANES 

Note: this chapter contains large sections adapted directly from the original research article 

“A bioenergetic basis for membrane divergence in archaea and bacteria”, published in PLoS 

Biology in August 2014 in collaboration with PhD supervisors Prof. Andrew Pomiankowski 

and Dr. Nick Lane (Sojo et al. 2014). 

2.1 Summary 

At its simplest, life is defined by its cellular nature, the separation of the living being’s 

interior from the environment, as provided by biological membranes. It is therefore 

surprising that the two oldest domains of life, archaea and bacteria, which share 

multiple fundamental traits such as transcription and translation, do not share plasma 

membranes, a feature that must have been crucial for early life and predictably for the 

last universal common ancestor (LUCA). Archaeal phospholipids are typically 

composed of isoprenoid chains ether-linked to a glycerol-phosphate backbone, while 

bacterial phospholipids are typically composed of fatty-acid tails in ester linkage, also 

to a glycerol-phosphate backbone. However, the stereochemistry of the backbones is 

inverted: while archaea use sn-glycerol-1-phosphate, bacteria use the enantiomer sn-

glycerol-3-phosphate. Both molecules are synthesised from dihydroxyacetone 

phosphate (DHAP) and NAD(P)H, but the synthesising enzymes are unrelated. 

Selective explanations have been put forward for the disparities in tails and links, but 

the subtler difference in backbones remains unexplained. A possible resolution of this 

paradox is advanced here by studying energy fluxes in early protocells that depended 

on a geochemically generated ion gradient, such as those in alkaline hydrothermal 

vents. Results show that geochemical ion gradients could power carbon and energy 

metabolism, but only if the membranes were leaky: a modern, more impermeable 

membrane, would insulate protocells from the geochemical gradient, preventing 

energy flow. The development of modern membranes with glycerol-phosphate 

backbones had to wait until after the origin of pumping. However, pumping protons 

across a leaky membrane offers no advantage: energy is wasted extruding protons that 

readily flow back in through the permeable membrane. Since sodium ions are 

considerably less permeable than protons, a sodium-proton antiporter (SPAP) could 
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have been a crucial adaptation preceding the evolution of both pumping and modern 

membranes. Still without active pumps, SPAP would have generated a sodium 

gradient in addition to, and powered by, the natural proton gradient. This would have 

enabled survival in smaller gradients, facilitating ecological spread and the incipient 

divergence between the proto-archaea and proto-bacteria. SPAP would also have 

provided a sustained advantage to decreasing membrane permeability after the origin 

of pumping, after which the evolution of modern proton-tight phospholipid 

membranes became advantageous. Crucially, this would have happened independently 

in the archaea and bacteria, explaining the vast differences in the phospholipids of the 

two domains, and in particular the subtlest of these: the backbones of the two domains 

have opposing stereochemistries because they were developed independently from a 

LUCA that had neither, and whose membranes were consequently much more 

permeable to protons than modern ones. 

2.2 Introduction 

There is now all but universal agreement that archaea and bacteria are the 

deepest branches of the tree of life, with eukaryotes arising considerably later from an 

endosymbiosis between bona fide members of the two older domainsiv (Rivera and 

Lake 2004; Pisani et al. 2007; Dagan et al. 2010; Williams et al. 2012; Williams et al. 

2013; McInerney et al. 2015) (although see Doolittle and Mariscal 2015 for an 

alternative view). Understanding this deepest split, the divergence of the two 

prokaryotic domains, should help shed light on the nature of the last universal common 

ancestor (LUCA), and potentially on the origin of life. Archaea and bacteria share 

important core components of their biochemistry, including transcription (Werner and 

Grohmann 2011), the genetic code (Koonin and Novozhilov 2009), and the ribosomal 

translation process and machinery (Londei 2006), yet they differ for unknown reasons 

in equally fundamental traits, including DNA replication (Leipe et al. 1999) and, 

                                                 
iv Note that the endosymbiotic origin of eukaryotes, as well as widespread horizontal and endosymbiotic 

gene transfers between all domains of life, mean that the relationships between the clades are not tree-like 

(i.e. simple vertical inheritance with divergence from a common ancestor does not suffice as an evolutionary 

model to explain the genomes and traits of extant species; gene flows are often not tree like). For simplicity, 

however, the phrase ‘tree of life’ is used generically in this thesis to refer to the relationships between clades, 

regardless of whether or not they are literally tree-like. 
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notably, their membrane lipid composition (Koga et al. 1998). Given that cells and life 

itself are defined by membranes that separate the biological material inside from the 

environment that surrounds it, this observation is surprising. 

Phospholipid side chains are typically isoprenoids in archaea and fatty acids in 

bacteria, and the links to the glycerol-phosphate backbones are typically ethers in 

archaea and esters in bacteria. While these differences could reflect adaptive evolution 

(Valentine 2007), archaea and bacteria also differ in the stereochemistry of the 

glycerol-phosphate backbones (Koga et al. 1998). Archaeal lipids have an sn-glycerol-

1-phosphate (G1P) backbone, while bacteria use the mirror structure (or enantiomer) 

sn-glycerol-3-phosphate (G3P)  (Figures 9 and 10). 

 

Figure 9. Archaeal and bacterial membrane lipids (3-D structures) 

Examples of extant phospholipid structures of archaea (left) and bacteria 

(right), with carbon-bound hydrogen atoms removed. Images rendered in 

PyMOL (Schrödinger LLC 2010) from PDB files downloaded from 

Lipidbook (Domański et al. 2010). See details in the skeletal chemical 

structures of Figure 10. 
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No selective reasons can readily explain these opposite stereochemistries (Koga 

et al. 1998; Sousa et al. 2013). The synthesising enzymes, sn-glycerol-1-phosphate-

dehydrogenase (G1PDH) in archaea and sn-glycerol-3-phosphate-dehydrogenase 

(G3PDH) in bacteria, both reduce dihydroxyacetone phosphate (DHAP) (Figure 10), 

but they do not seem to have any phylogenetic relation. This has led to the surprising 

conclusion that they must have arisen independently in the two domains (Koga et al. 

1998); this would imply that LUCA either had no membrane at all, or that its 

membranes were unlike modern ones. Yet life is defined by its cellular nature, that is, 

the separation of the inside of the living being from its environment as provided by 

amphiphiles assembled into a membrane. These large differences in the boundaries of 

the two basal domains of life therefore constitute a significant unresolved evolutionary 

problem (Koga et al. 1998; Martin and Russell 2003; Peretó et al. 2004; Lane and 

Martin 2012). 

 

Figure 10. Archaeal and bacterial membrane lipids (skeletal structure) 

Archaeal lipids (left) are typically composed of isoprenoid chains linked by ether 

bonds to an sn-glycerol-1-phosphate (G1P) backbone. The chirality of the two 

glycerol backbones is fully conserved within each clade, not only in structure but in 

their unrelated synthetic enzymes. Although ether linkages have been observed in 

bacterial membranes (Lombard et al. 2012a) and isoprenoids are common to all three 

domains, bacterial lipids (right) are typically composed of fatty acids in ester linkage 

to an sn-glycerol-3-phosphate (G3P) backbone. Despite widespread horizontal gene 

transfer, no bacterium has been observed with the archaeal enantiomer, or vice versa. 

See 3-Dimensional structures in Figure 9. 

The significance of this puzzle is emphasised by the fact that archaea and 

bacteria (and indeed eukaryotes) share chemiosmotic bioenergetics (Lane and Martin 

2012). That is, all known cells depend on the powering of ATP production  in proteins 

such as the ATP synthase (ATPase) by ion gradients (i.e. differences in the 
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concentrations of H+ or Na+) across membranes (Mitchell 1961).  Surprisingly, the 

highly complex ATPase is as universally conserved as the ribosome (Stock et al. 

1999), and the phylogenetic split between the two domains is equally deep for both 

structures, suggesting that both were already present in LUCA (Gogarten et al. 1989; 

Mulkidjanian et al. 2007; Lane et al. 2010). 

However, the idea of a fully chemiosmotic LUCA is questionable, not least of 

which due to the vast differences in membranes described above. First, the proteins 

that pump ions across membranes are sophisticated, albeit no more than the ATPase 

and ribosomes themselves; but unlike these two, no ion pumps seem to be universally 

conserved. The synthetic pathways for both haem and quinones, the major respiratory 

protein cofactors, are in general different between the two domains (Sousa et al. 2013). 

Widespread horizontal gene transfers in prokaryotes obscure the reconstruction of the 

evolutionary history of pumps in the respiratory electron transport chain, but it seems 

likely that both active ion pumping and modern phospholipid membranes evolved 

independently in the two domains. These observations render the idea of a 

chemiosmotic LUCA with an ATP synthase powered by an ion gradient difficult to 

accept, in spite of the universality of this protein. 

A possible resolution is that LUCA exploited geochemically sustained proton 

gradients such as those in alkaline hydrothermal vents (Martin and Russell 2003; 

Sousa et al. 2013). These vents are formed of microporous structures with an alkaline 

interior and a comparatively acidic exterior (Russell et al. 1994; Kelley et al. 2001; 

Martin et al. 2008). It has thus been suggested that the first cells might have arisen in 

this kind of hydrothermal environments (Martin and Russell 2003; Martin and Russell 

2007; Lane et al. 2010; Ducluzeau et al. 2014; Lane 2014). However, the hypothesis 

that natural proton gradients could drive early carbon and energy metabolism faces a 

serious drawback, specifically that the influx of H+ down a concentration gradient in 

the absence of active membrane pumps implies that electrical charges and 

concentration differences will swiftly counterbalance each other. Every positive 

charge (H+) that comes into the cell increases the internal charge and makes the transfer 

of a subsequent charge more difficult, and eventually impossible in terms of net flux, 

i.e., the cell reaches an electrochemical “Donnan” equilibrium (Nicholls and Ferguson 

2013). A possible resolution comes from the power of geochemically sustained proton 

gradients to offset the influx of positive charges from the acidic side (H+) with an 
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influx of negative charges from the alkaline side (OH–) or, similarly, efflux of protons 

into the alkaline side. This power, which could have driven carbon and energy 

metabolism in LUCA, should depend on membrane permeability (Lane and Martin 

2012), but the feasibility of this potential depends on dynamics of ion fluxes that are 

unknown. I have built a model to estimate qualitative differences in free energy (–G) 

across organic membranes of different permeability exposed to geochemically 

generated proton gradients.  

The system was designed as simple protocells lodged in vent pores and exposed 

simultaneously to flows of alkaline vent fluids on one side, and relatively acidic ocean 

waters on the other, giving a continuously replenished pH gradient sustained not by 

biology but by geology (Figure 11). 

 

Figure 11. The model 

A cell with a semi-permeable membrane sits at the interface between an alkaline and 

an acidic fluid. The fluids are continuously replenished and otherwise separated by 

an inorganic barrier. Protons (H+) can flow into the cell from the acidic side (above) 

by simple diffusion across the membrane down their concentration gradient, with 

hydroxide ions (OH–) entering in a similar manner from the alkaline side. Other ions 

(Na+, K+, Cl–, not shown) diffuse similarly, as a function of their permeability, charge, 

and respective internal and external concentrations on each side. Inside the protocell, 

H+ and OH– can neutralise into water, or leave towards either side. Internal pH 

accordingly depends on the water equilibrium and relative influxes of each ion. A 

protein capable of exploiting the natural proton gradient (in green) sits on the acidic 

side, allowing energy assimilation via ATP production, or carbon assimilation via 

CO2 fixation. 
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I here assume that these protocells already had genes and proteins, and that their 

membranes contained a primitive ATPase that relied on geochemically sustained H+ 

gradients. In addition, I consider three other membrane proteins: the energy-converting 

hydrogenase (Ech), an enzyme central to energy metabolism in H2-dependent 

prokaryotes, and potential ancestor of respiratory complex I (Meuer et al. 2002); a 

simple H2-powered proton pump; and a sodium-proton antiporter (SPAP) (Figure 12, 

Ech not shown). 

 

Figure 12. Three proteins considered in the model 

The model starts with an ATP synthase (ATPase) promiscuous to Na+ and H+, as 

observed in methanogens (Schlegel et al. 2012). A generic pump (e.g. Ech operating 

in reverse direction) capable of extruding either H+ or Na+ is added next, followed by 

a 1:1 non-electrogenic sodium-proton antiporter (SPAP), whose effects are analysed 

with and without the presence of the pump. Ech, has a similar behaviour to ATPase 

when operating in the forward direction (not shown), in that it exploits the H+ 

gradient, albeit for CO2 fixation as opposed to ATP production. 

In a number of archaea, Ech uses the proton-motive force to reduce ferredoxin, 

which in turn drives carbon fixation (Buckel and Thauer 2013); I therefore consider 

whether Ech could drive carbon reduction by H2 in geochemically sustained proton 

gradients. In bacteria, Ech operates in reverse as an H2-powered H+ pump (Buckel and 

Thauer 2013), so I take it as a possible analogue of an active ion pump. Finally, I 

consider the effect of a non-electrogenic 1Na+/1H+ antiporter on free-energy 

availability in natural proton gradients. Exchanging Na+ for H+ does not alter 

membrane charge directly, but the difference in permeability of the two ions alters ion 

flux, with significant effects on membrane potential ψ and ultimately free energy  
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–G. The findings allow the drawing of a bioenergetic route map from leaky protocells 

to the first archaea and bacteria, with divergent membranes and pumping mechanisms. 

2.3 Results 

2.3.1 Free-energy availability depends on membrane permeability 

The early oceans may have been mildly acidic, as low as pH 5, while alkaline 

fluids would have been as high as pH 11 or 12 (Martin et al. 2008). I conservatively 

set a 3 pH-unit gradient, with the ocean at pH 7 and alkaline fluids at pH 10. The model 

shows that modern membranes were unviable: protocells with a membrane area 

covered by 1% ATPase embedded in proton-tight phospholipids with glycerol-

phosphate backbones, giving a H+ permeability <10–5 cm/s, equivalent to extant 

archaea and bacteria (Deamer and Bramhall 1986), would collapse the proton 

gradients within seconds (Figures 13A and 13B). Collapse of the gradient was evident 

in proton-tight membranes across a range of gradients (Figure 13B). Following the 

dynamics of the system shows that the reason is as follows: protons enter through the 

ATPase faster than they can exit or be neutralised by OH–, so H+ influx rapidly reaches 

electrochemical equilibrium. In contrast, leaky protocells (equivalent to fatty-acid 

vesicles without glycerol-phosphate backbones) in a 7:10 pH gradient with 1% 

ATPase in the membrane retain nearly all the free energy available (Figure 13A), 

having a –G only ~17% lower than an open system (i.e. a closed cellular system is 

energetically comparable to an open, non-encapsulated system). This is because proton 

flux through the ATPase is ~4 orders of magnitude faster than through the lipid phase, 

even with a high proton permeability of 10–2 cm/s (based on the kinetics of proton-

flux through the ATPase, see Table 3 and Methods in section 2.5). Closed but leaky 

cell-like vesicles within vent pores incur only a small energetic cost (see comparison 

to the open system in Figure 13A), while providing the major advantage of retaining 

useful biomolecules, such as amino acids, nucleotides, or ATP. 
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Figure 13. Dynamics of free-energy change (–ΔG) in cells powered by 

natural proton gradients 

(A) Proton-permeable vesicles (H+ permeability ≥10–4 cm/s) have only a small loss 

of free energy compared with an open system (pH gradient 7:10, 1% ATPase). 

Reduced membrane H+ permeability (<10–4 cm/s), including permeabilities 

equivalent to modern membranes (≤10–5 cm/s), collapse the gradient within seconds. 

(B) At low H+ permeability (10–6 cm/s), –ΔG collapses regardless of gradient size. 

Within seconds, H+ flux through ATPase equilibrates with the acidic ocean. (C) The 

collapse of –G is more extensive the greater the amount of membrane-bound 

ATPase, even with a H+–leaky membrane (10–3 cm/s). (D) With Ech, the collapse of 

the natural gradient is similar to that of the ATPase, showing that natural proton 

gradients can power energy (ATPase) and carbon (Ech) metabolism, given 1-5% 

coverage of enzyme in the membrane. Na+ permeability was kept 6 orders of 

magnitude higher than that of H+ throughout all simulations in this and all figures in 

this chapter. Except in (B), all results were calculated in a pH gradient 7:10. 

Regardless of how leaky to H+ the lipid phase is, the vesicles are sensitive to the 

amount of membrane protein, with higher proportions of ATPase collapsing the 

gradient (Figure 13C). In this case, the rate of H+ entry through ATPase covering 10–

50% of the membrane surface area is substantially faster than the rate of clearance of 

H+ from inside the cell by neutralisation with OH– or extrusion to the alkaline side, 

collapsing –G. However, 1–5% ATPase in a leaky membrane (10–3 cm/s) retains a  

–G of close to 20 kJ/mol (Figures 13A and 13C). With 3–4 protons translocated per 
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ATP synthesised (Table 3), this gives a –G for ATP production of 60 to 80 kJ/mol, 

similar to modern cells and sufficient to drive intermediary biochemistry, including 

aminoacyl adenylation in protein synthesis (Pascal and Boiteau 2011). 

Much the same applies to the Energy-converting hydrogenase (Ech), which in 

the ‘forward’ direction draws on the proton gradient to drive carbon metabolism via 

the reduction of ferredoxin (Buckel and Thauer 2013). As with the ATPase, protocells 

with 1–5% Ech in the membrane retain most of the free energy available from a 7:10 

pH gradient (Figure 13D). Higher concentrations of Ech (10–50%) collapse –G even 

more than the ATPase, as the rate of proton flux through Ech is double that of the 

ATPase, and its surface area is slightly smaller, so there are more proton pores per unit 

surface area (Table 3). Such high concentrations of Ech or ATPase are in any case 

improbable, but they demonstrate the range of conditions in which natural gradients 

can in principle drive carbon and energy metabolism. 

Given a 7:10 pH gradient, it is therefore feasible to have 1–5% Ech and 1–5% 

ATPase in the membrane, driving both carbon and energy metabolism in cells with 

leaky membranes. But incorporation of either G1P or G3P backbones, or racemic 

mixtures of archaeal and bacterial lipids (which, surprisingly, can be as impermeable 

to protons as standard membranes (Shimada and Yamagishi 2011)), is not favoured 

because these backbones would significantly decrease permeability and therefore 

collapse the energetic driving force.  

2.3.2 Pumping across leaky membranes gives no sustained increase in –G 

If leaky protocells with low amounts of ATPase and Ech (1–5%) are viable in 

natural proton gradients, but protocells with phospholipid membranes are not, then the 

evolution of active pumping becomes a paradox: pumping protons across a proton-

permeable membrane does not significantly increase –G, because the protons 

immediately return through the porous membrane. Modelling 1% Ech in the ‘reverse’ 

mode as a primitive H2-powered proton-pump shows that in a 7:10 pH gradient –G 

falls as membrane permeability decreases from 10-2 to 10-6 cm/s (Figure 14A). –G 

here depends on two factors: active pumping and the natural pH gradient. As 

membrane permeability falls, the contribution of the natural pH gradient also falls, 

undermining –G. In contrast, the benefit of pumping increases, as fewer protons 
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return through the lipid phase. The balance between these two factors depends on the 

strength of pumping (which equates to the number of pumps, or % surface area). 

However, even when the pump occupies 5% of the membrane surface area, pumping 

H+ gives no advantage until a modern permeability of 10–5 cm/s, there is no benefit to 

improving permeability across a 1000-fold decrease in permeability (Figure 14A). 

Therefore, there is no selective pressure to drive either the origin of pumping or the 

evolution of modern proton-tight membrane lipids in natural proton gradients. 

Pumping Na+ works better with leaky membranes (Figure 14B), as membranes 

are ~6 orders of magnitude less permeable to sodium than to protons (Deamer and 

Bramhall 1986). However, as with pumping H+, –G drops as the membrane becomes 

less permeable, because the contribution of the natural gradient falls, giving no 

continuous selective advantage to pumping Na+. With a proton permeability <10-5 

cm/s, there is no advantage to pumping Na+ at a pump density of 1–5% surface area 

compared with leaky protocells lacking a pump. Pumping Na+ therefore offers an 

initial advantage, but there is no sustained selective pressure for tightening membrane 

permeability towards modern values. 

Nor is there any advantage in the absence of a natural pH gradient, for example 

in the margins of the vent or when cut off from active flow. (This would also apply to 

the evolution of chemiosmotic coupling in the ‘outside world’ without natural 

gradients.) Under this condition, pumping either H+ (Figure 14C) or Na+ (Figure 14D) 

does offer a steadily amplifying advantage as membrane permeability falls. However, 

without an external pH gradient, –G is well below the 20 kJ/mol required by modern 

cells to drive processes like aminoacyl adenylation for protein synthesis. Cells with 

permeable membranes (10–2–10–4 cm/s) are therefore unlikely to be viable unless 

powered by some other means (Mulkidjanian et al. 2007; Mulkidjanian et al. 2012). 

Hence, in either the presence or absence of pH gradients, there is no sustained selective 

pressure to drive the evolution of either active pumping or modern membranes.  
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Figure 14. Pumping H+ or Na+ does not offer a sustained selective 

advantage 

(A) Pumping H+ in a membrane with 1% ATPase causes a sustained loss in –G as 

membrane H+ permeability decreases, with 1% pump. Even with 5% pump, –G 

does not change over 3 orders of magnitude, and pumping only improves –G near 

modern H+ permeability (≤10–5 cm/s). (B) Pumping the less-permeable Na+ ion is 

initially better, adding to the natural gradient, but the early benefit is lost as 

membranes become tighter, due to the collapse of the natural H+ gradient. In the 

absence of a gradient, pumping both H+ (C) and Na+ (D) offers a sustained advantage 

to tightening up membranes, but given a minimal requirement of around 20 kJ/mol 

for early life (Pascal and Boiteau 2011), the energy attained is not sufficient to power 

intermediary biochemistry. 

2.3.3 Promiscuous H+/Na+ bioenergetics facilitates spread and is prerequisite for 

active pumping 

The model presented here shows that leaky membranes were necessary to 

survive in natural proton gradients, but that pumping protons across such leaky 

membranes was fruitless. Yet free-living cells require ion-tight membranes and active 

pumping for bioenergetics. What drove this evolutionary change?  

The hypothesis put forward here is that a necessary first step was adding Na+ as 

an additional ‘promiscuous’ coupling ion. A non-electrogenic sodium-proton 

antiporter (SPAP), found widely in cells of all three domains of life, could in principle 
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use a natural H+ gradient to generate a biochemical Na+ gradient. Because lipid 

membranes are ~6 orders of magnitude less permeable to Na+ than to H+, fewer Na+ 

ions can pass through the lipid phase of the membrane (Deamer and Bramhall 1986), 

so the Na+ gradient does not dissipate as quickly. As a result, Na+ flux becomes more 

tightly funnelled through membrane proteins, improving the coupling of the 

membrane without changing its chemistry (Lane and Martin 2012). Because the H+ 

gradient is sustained geochemically, SPAP simply adds a Na+ gradient to the natural 

H+ gradient. Taking advantage of mixed Na+/H+ gradients requires promiscuity of 

membrane proteins for both ions (Figure 12), which is indeed the case for several 

contemporary bioenergetic proteins in methanogens, including the ATPase (Schlegel 

et al. 2012) and Ech (Buckel and Thauer 2013). 

SPAP increases proton influx, initially lowering –G (Figure 15A). However, 

the coupled extrusion of the relatively impermeable Na+ ions ultimately increases  

–G by ~60% within minutes in a 7:10 gradient, saturating when SPAP covers 5% of 

the membrane surface area (Figure 15A). Importantly, the free energy available from 

pH gradients declines in more acidic conditions. –G is greatest with a 7:10 gradient, 

lower at 6:9, and nearly zero with a 5:8 gradient, despite the three-order-of-magnitude 

correspondence (Figure 15B). This asymmetry arises because the pH scale is neither 

linear nor symmetrical (except around pH 7), and H+ and OH– flux through the 

membrane depend on concentrations as well as gradient sizes (Hodgkin and Katz 

1949). At a pH 5-8 gradient, H+ concentration is 10-5 in the acidic side, while OH– 

concentration in the alkaline side is 10-6; that is, in terms of concentrations the gradient 

is 10:1 in favour of H+. Conversely, in an apparently equally sized 6-9 gradient, the 

situation is reversed, with the H+ concentration being 10 times smaller than that of 

OH–. 

Comparatively high acidity and low alkalinity increases H+ influx but hinders 

OH– neutralisation, collapsing the H+ gradient. Because Na+ extrusion through SPAP 

depends on the natural H+ gradient, SPAP increases –G in relatively alkaline regions 

(pH 7–10 and 6–9) but has little effect on –G in more acidic regions (pH 5–8), making 

acidic regions less favourable for colonisation, even with SPAP. When the rate of H+ 

influx does not collapse the proton gradient, SPAP significantly increases –G, 

allowing survival in shallower pH gradients (Figure 15C). Taking –G > 20 kJ/mol as 
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a marker for survival, 10% SPAP allows protocell viability to extend over 10-fold 

weaker gradients (i.e. 7:9 and 8:10; Figure 15C), a significant ecological advantage. 

In the context of hydrothermal vents, SPAP may have facilitated the colonisation of 

other parts of the same vent or possibly contiguous vents that had a weaker gradient. 

 

Figure 15. SPAP significantly increases free energy 

(A) Because external Na+ concentration (0.4 M) is higher than H+ concentration  

(10–7 M), SPAP initially collapses –G, and it takes minutes for the 1:1 H+:Na+ 

exchange to increase –G significantly; eventually it renders an increase of ~60%. 

(B) The greatest increases are attained in relatively alkaline pH 7:10 environments, 

saturating as % surface area rises. Despite equivalent gradient sizes, the absolute 

difference in H+ and OH– concentrations means a 6:9 gradient gives a lower –G, as 

the rate of H+ influx is greater while neutralising OH– influx is lower. A 5:8 gradient 

undermines –G further, with or without SPAP. (C) SPAP facilitates colonisation of 

environments with weaker proton gradients. 1% SPAP pushes –G above 20 kJ/mol 

in a 7.5:10 gradient, whereas 10% SPAP salvages an otherwise unviable 8:10 

gradient. All simulations with 1% promiscuous ATPase, no pump, no Ech, and H+ 

permeability 10–3 cm/s. 

Crucially, SPAP is also a necessary preadaptation for the active pumping of 

protons, and for decreasing membrane permeability towards modern values. Whereas 

pumping H+ in the absence of SPAP gives no sustained benefit to decreasing 

permeability in terms of –G, the presence of SPAP in a leaky membrane allows 

pumping of H+ to pay dividends. –G now markedly increases with decreasing 

permeability (Figure 16A), for the first time giving a sustained selective advantage to 

tighter membranes. Again, –G depends on the power of the pump, which varies with 

the proportion of surface area covered. As in the absence of SPAP, –G depends on 

two factors: active pumping and the natural pH gradient. As membrane permeability 

falls, the contribution of the natural pH gradient also falls, undermining –G. But in 

the presence of SPAP, 5% H+ pump gives a steadily amplifying advantage to lowering 

membrane permeability, whereas 1% pump cannot sustain –G when the contribution 
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of the gradient is lost. Much the same applies to pumping Na+, even with 5% pump 

(Figure 16B). As in the absence of SPAP, the lower permeability of Na+ gives an initial 

benefit to pumping this ion, but this is lost as the membrane becomes tighter. The 

lower efficacy of pumping Na+ relates to the much higher external concentration of 

Na+: protons are being pumped against a 10–7 mol/L concentration, while the external 

Na+ concentration is over six orders of magnitude higher at 0.4 mol/L.  

With active pumping, tighter membranes, and SPAP, cells could colonise more 

acidic regions (Figure 16A) with weaker gradients (Figure 16C) and ultimately survive 

in the absence of a gradient altogether (Figure 16D). With no external pH gradient, 

SPAP interconverts efficiently between H+ and Na+, making it feasible to pump either 

ion (Figure 16D). These cells are now modern in that they have a fully functional 

chemiosmotic circuit and proton-tight membranes, and hence could evolve the traits 

required to leave the natural gradients provided by vents. The idea put forward here is 

that this process occurred independently in divergent populations that had spread 

widely using SPAP and colonised regions with weaker gradients (see Discussion in 

section 2.4). These independent populations subsequently evolved into the two main 

branches of early life, the archaea and the bacteria. 
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Figure 16. SPAP gives a sustained benefit to pumping, favouring tighter 

membranes and allowing free living 

(A) Transition from highly H+–permeable gradient-powered systems on the left to 

pump-powered with low H+ permeability on the right. As in Figure 15B, relatively 

acidic environments (5:8) fail to replenish OH– from the natural gradient at high 

permeability (10–2 cm/s). Tightening the membrane facilitates pumping but collapses 

the natural gradient, so the 5:8 system gains more at intermediate permeability (~10–4 

cm/s). With tighter membranes (10–6 cm/s) the cell is powered by its own pumping 

machinery. The opposing H+ concentration is greater at 5:8, making it harder to pump 

against than in 6:9 or 7:10 gradients. (B) As seen in A, 5% H+ pump provides 

sufficient power to make the sustained improvement of membranes advantageous. 

Conversely, 1% pump is insufficient either with H+ or Na+. 5% Na+ pumping remains 

above the minimum 20 kJ/mol threshold, but the advantage to decreasing 

permeability is not sustained. Since SPAP interconverts between Na+ and H+ 

gradients, lowering the size of the gradient (C) reduces the difference between 

pumping H+ and Na+, ultimately making it equivalent to pump either ion in the 

absence of a gradient (D). Cells could not survive without a gradient unless relatively 

tight membranes are already in place, as –G falls well below 20 kJ/mol. All 

simulations assume 1% ATPase and no Ech. Legend in B is common to C and D. 

2.4 Discussion 

The model presented in this chapter puts forward a resolution to the long-

standing paradox of universal membrane bioenergetics but fundamentally different 

membranes (Lane and Martin 2012). In so doing, the model gives a striking insight 
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into the deep evolutionary split between archaea and bacteria. It reveals that the late 

and divergent evolution of impermeable membranes arises as a simple outcome of the 

exploitation by a protocellv of natural proton gradients, such as those found in alkaline 

hydrothermal vents. These vents function as electrochemical flow reactors and, in the 

anoxic waters of the Hadean and Archean, provided suitable conditions for abiotic 

synthesis (Amend and McCollom 2009) and concentration (Baaske et al. 2007) of 

organics at the origin of life. Here I have assumed that protocells contained DNA, 

RNA, and proteins, but not modern membranes (yet they were still cellular in nature, 

having an organic boundary, albeit leaky to H+). The model shows that, given the 

membrane proteins Ech and ATPase, natural proton gradients can in principle sustain 

both carbon and energy metabolism (Figures 13C and 13D). However, only leaky 

protocells with membrane H+ permeability equivalent to fatty-acid vesicles can escape 

electrochemical equilibrium in natural proton gradients (Figure 13A). The results 

show that pumping either H+ or Na+ over leaky membranes gives no sustained 

advantage to decreasing permeability, even when this decrease is 1000-fold (Figure 

14A). Early protocells, up to LUCA, could have been sophisticated in terms of genes 

and proteins, but the evolution of modern phospholipid membranes was a later 

development in evolutionary history. 

The actual permeability of fatty-acid vesicles and modern phospholipid 

membranes is difficult to determine experimentally, as H+ permeability depends in part 

on the permeability of counter-ions, and therefore varies with the composition of 

solutions used in measurements. Values of liposome permeability range from 10–4 

cm/s (Deamer and Nichols 1983) to 10–10 cm/s (Nozaki and Tanford 1981; van de 

Vossenberg et al. 1995), with a consensus favouring a value of around 10–4–10–6 cm/s 

(Deamer and Bramhall 1986). The proton permeability of fatty acids is higher, but 

again hard to constrain. The values used here (10–2–10–3 cm/s for fatty-acid vesicles 

and ≤10–5 cm/s for modern phospholipid membranes) are necessarily approximate. But 

the argument relates to the principle of energy transduction in geochemical proton 

gradients and not to the specific values used for either membrane permeability or 

                                                 
v Here, a protocell is defined as a fully independent entity with a membrane and membrane proteins. 

However, the membranes are unlike those of modern cells, and the topology has the protocell embedded in 

a mixed microfluidic system with different pH levels at each of two sides, unlike any known modern cell. 
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enzyme kinetics (which also affect permeability). The key point is that leaky 

membranes were essential to transduce natural proton gradients in LUCA, and there 

was no advantage to be gained by the evolution of proton-tight membranes. 

Specifically, this means that glycerol-phosphate backbones, which would drastically 

decrease permeability, were a late addition to cell membranes. 

Here I have suggested that the evolution of a sodium-proton antiporter (SPAP) 

was the key innovation that transformed the selective landscape before the evolution 

of pumping and modern membranes became consistently advantageous. SPAP adds a 

Na+ gradient to the geochemically sustained H+ gradient. As even proton-leaky lipid 

membranes are relatively impermeable to Na+, these ions preferentially flow back 

through membrane proteins as opposed to the membrane itself, and thereby increase 

free-energy availability by up to 60% (Figure 15A). This enabled protocells to survive 

in 10-fold lower gradients (Figure 15C), facilitating the spread and divergence of 

protocell populations within vents. In addition, and for the first time, SPAP gave an 

advantage to actively pumping protons even across a leaky membrane (Figure 16A). 

This advantage amplified steadily as membrane permeability decreased, all the way 

towards values for largely impermeable modern membranes (Figure 16A). 

This would imply that the SPAP is ancestral and must have been present in 

LUCA. Preliminary phylogenetic analysis is consistent with this prediction. BLAST 

(Altschul et al. 1990) results, presented in Table 2, show a significant match for 

archaeon Methanococcus jannaschii’s Mj1275 SPAP to an equivalent or very closely 

related protein in at least one member of 31 out of all 35 prokaryotic phyla known to 

the date of this analysis. 

 

 

 

 

 



 75 

Table 2. BLAST search results for matches of the archaeal M. jannaschii Mj1275 SPAP to 

at least one member of each of the 35 prokaryotic phyla known at the time of this analysis 

Results show matches of M. jannaschii SPAP gene Mj1275 to an equivalent or very closely related 

protein in at least one member of 31 out of all 35 known prokaryotic phyla. One archaeal 

(Nanoarchaeota) and three bacterial (Caldiserica, Dictyoglomi, Armatimonadetes) clades failed to give 

a match to a SPAP. These four are to date single-member phyla whose only known species may have 

either lost the gene over time, had it diverge beyond observable similarity to the M. jannaschii 

orthologue, or not have been fully annotated to date. Two further bacterial clades (Thermotogae and 

Tenericutes) do contain an Mj1275-matching SPAP gene, but the result has an E-value considerably 

larger than 10–10, a conservative cut-off for deep phylogenetics (Sousa et al. 2013). Both phyla also had 

a single member species at the time of this analysis. 

Phylum G.I. Description %id S E 

Archaea 
     

Euryarchaeota* 294496655 sodium/proton-potassium antiporter 30.57 157 3.00e-42 

Thaumarchaeota 563488844 putative Na(+)/H(+) antiporter 28.72 146 2.00e-39 

Korarchaeota 170290145 sodium/hydrogen exchanger 25.44 91.7 1.00e-21 

Chrenarchaeota 352683176 Na(+)/H(+) antiporter 27.85 95.9 2.00e-21 

Nanoarchaeota† 490715315 Type II restriction enzyme, methylase 

subunit 

25.37 29.3 0.15 

Bacteria 
     

Cyanobacteria 515885330 hypothetical protein. Sodium/hydrogen 

exchanger family 

30.59 168 7.00e-45 

Firmicutes 15893735 Na/H antiporter NapA 33.51 160 2.00e-42 

Bacteroidetes-Chlorobi 548235349 putative uncharacterised protein. 

Sodium/hydrogen exchanger family 

30.34 149 1.00e-37 

β-Proteobacteria 490375968 Na+/H+ antiporter 28.12 140 2.00e-37 

δ-Proteobacteria 493978264 Kef-type K+ transport system, membrane 

component. Sodium/hydrogen exchanger 

family 

27.89 135 3.00e-34 

Deinococcus-Thermus 297624885 sodium/hydrogen exchanger 28.00 130 2.00e-32 

Chloroflexi 156742237 sodium/hydrogen exchanger 26.67 122 9.00e-31 

Spirochaetes 517350815 hypothetical protein. Sodium/hydrogen 

exchanger family 

27.13 125 1.00e-29 

ε-Proteobacteria 390940331 Kef-type K+ transport system membrane 

protein.  Sodium/hydrogen exchanger 

family 

28.75 122 1.00e-29 

Aquificae 225849059 Na+:H+ antiporter, NhaA family 27.66 115 6.00e-29 

Elusimicrobia 189485528 NapA type Na+/H+ antiporter 27.55 111 1.00e-28 

Fibrobacteres-

Acidobacteria 

522212591 hypothetical protein. Sodium/hydrogen 

exchanger family 

25.68 114 5.00e-28 

γ-Proteobacteria 495083969 sodium/hydrogen exchanger 27.79 120 6.00e-28 

Fusobacteria 310779803 sodium/hydrogen exchanger 27.35 116 2.00e-27 

Nitrospirae 206891081 Na/H+ antiporter 28.23 110 3.00e-27 

Thermodesulfobacteria 551229848 sodium:proton antiporter 26.72 106 3.00e-26 

Chlamydiae-

Verrucomicrobia 

494656847 sodium/hydrogen exchanger 26.08 109 4.00e-26 

Synergistetes 357419296 transporter, CPA2 family. Sodium/hydrogen 

exchanger family 

27.34 108 2.00e-25 
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Actinobacteria 501185687 putative Na+/H+ antiporter CPA2 family 26.67 112 5.00e-25 

Planctomycetes 283779895 sodium/hydrogen exchanger 25.18 102 2.00e-23 

Chrysiogenetes 317050984 sodium/hydrogen exchanger 26.08 94.7 1.00e-22 

α-Proteobacteria 334343506 sodium/hydrogen exchanger 27.88 100 8.00e-22 

Deferribacteres 555548272 hypothetical protein. Sodium/hydrogen 

exchanger family 

28.20 90.5 2.00e-20 

Gemmatimonadetes 226226447 putative sodium/hydrogen transporter 25.92 68.9 2.00e-13 

Nitrospinae 491148743 Kef-type potassium transporter 25.07 60.5 2.00e-10 

Thermotogae‡ 389842970 NhaP-type Na+(K+)/H+ antiporter 24.80 35.0 0.061 

Tenericutes‡ 493942442 na(+)/h(+) antiporter 24.81 36.2 0.069 

Caldiserica† 383788853 putative formate dehydrogenase subunit 

alpha 

22.38 30.8 0.073 

Dictyoglomi† 206901223 glycyl-tRNA synthetase, beta subunit 37.21 30.0 0.29 

Armatimonadetes† 512551780 NADH dehydrogenase subunit M 32.35 28.5 0.93 

Only the highest-scoring sequence for each clade is shown. 

Phylum: each of the 35 known prokaryotic phyla, considering each of the proteobacteria separately. 

G.I.: unique NCBI/GenBank sequence identification number. 

Description: a brief summary of the annotation for the highest-matching protein found in the search. 

%id: the percentage identity of the sequence to Mj1275. 

E: a measure of the likelihood of finding such a match with score S by chance, in the given database. 

S: the “bit score”. A measure of the quality of the alignment and match between the sequences. 

* Euryarchaeota excluding the Methanococcus genus. 
† Grayed-out phyla produced unsuccessful results. 
‡ These phyla produced a match to a SPAP, but the result is below the threshold of significance (E≤10–10). 

 

These results provide support to the suggestion of the universality of SPAP in 

spite of the stark dissimilarity in membranes, and pave the way for closer phylogenetic 

analysis of these antiporters as well as other related proteins. 

The early operation of SPAP should have had the effect of lowering the 

intracellular Na+ content substantially below the environmental concentration. The 

operation of Na+ and K+ antiporters, driven by natural proton gradients, could in 

principle have modulated intracellular ionic composition to the low-Na+–high-K+ 

characteristic of most modern cells, leading to selective optimisation of protein 

function without the need for a specific terrestrial environment with a particular ionic 

balance (Mulkidjanian et al. 2012). 

In conclusion, these findings suggest that the membranes of LUCA were 

necessarily leaky, composed of simple amphiphiles, possibly fatty acids, which readily 

dissipate H+ gradients by flip-flop (spinning of a protonated acid from the more acidic 

side into the opposite, more alkaline side, where the proton is released). Importantly, 

these ancestral membranes lacked glycerol-phosphate backbones (Figure 17). 
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Figure 17. A proposed permeable ancestral fatty acid bilayer (left) and a 

modern impermeable phospholipid bilayer (right) 

Fatty acid vesicles, left, are much more permeable than modern phospholipid 

bilayers, right, due to the presence of the glycerol-phosphate backbones in the latter 

(green spheres on the right). 

Fatty-acid vesicles have long been considered plausible protocells because of 

their simplicity, stability and dynamic ability to grow (Hanczyc et al. 2003; Mansy et 

al. 2008; Budin et al. 2009), but are generally thought unsuitable for chemiosmotic 

coupling due to their high proton permeability (Deamer and Weber 2010; 

Mulkidjanian et al. 2012). Leaky membranes have therefore generally been interpreted 

in terms of heterotrophic origins of life (Deamer 2008). In contrast, the results 

presented here show that high proton permeability was in fact indispensable to drive 

both carbon and energy metabolism in natural proton gradients, consistent with an 

autotrophic origin of life. This requirement for leaky membranes in turn delayed the 

early evolution of glycerol-phosphate backbones and modern phospholipid 

membranes (Figure 18). The results of the model offer a selective basis for the 

universality of membrane bioenergetics and the ATPase, while helping to elucidate 

the paradoxical differences in membranes and active ion pumps. The deep disparity 

between archaea and bacteria in carbon and energy metabolism, and in membrane lipid 

stereochemistry, reflects two independent origins of active pumping in divergent 

populations (Figure 18). The core proteins involved – Ech and SPAP – are predicted 

to be central to membrane bioenergetics in archaea and bacteria, and indeed both are 

integral to respiratory complex I (Hedderich 2004; Sazanov and Hinchliffe 2006; 

Marreiros et al. 2013). Since the bacterial replicon is attached to the membrane during 

cell division (Jacob et al. 1966), the deep split between archaeal and bacterial DNA 

replication (Leipe et al. 1999) may also be linked to the late origin of phospholipid 

membranes, for these bioenergetic reasons. 
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Figure 18. Divergence of archaea and bacteria 

(A) Ions cross the membrane in response to concentration gradients and electrical 

potential. OH– neutralises incoming protons. The H+ gradient drives energy 

metabolism via ATPase, and carbon metabolism via Ech (not shown). (B) SPAP 

generates a Na+ gradient from the H+ gradient. As Na+ is less permeable than H+, 

SPAP improves coupling, given promiscuity of membrane proteins for H+ and Na+. 

(C) Membrane pumps generate gradients by extruding H+ or Na+ ions. (D) Exploiting 

natural gradients demands high membrane permeability, but pumping with SPAP 

drives the evolution of tighter membranes, facilitating colonisation of less alkaline 

environments. (E) Impermeable membranes funnel ion flow through bioenergetic 

proteins, independent of natural gradients. (F) From bottom up, SPAP favours 

divergence, selection for active pumping and tighter membranes. Pumping and 

phospholipid membranes arose independently in archaea and bacteria. 

2.5 Methods 

2.5.1 General description of the model 

Protocells were modelled as half-embedded in the alkaline fluid, with the other 

half exposed to the comparatively acidic ocean. This produced an inward proton 

gradient from the acidic side, sustained by the constant replenishment of alkaline fluids 

and ocean water, which could be exploited by membrane proteins for carbon and 

energy metabolism. Equation [1] describes the various ways in which protons could 
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enter or leave the protocell at every time step: by simple diffusion across the membrane 

on either side, and through any of the membrane proteins, namely the ATPase, SPAP, 

pump, or Ech. 

NH = NH(ocean) + NH(vent) + NH(ATPase) + NH(SPAP) + NH(pump) + NH(Ech) [1] 

where NH represents the total number of protons that enter or leave the protocell 

in a given time step, and each of the NH(i) represent the number of protons that enter 

through a given surface or protein in that time step. Positive N values imply an influx 

of protons, whereas a negative N implies protons are leaving the protocell. Time was 

modelled as a discrete succession of such time steps. 

Total concentrations were calculated at every time step by neutralisation and 

equilibration to the dissociation constant of water. External concentrations were 

assumed to be constant, as a result of continuous hydrothermal flow and convection in 

the ocean. Analogous equations were used for all other ions (OH–, K+, Na+, Cl–). Table 

3 describes the parameters chosen for the results presented in the text, unless otherwise 

stated above. 

Table 3. Parameters in the model and references 

Parameter Value Comment Reference 

Concentrations* [M]   

H+
ocean 10-7 pH 7. May have been as low as pH 5 (Arndt and Nisbet 2012) 

H+
vent 10-10 pH 10. Can be as high as pH 11 at 

present 

(Arndt and Nisbet 2012) 

Na+ 0.4 Could have been as high as 0.8 M (Pinti 2005) 

K+ 0.01 Could have been as high as 0.02 M (Pinti 2005) 

Cl– 0.41 Chosen to balance out the 

concentrations of Na+ and K+ 

(Pinti 2005) 

H2 0.015 Can be as high as 0.02 M (Proskurowski et al. 

2006) 

Permeabilities†  [cm/s]   

H+ 10–3 Default value unless otherwise noted (Deamer and Bramhall 

1986) 

OH– 10–3 Assumed equal to H+ (Deamer and Bramhall 

1986) 

Na+ 10–9 In general kept six orders of magnitude 

less permeable than H+ throughout 

(Deamer and Bramhall 

1986) 

K+ 10–9 Assumed equally permeable to Na+ (Deamer and Bramhall 

1986; Deamer and 

Dworkin 2005) 

Cl– 10–7 In general, two orders of magnitude 

more permeable than Na+ 

(Nichols and Deamer 

1980) 
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Turnover rates  [s-1]   

ATPase 270 Parameterised from mitochondria (Etzold et al. 1997; 

Yoshida et al. 2001) 

Ech 700 Parameterised from a soluble NiFe 

hydrogenase 

(Liebgott et al. 2010) 

SPAP 1500 Parameterised from E. coli’s NhaA 

SPAP 

(Hunte et al. 2005) 

Pump 200 Parameterised from mitochondrial 

Complex I 

 

 

(Vinogradov 1998) 

Surface areas [m2]   

ATPase Fo subunit 4·10-17 Estimated from PDB entry: 1C17 (Stock et al. 1999; 

Yoshida et al. 2001) 

Ech 3·10-17 Relevant subunits of Complex I, 

estimated from PDB:4HEA  

(Baradaran et al. 2013; 

Marreiros et al. 2013) 

SPAP 1.5·10-17 Estimated from PDB:1ZCD (Hunte et al. 2005) 

Pump 3·10-17 Assumed to be similar to Ech  

Others     

H+ per ATP 3.33 This many H+ enter the ATPase in the 

synthesis of 1 ATP 

(Ferguson 2010; Nicholls 

and Ferguson 2013) 

Protocell diameter 1 μm Small diameter of E. coli (Moran et al. 2010) 

Temperature 298.15 K Standard temperature  

Embedment 50% Protocell is exactly half-embedded in 

the alkaline side 

 

* Excluding H+ and OH–, all concentrations were assumed equal in the alkaline and acidic sides. 
† In all simulations Na+ and Cl– permeabilities were kept respectively six and four orders of magnitude lower 

than the permeability of H+. 

 

It is reasonable to suppose that enzymes would not have reached their current 

reaction-rate values at the early stages of evolution considered here, so for the results 

presented above I consistently used 10% of the current turnover rates referenced in 

Table 3. A series of results using modern (100%) turnover rates are presented in Figure 

19 for comparison. 
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Figure 19. Modern (100%) turnover rates are comparable to the 10% 

rates used elsewhere 

Membrane proteins were assumed to have lower turnover rates than in current cells, 

so their parameterised turnover rates were kept at 10% of modern values (see Table 

3). The figure shows that with ATPase, SPAP and pump operating at modern speeds, 

the behaviour is similar to that operating at 10%. Rates of 50% give intermediate 

results. Parameters: 5% pump, 1% ATPase, 1% SPAP, pH gradient 7:10. 

Flux through the membrane 

Membrane flux JS of a neutral substance S was modelled using a traditional passive 

diffusion equation (Lodish et al. 2000) 

JS = PSA([S]ext − [S]int) [2] 

where PS is the permeability of the substance, A is the area of the membrane and 

[S]ext/int are the external/internal concentrations. To account for the effect of membrane 

potential ψ on the behaviour of charged particles, ion diffusion was modelled using 

the Goldman-Hodgkin-Katz flux equation (Goldman 1943; Hodgkin and Katz 1949) 

JS = PSzs
2

Δψ F

RT
 
[S]int − [S]ext e−

zS Δψ F
RT

1 − e−
zS Δψ F

RT

 [3] 
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where zs is the charge of the substance, F and R are the Faraday and gas constants, 

respectively, and T is the temperature. Electrical membrane potential ψ was in turn 

modelled using the Goldman-Hodgkin-Katz voltage equation (Goldman 1943; 

Hodgkin and Katz 1949) 

Δψ =
RT

F
ln (

∑ Pcation[cation]ext + ∑ Panion[anion]int

∑ Pcation[cation]int + ∑ Panion[anion]ext
) [4] 

for the permeability and concentration of each ion present. 

Internal protons and hydroxide were equilibrated using the dissociation constant of 

water (Kw = 10–14). 

2.5.2 Free energy (–G) calculations 

The available free energy –G from the H+ gradient was modelled with the equations 

used by Mitchell (1961) 

ΔGH+ = −F Δψ + RT ln (
[H+]int

[H+]ext
) [5] 

An analogous equation was used for the Na+ gradient. In this way, the natural 

H+ gradient serves the role that redox potential serves in modern chemiosmotic cells, 

e.g. in oxygen-respiring mitochondria. Namely, in mitochondria the electrochemical 

gradient is maintained by the oxidation of reduced substrates (Figure 6). Conversely, 

the geochemical disequilibrium between the volcanic acidic ocean and the 

serpentinising Earth crust sustained the imbalance in the alkaline hydrothermal vent. 

The power of ATP to catalyse biochemical reactions in the cell comes not 

specifically from hydrolysis of the molecule itself, but from the degree to which the 

ATP/ADP ratio is shifted from thermodynamic equilibrium (Nicholls and Ferguson 

2013); that is, the energy available from ATP hydrolysis varies with the ATP/ADP 

ratio. The equilibrium constant and consequently the energy required for ATP 

synthesis depends on the concentrations of ADP, phosphate, and magnesium ion, as 

well as pH (Mitchell 1961; Nicholls and Ferguson 2013), but with the exception of pH 

these values are unknown for the systems modelled, as are the rates of ATP hydrolysis. 

I have therefore used equation [5] to calculate the size of the electrochemical gradient 

(–G) as a function of the H+ and Na+ gradients and the electrical membrane potential 
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(ψ). The steady-state –G in turn gives an indication of how far from equilibrium the 

ATP/ADP ratio could be pushed. With 3-4 protons translocated per ATP, a steady-

state –G of 20 kJ/mol is large enough to drive the ATP/ADP ratio to a disequilibrium 

of 10 orders of magnitude, equivalent to that found in modern cells (Nicholls and 

Ferguson 2013). 

Steady-state –G was calculated as a function of the size of the H+ and Na+ 

gradients and the electrical membrane potential (ψ) between the ocean and the inside 

of the cell. These factors in turn depend on steady-state rates of proton flux into and 

out of the cell via the lipid phase of the membrane (specified by its H+ and Na+ 

permeability and surface area) and through the ATPase. I calculated the maximum flux 

of H+ or Na+ through the ATPase based on the maximum possible number of ions 

translocated per second. Maximum ion flux is based on the reported maximum 

turnover rate of ATPase (Table 3), i.e. the maximum number of ATP molecules that 

each ATPase unit can synthesise in one second when operating at top speed, multiplied 

by 3.3, the number of H+ or Na+ required to synthesise 1 ATP (Table 3). This number 

was then multiplied by the number of ATPase units in the system, estimated from the 

membrane surface area assigned to this protein in each simulation (e.g. 1%, 5%, etc.) 

and the reported surface area of the membrane-integral FO subunit (Table 3). 

I further assumed that the actual flux rate of H+ and Na+ through the ATPase 

would also depend on the driving force itself, –G, i.e. the size of the H+/Na+ gradient 

and the electrical membrane potential (ψ). The ATPase was assumed to obey 

hyperbolic Michaelis-Menten dynamics, commonly the case in enzyme kinetics 

(Alberts et al. 2007) and reported for the ATPase (Hammes and Hilborn 1971), such 

that H+/Na+ flux asymptotically approaches the maximum turnover rate when the 

driving force is large, again assuming that flux rate is unconstrained by ADP 

availability. Increasing –G beyond a threshold cannot increase H+/Na+ flux beyond 

the maximum turnover rate, so flux rate must saturate. The hyperbolic curve was 

modelled to reach saturation slightly beyond 20 kJ/mol, a gradient large enough to 

drive the ATP/ADP ratio to 10 orders of magnitude disequilibrium in modern cells 

(Nicholls and Ferguson 2013) and equivalent to a membrane potential of around 200 

mV, close to a maximum for modern lipid membranes, given the low capacitance of 

thin lipid membranes. This number, between zero and one, was finally multiplied by 
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the maximum flux of H+ or Na+, described above, to determine the influx of each of 

the two ions through the ATPase. When added to H+/Na+ flux rates across the lipid 

phase, the steady-state H+/Na+ flux through the ATPase gave a steady-state –G 

available to drive ATP synthesis. 

Full promiscuity of the ATPase to Na+ and H+ was assumed, with preference of 

one ion over the other depending solely on their respective gradient sizes. The energy-

converting hydrogenase (Ech) was modelled similarly. 

2.5.3 Modelling the sodium-proton antiporter (SPAP) and pump 

SPAP was modelled to respond to the H+ and Na+ gradients, exchanging ions in 

the direction determined by the larger of the two gradients. ψ was assumed to affect 

SPAP speed but not direction (Bassilana et al. 1984). Since the H+ gradient is reversed 

on the alkaline side, I assumed that gene expression controls allowed the ATPase, 

SPAP, and Ech to operate only on the acidic side. 

The pump was modelled as a generic system able to extrude either H+ or Na+, 

dependent on the concentration of hydrogen gas (H2), and responding to the difference 

in concentrations of the respective ion, thereby making it easier to pump protons 

against a comparatively alkaline fluid, and more difficult against a comparatively 

acidic fluid. 

2.5.4 Source Code 

A running example of the code can be downloaded and ran locally from  

http://github.com/UCL/membranedivergence 

This code can be run directly from any typical computer with a regular web 

browser (e.g. Chrome, Firefox, Safari, or Internet Explorer). 

2.5.5 BLAST searches 

The primary amino acid sequence of the M. jannaschii Mj1275 Na+/H+ 

antiporter (SPAP) was obtained from the NCBI protein sequence database. Mj1275 is 

one of three known SPAP genes in archaeon M. jannaschii (Hellmer et al. 2002), the 

other two being Mj0057 and Mj1521. The first belongs to the NapA family, while the 

latter two are in the NhaP family. Phylogenetic analysis was performed on these three 

http://github.com/UCL/membranedivergence
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genes as well as the two common E. coli SPAP genes, NhaA and NhaB (Taglicht et 

al. 1991; Taglicht et al. 1993), using the NCBI-BLASTp server (Altschul et al. 1990) 

with standard parameters, filtering for each prokaryotic phylum (considering each of 

the proteobacteria as a separate clade). Results for Mj1275 showed the highest hit rate, 

possibly hinting that it is closest to the ancestral form of the SPAP. However, this is 

only a preliminary result that ignores the possibility of horizontal gene transfers, and 

it will require more detailed analysis in the future. 

2.6 Appendix: The evolution of haem synthesis 

Haem (or heme) is a crucial prosthetic group of many respiratory and 

photosynthetic proteins across all three domains, so as an initial step in the study of 

the early evolution of pumping as part of this work I analysed the distribution of the 

enzymes involved in the synthesis of this porphyrin group. I used the Microbial 

Genome Database for Comparative Analysis (MBGD) (Uchiyama 2003; Uchiyama 

2007; Uchiyama et al. 2010) which allows the simultaneous comparison of multiple 

species for the presence or absence of genes. 

Storbeck et al. (2010) suggested that the pathway is shared by archaea and 

bacteria up to the synthesis of uroporphyrinogen (urogen) III, a molecule that is itself 

involved in the synthesis of chlorophylls, cobalamin (vitamin B12), sirohaem, haem, 

haem d1, and coenzyme F430. The synthesis of urogen-III is catalysed by the enzyme 

uroporphyrinogen III synthase (UROS), a product of the gene hemD. From there, many 

archaea, as well as sulphate-reducing bacteria such as Desulfovibrio vulgaris, have a 

separate synthetic pathway. I analysed Storbeck et al.’s results and expanded them to 

include a large number of archaea. Table 4 presents the results of this analysis. 
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Table 4. Presence or absence of traditional (bacterial and eukaryotic) haem-synthesis genes 

in archaea 

The first three columns correspond to bacterial species, used for comparison. E. coli and P. aeruginosa 

represent the “classical” pathway in most bacteria (and eukaryotes), while D. vulgaris exemplifies the 

sulphate-reducing bacteria, which lack the post-urogen genes. The remaining 97 columns, separated by 

a leading empty column, are archaea. Please note that the table has been divided into three consecutive 

blocks for reasons of space. Green: gene is present, Red: absent. 
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Pre-Urogen                                                          

hemA                             82 
hemL                             82 
hemB                             82 
hemC                             82 
hemD                             80 

Post-Urogen                              

hemE                             16 
hemF                             0 
hemN                             0 
hemFNX*                             7 
hemGX                             4 
hemY                             0 
hemH                             7 
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The table shows a clear divide in the pre-urogen and post-urogen enzymes 

between archaea and traditional bacteria, confirming the results of Storbeck et al. 

(2010). A few cases, most trivially attributable to horizontal gene transfers, show the 

potential synthesis of haem in some archaea via the “classical” bacterial pathway, but 

the post-urogen genes are largely missing otherwise. Predictably, the pre-urogen genes 

were present in LUCA, and had a role there unrelated to haem synthesis (e.g. 

cobalamin synthesis); consistent with the prediction of the model presented in this 

chapter, archaea and bacteria developed haem-associated pumps independently. 

The ultimate goal of this project was to research the predicted independent origin 

of pumping in archaea and bacteria, specifically the origin of quinones and 

cytochromes; however, a project similar to this had been started earlier and in parallel 

in another lab, and was published in the meantime (Sousa et al. 2013). Indeed, Sousa 

et al. (2013) report that quinones show a similar pattern (in spite of a number of 

horizontal gene transfers), and conclude that pumping via electron transport chains 

with quinones and cytochromes, although admittedly ancient, evolved after the 

divergence of methanogens and acetogens, which they see as the earliest ancestors of 

all modern day archaea and bacteria, respectively. 
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3 THE EVOLUTION OF HOMOCHIRALITY 

Note: large fragments of this chapter are adapted directly from the original research article 

“On the biogenic origins of homochirality”, published in the journal Origins of Life and 

Evolution of Biospheres (OLEB) in March 2015 (Sojo 2015). 

3.1 Summary 

Homochirality, the single-handedness of optically asymmetric chemical structures, is 

present in all major biological macromolecules. Terrestrial life’s preference for one 

isomer over its mirror image in D-sugars and L-amino acids has both fascinated and 

puzzled biochemists for well over a century. But the contrasting case of the equally 

fundamental phospholipids has received less attention. Although the phospholipid 

glycerol backbones of archaea and bacteria are both exclusively homochiral, the 

stereochemistries between the two domains are opposite. Here I argue that the reason 

for this “dual homochirality” was a simple evolutionary choice at the independent 

origin of the two synthesising enzymes. More broadly, this points to a trivial biogenic 

cause for the evolution of homochirality: the enzymatic processes that produce chiral 

biomolecules are stereospecific in nature. Once an orientation has been favoured, 

shifting to the opposite is both difficult and unnecessary. Homochirality is the simplest 

and most parsimonious evolutionary case. 

3.2 Introduction 

3.2.1 Chirality and homochirality 

The existence of polarity in molecules has puzzled biochemists from the very 

origins of the discipline. The word “chirality” itself comes from the Greek kheir for 

“hand” (Oxford Dictionaries 2015b), and thus it describes the “handedness” of 

structures, not only in chemistry but in the universe in general, all the way from the 

electro-magnetic spin of sub-atomic particles, to the helices of DNA, through the shells 

of snails, to the spirals of galaxies. Of interest here is chirality in organic molecules, 

first observed by Pasteur almost 170 years ago in his studies of tartrate (1848). 
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In the vast majority of cases, each carbon atom can bond in one of three types of 

patterns to other atoms in a molecule: sp3, sp2, or sp, summarised visually in Figure 

20. 

 

Figure 20. sp3, sp2, and sp symmetries in carbon atoms 

In molecular orbital theory, carbon atoms usually occur in one of three 

bonding patterns in most of their molecules. sp3 carbons are bound to four 

separate atoms, each time with a single bond; sp2 carbons also have four 

bonds, but two of these are to the same atom, another carbon in the case of 

this figure; finally, sp carbons have a single bond to one atom, and a triple 

bond to another, again giving a total of four bonds. 

All three bonding patterns are relevant in biology, and many biochemical 

reactions involve the conversion of one type into another by oxidations and reductions, 

additions and eliminations. The structures of both sp3 and sp2 carbon atoms imply that 

there is more than one way to organise the substituents if they are different. In 

particular, a molecule with a single sp3 carbon atom that has four different substituents 

can be arranged in two different manners, as shown in Figure 21. 

  

Figure 21. Chirality in carbon atoms with sp3 (tetrahedral) symmetry 

Although the four substituents are the same in both molecules, the distribution 

is different. The two molecules are mirror images of each other, and cannot 

be super-imposed. 

Carbons with sp2 symmetry are not themselves chiral (although they can be 

asymmetric), but an addition reaction that produces an sp3 symmetry can give rise to 
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a chiral molecule if the four final substituents are different. That is, molecules with an 

asymmetric sp2 carbon are pro-chiral, as shown in Figure 22. 

 

Figure 22. A prochiral molecule is not itself chiral, but can form chiral 

products upon reaction 

The mechanisms of certain organic reactions mean that pro-chiral molecules 

can only produce a chiral product. A nucleophilic attack from the right (green 

arrow) would push the three substituents to the back (i.e. into the page, as the 

molecule is drawn), whereas attacking from behind (yellow arrow) would 

push the three substituents to the front (or out of the page). 

3.2.2 Homochirality in sugars and amino acids 

Chirality is ubiquitous in biology; macroscopically, it is most obviously present 

in structures such as snail shells (which either spiral one way or the other, normally in 

species-characteristic fashion), while at the macro-molecular level the most noticeable 

example are perhaps DNA double-helices and protein alpha-helices (both of which are 

typically right-handed). At the atomic level, the monomers are themselves chiral, with 

DNA composed exclusively of right-handed (D) sugars, while a similar situation is 

observed in proteins, composed of left-handed (L) amino acids (Figure 23). The 

mirrored structures, or enantiomers, do play roles in some organisms, but their 

biochemical relevance is minor (Krebs 1935; Corrigan 1969). 
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Figure 23. Homochirality in sugars and amino acids 

(A) The backbone of DNA and RNA is formed exclusively from D-sugars. 

(B) Although D-amino acids occur sparsely in certain organisms, proteins of 

all domains of life are formed almost entirely of L-amino acids. ‘R’: amino 

acid side chain, e.g. ‘H’ for glycine or ‘-CH2-SH’ for cysteine. 

The observation of this absolute bias in life’s most fundamental molecules has 

led to several quests to detect a possible non-biological cause for these preferences in 

either prebiotic chemistry or physics. The assumption is that, since biology is already 

homochiral, then the orientation biases in modern life must have begun before biology 

itself, by asymmetric physical forces or chemical interactions operating on the 

monomers. 

3.2.3 Homochirality in meteorites: physical and chemical causes for the evolution 

of homochirality 

A most remarkable slight bias towards biological-type enantiomers reported in 

the Murchison and Murray meteorites (Engel and Macko 1997; Pizzarello and Cronin 

2000) has fuelled the search for intrinsic physical causes behind the origin of terrestrial 

homochirality. Parity violations in radioactive β-decay from electroweak nuclear 

interactions (Mason 1984; Kondepudi and Nelson 1985), spontaneous autocatalytic 

symmetry breaking (Blackmond 2004; Kawasaki et al. 2006), adsorption onto chiral 

surfaces (Karagounis and Coumoulos 1938; Bonner et al. 1975), and asymmetric 

photochemical reactions caused by polarised light from supernovae in the interstellar 

medium (Jorissen and Cerf 2002) have all been put forward as plausible physical 

forces behind a potential pre-biotic origin of homochirality in D-sugars and L-amino 

acids. Much research in prebiotic chemistry seeks to explain this bias in chemical 

orientation, the notion being that the starting material for life must have been biased 
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already, for one of the several reasons suggested above, or another that remains to be 

elucidated. 

However, a case of dual homochirality is known in an equally fundamental 

group of biomolecules. The backbone of membrane phospholipids has opposite 

handedness in archaea and bacteria, the two basal domains of life. 

3.2.4 The dual evolution of homochirality in lipids 

As discussed in Chapter 2, the glycerol-phosphate backbone of phospholipids 

can come in two orientations and, intriguingly, sn-glycerol-1-phosphate (G1P) is 

exclusive to the archaea, while the enantiomer sn-glycerol-3-phosphate (G3P) is 

unique to bacteria (and eukaryotes by inheritance) (Figure 24). The synthesising 

enzymes, sn-glycerol-1-phosphate dehydrogenase (G1PDH) and sn-glycerol-3-

phosphate dehydrogenase (G3PDH), are unrelated (Koga et al. 1998). I suggest that 

an explanation for this dichotomy may help elucidate some of the fundamental 

principles behind the origin and maintenance of homochirality. 

 

Figure 24. Dual homochirality in membrane phospholipids 

The backbone moiety sn-glycerol-1-phosphate (G1P) is exclusive to the 

archaea, while its enantiomer sn-glycerol-3-phosphate (G3P) is exclusive to 

the bacteria (and eukaryotes by inheritance). No archaea have been observed 

with G3P, or vice versa. That is, both domains are exclusively homochiral, 

but the stereochemistries are inverted. 

Note that, while possessing chimeric genomes of both archaeal and bacterial 

ancestry, no archaeal membranes have been observed in eukaryotes. However, it can 

be predicted that the plasma membrane of the first eukaryotic common ancestor must 

have been archaeal, an aspect I will return to in detail in Chapter 4. 

In proteins, the advantage of a more stable secondary structure in the 

combination of twenty different amino acids may in itself account for the prevalence 

of one orientation over the other (Brack et al. 1979). Similarly, a higher stability of 
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homochiral RNA has also been demonstrated (Urata et al. 2005). It is therefore 

possible that at the origin of the first catalytic and informational biopolymers, 

competition between homochiral and heterochiral molecules ensued, with the pure 

ones out-performing the hybrids. Still this does not explain why one enantiomer 

prevailed over the other, but the dual homochirality of phospholipid backbones 

suggests that the prebiotic bias hypothesis may be unnecessary. 

A number of plausible scenarios for the lipid divide have been suggested. Most 

simply, it is possible that the last universal common ancestor (LUCA) was not cellular 

in the modern sense and had no genes for specifying either type of lipid; not only the 

glycerol-phosphate backbones but the specific enzymes required to synthesise all parts 

of the lipids evolved later, and independently, in archaea and bacteria (Martin and 

Russell 2003). However, the broad conservation of a number of membrane proteins, 

including the signal-recognition particle and the ATP synthase, would make a lipid-

free scenario unlikely (Koonin and Martin 2005; Mulkidjanian et al. 2009). Early 

lipids may have been produced by abiotic means (Deamer et al. 2002; Martin and 

Russell 2003), and certain parts of the lipid-synthesising machinery may have already 

been present in the common ancestor (Peretó et al. 2004), but the absence of the full 

machinery for lipid synthesis in LUCA would account for the fundamental differences 

between archaeal and bacterial membranes, chiefly the opposing stereochemistries of 

G1P and G3P. 

Another possibility is that both types of glycerol-phosphate backbones were 

present in LUCA, G1P being later favoured at the origin of archaea, and G3P at the 

origin of bacteria (Wächtershäuser 2003). The LUCA of this scenario had a 

heterochiral membrane, either racemic or not (Peretó et al. 2004). Heterochiral 

membranes were predicted to be unworkable (Wächtershäuser 2003), but experiments 

have shown that they are in fact viable (Shimada and Yamagishi 2011). In this hybrid 

scenario, it is likely that the ancestor of one of the two enzymes (G1PDH or G3PDH) 

evolved first. Since both G1P and G3P are well known to be viable and effective in a 

plethora of environments, it is difficult to see why a second enzyme would arise once 

the first one was in place, only to completely eradicate the other after the archaea-

bacteria split. 
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Alternatively, a non-stereospecific ancestral enzyme existed first that produced 

a heterochiral mixture of the two glycerol-phosphate backbones. However, all known 

NAD(P)+-dependent CH-OH dehydrogenases (E.C. number 1.1.1), are exclusively 

stereospecific in their hydrogen transfers (You et al. 1978; Benner 1982). Within this 

large supergroup to which both G1PDH and G3PDH belong, two classes exist. Class 

1 dehydrogenases exclusively transfer the pro-R hydrogen of NAD(P)H, whereas 

Class 2 are stereospecific for the pro-S hydrogen (Figure 25). These redox reactions 

are intrinsically stereospecific both in their coenzymes and substrates (Fisher et al. 

1953; Arnold et al. 1976). 

 

Figure 25. The pro-R and pro-S hydrogens of NADH 

Although written NADH (with a single H), in fact the molecule has two 

available hydrogens, but only one of them is used in each reaction. All of the 

OH-dehydrogenase enzymes that use this ubiquitous biochemical reductant 

as substrate are stereospecific in their choices of only one of the two available 

hydrogens. Aptly, these hydrogens are termed pro-R and pro-S, with regards 

to the stereochemistry of the product they generate when hydrogenating a pro-

chiral sp2 carbon to sp3. 

The carbonyl centre of dihydroxyacetone phosphate (DHAP), from which both 

G1P and G3P are formed, is prochiral: hydrogenation from one side of the double bond 

produces G1P, while reacting from the opposite side gives G3P. At the atomic level, 
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the amino acids of the active site of G3PDH face the pro-S hydrogen of NADH, 

whereas the G1PDH active site has recently been reported to exhibit a pro-R geometry 

(Koga et al. 2014). The idea of a non-stereospecific glycerol-phosphate synthase is 

difficult to reconcile with biochemical knowledge of the enzymes that catalyse these 

reactions. 

A simpler explanation is that LUCA, although cellular in nature, had neither of 

the two enzymes, and so no glycerol-phosphate backbone (Sojo et al. 2014; Chapter 

2). Early membranes were a mixture of more rudimentary amphiphiles, most simply 

fatty acids. This would have made such membranes leaky to ions and other small 

molecules, and indeed may have been a requirement for the early evolution of 

membrane bioenergetics and free-living cells, as discussed by Lane and Martin (2012), 

and in Chapter 2. In this scenario, G1PDH and G3PDH had independent origins after 

the divergence of archaea and bacteria. 

In the evolution of the two novel enzymes, the stereochemistry of the respective 

ancestral proteins would be maintained (Hanson and Rose 1975). G1PDH was 

recruited from an ancestor of the alcohol-dehydrogenase/dehydroquinate-

synthase/glycerol-dehydrogenase superfamily (Peretó et al. 2004). Like all extant 

members of this superfamily (You et al. 1978), this must have been a pro-R enzyme. 

Independently, G3PDH was derived from an ancestor of the UDP-glucose-6-

dehydrogenase/3-hydroxyacyl-CoA-dehydrogenase superfamily (Peretó et al. 2004); 

analogously, like all members of this family (You et al. 1978), this would have been a 

pro-S enzyme (Figure 26). 
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Figure 26. All proteins within the respective phylogenetic families of both 

G1PDH and G3PDH share the same stereospecificity 

The two trees show seven families, all of which contain both archaeal and 

bacterial sequences. Sequences in one tree are completely unrelated to those 

in the other, and are shown together here only because they catalyse similar 

reactions (oxidation/reductions using NAD(P)+/NAD(P)H as a substrate). All 

sequences in the G1PDH tree use the pro-R hydrogen of NAD(P)H, while all 

sequences in the G3PDH tree use the pro-S hydrogen. Abbreviations as 

follows. DHQS: dehydroquinate synthase. GDH: glycerol dehydrogenase 

(not to be confused with glycerol-phosphate dehydrogenase). ADH: alcohol 

dehydrogenase. UDPGDH: UDP-glucose 6-dehydrogenase. HACDH: 3-

hydroxyacyl-CoA dehydrogenase. Trees adapted from Peretó et al. (2004; see 

original article for details of the sequences and species), and stereochemical 

classifications by You et al. (1978). 

These two independent origins of DHAP reduction gave rise to the two opposing 

configurations of the glycerol-phosphate products, G1P and G3P. A non-stereospecific 

glycerol-phosphate synthase was unlikely. In fact, its postulation is unnecessary. 
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3.3 Homochirality as the simplest evolutionary scenario 

This dual origin of single-handedness in fundamental biological molecules 

provides a crucial insight into the evolution of homochirality in general. Whether or 

not pre-biotic molecules were enriched in one enantiomer, life itself would naturally 

choose one catalytic orientation over the other  (Martin and Russell 2003). This simply 

reflects the orientations that the ancestral enzymes had and their evolutionary 

availability for duplication, divergence, and neo-functionalisation. The question, if 

any, lies in why terrestrial life went in one specific direction towards L-amino acids 

and D-sugars, rather than the opposite. Subtly, homochirality of a given molecule is in 

itself biologically trivial, while the specific orientation may or may not be. Life would 

have chosen only one orientation either way. 

The catalytic success of enzymes depends on their specific binding to substrates 

and cofactors, and these highly selective orientations largely account for the evolution 

of stereospecificity in enzymes (Hanson 1972). Certain structures, such as cyclic 

molecules, are intrinsically obliged to react stereospecifically (Hanson 1972), such that 

chiral exclusivity is in fact a general principle of biochemical catalysis. The 

independent evolution of DHAP reduction by G1PDH and G3PDH sheds light on the 

prevalence of one orientation over the other. If the ancestral enzyme had an R-

favouring orientation, the duplicated enzyme would have inherited this preference 

(Hanson and Rose 1975), and once an orientation had been favoured, there would be 

no selective pressure to develop the opposite one. Such a process would not only be 

evolutionarily challenging but often impossible, and ecologically superfluous. 

3.4 Implications for the origin of life 

The choice of an orientation early in the evolution of a biochemical pathway 

imposes this preference on any subsequent reactions. Enantiospecificity thus becomes 

a “frozen accident” at the key steps in which chirality is introduced (or removed). Any 

arising enzymes that use the same product or its chiral derivatives would have to adapt 

to the chosen orientation. 

It is tempting to draw analogies between early biochemistry and classic non-

biological synthetic chemistry. However, free-solution chemistry is not directly 
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comparable to enzymatic catalysis, largely because of the highly specific binding of 

substrates, water, and cofactors to enzymes (Hanson and Rose 1975). 

At the atomic level, enantiomers look essentially identical when considering 

simple inorganic catalysts such as platinum or iron, of common use in synthetic 

chemistry. But from the point of view of biochemical catalysis, the lock-and-key 

fashion in which enzymes facilitate reactions (Fischer 1894) makes it apparent that 

enantiomers are two entirely different molecules when it comes to folding around them 

in the way that enzymes typically do (Figure 27). 

 

Figure 27. The enantiomer on the right is not a match to the active site of 

the hypothetical enzyme that catalyses the reaction of the enantiomer on 

the left 

In terms of enzymatic catalysis, enantiomers are two completely different 

molecules at the local atomic level. Despite the apparent chemical similarity, 

the three-dimensional distribution of atoms in space means that enzymatic 

catalysis must be intrinsically stereospecific. 

The overwhelming homochirality of terrestrial biochemistry seems to suggest 

that life could not have started in a racemic mixture (Cline 2005; Breslow 2011). 

However, recent findings of cross-chiral RNA-polymerising ribozymes (Sczepanski 

and Joyce 2014) allow for both D- and L- enantiomers potentially playing a key role 

in the origin of life. In a plausible early system in which simple amino acids or short 

polypeptides were chelated to metals or larger mineral structures and started catalysing 

reactions (Russell and Martin 2004), it is not challenging to envision a parsimonious 

explanation for a single orientation being favoured: the chirality of the amino acids 

themselves, or the particular arrangement of the primary sequence, would eventually 

but inevitably lead to stereospecific synthesis. Many reactions, indeed, might only 

occur stereospecifically or not at all (Hanson 1972), and it is far easier structurally for 
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an efficient enzyme to catalyse a reaction stereospecifically than not, again a simple 

implication of the traditional lock-and-key principle of biochemistry (Fischer 1894). 

An early D-ribozyme that naturally started selecting for L-amino acids would 

suffice as an explanation for L-homochirality in proteins (Martin and Russell 2003; 

Martin and Russell 2007). An independent origin of life that synthesised D-proteins 

may have occurred later, but it could not succeed since it would have had to compete 

against the earlier and by then more efficient mirror form. If an enantiomeric ribozyme 

arose within the same organism instead, it would have been useless, not only because 

the function was already covered by the original one, but crucially because any related 

enzymes would have already adapted to the chiral preference of the earlier one. That 

is, an emerging fully functional proto-ribosome would have inexorably imposed its 

chiral preference across life and outcompeted less efficient alternatives. On Earth, this 

successful proto-ribosome was itself D-homochiral and preferred L-amino acids. Any 

competing L-ribozymes and D-polypeptides were swiftly outcompeted as soon as the 

D-sugar/L-amino-acid association was established. 

3.5 Discussion 

In the face of widespread horizontal gene transfer between the two domains, it 

is remarkable that not a single case of the archaeal G1P in bacterial phospholipids, or 

vice versa, has ever been observed. This is in spite of both G1PDH and G3PDH having 

been observed across domains (Peretó et al. 2004), their role being catabolic rather 

than anabolic (Rawls et al. 2011). Both enantiomers are self-evidently viable, so no 

deeper explanation of this dual homochirality is necessary: independently derived 

enzymes catalyse stereochemically opposite reactions in archaea and bacteria, giving 

two molecules that perform the same job equally well. These enzymes, and all 

members of their evolutionary superfamilies, are stereospecific, and this is an intrinsic 

characteristic of many enzymatic reactions. More broadly, the very functional onset of 

a catalytic enzyme may require the selection of an orientation when it comes to chiral, 

pro-chiral, and asymmetric molecules in general. 

Slight spontaneous enantioselections may have occurred prebiotically, potentially 

clearing a path for one orientation to prevail over the other. However, even in the 

presence of such a small advantage for one of the two mirror images, the development 
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of a successful bio-catalyst that preferred the disfavoured one would still have sufficed 

to make it more prevalent, even if the other enantiomer was slightly more stable 

chemically. Homochirality would have arisen either way, as it is indeed the simplest 

solution in terms of both biochemistry and evolution. Having a heterochiral product is 

not only structurally disadvantageous, it is biochemically cumbersome, ecologically 

superfluous, and evolutionarily challenging. In many cases, it is actually impossible. 

A chiral choice early in the development of a pathway would inevitably impose the 

selected orientation on all subsequent reactions. 

The explanation for the origin and maintenance of homochirality may lie simply 

in the structural and spatial differences between inorganic and biochemical catalysis. 
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4 THE EVOLUTION OF EUKARYOTIC MEMBRANES 

Note: some of the contents of this chapter will be part of the original research article “Why do 

eukaryotes have bacterial membranes?”, created as first author, in collaboration with PhD 

supervisors Prof. Andrew Pomiankowski and Dr. Nick Lane, as well as with Prof. Christophe 

Dessimoz and his Master’s student Jan Koch. Manuscript in preparation. 

4.1 Summary 

Recent phylogenetic evidence supports the modern endosymbiotic hypothesis for the 

origin of eukaryotes, by which a bacterium embedded within an archaeal host gave 

rise to the ancestral eukaryotic cell. If so, this original eukaryote must have had an 

archaeal plasma membrane and bacterial (proto)mitochondrial membranes; yet all 

known modern eukaryotes have exclusively bacterial membranes, both in their 

mitochondria and other organelles as in their boundary to the exterior. For some yet 

unknown reason the archaeal phospholipid synthesis machinery was lost and the 

bacterial one retained. The membranes of archaea and bacteria are significantly 

different, but, given that members of the two domains coexist in many environments, 

it is not clear why one type of phospholipid would have been favoured over the other 

in eukaryotes. In fact, genes for bacterial lipid biosynthesis had to be transferred from 

the (proto)mitochondrion into the archaeal genome that formed the basis of what now 

is the eukaryotic nucleus. Why wasn't the archaeal lipid machinery kept instead, given 

that it was already in the (proto)nucleus? I hypothesise that this was due to bioenergetic 

constraints: while mitochondria became specialised as the powerhouses of the 

eukaryotic cell, energy production came to rely increasingly on them. The 

physiological adaptation of bioenergetic mitochondrial proteins to their membrane 

meant that the bacterial phospholipids had to be kept; replacing them with archaeal 

analogues would have led to a loss of efficiency in energy conversion, potentially even 

deleterious leakage of reactive oxygen species and, more generally, decreased fitness. 

There should be evidence of similar effects in extant archaea and bacteria: membrane 

proteins should be less likely to be transferred horizontally across the prokaryotic 

domains, since they would have to sit on a foreign membrane, while water-soluble 

proteins are transferred between aqueous media and should have an easier adoption. 

In this chapter I provide evidence that supports this prediction. 
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4.2 Introduction 

Eukaryotes constitute all complex life on Earth, from animals to plants to fungi, 

as well as multiple unicellular lineages. Several details of their origin are amongst the 

main unresolved questions in evolutionary biology. Eukaryotes are not only complex 

macroscopically. At the cellular level, unicellular eukaryotes are as complex as 

multicellular ones, and all types are structurally more complex than any members of 

either of the two prokaryotic domains. 

Eukaryotic cells contain a number of domain-specific traits, including a nucleus, 

actin/tubulin cytoskeleton with associated kinesin and dynein motors, eukaryote-

specific flagella, mitosis and meiosis, sexual reproduction, mitochondria, Golgi 

apparatus, endoplasmic reticulum, endocytosis and phagocytosis, bacterial-type 

membrane lipids, (largely) bacterial-type metabolism, and (largely) archaeal-type 

information processing (Hartman and Fedorov 2002; Koumandou et al. 2013; 

Doolittle 2014; McInerney et al. 2015). Since these traits are common to the whole 

diversity of lineages in the domain, all of these are thought to have been present by the 

advent of the last eukaryotic common ancestor (LECA). 

4.2.1 Hypotheses for the evolution of eukaryotes 

There are two main types of hypotheses for the evolution of eukaryotes: gradual 

or endosymbiotic. In the gradual hypotheses, a classical Darwinist process of 

accumulation of favourable mutations over time led to the ancestor of eukaryotes, 

including the slow but steady development of a nucleus, cytoskeleton and other 

organelles, and the invention of phagocytosis, in turn leading to the acquisition of 

mitochondria (and later plastids). In the endosymbiotic scenarios, a “big-bang” style 

process was put in motion by the association between a host archaeon and the 

bacterium that would become the mitochondrion (as well as other endosymbionts in 

Margulis’ serial endosymbiosis theory (2004)). This association of ancestors, which 

were not much different from any other two prokaryotes, led to a unique type of 

consortium that allowed, for the first and so far only time in Earth’s history, the high 

complexity of the eukaryotic cell, ultimately leading to complexity at the multicellular 

level as well. 

Simple calculations show that eukaryote-type complexity is impossible for 

prokaryotes, regardless of size or membrane organisation, due to bioenergetic 
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constraints (Lane and Martin 2010). Specifically, the limited energy available for gene 

expression does not allow archaea or bacteria to accumulate and particularly express 

genomes of eukaryotic complexity. In eukaryotes, the compartmentalisation and 

specialisation of bioenergetic conversion into mitochondria and their membranes 

provides hundreds of thousands of times more available energy per gene, which 

translates into the potential for greater complexity that eukaryotes have capitalised so 

notably. Endosymbiotic theories therefore provide a more credible scenario, yet there 

are many flavours of endosymbiosis. 

The origins of the theory can be traced back to a Russian botanist by the name 

of Constantin Mereschkowsky (1905; translated by Martin and Kowallik 1999), whose 

main focus was actually on chloroplasts, which he suggested had been derived from 

an ancient symbiotic association of cyanobacteria with a host that had no plastids. 

This theory was elaborated in the 1960s by Lynn Margulisvi, who suggested that 

mitochondria had been derived by a similar endosymbiotic association (Sagan 1967). 

Since mitochondria are the hub of oxidative phosphorylation in the eukaryotic cell, 

Margulis reasonably assumed that the driver of the initial association had been the 

proto-mitochondrion’s ability to use oxygen as a final electron acceptor. However, the 

existence of anaerobic mitochondria and hydrogenosomes makes this assumption 

unlikely. 

There are many alternatives to the classical endosymbiotic theory, not all 

endosymbiotic themselves, most of which have been thoroughly and critically 

reviewed in several recent articles (Doolittle and Mariscal 2015; López-García and 

Moreira 2015; Martin et al. 2015; McInerney et al. 2015), but in general the best 

supported ones match the Lake and Rivera model of the ring of life (2004). Bill Martin 

and Miklós Müller proposed the “hydrogen hypothesis” (1998) which, in brief, states 

that the eukaryotic cell arose from a symbiotic association of a H2-dependent archaeon 

with a H2-producing bacterium that would go on to become the mitochondrion. 

Importantly, the host was not a eukaryote, it was just as prokaryotic as the 

endosymbiont, and eukaryotes only existed after and directly because of the 

association between the two prokaryotes. This hypothesis neatly accounts for 

                                                 
vi Known at the time as Lynn Sagan. 
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hydrogenosomes and anaerobic mitochondria, and it has stood the test of time well. 

But, while the hydrogen hypothesis remains solid after almost two decades (a very 

long time in this volatile field), the exact natures of both the host and the symbiont 

remain uncertain. Whatever the case, three facts seem clear, if still not universally 

accepted in spite of overwhelming data (McInerney et al. 2015): (1)the host was an 

archaeon, (2)the endosymbiont was a bacterium, and (3)the eukaryotic cell arose only 

after and because of the association between the host and the endosymbiont (i.e. 

neither the host nor the symbiont had eukaryotic complexity, or many of the uniquely 

eukaryotic traits). 

4.2.2 Why keep a mitochondrial genome? 

Although the prokaryotic ancestors of eukaryotes must both have had a full-sized 

prokaryotic genome at the early stages of their association, modern eukaryotes have 

only a very reduced mitochondrial genome, with hundreds or thousands of genes of 

bacterial ancestry now in the nucleus following extensive mito-nuclear transfers over 

the millions of years since FECA. Humans, for example, have only 37 genes in their 

mitochondrial genome, 22 of which encode transfer RNAs (tRNAs), 2 ribosomal 

RNAs (rRNAs), and 13 proteins, all bioenergetic (Iborra et al. 2004); other eukaryotes 

typically have similarly small genomes. But, given that eukaryotic ancestors 

transferred such vast amounts of genetic material to the nucleus, why not transfer all 

of it? 

There are several explanations for the permanence of a genome in mitochondria 

and chloroplasts, carefully reviewed by Allen (2003). Most simply, it is possible that 

either there is no particular reason for the present arrangement (this is simply how it is 

and the distribution is due to chance), or that the organelle-nucleus transfer is an 

ongoing process, that the handovers are not yet complete and that the current 

mitochondrial (and chloroplast) genome is merely a vestige that will continue to be 

reduced and repositioned in a relatively short evolutionary time (since only very little 

is left). However, given the long divergence times between the several eukaryotic 

lineages, these non-selective explanations would predict the distribution of genes to 

be random, yet the same bioenergetic proteins (a “conserved core”) appear over and 

over again in the organellar genomes of different lineages. 
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Moving on to selective explanations, it is possible that the evolution of an 

unrelated cellular mechanism may have “frozen” the transfer state of some genes. In 

one example of this scenario, the origin of exocytosis and protein secretion made it 

impossible for certain genes to be transferred to the nucleus, because of N-terminal 

targeting sequences that would direct them to the export pathway instead of the 

mitochondria (von Heijne 1986a). However, the high specificity of protein targeting 

mechanisms from the nucleus to mitochondria (Rehling et al. 2004) makes this 

explanation unlikely. A somewhat similar hypothesis suggests that certain proteins 

need to be assembled directly in the sub-cellular location where they exert their 

function, because otherwise they may end up performing it in the wrong place, a 

particularly important problem for membrane proteins; yet this ultimately suffers from 

the same drawbacks, namely that the mitochondrial importing machinery is now 

known to be so remarkably sophisticated that it can be expected to cope with such 

limitations with ease. 

Another factor that could hinder some specific transfers is the slight difference 

between the mitochondrial and nuclear genetic codes. A number of codons have 

different meanings for the two translation machineries, some times drastically so; for 

example, the triplet UGA works as a stop codon for cytosolic ribosomes, but it indicates 

tryptophan within Opisthokont mitochondria (Alberts et al. 2007). Therefore, certain 

genes could not be transferred to the nucleus since their translation with cytosolic 

ribosomes would be ineffective and potentially deleterious. However, if this were due 

to an ancestral alternative code in the original bacterium before endosymbiosis, then 

only few of the genes should have been transferred, yet most were. 

Another selective explanation for why this particular set are remarkably difficult 

to transfer, is that the physical properties of some proteins mean that they have to be 

expressed in the compartments where they are active. Most notably, the solubility of  

all the mitochondrially-encoded proteins is very low (they are all bioenergetic 

membrane proteins), such that importing them into the mitochondrion would be too 

difficult (von Heijne 1986a). However, there are several counter-examples to this 

prediction (Allen 2003), including the large subunit of RUBISCO in chloroplasts, 

which is in general organelle-encoded but water-soluble, and conversely the nuclearly-

encoded but hydrophobic subunits of the light-harvesting complexes (LHC) I and II. 
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There is an alternative hypothesis that provides a strong selective explanation 

for organelle genomes. The “Co-location of Redox Regulation for gene expression”, 

or “CoRR” hypothesis (Allen 1993; Allen 2003; Allen 2015) suggests that the reason 

mitochondria and plastids kept the specific set of proteins in their reduced genomes is 

that the bioenergetic state of the organelle needs to be controlled locally and swiftly; 

waiting for a cytosolic response would be inefficient and potentially ineffective, since 

the nucleus has no direct information about the energetic state of each particular 

organelle. Instead, the expression of a number of key bioenergetic genes can be 

controlled by the redox state of the corresponding gene products within the organelle 

itself. This hypothesis implies that the preservation of bioenergetic function requires 

redox control from within the same compartment. CoRR accounts for the predictions 

of other hypotheses, and it is also consistent with multiple experimental evidence 

(Allen 2015).  

4.2.3 From FECA to LECA 

At the early stages of the endosymbiotic association, the first eukaryotic 

common ancestor (FECA) would have had two sets of genes for performing most 

fundamental cellular tasks, including DNA replication, transcription, translation, 

cellular membranes, and metabolism. Several of these duplicated tasks still remain in 

modern eukaryotes: DNA replication, transcription, the proton-powered ATPase, 

tRNAs, and ribosomes within mitochondria are different from their cytosolic 

equivalents, even though most genes whose products are active in mitochondria are 

actually nuclearly encoded, and their ancestry is unequivocally bacterial. Yet other 

redundant functions were streamlined. Eukaryotic metabolism is almost entirely 

bacterial (with some uniquely eukaryotic traits), and notably, so are membranes. 

It seems certain that by the time the major extant eukaryotic lineages diverged, 

their common ancestor (LECA) had already developed most of the typically eukaryotic 

features, including the nucleus (with its envelope, nucleoli, and pore complexes), an 

actin/tubulin cytoskeleton with associated kinesin and dynein motors, flagellum, 

mitosis and meiosis, sexual reproduction, mitochondria, Golgi apparatus, endoplasmic 

reticulum, endocytosis and phagocytosis, (largely) bacterial-type metabolism, 

(largely) archaeal-type information processing (except in the mitochondrion), and 

bacterial-type membrane lipids (Hartman and Fedorov 2002; Koumandou et al. 2013; 

Doolittle 2014; McInerney et al. 2015). 
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No archaea have been observed with bacterial membranes, and similarly no 

bacteria with fully archaeal membranes are known (Chapter 2). So, if the eukaryotic 

cell arose from the endosymbiosis of a bona fide bacterium into a bona fide archaeon, 

the first eukaryotic common ancestor (FECA) must have had an archaeal plasma 

membrane and bacterial (proto)mitochondrial membranes. Yet all extant eukaryotes 

have exclusively bacterial phospholipids in all of their encapsulated cellular structures, 

including the nuclear envelope, mitochondria, vesicles, peroxisomes, lysosomes, and 

the plasma membrane. The membranes of the last eukaryotic common ancestor 

(LECA) therefore must have been exclusively bacterial. Somehow along the 

evolutionary path from FECA to LECA the archaeal membranes were lost and 

replaced with bacterial ones. 

Genes for bacterial lipid biosynthesis now sit in the nucleus and have no 

remainder in the mitochondrion, while the functions of the archaeal counterparts are 

largely missing from the nucleus (although isoprene synthesis is kept). It is not yet 

known why this would be the case. In fact, tracing the genomic path shows that this 

was the long and convoluted way round: archaeal genes for membrane phospholipid 

biosynthesis were already in the (proto)nucleus, such that the most parsimonious 

evolutionary process would have simply involved the gradual loss of the bacterial 

genes from the mitochondrion, with corresponding replacement of the mitochondrial 

phospholipids by archaeal ones. Instead, the bacterial lipid genes got transferred from 

the mitochondrial chromosome into the nuclear genome (along with many other 

genes), and were eventually lost from the mitochondrion itself. The archaeal analogous 

functions were correspondingly lost from the nucleus, and the plasma membrane 

became bacterial, as did all of the organellar, vesicular, and nuclear membranes 

(Martin et al. 2015) (Figure 28). 
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Figure 28. Membranes and genomes from FECA to LECA 

The first eukaryotic common ancestor (FECA, left) had archaeal plasma membranes 

and bacterial proto-mitochondrial membranes, predictably with complete or almost 

complete archaeal (blue knot) and bacterial (yellow knot) genomes in the 

(proto)nucleus and (proto)mitochondrion, respectively. Modern eukaryotes, and by 

inference the last eukaryotic common ancestor (LECA, right) have bacterial plasma, 

nuclear, mitochondrial, and organellar membranes. The mitochondrial genome is 

massively reduced but still unequivocally bacterial, whereas the nuclear genome is 

chimeric, with components from both the archaea (blue) and bacteria (yellow), plus 

many that cannot be traced to either domain and are therefore deemed eukaryote-

specific (green). This view is minimalistic, amongst others, in that the effect of 

horizontal gene transfers prior to the endosymbiotic event are ignored. 

4.3 Why not keep both lipid sets? 

One of the two sets of lipids was lost between FECA and LECA. Why didn’t 

eukaryotes keep both? The simplest explanation would be a physiological or 

ecological tendency for reduced genomes, a major evolutionary force in prokaryotes 

(Mira et al. 2001), and particularly in symbiotic or parasitic ones (Moran 2002). 

Although this could suffice as an explanation, redundant sets of genes were in fact kept 

for many other mitochondrial functions, including DNA replication, transcription, and 

translation (ribosomal RNAs, ribosomal proteins, and tRNAs). Most of these genes 

now sit in the nuclear genome and are targeted to the mitochondrion after translation. 

In fact, the genomes of eukaryotes are less subject to energetic restrictions of size than 

prokaryotic genomes are (Lane and Martin 2010), so it does not seem obvious that 

either a pressure or a spontaneous tendency for genome-reduction would cause the loss 

of one of the two phospholipid synthesis sets. 

An alternative explanation lies in physiology. As the eukaryotic cell originated, 

the two types of lipids would have been expressed simultaneously, so it is reasonable 
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to assume that they would have mixed spontaneously. In fact, in modern eukaryotes a 

number of phospholipids synthesised in the cytosol spontaneously make their way into 

the mitochondria, including phosphatidylcholine and phosphatidylinositol (van Meer 

et al. 2008). Similarly, there is constant exchange of phospholipids between the inner 

and outer mitochondrial membranes (Tatsuta et al. 2014), such that both the plasma 

and mitochondrial membranes may have been hybrid as consequence. A reasonable 

prediction is that such heterotypic membranes would have been unstable 

(Wächtershäuser 2003), however the demonstration that systems with hybrid G1P and 

G3P backbones could actually be viable (Shimada and Yamagishi 2011) came as a 

surprise. Yet the same authors also reported that other properties of the phospholipids, 

chiefly the varying lengths of the tails, have a large adverse effect on the behaviour of 

the resulting membrane. So, there may yet be credence to the prediction that 

heterotypic (hybrid) membranes are, at the very least, less effective than homotypic 

(purely archaeal or purely bacterial) ones, and therefore deleterious in an ecological 

sense. The possible competing organisms are described in Figure 29. 

 

Figure 29. Competition between homo- and heterotypic intermediates  

Heterotypic interactions between archaeal and bacterial phospholipids may have 

constrained the fitness of FECA. Following expression in a common space, it is 

reasonable to predict that the archaeal (blue) and bacterial (orange) lipids would have 

spontaneously mixed, such that (A) was not possible and cytosolic archaeal lipids 

leaked into the mitochondrion (B). Similarly, both sets of membranes (plasma and 

mitochondrial, ignoring whether the nucleus, peroxisomes, or other organelles were 

present at this stage) may have been hybrid if bacterial lipids also leaked out of the 

mitochondrion (C). Either way, a pressure for the more stable homotypic membranes 

immediately ensued. Although the archaeal option (D) was genomically simpler, the 

bacterial one (E) was selected instead. Yellow/golden structures on the mitochondrial 

membrane represent (chiefly bioenergetic) bacterial membrane proteins. 

Even if maintaining a hybrid membrane were viable (Figure 29B-C), removing 

one of the two phospholipids and keeping a homotypic membrane would have been 

advantageous (Shimada and Yamagishi 2011). As described above, there were two 
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ways of doing this, of which keeping the archaeal lipids and replacing them with 

bacterial ones was the easier of the two since, before the mito-nuclear transfer of the 

bacterial genes, archaeal lipid-synthesis genes were already in the (proto)nucleus. In 

addition, mitochondria potentially had higher mutation rates than the nucleus, just like 

at present (Berg and Kurland 2000), such that losing their genes would have been 

easier. If instead the loss happened after the mito-nuclear transfer of the bacterial 

genes, then both genes were being expressed and the membranes were hybrid. As 

discussed above, this would have caused a pressure to form homotypic membranes 

and therefore silence and potentially lose one of the two sets. 

4.4 Why do eukaryotes have bacterial membranes? 

Whatever the reason for the unity of eukaryotic lipids, between FECA and 

LECA bacterial genes for membrane phospholipid biosynthesis were transferred to the 

nucleus, their archaeal counterparts curtailed, and the original bacterial copies in the 

mitochondrion lost. Why? 

4.4.1 Hypothesis: bacterial lipids were crucial for mitochondrial bioenergetic 

proteins, so they had to be kept 

I suggest here that the reason for this evolutionary process was bioenergetic: as 

the early eukaryotic cell became increasingly reliant on mitochondrial energy 

conversion, the physiological adaptation of the mitochondrial bioenergetic proteins to 

their bacterial membranes became correspondingly indispensable. Replacing the 

bacterial phospholipids with archaeal ones would have meant maladaptation and 

decreased fitness; bacterial lipids had to be kept (Figure 30). 
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Figure 30. Adaptation of bacterial bioenergetic proteins to an archaeal 

or a bacterial membrane in two alternative versions of LECA  

From a FECA with heterotypic membranes (top centre), two homotypic LECAs 

could evolve (bottom left and right). Mitochondrial bioenergetic proteins 

(yellow/golden structures on the internal membrane) would have been less efficient 

on an archaeal membrane (bottom left; blue arrows represent the imposition of 

archaeal lipids on the mitochondrial membrane). Instead, the plasma membrane was 

changed to a bacterial one (bottom right; orange arrows represent imposition of 

bacterial lipids on the plasma membrane). 

In modern eukaryotes ATP yield is higher (up to 13 times) with respiring 

mitochondria than without them (Rich 2003). All known eukaryotes either have and 

heavily depend on mitochondrial ATP production, or had and lost mitochondria and 

now parasitise organisms that do have them (Tovar et al. 2003). As the early eukaryotic 

cell evolved, it came to rely increasingly upon mitochondrial energy production (Lane 

and Martin 2010). This is a complex process that depends on the tight coupling 

between the bioenergetic proteins and the membranes on which they sit (Mitchell 

1961). 

At an ecological level, a mitochondrial replacement of its original bacterial 

membranes (even if hybrid) with purely archaeal ones would have meant decreased 

fitness in local competitions with individuals that either had kept the original 

membrane or that moreover were instead replacing the archaeal phospholipids in the 

plasma membrane to the bacterial analogues. 

4.4.2 Testing the hypothesis 

The endosymbiotic event meant a massive horizontal transfer of genes from the 

mitochondrion to the nucleus, often referred to as mito-nuclear transfers, and the event 
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as a whole more generally as an endosymbiotic gene transfer (EGT) (Timmis et al. 

2004). Horizontal gene transfers (HGTs) should thus provide a useful tool for testing 

the hypothesis: if correct, and with all other things being equal, then HGTs across the 

prokaryotic domains should be easier for cytosolic proteins, which have to adapt from 

an aqueous to another aqueous medium, than for membrane proteins, which would 

have to sit in a foreign membrane. That is, if a gene is being imported by archaea from 

bacteria, or vice versa, it should be less likely to be kept if it is a membrane protein 

(Figure 31).  

 

Figure 31. Prediction 1: horizontal gene transfers across the prokaryotic 

domains should be less common for membrane proteins 

Picking up a foreign gene should be more difficult for membrane-bound proteins 

(cylinder), which would have to sit in a heterologous environment, than for water-

soluble proteins (octagon). 

This difficulty in importing foreign membrane proteins is frequently observed in 

the challenging biosynthetic and structural studies involving heterologous expression 

of membrane proteins: unsurprisingly, it is generally far easier to express foreign 

water-soluble proteins; and similarly, it is more straightforward to clone and express a 

foreign membrane protein in a host that is as close as possible to the original species 

(Schlegel et al. 2012). This naturally extrapolates into the hypothesis put forward here: 

in HGTs across domains it should be generally more difficult to pick up membrane 

proteins than water-soluble proteins. Results for this test are presented in section 4.5.1. 

Separately, and from a structural perspective, the hypothesis also predicts that 

bacterial membrane proteins should be energetically and structurally less stable in 

archaeal membranes, and vice versa (Figure 32). 
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Figure 32. Prediction 2: bacterial membrane proteins should be more 

stable in bacterial lipids than in archaeal lipids (and vice versa) 

A bacterial membrane protein (yellow/orange globule) should have lower energy and 

be more stable in a bacterial membrane (yellow/orange sphere heads and tails, left) 

than in an archaeal one (blue sphere heads and tails, right). 

I have used molecular modelling techniques, including classical molecular 

dynamics (reviewed as an appendix in section 4.8), to test this prediction. Results are 

presented in section 4.5.2. 

4.5 Results 

4.5.1 Membrane proteins are less likely to be horizontally transferred across 

domains than water-soluble proteins 

To determine whether there is a difference in the likelihood of horizontal gene 

transfers across domains for water soluble proteins versus membrane proteins, I used 

the “default” dataset of the Microbial Genome Database (MBGD, 

mbgd.genome.ad.jp) (Uchiyama 2003; Uchiyama 2007; Uchiyama et al. 2010), which 

at the moment of this analysis included protein orthologue groups for a total of 787 

species, 83 of which are Archaea, 659 Bacteria, and 45 Eukaryotes. These species form 

a total of 375,229 orthologue groups with any 2 or more members. 6,648 of these 

groups include at least one archaeon and one bacterium, and 10 or more prokaryotic 

species in total. To allow detection of horizontal gene transfers only between the 

prokaryotic domains, eukaryotic sequences were ignored. The MBGD “orthologue” 

groups often contain multiple sequences for the same species; therefore, where more 

than one sequence was present within the same group for the same species, the one 

with the shortest average pairwise distance to the sequences of all other species was 
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kept. The sequences chosen in this way were aligned, phylogenetic trees built, and 

each protein classified as either membrane-bound or water-soluble (see details in the 

Methods, section 4.7). 

Detecting HGTs using the proportions of archaea vs. bacteria 

The prediction of the hypothesis is that detectable trans-domain horizontal gene 

transfers (tdHGTs) across the prokaryotic domains should be less frequent for 

membrane proteins than for water-soluble proteins. However, detecting ancient 

horizontal gene transfer events is not a trivial task. A simple decision rule could be 

based on a proportion threshold: any orthologue clusters in which only few sequences 

belong to one of the two domains is likely to be a horizontal gene transfer from the 

other domain. Setting such a threshold to define tdHGTs at 90% (i.e. if 9 or more of 

every 10 members of an OG belong to the same domain), and using a binary 

classification for each orthologue group as either membrane protein or water-soluble 

protein, produces the results in Table 5. 

Table 5. Contingency table for water-soluble (WS) versus membrane-bound proteins (MP) 

grouped by trans-domain horizontal gene transfers (tdHGTs) vs. non-tdHGTs, identified by 

simple proportional composition of the orthologue group with a 90% threshold 

Setting the threshold at 90%, if an orthologue group has 10 sequences and a composition of 9 bacteria 

and 1 archaeon (or vice versa), it is classified binarily as containing a tdHGT. Results allow testing 

whether membrane proteins are less likely to be transferred across domains, as the hypothesis predicts. 

Proportion 90% non-tdHGT tdHGT  

Water-soluble a 2138 b 3001 c 5139 

Membrane proteins d 528 e 676 f 1204 

 g 2666 h 3677 i 6343 

 

Approximately 58.0% of the orthologue groups are classified in this way as 

containing at least one tdHGT. The hypothesis predicts that the proportion of genes 

that have been transferred across domains should be higher for water-soluble proteins 

than for membrane proteins; that is, b/c in Table 5 should be greater than e/f. Whilst 

this is indeed the case (3001/5139 > 676/1204  0.584 > 0.561), the difference is 

slight, with a high p value under Fisher’s exact test of 0.146. Relaxing the proportion 

cut-off to 80% produces the results in Table 6, analogous to those in Table 5. 
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Table 6. Contingency results as in Table 5, classifying tdHGTs as groups containing 80% or 

more sequences of the same domain, and correspondingly 20% or fewer from the other 

domain 

Results were produced by lowering the cut-off to 80% proportion bias (i.e. orthologue groups composed 

by at least 80% bacteria and under 20% archaea, or vice versa, were classified as trans-domain HGTs). 

Proportion 80% non-tdHGT tdHGT  

Water-soluble a 884 b 4255 c 5139 

Membrane proteins d 254 e 950 f 1204 

 g 1138 h 5205 i 6343 

 

Here, 82.1% of the orthologue clusters in the mixed group are classified as 

containing tdHGTs, as opposed to 58.0% above. As above, the prediction that tdHGTs 

should be lower for membrane proteins is met (4255/5139 > 950/1204  0.828 > 

0.789); this time the p value drops to 0.00174. However, the size of the effect remains 

small (~5% difference in the proportion of tdHGTs for the two types of protein, versus 

~4% above). 

This approach has the caveat that choosing different thresholds produces 

different results with varying p-values and effect sizes, and it is difficult to interpret 

these differences. An alternative method of detecting tdHGTs is described next.  

Detecting HGTs by monophyly of archaea and bacteria 

A potentially more satisfactory approach for detecting tdHGTs is to assess whether the 

archaea and bacteria each form a monophyletic group, i.e. whether it is possible to root 

a phylogenetic tree of the aligned sequences in a manner the perfectly splits the two 

domains. If all archaea are contained within the same group with no bacteria within it, 

and vice versa, the tree can be assumed to not contain a trans-domain HGT event 

(which would immediately suggest it is ancestral and perhaps present in LUCA). 

Results for this approach are presented in Table 7. 

Table 7. Contingency table, with tdHGTs determined by monophyly of archaea or bacteria, 

for orthologue groups shared by at least 1 archaeon and 1 bacterium 

 

Monophyly-1 non-tdHGT tdHGT  

Water-soluble a 894 b 4245 c 5139 

Membrane proteins d 250 e 954 f 1204 

 g 1144 h 5199 i 6343 



 118 

Using this approach, the proportion of genes that have been transferred across 

domains is higher for water-soluble than for membrane proteins (b/c > e/f  

4245/5139 > 954/1204  0.826 > 0.792). Similarly, membrane proteins are more 

prevalent in the non-tdHGT group (d/g > e/h  250/1144 > 954/5199  0.219 > 

0.183), with a p-value of 0.00680 under a Fisher’s exact test. 

Trivially, however, genes shared by only one archaeon or only one bacterium 

would be monophyletic by definition, since in these analyses the root of the tree is 

always placed between the archaea and the bacteria. Filtering the Mixed group to 

include only genes shared by at least two species of each domain gives a total of 4,927 

orthologues, and the results in Table 8. 

Table 8. Contingency table, with tdHGTs determined by monophyly of archaea or bacteria, 

with orthologue groups shared by at least 2 archaea and 2 bacteria 

Monophyly-2 non-tdHGT tdHGT  

Water-soluble a 869 b 3118 c 3987 

Membrane proteins d 245 e 695 f 940 

 g 1144 h 3813 i 4927 

 

This retains the relationship, with p = 0.00552. 

Although these methods for tdHGT detection can be useful, they have the caveat 

of ignoring ecology (see Discussion in section 4.6). An alternative, purely biophysical 

and energetic approach is discussed next. 

4.5.2 Molecular modelling: archaeal and bacterial membrane proteins in 

homotypic and heterotypic lipids 

The hypothesis suggested in this chapter for the bacterial nature of eukaryotic 

membranes leads to a straightforward structural prediction: in extant prokaryotes, 

bacterial membrane proteins should be less stable in archaeal membranes than in 

bacterial ones, and vice versa. I set out to test this hypothesis computationally by 

performing molecular dynamics simulations of relevant systems in GROMACS 

(Berendsen et al. 1995; Lindahl et al. 2001; van Der Spoel et al. 2005; Hess et al. 

2008), a classical molecular mechanics package of common use in computational 

chemistry. However, preliminary tests proved difficult to obtain reliable forcefield  

parameters (section 4.8.3, p. 134) for archaeal phospholipids. Any comparison 
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between different phospholipid models depends strongly on the parameter values 

reported for each in the literature and molecular packages. So, to guarantee an accurate 

comparison of results, the approach used here focused on the subtlest yet the most 

constant difference between archaeal and bacterial phospholipids: the opposite 

stereochemistries of the glycerol-phosphate backbones (Chapter 2). Dipalmitoyl-

phosphatidylcholine (DPPC) is a model bacterial phospholipid often used in 

computational simulations of bacterial membrane proteins. This phospholipid has two 

simple non-ramified and completely saturated tails, with only single bonds between 

carbons (C–C), and carbons and hydrogens (C–H), such that its only chiral centre is 

that of the glycerol-phosphate backbone, shown by the yellow circle in the upper part 

of Figure 33. 

 

 

Figure 33. Dipalmitoyl phosphatidylcholine (DPPC), a model bacterial 

phospholipid (top), and its mirror image 

DPPC (above the dashed line) has only one chiral centre: that of the glycerol-

phosphate backbone (yellow circle). A mirror image of this structure (below the 

dashed line) would be identical in all aspects, except the stereochemistry of the 

backbone, which would be archaeal type (blue circle). Forcefield parameters for 

DPPC should behave similarly with the inverted structure, since all atoms and their 

connectivity are the same (this was tested, see Figure 35). 

If DPPC were to be projected through a mirror plane, the resulting molecule 

(lower part of Figure 33) would be identical in all aspects except the stereochemistry 

of the mirrored glycerol-phosphate backbone. This opposite stereochemistry makes 
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the phospholipid more archaeal-like. That is, DPPC has a bacterial-type sn-glycerol-

3-phosphate backbone, whereas the inverted molecule has an archaeal sn-glycerol-1-

phosphate backbone, but with bacterial ester linkage and non-ramified tails. It should 

be possible to use the parameters of the original molecule for the mirrored one, since 

all the atoms are identical. Ultimately, this should provide for a straightforward 

comparison between the two arrangements, to evaluate whether a membrane protein 

sitting in each of the two systems (Figure 34) has different energetic levels. 

 

Figure 34. Membrane protein embedded in a bacterial (left) and pseudo-

archaeal (right) lipid bilayer systems 

A membrane protein (rainbow-coloured helices in the centre of the two figures) sits 

in the forward (orange sphere heads, left) and reverse (blue sphere heads, right) 

DPPC bilayer. The test being performed in this section is whether a membrane 

protein has a different behaviour and energetic level in the bacterial (left) versus the 

pseudo-archaeal (right) systems. 

Such a “reverse” membrane was produced by inverting the Z coordinate of the 

bilayer description file (see Methods). An initial necessary test was to determine 

whether the two systems behave similarly before the inclusion of the membrane 

protein, i.e. whether the inverted phospholipids indeed respond correctly to the 

parameters of the original ones. Results in Figure 35 show that the pressure, density, 

kinetic energy, and potential energy of the two systems are indistinguishable. 
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Figure 35. The physical and energetic properties of the forward 

(bacterial) and reverse (pseudo-archaeal) DPPC systems are equivalent 

The pressure (A), density (B), kinetic energy (C), and potential energy (D) of the 

original bacterial DPPC bilayer system (green) and the mirrored pseudo-archaeal 

system (brown) are indistinguishable from each other. 

Since the inverted DPPC bilayer behaves reliably similarly to the original one, 

the next step was to model proteins sitting in the two systems. To evaluate the viability 

of the two types of bilayer with embedded proteins, I first embedded an artificial 

peptide known as KALP-15. This is a simple 15-amino-acid membrane peptide of no 

biological relevance (or indeed affiliation, as it is an entirely artificial constructionvii). 

Results, in Figure 36, show that, while the pressure and density of the two systems are 

comparable, the kinetic energy is slightly higher in the forward system, while the 

potential energy is noticeably higher. 

                                                 
vii KALP-15 and other similar model peptides of varying length are used regularly in computational 

chemistry to test molecular dynamics simulations of membrane systems (Kandasamy and Larson 2006). 
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Figure 36. Pressure, density, kinetic energy and potential energy of 

artificial peptide KALP-15 in the forward and reverse membranes 

While the spatial properties (A, B) are comparable in the bacterial (green) and pseudo 

archaeal (brown) systems, the energetic values are noticeably different for kinetic (C) 

and in particular for potential (D) energy. 

Following this observation of a different behaviour with a pseudo-peptide in the 

bacterial (forward DPPC) and pseudo-archaeal (reverse DPPC) systems, the next step 

was to model a biologically relevant protein. I used the bacterial sodium-proton 

antiporter NhaA from E. coli. Figure 37 shows that, as for the artificial peptide KALP-

15, the energy of the system is different in the bacterial and pseudo-archaeal 

membranes. 
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Figure 37. Bacterial Na+/H+ antiporter NhaA from E. coli produces 

different results in the two types of membranes 

While the pressure (A) and density (B) appear comparable, the kinetic (C) and 

potential energies (D) are different, with the potential energy noticeably lower in the 

bacterial-type membrane. The total energy (not shown) is also lower in the bacterial 

membrane, since the contribution of the kinetic energy is small. 

4.6 Discussion 

The results provide support for the prediction that membrane proteins are less 

likely to be transferred across the prokaryotic domains, potentially due to energetic 

constraints. 

As mentioned above, there are weaknesses associated with the approaches used 

here to determine trans-domain HGTs. The approach using the proportion of archaea 

vs. bacteria produces different results for different thresholds, with correspondingly 

varying p values and effect sizes.  Similarly, one weakness of the detection approach 

by monophyly is that genes that are not classified as tdHGTs are intrinsically assumed 

to have been in LUCA. This means that genes shared by only one or a few members 

of one domain and many members of the other will be classed as LUCA if they branch 
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monophyletically, while it is possible that they were instead acquired horizontally by 

the ancestor of the members of the smaller group (Figure 38). 

 

Figure 38. Monophyletic distributions of small groups can lead to an 

incorrect identification of LUCA genes 

With yellow circles representing bacterial species and blue circles archaea, the green 

globules represent a protein for which a phylogenetic tree is being constructed. In the 

tdHGT detection analysis by monophyly described above, a horizontal transfer at the 

base of the bacterial clade (red arrow) may lead to a monophyletic distribution of all 

descendants of the species that acquired the gene. If a tree root is assigned at the split 

between the two domains (green arrow), the incorrect conclusion that the gene is 

ancestral (i.e., that it was present in LUCA) would be reached. 

A possible solution would be to force both domains to be monophyletic for a 

non-tdHGT classification, but this would conversely over-represent tdHGTs. 

Although simple, the method of selecting only one domain to be monophyletic was 

preferred. 

In general, both approaches exhibited a pattern that seems to support the 

hypothesis put forward here, but the effects are small and the p values, although below 

a traditional cut-off of 0.05 in most cases, are still questionable. In fact, it has been 

suggested that using a traditional 0.05 cut-off for p can lead to no less than 30% 

incorrect reports of positive discovery (Colquhoun 2014). Similarly, the American 

Statistical Association (ASA) has recently issued a “warning” stating that p values can 

determine neither whether a result is important nor whether it confirms a hypothesis 
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(Wasserstein and Lazar 2016). But conversely, the ASA also warns that p values below 

or above a given threshold do not binarily make a hypothesis true or false (Wasserstein 

and Lazar 2016). In that sense, the results presented above do not and cannot confirm 

the hypothesis, but they do encourage the development of further analyses to establish 

whether tdHGTs are indeed less likely for membrane proteins than for water-soluble 

proteins. 

The molecular modelling computations also produce encouraging results, but a 

number of subsequent computational tests are required to provide final support for the 

hypothesis. First, it is important to establish whether the pattern reported here for the 

bacterial NhaA antiporter remains for other bacterial proteins and lipid systems. 

Similarly, it is possible that the pattern is cause simply by a difference in the numbers 

of molecules in the two systems, specifically water molecules, a possibility that needs 

to be investigated further. 

Next, archaeal proteins will need to be tested to determine whether the bacterial 

lipids with artificially generated archaeal sn-glycerol-1-phosphate headgroups 

produce a lower energy than the regular bacterial lipids. I attempted to perform such 

calculations (data not shown), but the limitation was that all the suitable archaeal 

membrane proteins I procured from the Protein Data Bank have been crystallised after 

expression in bacterial membranes (e.g. PDBs, 4XXJ and 4PXK), a process that could 

alter their initial structure in precisely the way I wished to evaluate. I observed no 

relevant differences between the two systems for several systems constructed in this 

manner. 

A further relevant test would be to use a fully archaeal lipid system to determine 

whether membrane proteins are more stable in an archaeal membrane than in a 

bacterial one. I also made multiple starts along this line during several months, using 

four different forcefields (GROMOS 53a6, GROMOS 43a1p, CHARMM27, and 

CHARMM36) but ultimately failed, possibly due to poor parameterisations of the 

archaeal lipids. Each of these calculations took several weeks, and in each one the 

systems failed to converge (i.e. the mean square distances between atoms in the 

structures and energy values continued to increase over time). There are extremely 

limited archaeal lipid systems and parameters available in the internet or literature 

(only one source I am aware of at the time of writing, Lipidbook (Domański et al. 
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2010) at lipidbook.bioch.ox.ac.uk). In fact, the parameterisation of archaeal 

phospholipids has such notorious limitations that molecular modelling of archaeal 

proteins is regularly done in bacterial lipid systems instead (e.g. Araya-Secchi et al. 

2011). It is therefore likely that this kind of work will have to wait until more and 

better forcefield parameters for archaeal phospholipids become available. 

A more formal method of determining energies in embedded membrane-protein 

systems may be of use. A method called umbrella sampling is available that 

determines the binding energy of a peptide to a reference group in the system; in the 

case of an embedded membrane protein, the method allows the computation of the 

binding energy of the peptide to the surrounding phospholipids  (Lemkul and Bevan 

2011). The method works by pulling the membrane protein perpendicularly away from 

the lipid membrane into the solvent, performing molecular dynamics calculations at a 

number of positions along the trajectory, and integrating the differences to obtain the 

binding energy, i.e. the difference in energy between the systems with the embedded 

and free proteins. Since each of the steps along the trajectory is itself a molecular 

dynamics calculation, this method is considerably more time-consuming than single 

MD calculations. I performed a respective pair of simulations using this method for a 

bacterial protein embedded in the forward and reverse bacterial DPPC systems, but 

could detect no differences between the two (data not shown). Once more, a conclusive 

analysis of this type will require a fully archaeal membrane system, for which 

parameters and forcefields do not exist at present. 

These computations are exceedingly time consuming, each taking several weeks 

even after the successful acquisition of a suitable protein structure and lipid bilayer 

from the literature and internet databases, followed by assemblage of the system. The 

most time-consuming steps following construction of the system include the 

preliminary stabilisation, molecular dynamics, analysis of output, and, most 

significantly, testing for selection of a suitable forcefield (which requires repeating all 

of the previous steps). This is added to the waiting times on the calculation clusters, 

which at several points during the work described in this thesis were in the weeks due 

to down times of the server. 

In spite of the negative results, the positive ones described above are 

encouraging, and allow the suggestion of a number of potential laboratory 
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experiments. Specifically, it should be relatively straightforward, at least within the 

typical limitations of expressing membrane proteins heterologously (Schlegel et al. 

2010), to clone archaeal membrane proteins into bacterial models in order to evaluate 

a converse scenario in which archaeal membrane proteins are forced to interact with 

bacterial phospholipids. This has been done multiple times for other purposes, mainly 

biotechnology and crystallography. The prediction is that archaeal proteins should 

have a reduced function in bacterial membranes, and the effect should be more 

significant than for similar heterologously expressed bacterial proteins. Less 

straightforward, but still viable, it could be possible to express bacterial membrane 

proteins in an archaeal model such as Methanosarcina or Halobacterium (Allers and 

Mevarech 2005), to evaluate a system closer to the origin of eukaryotes. Incidentally, 

Halobacterium already contains a large number of bacterial membrane proteins 

embedded in an archaeal membrane (Nelson-Sathi et al. 2012), as discussed below. 

Bioinformatics results can also be expanded upon, for example by analysing 

well-supported HGT events between archaea and bacteria and determining whether 

there is a significant bias in favour of cytosolic over membrane proteins. Such an 

approach, as well as the one used here, has the caveat of ignoring ecology. That is, it 

is possible that the prediction is correct (that membrane proteins are indeed less stable 

in a foreign membrane), yet ecological constraints mean that they will still be picked 

up because it is more advantageous to have a sub-optimal membrane protein than to 

not have it at all. A well-known example of this would be halorhodopsin and 

bacteriorhodopsin, a pair of light-powered proton pumps crucial to the survival of 

species in the Halobacteria, the ancestor of which was unequivocally acquired from 

bacteria (Nelson-Sathi et al. 2012). Still the question is worth pursuing. 

In all, this chapter provides a testable bioenergetic and selective explanation for 

why eukaryotes, though evolving from an archaeal host, have bacterial membranes. 

This is one of many long-standing puzzles in the endosymbiotic theory for the origin 

of the eukaryotic cell. 
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4.7 Methods 

4.7.1 Obtaining orthologues from the MBGD dataset 

The MBGD default dataset contains 375,229 proteins with orthologues detected 

in any 2 or more of the 787 species (83 archaea, 659 bacteria, and 45 eukaryotes). 

Ignoring eukaryotes, and filtering for proteins shared by 10 or more prokaryotic 

species gave 19,741 orthologue groups, 6,648 of which are shared by at least 1 

archaeon and 1 bacterium. Table 9 presents a summary of these results. 

Table 9. Analysis of 742 species (705 prokaryotes) on the MBGD database 

Numbers of orthologue groups (OGs) per subset 

 375,229 orthologue groups shared by any 2 or more species out of the 787 (including eukaryotes) 

 19,741 shared by any 10 or more prokaryotes 

 6,648 shared by at least 1 bacterium and 1 archaeon and 10 or more total prokaryotes 

 1,204 are membrane proteins (by TMHMM predictions. This is 19.0% of the 6,648) 

 4,964 are tdHGTs (by monophyly of archaea and bacteria. This is 82.0% of 6,648) 

 

4.7.2 Selection of one sequence per species 

The MBGD database often contains multiple sequences for the same species 

within the same “orthologue” cluster. To select a single sequence per species, the full 

set of sequences was aligned using Clustal-Ω (clustalo, or Clustal Omega) (Sievers 

et al. 2011). Where a species had multiple sequences, the pairwise distances of each 

of its sequence to all sequences from other species was determined. The sequence with 

the shortest distance (fewest differences) was kept and all others for the same species 

ignored. 

4.7.3 Construction of multiple-sequence alignments and trees 

The selected sequences were unaligned and re-aligned using Clustal-Ω. These 

alignments were used as a source for building phylogenetic trees using FastTree (Price 

et al. 2010). 

4.7.4 Determination of trans-domain Horizontal Gene Transfers (tdHGTs) 

Trees were analysed using BioPython module ete2 (Huerta-Cepas et al. 2010), 

to determine whether the archaea and bacteria formed respective monophyletic groups 

(Figure 39). 
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Figure 39. Monophyletic trees were inferred as non-tdHGTs, 

paraphyletic/polyphyletic ones as tdHGTs 

(A) If it was possible to artificially place a root (green arrow) in the tree such that all 

of the archaeal orthologues (in blue, left of the green arrow) clustered together, and 

correspondingly so did the bacterial ones (in yellow, right of the green arrow), the 

encoding genes were assumed not to have been transferred horizontally across 

domains. (B) If, instead, there was no way of placing the root (red arrows) such that 

all the archaea clustered together, the tree was inferred to contain at least one trans-

domain Horizontal Gene Transfer. Here, the archaea are polyphyletic (they branch 

from more than one ancestor), and the bacteria paraphyletic (they all branch from the 

same common ancestor, but the descendants include members that are not bacteria). 

See definitions of monophyly, paraphyly and polyphyly in section 1.3.2. 

If no way could be found of re-rooting the tree such that the archaea and bacteria 

each formed a self-contained group with a single ancestor, the orthologue group was 

assumed to contain a trans-domain Horizontal Gene Transfer. In this way, orthologue 

groups were classified binarily as either tdHGTs or non-tdHGTs. 

Importantly, this method ignores the effect of any ancient horizontal gene 

transfers (i.e. it has a potentially high rate of false negatives), which may have played 

massive and function-defining roles in the evolution of several prokaryotic clades 

(Nelson-Sathi et al. 2012; Ku et al. 2015), but it is conservative in that the number of 

false positives should be low. 

4.7.5 Classification of membrane proteins 

Membrane proteins were annotated using the predictions of the TMHMM 

algorithm (Krogh et al. 2001), which exclusively identifies trans-membrane helices. 

Gene Ontology (GO) annotations could be used in addition to the predictions of the 

TMHMM algorithm; however, the GO annotations in MBGD (and in similar databases 

in general) are incomplete: several recognisable membrane-bound proteins (e.g. a 

number of transporters, ion channels, and transposases), although correctly identified 

by TMHMM, do not have the corresponding GO terms for membrane proteins and 
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thus fail to be identified as such. Additionally, multiple proteins do not have any GO 

annotations whatsoever, both in the OMA and MBGD databases. Since including the 

GO annotations produced only a small effect (data not shown), it was concluded that 

they were not a useful predictor The effect of including GO information could be 

unpredictable, since these are not systematically annotated. TMHMM, although biased 

towards helices, is systematically so, such that results are reliably comparable. This in 

turn depends on the proportions of membrane proteins identified by TMHMM being 

comparable between archaea and bacteria, which is indeed the case (19.53% in archaea 

versus 22.95% in bacteria). 

4.7.6 Mirroring of lipid bilayer 

To produce a geometry file with DPPC molecules with an archaeal sn-glycerol-

1-phosphate backbone instead of the original bacterial sn-glycerol-3-phosphate, I 

created a simple python script that multiplied the Z-coordinate of every atom in a PDB 

file by –1, as described in Figure 40. 

 

Figure 40. Black-box description of a simple script to mirror a PDB file 

by multiplying every Z coordinate by –1 

The script (not shown) simply parses a PDB file searching for every “ATOM” entry, 

and inverts the sign of every Z coordinate, leaving the X and Y coordinates, and 

everything else, unaltered. Effectively, this produces a mirrored image in which every 

chiral centre will be turned to its enantiomer and every other molecule will be 

ultimately unaltered (see Figure 33). 

The script was used on a regular 128-lipid DPPC bilayer description file obtained 

from Peter Tieleman’s website at wcm.ucalgary.ca/tieleman/downloads, and all 

calculations performed in GROMACS as described by Lemkul and Bevan (2011) and 

in the website www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-

tutorials/membrane_protein. 

http://wcm.ucalgary.ca/tieleman/downloads/
http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/membrane_protein
http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/membrane_protein
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Briefly, the lipid coordinates were expanded horizontally using inflateGRO 

(Schmidt and Kandt 2012), a script that makes the lipids separate artificially from each 

other on the membrane plane to provide space for the protein. The protein was then 

inserted into the middle of the system, with any overlapping lipids removed to avoid 

the possibility of two atoms on the same space, which would lead to infinite repulsive 

forces and therefore the collapse of the simulations. The lipids were then shrunk back 

gradually using inflateGRO, to a total area per lipid within the reported 62.9–64.0 Å2 

(Nagle et al. 1996), and applying strong force constraints on the protein to keep it 

stable in the vacuum while the lipids wrapped around it using successive energy 

minimisations in GROMACS. That is, the expanded lipids were allowed to gradually 

re-form a normal bilayer, this time around the protein, which was located at the centre. 

Periodic boundaries were applied to make the lipids at the borders interact with the 

ones on the opposite side, such that the system as a whole behaved as an infinite 

membrane. Up to this point the system had no water molecules. The system was then 

hydrated, and any water molecules that ended within the membrane were removed via 

Tcl/Tk scripting in VMD (Humphrey 1996). Where charges were present, the total 

charge was neutralised by replacing water molecules with the smallest possible 

number of either sodium (Na+) or chloride (Cl–) ions. The energy of the system was 

minimised with force constraints on the protein, to allow the relaxation of lipids, ions, 

and water molecules around the protein. Two equilibration processes were performed 

next, first an NVT (for Number of particles, Volume, and Temperature), and then an 

NPT (where P: pressure). This allowed the correct distribution of water molecules, 

lipids, and ions, and prepared the system for the molecular dynamics simulation. The 

simulation was then started and run for the times shown in the relevant figures above. 
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4.8 Appendix: Molecular modelling 

Note: this section has been adapted from MRes project “Conformation-Activity 

Relationship of G-Protein-Coupled Receptors: Computational Modelling of the 

human P2Y1 receptor”, submitted to UCL 02 May 2012, and references therein 

(Young 2001; Cramer 2004; Hinchliffe 2008; Jensen 2010). 

Molecular modelling is the use of computers to study the structure and function 

of chemical substances (Hinchliffe 2008). There are many tools within this discipline, 

the most detailed of which use quantum mechanics calculations to determine the 

properties of molecules with high accuracy. The problem is that these lead to equations 

that become intractable when more than a few atoms are involved (Dirac 1929). This 

makes pure quantum mechanics methods of little use for modelling whole systems of 

proteins, let alone membrane proteins embedded in a lipid bilayer, with thousands of 

solvent (water) molecules and ions at either side. Instead, approximations are needed. 

The simplest of these was first used successfully approximately 40 years ago 

(McCammon et al. 1977), and involves treating the protein and its surroundings as a 

classical Newtonian system. 

4.8.1 Molecular Dynamics (MD) 

Molecular Dynamics, in its classical-physics incarnation, is the application of 

Newton’s equations of motion in computational chemistry to describe the movement 

of atoms and molecules over time. The main use of MD simulations in biochemistry 

is to study the behaviour of biological macromolecules (proteins and polynucleotides) 

either in solution or in interaction with the phospholipids in a bilayer membrane 

system. 

Newton’s second law describes the behaviour of a time(t)-depending force (F) 

as a function of the mass (m) of a particle and its acceleration (a) 

𝐹(𝑡) = 𝑚 ⋅ 𝑎(𝑡) [6] 

Acceleration can be substituted as the second derivative of position (x) with 

respect to time, presented in one dimension in equation [7] for simplicity 
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𝐹(𝑡) = 𝑚
𝜕2𝑥

𝜕𝑡2
 [7] 

It is of interest to know how the positions of the particles change in time. Thus, 

solving for the second-order differential term on the right-hand side of equation [7], 

and approximating to a discrete scenario gives 

𝜕2𝑥

𝜕𝑡2
≈

𝑥(𝑡 + Δ𝑡) + 𝑥(𝑡 − Δ𝑡) − 2𝑥(𝑡)

Δ𝑡2
=

𝐹(𝑡)

𝑚
 [8] 

Solving for the position at each further time step, x(t+Δt) 

𝑥(𝑡 + Δ𝑡) = 2𝑥(𝑡) − 𝑥(𝑡 − Δ𝑡) +
Δ𝑡2𝐹(𝑡)

𝑚
 [9] 

The process begins with an initial structure, normally minimised. Since this is 

defined as time zero, (i.e. there’s no x(t – Δt)) and since there is no force on a minimised 

structure, the directions of the particles in the first step are normally chosen at random. 

The duration of each step is determined from the temperature that has been 

chosen for the simulation, according to 

𝑘𝐵𝑇 = 𝑚〈𝑣𝑥
2〉 [10] 

where kB is Boltzmann’s constant, 〈… 〉 represents an average over all particles 

in the simulation, and 𝑣𝑥 is the velocity, calculated traditionally as 

𝑣𝑥 =
𝑥(𝑡 + Δ𝑡) − 𝑥(𝑡)

Δ𝑡
 [11] 

The size of the time step is chosen small enough so that temperature and total 

energy remain constant throughout the simulation, and typical values range between 1 

and 10 fs. 

Since gradient-based optimisation algorithms can easily get trapped in local 

minima, and the sizes and complexity of biological macromolecules make it all but 

impossible for researchers to determine whether a minimum is global or local, MD can 

be a remarkably useful tool in detecting the true minimum-energy structures. However, 
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MD can also be used to estimate thermodynamic properties, as well as the biochemical 

behaviour of the system. Due to the computational costs involved, most simulations 

are allowed to run only within the nanosecond scale, although extending simulations 

into microsecond and even millisecond durations has proven worthwhile for properly 

exploring both potential energy surfaces and behaviour of biomolecules. 

4.8.2 Molecular Mechanics (MM) 

Although it is possible and valuable to run MD simulations using quantum-

chemistry algorithms, the costs of doing so are prohibitively large for the vast majority 

of systems of interest with the computational resources typically available. It is 

therefore imperative to use approximations, and the classical one called Molecular 

Mechanics (MM) is chief of these in biological macromolecular modelling. 

MM treats atoms as spheres and bonds as springs. This is clearly a very coarse 

approximation, as it implicitly allows unrestrictedly small variations in energy (as 

opposed to quantised values), it defines bonds in a fixed manner (as opposed to 

allowing electronic probability densities to arise from the calculations), and it ignores 

electronic transitions (therefore making it all but impossible to model chemical 

reactions). However, a large number of computational chemistry calculations are 

concerned with the determination of bond lengths and angles, i.e. chemical structure 

geometries; MM calculations can be remarkably accurate at this, and are thus highly 

regarded by the scientific community as a viable alternative to the intractable 

calculations that would be required in quantum descriptions of computational 

structural biology. 

4.8.3 Forcefields 

A typical MD simulation performs its calculations using what is called a 

Molecular Mechanics “forcefield”. In the balls-and-springs analogy, this is essentially 

a description of the force constants, equilibrium angles and lengths, and interactions 

between near neighbours, including Coulombic and other “nonbonded” interactions. 

Forcefields also involve a definition of “atom types” since, for example, a nitrogen in 

an amine group can be expected to behave differently from one in a nitro group. 

This latter point draws attention to the validity of a forcefield when tackling a 

given problem. The accuracy that a researcher can expect will depend on the molecules 
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that were used to parameterise the forcefield. Therefore, no forcefield is universal, 

some being more appropriate for nucleic acids, others for globular proteins, others for 

lipids, and so on. 

A typical forcefield equation can be summarised by six main contributions to the 

total potential energy (U) of the system, namely bond stretching (bs), bond bending 

(bb), dihedral torsions (dh), out-of-plane torsions (op), electrostatic/Coulombic 

interactions (es), and other nonbonded interactions (nb), as follows 

𝑈 = ∑ 𝑈𝑏𝑠

𝐴𝐵

+ ∑ 𝑈𝑏𝑏

𝐴𝐵𝐶

+ ∑ 𝑈𝑑ℎ

𝐴𝐵𝐶𝐷

+ ∑ 𝑈𝑜𝑝

𝐴𝐵(𝐷)𝐶

+ ∑ 𝑈𝑒𝑠

𝐴𝐶

+ ∑ 𝑈𝑛𝑏

𝐴𝐶

 [12] 

Consistent with MM’s balls-and-springs approximation, the potential energy 

involved in bond stretching between atoms A and B is typically modelled using some 

adaptation of Hooke’s law by defining a bond force constant 𝑘𝐴𝐵 and measuring the 

difference between the bond length 𝑟𝐴𝐵 and a pre-established equilibrium length 𝑟𝑒𝑞,𝐴𝐵 

𝑈𝑏𝑠,𝐴𝐵 =
1

2
𝑘𝐴𝐵(𝑟𝐴𝐵−𝑟𝑒𝑞,𝐴𝐵)2 [13] 

Analogously, bond bending is typically evaluated in terms of deviations of the 

angle 𝜃𝐴𝐵𝐶  between consecutively bonded atoms ABC from the equilibrium angle 

𝜃𝑒𝑞,𝐴𝐵𝐶, weighed by harmonic force constant 𝑘𝐴𝐵𝐶 

𝑈𝑏𝑏,𝐴𝐵𝐶 =
1

2
𝑘𝐴𝐵𝐶(𝜃𝐴𝐵𝐶−𝜃𝑒𝑞,𝐴𝐵𝐶)2 [14] 

As three consecutively bonded atoms define a plane, a subsequent fourth atom 

will define a dihedral angle. A common way of calculating the effect of alterations in 

the equilibrium torsional angle 𝜒𝑒𝑞 is given by 

𝑈𝑑ℎ,𝐴𝐵𝐶𝐷 =
𝑈0

2
(1 − cos(𝑛(𝜒 − 𝜒𝑒𝑞))) [15] 

where 𝑛 is a “periodicity parameter” based on symmetry of D about the B-C bond 

(e.g., 𝑛 =3 if D is one of the three hydrogens of a methyl group). 
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Out-of-plane torsions also occur in groups of four atoms, but in this case three 

of the atoms (A,C,D) are bonded to a common central one (B).  Considering that A-B-

C lie on a plane, D defines an angle that can be distorted and inverted. This contribution 

arises from that inversion potential 

𝑈𝑜𝑝,𝐴𝐵(𝐷)𝐶 =
𝑘

2𝑠𝑖𝑛2𝜓𝑒𝑞
(𝑐𝑜𝑠𝜓 − 𝑐𝑜𝑠𝜓𝑒𝑞)2 [16] 

where 𝜓𝑒𝑞 is the equilibrium angle. 

Electrostatic interactions can be calculated in a traditional Coulombic fashion 

𝑈𝑒𝑠,𝐴𝐶 =
1

4𝜋𝜀0

𝑞𝐴𝑞𝐵

𝑟𝐴𝐵
 [17] 

Finally, other nonbonded (van der Waals) interactions are frequently modelled 

as Lennard-Jones 12-6 potentials(Jones 1924) and calculated for all pairs of atoms 

within certain cut-off distance 

𝑈𝑛𝑏,𝐴𝐶 =
𝑎𝐴𝐵

𝑟𝐴𝐵
12 −

𝑏𝐴𝐵

𝑟𝐴𝐵
6  [18] 

where 𝑎 and 𝑏 are constants specific to atom types A and B. 

Therefore, equation [12] can be re-written explicitly as 

𝑈     =   ∑
1

2
𝑘𝐴𝐵(𝑟𝐴𝐵−𝑟𝑒𝑞,𝐴𝐵)

2

𝑏𝑠,𝐴𝐵

+ ∑
1

2
𝑘𝐴𝐵𝐶(𝜃𝐴𝐵𝐶−𝜃𝑒𝑞,𝐴𝐵𝐶)

2

𝑏𝑏,𝐴𝐵𝐶

         

+ ∑
𝑈0

2
(1 − cos(𝑛(𝜒 − 𝜒𝑒𝑞)))

𝑑ℎ,𝐴𝐵𝐶𝐷

+ ∑
𝑘

2𝑠𝑖𝑛2𝜓𝑒𝑞
(𝑐𝑜𝑠𝜓 − 𝑐𝑜𝑠𝜓𝑒𝑞)2

𝑜𝑝,𝐴𝐵(𝐷)𝐶

+   
1

4𝜋𝜀0
∑

𝑞𝐴𝑞𝐵

𝑟𝐴𝐵
𝑒𝑠,𝐴𝐶

     +       ∑ (
𝑎𝐴𝐵

𝑟𝐴𝐵
12 −

𝑏𝐴𝐵

𝑟𝐴𝐵
6 )

𝑛𝑏,𝐴𝐶

 

[19] 

 

These descriptions reinforce the importance of atom types. As an example, in 

order to determine the appropriate constant 𝑘𝐴𝐵𝐶 and equilibrium angle 𝜃𝑒𝑞,𝐴𝐵𝐶 for a 
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bond-bending calculation, it is imperative that all three atom types A, B, and C be 

specified in the forcefield. It is therefore necessary, as mentioned above, to choose a 

forcefield that appropriately describes the types of atoms being modelled, taking into 

consideration factors like hybridisation, formal charge, nearby atoms, and the solvent 

in which the system is being simulated. 
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5 THE LOW CONSERVATION OF MEMBRANE 

PROTEINS ACROSS THE TREE OF LIFE 

Note: this chapter is adapted directly from the original research article “Membrane proteins 

are dramatically less conserved than water-soluble proteins across the tree of life”, written as 

first author with PhD supervisors Prof. Andrew Pomiankowski and Dr. Nick Lane, in 

collaboration with Prof. Christophe Dessimoz (Sojo, Dessimoz, Pomiankowski, and Lane, 

submitted). 

5.1 Summary 

Membrane proteins are crucial in transport, signalling, bioenergetics, catalysis, and as 

drug targets. Here I show that membrane proteins have dramatically fewer detectable 

orthologues across the tree of life than water-soluble proteins, less than half in most 

species analysed, with the largest reductions in prokaryotes. This sparse distribution 

of membrane proteins could reflect rapid divergence, gene losses, or both. First, I show 

that membrane proteins evolve faster than water-soluble proteins, particularly in their 

exterior-facing portions. Second, I demonstrate the preferential loss of membrane 

proteins by comparing the presence/absence of predicted ancestral proteins within 

closely related species in both archaea and bacteria. The faster evolution of external 

portions and preferential loss of membrane proteins reflect increased adaptive 

evolution to varied environments, while stronger purifying selection operates in the 

homeostatic interior of the cell. These striking differences in conservation of 

membrane proteins versus water-soluble proteins have important implications for 

evolution and medicine. 

5.2 Introduction 

Biological membranes form the boundary between the cell and its surroundings, 

and their embedded proteins constitute an active link to the environment, with crucial 

roles in bioenergetics, transport, signalling, and catalysis (Mitchell 1957; Mitchell 

1961; Hedin et al. 2011). Over half of all known drug targets are membrane proteins 

(Overington et al. 2006).  Their study is therefore central to our understanding of the 

origins and evolution of life, as well as physiology and medicine. 
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Previous studies have shown that the subcellular localisation of a protein 

predicts its evolutionary rate. Extracellular proteins secreted from the cell evolve faster 

than intracellular proteins in both mammals and yeast, as do the external parts of 

membrane proteins, but the reasons are unclear (Tourasse and Li 2000; Julenius and 

Pedersen 2006). The pattern does not seem to depend on the essentiality of the gene 

product, suggesting that mechanisms other than purifying selection on crucial proteins 

are at play (Liao et al. 2010). Structural and packing constraints undoubtedly play a 

role, with the exposure of amino acid residues to the solvent (Oberai et al. 2009; 

Franzosa et al. 2013) and the sub-cellular localisation of the proteins and their 

fragments (Julenius and Pedersen 2006) being the strongest predictors of evolutionary 

rate. Membrane proteins also diverge faster than intracellular water-soluble proteins 

in parasites, where surface interactions evolve under pressure to avoid detection by the 

host (Volkman et al. 2002; Plotkin et al. 2004). This pattern may be specific to the 

‘red-queen’ dynamics of parasitic interactions, i.e. the need for constant adaptation 

merely to maintain fitness. Taken together, however, these disparate findings suggest 

that evolution occurs faster outside the cell, and hint at the operation of a wider 

evolutionary mechanism. 

Here I evaluate the simple hypothesis that protein evolution is faster outside the 

cell as a result of adaptation to changing environments (Figure 41). Over evolutionary 

time, the interior of the cell remains stable compared with the exterior, which is forced 

to change in response to shifting biogeochemical processes, migration and 

colonisation of new niches, and parasitic interactions. This leads to the faster evolution 

of secreted water-soluble proteins and outside-facing sections of membrane proteins. 

The utility of a protein will also depend on the specific environment, potentially 

leading to preferential losses of membrane-bound gene products over time as 

environments change (Figure 41). I have analysed large datasets of orthologues to 

evaluate the conservation of membrane proteins relative to water-soluble proteins 

across the entire tree of life, to test whether faster evolution outside the cell is driven 

by adaptation to new environments and functions. 
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Figure 41. Two-fold effect of adaptation causes faster evolution of 

external sections and loss of homology in membrane proteins 

Adaptation to new functions and niches causes faster evolution for outside-facing 

sections (top), potentially contributing to divergence beyond recognition. Other 

proteins may provide no advantage in the new environment, and would be lost 

entirely over time (centre). For simplicity, the species on the left is assumed to remain 

functionally identical to the common ancestor (bottom). 

5.2.1 Identification of membrane proteins and the topology of their segments 

The classification of proteins as either membrane-bound or water-soluble from 

their primary sequence is an important problem in structural biology and 

bioinformatics. Most simply, a succession of hydrophobic amino acids may betray the 

presence of a membrane-embedded segment, but such a gathering can also occur 

within buried portions of a water-soluble protein which are not exposed to the solvent. 

In most proteins of the plasma membranes of the three domains, the stereotypical 

fundamental structure of membrane-embedded proteins is that of a trans-membrane α-

helix (TMH) (Oberai et al. 2006). These helices often alternate with water-exposed 

loops at either side of the membrane in a sewing fashion, notably in 7-trans-membrane-

helical structures, the best known subgroup of which are the G-protein-coupled 

receptors (GPCRs) in eukaryotes. A number of algorithms exist that predict both the 

presence of these helices and their topology (Krogh et al. 2001; Käll et al. 2005; Hessa 

et al. 2007; Bernsel et al. 2008; Reynolds et al. 2008; Viklund et al. 2008; Viklund and 



 142 

Elofsson 2008; Tsirigos et al. 2015), most of them based on the properties of 

previously observed proteins and subsequent statistical methods that estimate the 

probability of each amino acid in a query sequence being part of a TMH, or exposed 

to the external or internal aqueous phases. These algorithms work well for predicting 

TMHs, but there are no equivalent methods for the β-sheet barrels in the outer 

membrane of gram-negative bacteria and mitochondria (e.g. porins). However, since, 

the majority of trans-membrane proteins are TMHs (Oberai et al. 2006), this may be 

an acceptable limitation. 

The algorithms successfully detect transmembrane helices versus water-exposed 

loops. However, predicting the specific topology (i.e. whether aqueous loops are inside 

or outside) is a more difficult matter. One simple solution is the “positive inside rule” 

(von Heijne 1986b; von Heijne 1992), which stemmed from the observation that the 

number of (positively charged) lysine and arginine residues is four times higher in 

cytosol-facing loops than in their periplasm- or exterior-facing counterparts. 

Therefore, the rule posits that loops with more lys/arg can be expected to be facing 

towards the relatively negative inside of a bacterial cell membrane (the N-side), while 

the alternating low-lys/arg loops should face the exterior (the P-side)viii. 

This and other sources of information are incorporated into the packages 

mentioned above, and in particular in TMHMM (Krogh et al. 2001), the algorithm 

used in this and the previous chapter. My own results (below) show that, while the 

identification of TMHs and loops seems highly reliable, there is no consistency in the 

prediction of inside versus outside loops. Tests with TOPCONS (Bernsel et al. 2009), 

a consensus predictor that incorporates the results of several algorithms, were no 

better. 

 

                                                 
viii Significantly, however, no equivalent effect is observed for the negatively charged aspartate and 

glutamate (von Heijne 1986b). 
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5.3 Results 

5.3.1 Membrane proteins are shared by fewer species in all domains of life 

To study the evolution of membrane proteins across the tree of life, I 

downloaded the 883,176 pre-computed orthologue groups (OGs) for all species from 

the three domains of life present in the OMA database (Altenhoff et al. 2015). I then 

obtained the full list of 66 species in the EMBL-EBI list of reference proteomes 

(www.ebi.ac.uk/reference_proteomes), and extracted the OMA OGs for each protein 

of each species, where present. I classified each protein sequence as either a membrane 

protein (MP) or a water-soluble protein (WS) using the predictions of the TMHMM 

algorithm (Krogh et al. 2001). The number of orthologues found for each protein was 

determined (i.e. the size of the orthologue cluster, or OG, for each protein). I find that, 

in all cases, the mean number of orthologues is substantially smaller for MPs than for 

WSs (Figure 42); that is, membrane proteins are generally shared by fewer species 

(paired t-test: t=8.05; df=63; p=2.88·10–11; r=0.712). 

http://www.ebi.ac.uk/reference_proteomes
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Figure 42. Membrane proteins have fewer detectable orthologues in all 

three domains of life 

The average size of OMA Orthologue Groups (OGs) is substantially smaller for 

membrane proteins in all 64 species in the EMBL-EBI’s list of reference proteomes 

studied (2 of the 66 species were not found in OMA at the time of this analysis). Five-

letter codes are OMA species identifiers; details in Table 10. Dark shade: water-

soluble (WS); light shade: membrane proteins (MP). Data represented as means of 

the number of orthologues that WS and MP of each genome have in OMA ± 2xSEM 

(standard error of the mean). 
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Table 10. Orthologue counts of water-soluble and membrane proteins in 66 reference species 

In all cases, the mean size of an OMA orthologue group (i.e. the OG cluster size) is smaller for 

membrane proteins. Species correspond to the 66 in the EMBL-EBI’s list reference proteomes, and 

Figure 42. Two of the 66 species were not found on the OMA database, and two others were replaced 

with related strains or species (details in the footnotes). 

Speciesa 

OMA 

code 

Num. 

proteins  

in OMA 

Num. 

MPs 

Proportion 

of  MPs 

Mean WS 

OG size 

Mean MP 

OG size 

Archaea       

Halobacterium salinarum HALSA 2241 472 0.211 66.2 25.9 

Korarchaeum cryptofilum KORCO 1192 213 0.179 74.1 35.9 

Methanosarcina acetivorans METAC 1639 285 0.174 86.4 32.6 

Methanocaldococcus jannaschii METJA 3514 878 0.250 60.6 26.8 

Sulfolobus solfataricus SULSO 2668 578 0.217 62.8 29.4 

Thermococcus kodakaraensis THEKO 2039 469 0.230 70.1 26.5 

Bacteria       

Aquifex aeolicus AQUAE 1393 271 0.195 216.5 74.7 

Bacillus subtilis BACSU 3984 1122 0.282 137.3 48.4 

Bacteroides thetaiotaomicron BACTN 3931 974 0.248 98.5 38.7 

Bradyrhizobium japonicumb BRAJA 6937 1723 0.248 85.2 41.7 

Chloroflexus aurantiacus CHLAA 3802 1104 0.290 123.1 38.4 

Chlamydia trachomatis CHLTR 889 219 0.246 243.6 67.7 

Deinococcus radiodurans DEIRA 2519 478 0.190 138.5 59.1 

Dictyoglomus turgidum DICTD 1673 454 0.271 204.2 43.6 

Escherichia coli ECOLI 4264 1045 0.245 205.4 134.9 

Fusobacterium nucleatum FUSNN 1661 352 0.212 181.9 66.7 

Geobacter sulfurreducens GEOSL 3066 823 0.268 154.2 52.6 

Gloeobacter violaceus GLOVI 3380 696 0.206 101.5 38.0 

Leptospira interrogans LEPIN 3645 1031 0.283 106.9 35.3 

Mycobacterium tuberculosis MYCTU 3933 797 0.203 123.2 56.5 

Pseudomonas aeruginosa PSEAE 5500 1327 0.241 135.5 79.7 

Rhodopirellula baltica RHOBA 3218 745 0.232 106.4 27.2 

Streptomyces coelicolor STRCO 7104 1719 0.242 72.7 25.8 

Synechocystis sp. SYNY3 3058 739 0.242 139.4 48.7 

Thermotoga maritima THEMA 1779 431 0.242 185.7 53.8 

Thermodesulfovibrio yellowstonii THEYD 1716 393 0.229 211.4 77.3 

Eukaryota (unicellular)       

Aspergillus fumigatusc ASPFU 8801 1826 0.207 41.2 23.1 

Candida albicansd CANAW 4932 949 0.192 40.3 18.7 

Cryptococcus neoformans CRYNJ 5679 1094 0.193 39.5 19.1 

Giardia intestinalis GIAIC 1181 211 0.179 25.5 6.0 

Leishmania major LEIMA 7858 1423 0.181 14.1 6.7 

Monosiga brevicollis MONBE 4184 775 0.185 43.9 16.4 

Phaeosphaeria nodorum PHANO 15023 2601 0.173 23.3 16.2 

Plasmodium falciparum PLAF7 1853 375 0.202 33.6 11.8 

Schizosaccharomyces pombe SCHPO 3541 602 0.170 62.3 24.7 

Yarrowia lipolytica YARLI 4222 862 0.204 57.9 22.7 

Saccharomyces cerevisiae YEAST 4811 926 0.192 39.7 17.2 

Eukaryota (multicellular)       

Anopheles gambiae ANOGA 9889 2390 0.242 33.8 17.5 

Arabidopsis thaliana ARATH 23989 6102 0.254 21.1 12.1 

Bos taurus BOVIN 19336 5432 0.281 46.5 31.9 
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Branchiostoma floridae BRAFL 15318 3050 0.199 23.0 14.0 

Caenorhabditis elegans CAEEL 15719 5280 0.336 21.5 8.4 

Canis familiaris CANFA 18574 4805 0.259 45.0 34.7 

Gallus gallus CHICK 14226 3535 0.248 47.8 35.7 

Ciona intestinalis CIOIN 9346 1932 0.207 31.9 15.3 

Danio rerio DANRE 22138 5805 0.262 30.4 20.8 

Dictyostelium discoideum DICDI 8316 1793 0.216 25.2 8.9 

Drosophila melanogaster DROME 13582 3454 0.254 30.3 16.9 

Homo sapiens HUMAN 20221 5242 0.259 45.0 35.4 

Ixodes scapularis IXOSC 8470 1722 0.203 27.0 15.7 

Macaca mulatta MACMU 19771 4671 0.236 39.7 34.3 

Monodelphis domestica MONDO 18904 5168 0.273 40.6 28.7 

Mus musculus MOUSE 20457 6047 0.296 45.0 29.5 

Nematostella vectensis NEMVE 14935 2705 0.181 25.7 14.6 

Neurospora crassa NEUCR 6817 1241 0.182 35.4 22.8 

Ornithorhynchus anatinus ORNAN 14308 3247 0.227 31.7 23.4 

Pan troglodytes PANTR 18241 4551 0.249 46.5 37.3 

Physcomitrella patens PHYPA 13463 3126 0.232 25.6 13.1 

Rattus norvegicus RATNO 20502 5872 0.286 42.7 29.0 

Schistosoma mansoni SCHMA 4023 745 0.185 34.4 19.0 

Sclerotinia sclerotiorum SCLS1 8377 1576 0.188 34.2 18.7 

Takifugu rubripes TAKRU 17576 4480 0.255 36.0 24.3 

Ustilago maydis USTMA 3505 690 0.197 43.8 17.2 

Xenopus tropicalis XENTR 16021 4184 0.261 31.6 21.4 

 
a Two of the 66 species, namely Thalassiosira pseudonana (THAPS) and Trichomonas vaginalis 

(TRIVA), were not found in OMA at the time of this analysis and were thus ignored. 
b Bradyrhizobium diazoefficiens (BRADU) is in the EBI Reference Proteomes list, but was not found in 

OMA at the time of this analysis; B. japonicum (BRAJA) was used instead. 
c Present in OMA as “Neosartorya fumigata” at the time of writing. 

d The OMA code for the Candida albicans strain used was (CANAW) instead of the one in the EBI list 

(CANAL), not presently found in OMA. 

 

Water-soluble OGs are on average 2.7 times larger than membrane-protein 

OGs in prokaryotes (Figure 43). Amongst the eukaryotes, the effect is also substantial 

but smaller in multicellular versus unicellular organisms; water-soluble OGs are on 

average 2.4 times larger than membrane-protein OGs in unicellular eukaryotes, 

whereas the factor decreases to 1.7 for multicellular eukaryotes (Figure 43; one-way 

analysis of variance: F(2,61)= 21.07; p=1.1·10–7; 2=0.149). 
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Figure 43. Water-soluble orthologue groups are substantially larger than 

membrane-protein groups, but the effect decreases as organismal 

complexity increases 

The ratio of the mean orthologue group sizes of water-soluble over membrane 

proteins is always greater than 1 (i.e. each WS bar is always larger than its 

corresponding MP bar in Figure 42), but the effect decreases as cellular and 

organismal complexity increase, from prokaryotes to unicellular eukaryotes, to 

multicellular eukaryotes. Bold black lines represent the median, white lines the mean, 

boxes the inter-quartile range (IQR), and whiskers are R-package standard at a 

±1.5*IQR threshold. 

The findings in Figure 42 were confirmed with a protein-protein BLAST 

(blastp) search (Altschul et al. 1990) against the full non-redundant (nr) NCBI protein 

database, for each protein in the proteome of six species chosen from Figure 42. I 

picked well-annotated representatives of two distant clades from each domain, namely 

a euryarchaeon and a TACK-archaeon, a Gram-positive and a Gram-negative bacteria, 

and a unicellular and a multicellular eukaryotes. In all cases the mean number of blastp 

hits is lower for MPs than for WSs (Figure 44). These results consistently show that 

membrane proteins have fewer orthologues than water-soluble proteins across the tree 

of life. The fact that this is the case in all species studied suggests that an important 

evolutionary force is at play. 
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Figure 44. blastp search confirms lower homology of membrane proteins 

A blastp search on the non-redundant (nr) NCBI protein database confirms the results 

in Figure 42 that membrane-bound proteins recover fewer homologs. Two well-

annotated representative species from distant clades of each domain were chosen, 

namely a euryarchaeon and a TACK-archaeon, a Gram-positive and a Gram-negative 

bacteria, and a unicellular and a multicellular eukaryotes. Results from OMA in 

Figure 42 are repeated in (A, B and C), for comparison with blastp results in (D, E 

and F). Data presented as means ± 2SEM. 

I performed a logistic regression on the OMA orthologue dataset to estimate 

the probability that a protein is membrane-bound as the number of clades sharing it 

increases. The number of clades was determined by choosing one orthologue from 

each clade at the sixth level of taxonomic differentiation according to the NCBI 

lineages (e.g. “Escherichia” for E. coli, and “Deuterostomia” for humans, see Methods 

in section 5.5). Of the 883,176 pre-computed OMA OGs, I picked the 228,148 that 

had representatives from at least three separate clades (to allow for later multiple 

sequence alignments). The results show that the probability of a protein being 

membrane-bound falls as the number of clades sharing it increases, both when 

considering the whole dataset, and for proteins shared exclusively within the archaea, 
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bacteria, and eukaryotes (Figure 45). The more universal the protein, the less likely it 

is to be membrane-bound. 

 

Figure 45. The probability of a protein being membrane-bound falls with 

wider distribution 

(A) A logistic regression shows that the probability that a gene is a membrane protein 

falls significantly with increasing number of clades sharing it. The pattern remains 

when considering each of the three domains separately (B, C and D). The points and 

vertical stripes correspond to the proportions of MPs amongst genes shared by 

increasingly large numbers of clades, divided in 10% bins. No proteins retrieved were 

shared by over 90% of the 489 taxa in (A). In all cases the final bins have proportion 

zero, i.e. no highly shared proteins are membrane-bound. Note that the points and 

bins are provided for reference only: logistic regressions were performed on the 

individual orthologue clusters (i.e. the probability curves were derived 

independently. See Methods in section 5.5). 

Since orthologue discovery depends on the successful detection of homologs 

using tools such as BLAST, the lower homology of membrane proteins I report could 

have two main causes (Figure 41). First, it is possible that membrane proteins evolve 

faster and hence their more divergent sequences are picked up less frequently by 

homology identification algorithms. Second, some of the absences may be true gene 

losses, such that the orthologues are not found because they are genuinely no longer 

there. 
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5.3.2 Faster evolution of membrane proteins and their outside-facing sections 

To investigate whether the patterns above are due to membrane proteins having 

a higher divergence rate overall, I aligned the protein sequences of the 41,970 OGs 

shared by ten or more clades using MAFFT (Katoh and Standley 2013), computed the 

corresponding codon alignments using PAL2NAL (Suyama et al. 2006) and calculated 

the non-synonymous (dN) to synonymous (dS) rate ratio (ω=dN/dS) using the codeml 

program from the PAML suite (Yang 2007). The effect, although small, confirms 

previous reports on data sets with more limited phylogenetic ranges (Volkman et al. 

2002; Julenius and Pedersen 2006; Sanders and Mittendorf 2011) that membrane 

proteins diverge more quickly than water-soluble proteins (Welch’s t-test: t=14.08, 

df=14261.09; p=2.59·10–45; r=0.12, Figure 46A) and this result was consistent across 

the three domains of life (archaea, bacteria and eukaryotes, Figure 46B-D). 

 

Figure 46. Purifying selection is weaker in membrane proteins 

The ratio of non-synonymous to synonymous substitution rates (=dN/dS) is higher 

for membrane proteins in the full set of OMA OGs (A) as well as for the archaea (B), 

bacteria (C) and eukaryotes (D) separately, indicating that purifying selection is 

weaker on membrane proteins. Following the recommendations in the codeml 

manual (Yang 2007), only genes shared by 10 or more species were analysed. 

While the TMHMM algorithm has been shown to infer trans-membrane helical 

regions with very high accuracy (Krogh et al. 2001), discerning the inside- versus 

outside-facing aqueous regions of TMH proteins is substantially more challenging. I 

therefore downloaded the full non-redundant set of sequences and annotations from 

the trans-membrane protein data bank (PDBTM, pdbtm.enzim.hu) (Tusnády et al. 

2004), to assess the evolution of the three main regions of trans-membrane proteins: 

inside-facing aqueous, membrane-spanning, and outside-facing aqueous. Briefly, this 

database has annotations, where available, for the sub-cellular localisation of each 

amino acid in all membrane-protein structures deposited in the Protein Data Bank 

(PDB, www.rcsb.org) (Berman et al. 2000; Rose et al. 2015). I obtained homologs for 

http://pdbtm.enzim.hu/
http://www.rcsb.org/
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each protein using blastp on the NCBI nr database, aligned the sequences with 

MAFFT, and sliced the alignments vertically to obtain the inside, membrane-spanning, 

and outside sections, plus an “aqueous” assemblage constructed by concatenating the 

inside and outside portions. I then built trees for each of these using FastTree (Price et 

al. 2010). See Methods for details. The mean of the branch lengths in each tree, which 

correspond to the number of substitutions per site, was used as an estimate of 

evolutionary rate. The results confirm that aqueous sections evolve faster than 

membrane-spanning ones (Figure 47; paired t-test: t=10.2109; df=371; p=1.40·10–16; 

r=0.411). Amongst the aqueous sections, both of which evolve faster than the 

membrane spanning ones overall, the environment-facing sections evolve faster than 

the inside-facing ones (paired t-test: t=4.63; df=359; p=5.22·10–6; r=0.237). 

 

Figure 47. Evolutionary rates for sections of trans-membrane proteins 

annotated from PDB structures 

For the 378 proteins studied from the PDBTM database, aqueous sections evolve 

faster overall than membrane-spanning sections. Splitting the aqueous sequences into 

outside- and inside-facing sections confirms that environment-exposed regions 

evolve faster than cytosol-facing ones. Values ranges as in Figure 44; outliers not 

shown. 

To control for potential errors in the automatic annotations of PDBTM, I 

repeated the analysis by manually annotating the three main regions (inside, outside, 

and membrane-spanning) of twelve membrane proteins that are highly shared in OMA, 

including one outer-membrane beta-barrel porin and eleven trans-membrane helical 
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proteins. The closest matching structural file was found by blastp search against the 

PDB subset on NCBI. The subcellular location of each amino acid residue was then 

assigned by inspecting the PDB structures against the information in the corresponding 

primary literature (Table 11). The sequences in the OMA OGs were aligned to the 

PDB sequence, alignments sliced and evolutionary rates estimated as described above. 

In all twelve proteins hand-annotated in this way, evolution occurs faster for outside-

facing than for inside-facing aqueous regions (Figure 48). 

 

Figure 48. Outside-facing sections of membrane proteins evolve faster 

than inside-facing sections 

In all proteins annotated by visually inspecting the PDB structure in relation to the 

original literature, evolution occurs faster for outside-facing than for inside-facing 

aqueous sections. This occurs both in outer-membrane and inner-membrane proteins. 

Four-character codes (e.g. “4HE8”) represent the PDB entry of the protein, followed 

by a short description of the protein name or function, as per the original literature. 

Full: the whole multiple-sequence alignment, without slicing. MS: membrane-

spanning section (i.e. the lipid-exposed or “middle” section of the trans-membrane 

protein). Details of proteins and primary references in Table 11. 
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Table 11. Descriptions and primary references for PDB structures in Figure 48 

PDB entry codes (3-D structures deposited on rcsb.org), descriptions, and references in the primary 

literature for the proteins in Figure 48. 

PDB 

entry 

Short 

description 

Long description Reference 

2OAR MscL Mechanosensitive channel of large conductance (Chang et al., 1998) 

2YVX MgtE Magnesium transporter (Hattori et al., 2007) 

3AQP SecDF Translocon-associated membrane protein (Tsukazaki et al., 2011) 

3DL8 SecY Bacterial protein translocation channel (Zimmer et al., 2008) 

3O0E OmpF Bacterial outer-membrane porin (Housden et al., 2010) 

3PJZ TrkH Potassium transporter (Cao et al., 2011) 

3RFU Cu Trans Cu-transporting PIB-type ATPase (Gourdon et al., 2011) 

3RKO Complex I-M Chain M of respiratory complex I (Efremov and Sazanov, 2011) 

4HE8 Complex I-A Chain A of respiratory complex I (Baradaran et al., 2013) 

4HE8 Complex I-C Chain C of respiratory complex I (Baradaran et al., 2013) 

4HTS TatC Twin arginine translocase receptor (Ramasamy et al., 2013) 

4J72 MraY Polyprenyl-phosphate N-acetyl hexosamine 1-

phosphate transferase 

(Chung et al., 2013) 

 

 These findings are again widespread across the tree of life, and apply to multiple 

types of proteins. I note that these patterns hold true despite the fact that some aqueous 

proteins are exported from the cell and predictably evolve faster (Julenius and 

Pedersen 2006), whereas some membrane proteins, especially in eukaryotes, sit on 

organellar membranes (hence presumably evolve slower). 

5.3.3 Membrane proteins have been lost more often within groups of closely 

related species 

The results in Figure 46 suggest that the higher evolutionary rates of membrane 

proteins could, through divergence beyond recognition in tools such as BLAST, lead 

to the loss of homology reported above (Figures 42 and 44). But it is also possible that 

true gene losses have occurred in addition. I repeated the presence-absence analysis 

(Figure 42) on sets of predictably ancestral proteins within groups of closely related 

species and strains. If one or more species do not share a protein that is ancestral to the 

clade, I conclude that the encoding gene has been truly lost, under the assumption that, 

between closely related species, orthologues are unlikely to have diverged beyond 

recognition. I selected all prokaryotic clades with 10 or more closely related species 

in OMA (at the fifth taxonomic level of differentiation or higher according to the NCBI 

lineages). The number of orthologues in each cluster (OG) was then determined and 

filtered for OGs with at least half of the species within the group. I assumed that 

http://www.rcsb.org/
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proteins shared by greater than half of the members of the clade were ancestral. 

Membrane proteins were then annotated using the consensus from the TMHMM 

predictions within each OG. 

The results show that the mean numbers of species sharing each of these 

ancestral OGs are lower for membrane-proteins than for water-soluble ones across 31 

of the 35 clades studied (Figure 49) (paired t-test: t=7.31; df=34; p=1.81·10–8; 

r=0.782). 

 

Figure 49. Ancestral membrane proteins have been lost more frequently 

(A) Predicted ancestral proteins (defined as shared by at least half of the members of 

a clade), are shared by a smaller proportion of members in the clade if they are 

membrane proteins, for 31 of the 35 groups studied (exceptions are Neisseria, 

Rickettsia, Salmonella, and Yersinia). Dark shade: water-soluble; light shade: 

membrane proteins. First six pairs (blue) are archaeal clades, the remainder (yellow) 
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are bacterial. Error bars: 2xSEM. (B) Values as in (A), paired and without error bars. 

Red-dashed: results with higher mean proportion of sharing species for MP than WS. 

Yellow-dotted: results with MP<WS but p-value over significance cut-off of 0.05 

under a two-sample Welch t-test. Green-solid: statistically significant results. 

That is, membrane proteins have been lost more often than water-soluble 

proteins within closely related clades, confirming that true gene losses can also account 

in part for the lower homology of membrane proteins reported above. 

5.4 Discussion 

I report that membrane proteins have fewer orthologues than water-soluble 

proteins across the entire tree of life (Figures 42-45). In principle this finding could be 

due to a higher evolutionary rate, which prevents sequence-search algorithms such as 

BLAST from detecting homologs beyond a given threshold. That is, since orthology 

detection ultimately relies on the successful identification of suitable homologues, and 

since membrane proteins have been reported to evolve faster than water-soluble 

proteins, they can be expected to cross a given detection threshold faster. This will 

lead to spurious loss of homology that would be confused for gene loss in databases 

such as OMA. Conversely, it is possible that some of the missing orthologues 

correspond to true gene loss, i.e. that homology detection algorithms fail to detect 

some of the genes because they are genuinely no longer present in the genomes. My 

results suggest that both mechanisms are at play. 

First, I confirm that the evolutionary rates of membrane proteins are faster than 

for aqueous proteins, and extend these findings across the whole tree of life, and in 

each of the three domains of bacteria, archaea and eukaryotes independently (Figure 

46). The evolutionary rates of membrane proteins are fastest in the outside-facing 

aqueous regions, comparatively slower in the inside-facing counterparts, and slower 

still in the transmembrane portions (Figures 47 and 48). 

Second, the analysis of closely related species shows that predicted ancestral 

proteins are lost more frequently if they are membrane bound (Figure 49). This 

indicates that the lower homology of membrane proteins is not only due to divergence 

beyond sequence recognition, but also that true gene losses may have occurred. 

However, it is possible that closely related species may experience divergence beyond 
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recognition (Haggerty et al. 2014), most significantly in short and rapidly evolving 

sequences, a possibility that must be evaluated further. One possible solution would 

be to consider only sequences above a certain length for the results in Figure 49. In 

addition, an analysis of the chromosomal vicinity of each gene could provide a clearer 

picture of orthology and help identify any true gene losses, but given the fluidity of 

prokaryotic genomes and the vast amount of data used here, this approach would be 

prohibitive at present. 

The findings point to a general evolutionary principle: membrane proteins may 

evolve faster because they face stronger adaptive selection in changing environments, 

whereas cytosolic proteins are under more stringent purifying selection in the 

homeostatic interior of the cell (Figure 41). The outside-facing sections of membrane-

spanning proteins are closely involved in adaptation to new environments and 

functions, and so are more likely to diverge over time than the cytosolic portions. As 

emerging species colonise novel environments or specialise in new tasks, the outside-

facing sections are subject to stronger positive selection, while rate-limiting purifying 

selection prevails in the membrane-spanning and inside-facing portions (Figures 47 

and 48). Novel or changing environments also render ancient membrane proteins 

useless, leading to loss over time, and accounting for the absences that observed even 

between closely related species (Figure 49). The hypothesis put forward here 

immediately suggests that this effect should be strongest in prokaryotes, weaker in 

unicellular eukaryotes (where intracellular membranes mean that membrane proteins 

can also face an internal homeostatic environment), and weakest in multicellular 

eukaryotes (where even extracellular proteins face a homeostatic environment 

provided by tissues and organs). This is indeed the case (Figure 43). Nonetheless, the 

difference in size of orthologue groups between membrane proteins and water-soluble 

proteins is substantial even in multicellular eukaryotes. 

This broad evolutionary perspective provides a framework for interpreting a 

number of earlier findings that have proved difficult to generalise. Previous results  

show that water-soluble proteins secreted from the cell evolve faster than cytosolic 

proteins in mammals and yeast, and that the external portions of membrane proteins 

evolve faster than the internal domains (Julenius and Pedersen 2006). However, given 

the complexity of mammalian species, a focus on this taxonomic class does not lend 

itself to generalisations in terms of purifying selection or adaptation to changing 
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extracellular environments. Similarly, the G-protein-coupled receptor superfamily is 

known to evolve faster in its extracellular portions than in the transmembrane and 

cytosolic regions, but this has again been interpreted in terms of particular functional 

and structural constraints (Tourasse and Li 2000; Lee et al. 2003). In Gram-negative 

bacteria, degradation of xenobiotic toxic substances occurs in the periplasmic space 

(Kawai 1999; Nagata et al. 1999), making evolutionary pressure stronger on the 

external regions than in the homeostatic interior. Signal peptides have been shown to 

evolve rapidly in both prokaryotes and eukaryotes, pointing to positive selection on 

these secretory membrane-targeting fragments (Li et al. 2009). Finally, parasitic 

interactions can promote the rapid evolution of membrane proteins, especially the 

external loops involved directly in antigen interactions (Volkman et al. 2002; Plotkin 

et al. 2004). Parasite membrane proteins face positive selective pressure from 

recognition by the host, but these red-queen dynamics have not been extended beyond 

parasite-host interactions. I argue that each of these specific instances can be 

generalised for membrane proteins as a class across the tree of life. When interpreted 

into a comprehensive context, all these observations point to faster evolution outside 

the cell in response to changing environments or functions. 

I have not considered the effects of horizontal gene transfer (HGT), a major force 

in microbial evolution, as the unequivocal detection and ecological significance of 

ancient HGT events is still a hotly debated topic (Philippe and Douady 2003; Dagan 

and Martin 2007; Puigbò et al. 2014; Akanni et al. 2015; Katz 2015; Koonin 2015; 

Ravenhall et al. 2015; Soucy et al. 2015). Horizontally transferred genes tend to be 

integrated at the periphery of metabolic networks, while genes at the core tend to be 

more evolutionarily conserved (Pál et al. 2005). At the level of cellular gene networks, 

extracellular proteins could be considered peripheral, while intracellular proteins are 

more central, and so more conserved (Julenius and Pedersen 2006). However, the fact 

that membrane proteins evolve faster in their outside portions and more slowly on the 

inside is not consistent with the idea that membrane proteins evolve faster simply 

because they are peripheral to gene networks, but rather because selection operates 

differently outside the cell. I have also ignored the effect of exported water-soluble 

proteins, which as noted evolve faster than cytosolic proteins and even than the 

external sections of membrane proteins in mammals and yeast (Julenius and Pedersen 

2006). Annotation deficiencies across the rest of the tree of life forced me to neglect 
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these differences between water-soluble proteins inside and outside the cell. 

Conservatively, however, removing the relatively fast-evolving secreted proteins 

should magnify the difference in evolutionary rates between water-soluble proteins 

and membrane proteins, reinforcing the findings. In fact, the observation of true gene 

losses should be echoed by secreted proteins. 

I conclude that adaptation to novel environments and functions underlies the 

lower homology of membrane proteins across the tree of life. Life is defined by its 

cellular nature: the inside of a living cell separated from its environment by an organic 

membrane. Cells must constantly interact with varying environments, while 

maintaining tight internal homeostasis. The interactions between the inside and outside 

of the cell are largely mediated by membrane proteins, so elucidating their evolution 

is central to understanding the origins and evolution of life. For the same reasons, 

membrane proteins have great medical importance. Over half of all known drug targets 

are membrane proteins, so these findings may help to explain why the progression of 

new drugs from animal models into human trials is so often unsuccessful (Holmes et 

al. 2011; Denayer et al. 2014). The results are also of practical importance in 

phylogenetics: if membrane proteins are less than half as likely to be conserved widely 

across the tree of life, then homology searches will often be confounded, as could 

molecular clocks. Faster evolution outside the cell makes simple intuitive sense, but 

the strength of this signal across the whole tree of life elevates what has been seen as 

an interesting sporadic pattern into a general principle of evolution. 

5.5 Methods 

The full set of orthologue groups (OGs) from the OMA database was 

downloaded from the OMA server at www.omabrowser.org/export, September 2014 

release. 

This set of 883,176 OGs includes multiple orthologues shared by repeated 

species (e.g. multiple strains of Escherichia coli), so, as a strategy to avoid 

oversampling in the phylogenetic distribution analysis of Figure 45, one gene was 

chosen per clade at the sixth level of taxonomic differentiation according to the NCBI 

taxonomy browser. Only OGs with 3 or more different such clades were kept. This left 

a total of 228,148 OGs. As an example, the full NCBI taxonomic lineage for E. coli is 
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1.Bacteria > 2.Proteobacteria > 3.Gammaproteobacteria > 4.Enterobacteriales > 

5.Enterobacteriaceae > 6.Escherichia > 7.Escherichia coli, from where the sixth 

taxonomic level is “Escherichia”; similarly, the equivalent for humans is 

“Deuterostomia” from: 1.Eukaryota > 2.Opisthokonta > 3.Metazoa > 4.Eumetazoa > 

5.Bilateria > 6.Deuterostomia. When multiple genes were found for the same clade, as 

defined above, the representative was chosen from well annotated species (e.g. 

Escherichia coli, Saccharomyces cerevisiae, Homo sapiens, Methanosarcina 

acetivorans), where available, or at random. 

Membrane proteins were annotated using the predictions of the TMHMM 2.0c 

algorithm (Krogh et al. 2001). This algorithm predicts only trans-membrane alpha 

helical proteins, so for Figure 45 undetected genes marked as membrane porins or 

integral membrane proteins in their descriptions in OMA were further annotated as 

MPs. Finally, Gene Ontology annotations, where available, were also used to identify 

MPs. All other proteins were assumed to be WS. This additional classification of MPs 

produced only minor changes (data not shown), so to ensure reproducibility and avoid 

unpredictable effects of the sparse annotations, in all other figures MPs were annotated 

using only the predictions of the TMHMM algorithm. 

The species in the list of reference proteomes were obtained from EMBL/EBI 

at www.ebi.ac.uk/reference_proteomes, and the full proteomes of six representative 

species were procured from the same website. 

Since I classify each protein in a binary fashion as either WS or MP, the logistic 

regressions of Figure 45 were produced by fitting a quasi-binomial model to the type 

of protein (0 for WS and 1 for MP), as predicted by the number of orthologues in the 

cluster (i.e. the size of the OMA OG, or more simplistically the number of clades that 

have an identifiable orthologue of the protein in OMA). The points were produced 

entirely independently by binning the data in 10% increments in terms of how many 

clades share each protein, or size of the OG. That is, for Figure 45A, the total number 

of clades is 489, so proteins in the first bin are shared by anything between 3 and 49 

clades. The point represents the proportion of those proteins that are MPs. 

The complete non-redundant (nr) protein database was downloaded from 

NCBI on 18 June 2015. The blastp algorithm was run locally for each protein in each 

http://www.ebi.ac.uk/reference_proteomes


 160 

of the six selected proteomes in Figure 44. Significant blastp matches were defined as 

having an e-value lower than 10–10 and a query coverage of at least 70%; when multiple 

hits were found for the same species, only the highest scoring hit was kept to avoid 

oversampling. blastp was also used to detect orthologues in Figures 47 and 48. 

The entire non-redundant set of PDB structure sequences and annotations used 

in Figure 47 was downloaded from pdbtm.enzim.hu (Tusnády et al. 2004).  This 

dataset is constantly updated to include all PDB structures for membrane proteins in 

the PDB database, and parse the files into annotations for the subcellular localisation 

of each amino acid in each of these structures, where the information is available (often 

the crystal structures have unresolved portions, notably loops, and in other cases the 

researchers do not report whether an aqueous section is inside- or outside-facing, in 

which case I ignored the protein altogether). At the time of this analysis there were 

576 non-redundant integral membrane proteins in PDBTM (496 annotated as alpha 

helices and 80 as beta barrels), 378 of which unambiguously specified inside- versus 

outside-facing aqueous regions. To slice (or split vertically) the multiple-sequence 

alignments (MSAs) used in Figures 47 and 48 into the membrane-spanning, inside, 

outside and aqueous (which includes both inside- and outside-facing) sections, the 

PDBTM annotations (Figure 47) or the hand-annotated positions (Figure 48) for the 

reference PDB protein sequence were used to establish the sub-cellular location of 

each amino acid. Each position was then sliced as described in the example below: 

                                    0        10        20 

                                     12345678901234567890 

i/m/o annotations of PDB structure   iimmmoomm--mmmiiiii- 

Amino acid sequence of PDB structure ABCDEFGHI--JKLMNOPQ- 

Amino acid sequence of orthologue 1  --CDEFWHIWWJXLMNOPQW 

Amino acid sequence of orthologue 2  -BCDEFGHIXXJXLMXOPQX 

Amino acid sequence of orthologue 3  ABCDEFXHI--JXLMNOPQX 

Amino acid sequence of orthologue 4  ABC-ZFXHIZ-JXLMNZPQZ 

 

where i, m, and o represent that the amino acid is annotated as inside, 

membrane-spanning, or outside (respectively), either in the PDBTM database for 

Figure 47 or the hand-annotated positions, or in the twelve annotations done by 

directly inspecting the PDB structure against the primary literature for Figure 48. In 

the example above, positions 1-2, 15-19 are inside; 6-7 are outside; 3-5, 8-9, 12-14 are 



 161 

membrane-spanning; and 10-11, 20 are ignored. The aqueous portions were 

constructed by concatenating the inside and outside alignments. 

Python, BioPython (Cock et al. 2009) and R (R Core Team 2014) were used widely in 

the calculations and analyses in this chapter. 
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6 DISCUSSION, OPEN QUESTIONS, AND 

CONCLUSIONS 

Throughout this thesis I have discussed the role of membranes and membrane 

bioenergetics in some of the major transitions in evolution, and in shaping the 

relationships between the three domains of life. 

The very antiquity of the events discussed here hinders the achievement of 

absolute certainty about most of the proposed evolutionary scenarios. It is nevertheless 

possible and fruitful to gather and analyse data and develop models in order to 

determine which predictions hold up better to scrutiny. I have attempted to do so here. 

As with any scientific endeavour, I have had to take certain views for granted. 

Some of the views I have assumed as true regarding a number of evolutionary events 

are still controversial, often bitterly so. For example, in Chapter 2 I assumed an 

autotrophic origin of life in alkaline hydrothermal vents, while in Chapter 4 the 

endosymbiotic origin of eukaryotes from a bacterium into an archaeon was considered 

to be true. I use these assumptions as starting points to test the respective models. 

The study of evolution is the quest for understanding our origins (Maynard Smith 

and Szathmáry 1997, p. xiii), and as such it is a worthy goal on its own merits. But the 

study of evolution can transcend this purely philosophical role, and it often does. 

General and wide-ranging findings such as those in Chapters 3 (which discusses a 

general biochemical explanation for the origin of homochirality) and 5 (which 

highlights the different evolution of membrane-bound versus water-soluble proteins) 

can serve as an example of the potential of early-evolution studies to transcend their 

intrinsic blue-skies nature and provide useful knowledge to biology and the life 

sciences as a whole. Most notably, it is a well-known fact that the rates of success 

when progressing drugs from animal models into humans is excruciatingly low. 

Understanding why and how protein evolution occurs faster in the outside-facing 

sections of membrane proteins, which constitute over half of drug targets, could help 

tackle this problem in the future by highlighting the differences in membrane proteins 

between humans and animal models. It is my modest intention that some of the work 

in this thesis can serve as yet another example that studying early evolution can 
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produce dividends beyond the acquisition of knowledge. This on its own, however, 

would more than suffice as a justification to pursue it (and to fund it). 

6.1 The chapters of this thesis and the tree of life 

Throughout this document I have focused chiefly on the relationships between 

the three domains of life, and how the tree (or ring) that links them has been shaped 

by some of the major transitions in evolution, all the while considering the roles that 

membranes, their embedded proteins, and the disequilibria across these have played 

throughout. The intended contribution of each of the four research chapters in this 

thesis to the understanding of the shape of the tree of life is summarised in Figure 50. 

 

Figure 50. How the chapters in this thesis fit into the tree (or ring) of life 

Chapter 2 dealt with the deepest branching in the tree: the divergence of 

archaea and bacteria. Chapter 3 followed this into a general discussion of 

homochirality and why only one enantiomer was favoured in the very early 

steps of evolution leading from the origin of life (OoL) to a last universal 

common ancestor (LUCA) that was completely homochiral in its D-sugars 

and L-amino acids. Chapter 4 returned to the differences between archaeal 

and bacterial membranes in the symbiotic origin of eukaryotes, and discussed 

why bacterial membranes were favoured in the transition from the first 

(FECA) to the last (LECA) eukaryotic common ancestors. Finally, Chapter 5 

dealt with adaptation to new niches and speciation in general. 
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Again, and unless otherwise noted, my use of the expression “tree of life” 

throughout this thesis simply alludes to the relationships between species and domains, 

regardless of whether or not they are literally tree-like, i.e. pure vertical inheritance 

with modification from a common ancestor, as per Darwin’s original postulation in the 

Origin (Darwin 1859). 

All the work presented here is in the general spirit set out by Mitchell (1961) in 

his chemiosmotic theory, which proposes an understanding of life as characterised by 

disequilibrium across membranes. 

6.2 A recount of the findings and their implications 

In Chapter 2 I analysed the deepest split in the tree of life, namely the origin of 

archaea and bacteria from the last universal common ancestor (LUCA), and in 

particular the differences in their membranes and what these differences can indicate 

about the membranes of LUCA itself. I argue that the most crucial of the differences 

between the membranes of archaea and bacteria is also the subtlest: the dichotomy 

between the archaeal sn-glycerol-1-phosphate backbone versus the bacterial 

enantiomer sn-glycerol-3-phosphate. Assuming that life had an autotrophic start in an 

alkaline vent, and that LUCA depended on the spontaneous geologically generated 

proton gradients that these provide, I performed mathematical modelling that shows 

that early membranes had to be leaky. If attempting the evolution of modern 

membranes, the (proto)cell would have insulated itself into equilibrium. In terms of 

phospholipids this means that neither of the two enantiomers of glycerol-phosphate 

could be present. So, the lipids of LUCA would have been simpler amphiphiles such 

as single fatty acids (as opposed to the two fatty acids bound to a glycerol-phosphate 

backbone in modern bacterial and eukaryotic membranes; see Figure 17 in page 77). 

However, the theory for the origin of life discussed in Chapter 2 is not 

universally accepted (Mulkidjanian et al. 2012; Le Page 2014; Deamer and Georgiou 

2015). Importantly, the autotrophic alkaline hydrothermal vent theory depends on 

achieving high concentrations of synthesised products in what ultimately is an open 

system. The spontaneous self-assembly of amphiphiles into vesicles and the thermal 

gradients that occur in the pores of the vents provide a resolution through cycling and 

concentrating organics by several orders of magnitude (Baaske et al. 2007; Herschy et 
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al. 2014). However, it has been argued that, while these processes works well in dilute 

aqueous solutions, results should be considerably less favourable in oceanic waters 

with their highly saline composition (up to 0.5 M NaCl in modern oceans), which adds 

to the considerable concentrations of divalent cations (10 mM Ca2+ and 54 mM Mg2+), 

and predictably higher in alkaline vents, which are rich in both Mg2+ and Ca2+ (Deamer 

and Georgiou 2015). The problem is that NaCl tends to inhibit the spontaneous 

assemblage of membranes from amphiphiles such as simple fatty acids (Monnard and 

Deamer 2002); and similarly, even millimolar concentrations of divalent cations cause 

fatty acid vesicles to precipitate (Szostak et al. 2001), directly contradicting the model 

proposed here. These negative predictions have recently led some leading researchers 

in the field to dismiss the alkaline vent scenario in general (Damer and Deamer 2015; 

Deamer and Georgiou 2015; Damer et al. 2016) and the work discussed in Chapter 2 

specifically (see comments by Prof. Jack Szostak in Le Page 2014), However, none of 

the relevant negative experiments mentioned have been done under pressure, or under 

the full chemical conditions of alkaline vents; and, significantly, recent preliminary 

results from two independent labs seem to suggest that forming organic membranes 

by spontaneous self-assembly of amphiphiles is indeed possible under alkaline vent 

conditions (Prof. Dieter Braun, personal communication). The evidence shows that 

these amphiphiles not only self-assemble, but that they can hold simulated pH 

gradients. 

A potential reason for confusion in the work of Chapter 2, as published in the 

literature (Sojo et al. 2014) is my use of the term “leaky”. This is specifically used 

with relation to protons, which can cross the membrane by mechanisms different from 

those of other ions and molecules. Namely, protons can permeate by fatty-acid flip-

flop which, as described previously, implies a fatty acid being protonated on the acidic 

side and then flipping to the alkaline side, where the proton is released. This 

mechanism is not available to Na+ or other ions, let alone nucleotides, amino acids, or 

other molecules. The membranes I propose here would therefore serve as biological 

boundaries, much in the same way that modern phospholipid membranes do now, but 

with the advantage of allowing exploitation of the natural proton gradient in alkaline 

hydrothermal vents.  

The predictions and conclusions of Chapter 2 are summarised in Figure 51. 
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Figure 51. Chapter 2: The independent origin of modern membranes 

and pumping in archaea and bacteria 

From bottom to top: starting with a LUCA that had a fully functional ATPase, 

the model shows that a sodium/proton antiporter (SPAP) would facilitate 

spread into areas of the vent that had weaker gradients. This may have also 

involved the differentiation of certain aspects of membranes, but the 

calculations show that membranes had to remain leaky to H+. After a 

suggested independent origin of pumping in archaea and bacteria, the 

development of glycerol-phosphate backbones followed. Archaea and 

bacteria would do this independently as well, in turn explaining the opposite 

stereochemistries. With fully functioning pumping and H+–impermeable 

modern membranes, the two types of cells were ready to escape the vent. 

Everything that lives on Earth today is a descendent of the two cells (or 

populations of cells) that escaped in this way. 
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Another challenge that can be brought against the idea of the cellular ancestor 

in an alkaline vent suggested here lies in electrochemical equilibration due to the influx 

of charges that are not neutralised, i.e. a Donnan equilibrium (Nicholls and Ferguson 

2013): as a proton flows in, a positive charge is transferred into the cell, therefore 

opposing further transfers of positively charged ions. This would quickly render the 

system unworkable. However, the model I suggest escapes this scenario by providing 

electrical (as well as chemical) neutralisation towards the alkaline side, by either 

importing negatively charged OH– ions into the cell, or spontaneously extruding the 

incoming positive H+ ions into the alkaline fluid on the opposite side. 

I conclude that the evolution of membrane-insulating glycerol-phosphate 

backbones had to wait until after the evolution of active ion pumping, to which the 

Na+/H+ antiporter (SPAP) was a necessary pre-adaptation. Archaea and bacteria would 

develop their glycerol-phosphate backbones independently (after the also independent 

origin of pumping), which explains the opposite stereochemistries: archaea developed 

the catalysis of dihydroxyacetone phosphate from one side of the planar molecule, 

bacteria from the other. Chemically speaking this was a 50:50 chance. Biologically 

speaking, however, the probability of developing either the S or R products was not 

simply 50:50, it depended on the catalysts that were available, as I discuss in the 

follow-up chapter, summarised below. 

In Chapter 3 I identified the dual homochirality of glycerol-phosphate 

backbones between archaea and bacteria as a fortunate event from the perspective of 

an evolutionary biologist, in that it sheds light on the evolution of homochirality in 

general. Hypotheses for the origin of this trait abound in physics and chemistry, from 

polarised light in interstellar radiation to stereo-selective interactions on catalytic 

clays. The case of the membrane-lipid glycerol-phosphate backbones described in 

Chapter 2, however, has received less attention, in spite of being arguably more 

interesting. Although both enantiomers are prevalent in extant life, the archaea and the 

bacteria are both exclusively homochiral, each domain having singularly picked one 

of the two enantiomers and never having been observed to use the other. I argue that 

this case of dual homochirality clarifies the evolution of single-handedness in life’s 

molecules as a whole. Although both enantiomers are formed from the same substrate, 

dihydroxyacetone phosphate (DHAP), the respective synthesising enzymes, sn-

glycerol-1-phosphate dehydrogenase (G1PDH) in archaea and sn-glycerol-3-
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phosphate dehydrogenase in bacteria (G3PDH), are entirely unrelated. In terms of the 

reactions they catalyse, however, both belong to the E.C. 1.1.1 supergroup of 

NAD(P)H-dependent OH-dehydrogenases. Interestingly, all of these OH-

dehydrogenases are known to be stereospecific, belonging to either the pro-R, or the 

pro-S kinds, aptly named with regards to the exclusively stereospecific nature of the 

reactions they catalyse. Figure 52 (a repetition of Figure 26) shows that all the 

members of the phylogenetic family of G1PDH are pro-R enzymes, while all in the 

G3PDH family are pro-S enzymes. 

 

Figure 52. Chapter 3: all proteins in a phylogenetic family share the same 

chirality 

If an ancestral enzyme or proto-enzyme was left-favouring, so will be all of 

its descendants, and vice versa. Homochirality is no great mystery, it is 

intrinsic to biochemical catalysis. Original tree by Peretó et al. (2004), and 

stereochemical classifications by You et al. (1978). 

This brings the discussion to one of ancestry: self-evidently, the ancestor of 

G1PDH must have been a pro-R enzyme, and the G3PDH ancestor must have been 
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pro-S. It seems clear that the reaction catalysed by these enzymes is stereospecific by 

nature; it can only proceed either exclusively one way or exclusively the other, never 

both. I suggest that this is general to enzymatic catalysis. This dual case of 

homochirality suggests that single-handedness is indeed the simplest evolutionary 

scenario and no prebiotic physical or chemical mechanisms need be invoked to explain 

it; the answer lies within biology itself. 

In Chapter 4 I returned to the differences between archaeal and bacterial 

membranes, this time with regards to the origin of the eukaryotic cell. Modern 

phylogenetic evidence strongly supports the theory that eukaryotes arose from the 

endosymbiosis of a bacterium into an archaeon. If this was the case, then the first 

eukaryotic common ancestor (FECA) must have had an archaeal plasma membrane 

and proto-mitochondrial bacterial membranes. Yet all known modern eukaryotes have 

exclusively bacterial membranes in their boundary to the exterior as well as in their 

internal vesicles, nucleus, and organelles, including the Golgi apparatus, peroxisomes, 

the smooth and rough endoplasmic reticula, and the mitochondrion. It is therefore 

reasonable to infer that the last eukaryotic common ancestor (LECA) had lost the 

archaeal membranes of its forebear.  

Eukaryotes kept redundant sets of genes for many tasks, including building the 

ribosomal small and large subunits, ribosomal proteins, tRNAs, DNA replication, 

transcription, and ATP synthases, all of which are dually present in extant eukaryotes 

and have both an archaeal and a bacterial ancestry depending on whether it is the 

cytosolic or the mitochondrial version that is being described, respectively. Regardless 

of the origin, most of the encoding genes are now kept in the nucleus, which 

predictably was built upon the original archaeal chromosomal material. In spite of 

these many redundancies, archaeal phospholipids were entirely lost from the 

membranes. It is unlikely that this was due to pressures for genome reduction ix. 

Instead, a structural explanation seems more likely: heterotypic (or “hybrid”) 

membranes, although viable, were less stable than homotypic (or “pure”) ones, such 

that there was a pressure in FECA to get rid of one of the two copies, and by the time 

LECA arose only one of the two types of membrane remained. Why were the bacterial 

                                                 
ix In fact, isoprene synthesis and ether linkages are observed in modern eukaryotes. 
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phospholipids selected over their archaeal equivalents? I argue that the reason was 

bioenergetic: as the mitochondrion became specialised as the powerhouse of the 

eukaryotic cell and energy production came to rely increasingly upon it, the 

physiological adaptation of its bioenergetic proteins to the bacterial membrane would 

have become correspondingly indispensable. Replacing these membranes with 

archaeal ones would have led to decreased fitness, so the bacterial genes had to be 

kept, and the archaeal ones were lost instead (Figure 53). 

 

Figure 53. Chapter 4: Adaptation of mitochondrial bioenergetic proteins 

to the bacterial membrane underlies the prevalence of bacterial over 

archaeal phospholipids in the origin of eukaryotes 

FECA would have had an archaeal plasma membrane. I argue that bacterial 

phospholipids were selected over their archaeal counterparts because 

changing the mitochondrial membranes to archaeal ones would have led to 

loss of energy and deleterious behaviour of membrane proteins, potentially 

including reactive-oxygen (RO*) species leakage. 

I tested this hypothesis by demonstrating that horizontal gene transfers between 

the two prokaryotic domains are less likely if the gene encodes a membrane protein; 

that is, it is easier for species of one of the prokaryotic domains to pick up a protein 

from the other if the protein is not membrane-bound. I argued that this is because 

membrane proteins would have to sit on a foreign membrane, whereas cytosolic 

proteins sit on a more familiar aqueous medium. In addition, I provided computational-
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chemistry evidence that shows that membrane proteins from one domain behave 

differently in membranes with archaeal and bacterial glycerol-phosphate backbones, 

and specifically that the energy of a protein is lower (more optimal) in the phospholipid 

membranes of its own domain. These results shed light on one of the many unresolved 

questions in the origin of the eukaryotic cell. 

I concluded the research with Chapter 5, where I discussed the roles of 

membrane proteins in adaptation in general. I reported that membrane proteins have 

on average fewer detectable orthologues than water-soluble proteins, and that this 

pattern remains across the tree of life although, interestingly, the effect is largest for 

prokaryotes, somewhat smaller for unicellular eukaryotes, and smaller still for 

multicellular eukaryotes. I analysed 64 species, and found the same pattern in all 64: 

membrane proteins always have considerably fewer orthologues (on average less than 

half in most species). This could be due to two main causes: either detection algorithms 

such as BLAST fail at finding the homologues, and/or the absences are true gene losses 

(Figure 54). 

I confirmed previous reports in mammals, yeast and parasites, that membrane 

proteins evolve faster overall than water-soluble proteins, which supports the first 

scenario, and extended this to a general principle across all three domains of life. Given 

a certain threshold for homologue detection in BLAST, the faster-evolving membrane 

proteins will tend to cross it sooner than the more sequence-conserved water-soluble 

proteins. I further explored the noticeable observation that their aqueous sections 

evolve faster than the membrane-spanning ones and, more importantly, that amongst 

the aqueous sections the outside-facing ones evolve faster than their inside-facing 

counterparts. This observation is widespread for different types of proteins across the 

tree of life, and I argued that it suggests the operation of a major evolutionary force: 

the outside evolves faster because it is the outside that most frequently and strongly 

interacts with the environment. Adapting to new functions or environments implies 

that the outside experiences higher selective pressures, while the inside is subject to 

stronger homeostasis. 
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Figure 54. Chapter 5: Evolution is faster outside the cell because of 

adaptation to new niches 

As emerging species colonise new environments and specialise in new 

functions, selective pressure is likely to be stronger on the outside. This leads 

to faster evolution outside the cell, and to loss of membrane proteins rendered 

useless in the new environment. 

Regarding the second mechanism to explain decreased orthology in membrane 

proteins (true gene losses in the middle of Figure 54), it follows that once an incipiently 

diverging species colonises a new environment, adapts to a changing environment, or 

specifies in a new function, some of its membrane proteins will be rendered useless, 

either because an ancient external substrate is no longer found in the new environment, 

or because it is no longer relevant to the life history of the cell and its new functions. 

True gene losses should be prevalent in speciation and adaptation in general. To test 

this, I repeated the analysis of orthologue counts above, but focusing on closely related 

species. For this I assumed that if a predictably ancestral gene is not detected in some 

members of a group of closely related species, it is likely that the gene has truly been 

lost, assuming that the sequences cannot have diverged beyond recognition since 
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speciation took place. I thus picked proteins shared by at least half of the members of 

the clade, and then compared the numbers of orthologues that each protein had, finding 

again that membrane proteins are shared by fewer species. That is, membrane proteins 

have been lost more often than water-soluble proteins amongst closely related species. 

This demonstrated that both mechanisms in Figure 54, i.e. divergence beyond 

recognition and true gene losses, are at play. 

These findings ultimately imply that, from a phylogenetic point of view, the 

majority of phylogenetic differences between strains and species should be observed 

for membrane proteins, a prediction that can be tested straightforwardly. 

An immediate prediction of the hypothesis is that the effect should be smaller 

for unicellular eukaryotes, many of whose membrane proteins sit on internal 

membranes subject to homeostasis, than for prokaryotes, and smaller still in 

multicellular eukaryotes, which benefit from the multiple layers of homeostasis 

provided by tissues, organs, and full bodies. As mentioned above, this is indeed the 

case. In conclusion, I provide an explanation for why evolution is faster outside the 

cell, and given that over half of drug targets are membrane proteins, this may help 

explain why it is often so difficult to advance a drug from testing on animal models 

into clinical trials on humans. 

6.3 Open questions 

6.3.1 The ancestral nature of the Na+/H+ antiporter (SPAP) 

If the evolutionary path outlined in Chapter 2 and Figure 51 is correct, then the 

SPAP should be an ancestral protein, and traces of this might still be found in present-

day organisms. I have indeed shown that a given SPAP sequence retrieves successful 

hits across the tree of life. This does not rule out horizontal gene transfer, though; i.e. 

it is possible that several of the hits I have recovered are a product of either recent or 

ancient horizontal acquisitions. There are many independent SPAP proteins in modern 

species. I predict that at least one of these should branch as deeply as the ribosome, 

tRNAs, and the ATPase, (although again, this assumes that differential losses and 

replacements of the ancestral version with a more efficient horizontal acquisition will 

not have managed to fully obliterate the ancient pattern). One potential caveat is that 

the SPAP is a simple gene, in contrast with the ribosome and ATPase, which are 
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complex multi-subunit systems that should be more difficult to transfer horizontally; 

in addition, the usefulness of SPAP would predictably vary in environments with 

different salinity, such that there would be correspondingly different pressures to either 

acquire or lose it. Both factors should make the detection of an ancestral SPAP more 

difficult than for the ribosome or ATPase, yet recent findings seem to suggest that 

LUCA did have a SPAP (Sousa et al. 2016). 

6.3.2 Are alternative archaeal phospholipid backbones ancestral? 

No archaea have been observed with the bacterial G3P backbone, however not 

all archaea use G1P as their main phospholipid backbone either. Chemical analysis of 

marine sediments has produced lipids that do not have the three-carbon glycerol 

backbone of most living beings but instead have a four- or five-carbon analogue (Zhu 

et al. 2014). The presence of ether linkages in these lipids quite likely betrays their 

archaeal procedence, but the species are not yet known. 

This use of alternative backbones could be due to either ecology or contingency. 

If contingency, i.e. if the archaeal organisms that use these backbones derived it 

independently from the ones that developed G1PDH, then these alternative backbone-

bearing organisms should branch very deeply in the tree of the archaea. 

6.3.3 Can simple isoprene amphiphiles originate abiotically, self-assemble into 

vesicles, and flip-flop? 

Proton gradients are readily dissipated by flip-flop in fatty-acid vesicles (Kamp 

et al. 1995), which I argue was a necessity for a potential autotrophic origin of life in 

alkaline hydrothermal vents (Chapter 2). There is ample literature on fatty acid vesicles 

at the origin of life (Deamer and Nichols 1989; Monnard and Deamer 2002; e.g. Chen 

and Szostak 2004), but it is reasonable to consider whether isoprene amphiphiles could 

provide an alternative building block for the earliest protocells. Relatedly, how easy is 

it to synthesise isoprene amphiphiles abiotically? Their role at the origin of life was 

suggested over two decades ago (Ourisson and Nakatani 1994), and although abiotic 

synthetic mechanisms have remained more elusive than for fatty acids (Deamer et al. 

2002), there has been some theoretical (Aylward 2008) and experimental (Désaubry 

et al. 2003) progress. The polar ends of the amphiphilic molecules synthesised are 

alcohols, though, which would not be readily protonated and therefore would not 
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transfer H+ by flip-flop. The possibility of simple isoprenoid amphiphile membranes 

is nevertheless worth investigating further. 

6.3.4 Dual homochirality and the undetected importance of parallel evolution 

I argued in Chapter 3 that archaea developed G1PDH from the duplication and 

neo-functionalisation of an ancestral and already available pro-R gene, while bacteria 

followed an independent and analogous route by neo-functionalising a duplicated pro-

S enzyme gene. If so, and as I posit above, this may well be a fortunate event for those 

of us studying deep evolution. Instead, the early archaea and bacteria could have 

followed the same route independently, and both duplicated and neo-functionalised 

the same gene. If that had been the case, it would be almost impossible to assess 

whether LUCA had the gene for producing glycerol-phosphate backbones from 

dihydroxyacetone phosphate, and the deep split simply reflects the antiquity of both 

domains, or whether evolution occurred in parallel. In fact, most parsimoniously the 

logical yet erroneous conclusion would be that the gene was present in LUCA and 

both domains naturally inherited it. This was fortunately not the case for glycerol-

phosphate backbones, but it suggests the possibility of daunting prospects when 

considering how many cases of parallel evolution like the hypothetical one suggested 

above may have actually happened and are currently ignored and perhaps even 

untraceable. One significant example is in DNA replication, which remains unclear 

whether it was ancestral or evolved independently in the two domains (Leipe et al. 

1999). 

6.3.5 Homochirality of sugar- and amino acid- synthesising enzymes 

If homochirality is enforced on homologous genes by inheritance, and if it arises 

as an inevitable consequence of biochemical catalysis, as demonstrated by the dual 

homochirality of phospholipid backbones, then it should be easy to show that each of 

the enzymes that catalyse the reactions that produce the chiral alpha carbons in amino 

acids belong to families in which all the homologues share the same chiral preference. 

A similar result should be found for sugars (although in this case the analysis would 

be less trivial due to the multiplicity of chiral centres in most sugars, including ribose). 
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6.3.6 The origin of stereospecificity and homochirality at the origin of enzymes 

and cofactors 

At the origin of enzymatic catalysis, when short peptides or ribozymes lacking 

genetic encoding started to catalyse the first proto-bio-chemical reactions, were they 

intrinsically stereospecific, however short? It is likely that this was the case, unless 

glycine content was high (glycine is the only achiral amino acid, and therefore cannot 

provide stereospecificity). Does this change for reactions catalysed by simple cofactors 

such as iron, nickel, magnesium, or other ions? It should be possible to test whether 

short homochiral oligomers associated to simple cofactors select for specific 

enantiomers, and whether the mirror images prefer the opposite enantiomeric 

substrate. If no enantioselectivity is observed, the lengths of the polymers could be 

increased to determine the at which pint one mirror image is favoured over the other. 

6.3.7 The evolution of pumping 

The results in Chapter 2 predict that active ion pumps must have arisen after the 

sodium/proton antiporter (SPAP), and that only then did selection favour the evolution 

of ion-tight membranes with glycerol-phosphate backbones. Given that SPAP on its 

own facilitated the spread and colonisation of regions with shallower and more 

intermittent gradients (Figure 15C, p. 70), pumping is expected to have arisen 

independently in more than one population. This would therefore predict differences 

in the mechanisms of pumping. That seems to be the case. The simplest and arguably 

most ancient chemiosmotic circuits are those of the methanogens (archaea) and 

acetogens (bacteria), which grow from H2 and CO2 alone via the Wood-Ljungdahl 

acetyl-CoA pathway (Fuchs 2011). These cells have a single  membrane ion pump and 

lack respiratory chains with quinones and cytochromes (Fuchs 2011; Buckel and 

Thauer 2013). The acetyl-CoA pathway is the only exergonic carbon fixation pathway; 

it is short and linear, and contains numerous inorganic (iron-nickel-sulphur) clusters, 

all of which point to its ancient origins (Russell and Martin 2004). While the deepest 

branches among the archaea and bacteria are hard to constrain phylogenetically, some 

studies do indeed indicate that methanogens (Kelly et al. 2011; Nelson-Sathi et al. 

2015; Raymann et al. 2015) and acetogens (Ciccarelli et al. 2006) are ancient and 

potentially ancestral to their respective domains. However, there is a deep split in the 

biochemistry of the acetyl-CoA pathway, specifically in the mechanism of electron 

bifurcation (Sojo et al. 2016), the process by which both groups generate 
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electrochemical ion gradients (Buckel and Thauer 2013). This deep split in the 

mechanism of pumping is in fact entirely consistent with the prediction put forward 

here that active pumping should have arisen independently in archaea and bacteria. 

Specifically, the divergence in the acetyl-CoA pathway can be explained by the 

direction of ion flux through Ech (Figure 55). Ech drew on natural proton gradients to 

drive carbon reduction in LUCA (Figure 55A), and methanogens continued to do so, 

obliging them to evolve a separate ion pump (Mtr) and the biochemistry to sustain it 

(Figure 55B).  In contrast, acetogens simply reversed the direction of ion flux through 

Ech, giving them a ready-made pump, but obliging them to evolve a different pathway 

for carbon fixation (Figure 55C). 

 

Figure 55. Evolution of pumping in archaea and bacteria 

(A) Proposed carbon and energy metabolism powered by natural proton gradients in 

an ancestral protocell with leaky membranes. Ech: energy-converting hydrogenase; 

Fdox: ferredoxin; Fdred: reduced ferredoxin. For simplicity, this figure only depicts the 

–CH3 branch of a postulated ancestral acetyl-CoA pathway. R is one of a number of 

cofactors that differ between methanogens and acetogens. The direction of proton 

flow through Ech is critical and differs in (C). (B) Simplified carbon and energy 

metabolism of methanogens (archaea). Ech reduces ferredoxin using a proton 

gradient as in (A), but there is now a requirement to pump ions to regenerate 

membrane potential. This is achieved by electron bifurcation, using H2 to 

simultaneously reduce ferredoxin and a heterodisulfide (-S–S-). Methanogenesis 

regenerates membrane potential via a new ion pump (Mtr), which may have evolved 

from a Na+/H+ antiporter. (C) Simplified carbon and energy metabolism of acetogens 

(bacteria). Ech reverses, oxidising ferredoxin to generate membrane potential. There 

is now a need to regenerate reduced ferredoxin, achieved via a distinct form of 

electron bifurcation that uses H2 to simultaneously reduce ferredoxin and NAD+. 

However, acetogens can no longer use ferredoxin to reduce CO2, hence had to evolve 

a new pathway of carbon metabolism, using ATP and NADH in place of ferredoxin. 

New pathways of energy metabolism are depicted with dotted lines. Taken from Sojo 

et al. (Sojo et al. 2016). 
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These conclusions should be testable by increasing genomic data and improved 

phylogenetic methods. The prediction is that they will confirm the deep branching of 

methanogens and acetogens. 

6.3.8 The early evolution of additional symporters and antiporters 

The results in Chapter 2 bring forward the possibility that other types of 

transporters, besides the sodium-proton antiporter (SPAP), may have evolved early. 

Modern cells are characterised not only by low internal sodium contents, but also by 

high internal potassium (Mulkidjanian et al. 2012). Therefore, it could be fruitful to 

study the potential early evolution of transporters such as spontaneous K+ channels, or 

H+/Cl– symporters.  

6.3.9 Faster evolution outside the cell in diversification of membrane lipids 

Trivially, different lipids behave differently. Following the arguments in Chapter 

5, in which I show that membrane proteins evolve faster and are lost more often than 

water-soluble proteins because of adaptation to new niches, it should be productive to 

analyse whether the differences in membrane lipids within domains are also caused at 

least in part by the same mechanism. Multicellular eukaryotes, in which different lipids 

become more prevalent in membranes in different tissues, should provide good 

subjects for testing. 

6.3.10 The adaptive role of horizontal gene transfers of membrane proteins 

In relation to the results in Chapter 5, membrane proteins should be more likely 

to be acquired horizontally than water soluble proteins, since they should have a 

greater effect on adaptation to new environments. However, this is in direct 

contradiction to the predictions of Chapter 4, specifically that it should be more 

difficult to acquire foreign membrane proteins than foreign water-soluble proteins, 

simply because of the physical interactions between the membrane protein and the 

surrounding phospholipids. A thorough study of horizontal gene transfers of 

membrane-bound versus water-soluble proteins within and across domains should 

prove fruitful. 

6.3.11 The origin of life at alkaline hydrothermal vents 

The origin of life remains one of the most fundamental unresolved problems in 

biology. There are many open questions, including the prebiotic synthesis of life’s first 
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molecules from the simplest building blocks, inorganic hydrogen (H2) and carbon 

dioxide (CO2), assuming an autotrophic origin of life in alkaline hydrothermal vents, 

as reviewed in Sojo et al. (Sojo et al. 2016). It is also important to show whether 

amphiphiles can form viable membranes under these conditions, contrary to some 

predictions in the literature (Deamer and Georgiou 2015). Microfluidics should prove 

a useful tool for simulating the conditions in alkaline hydrothermal vents and testing 

these hypotheses. 

6.4 Conclusions 

Life is characterised by disequilibria and homeostasis across membranes. 

Membranes and their associated proteins play crucial roles in most cellular processes, 

and their importance is correspondingly central to evolution. 

The last universal common ancestor (LUCA) should have had membranes made 

from organic amphiphiles such as fatty acids, but these membranes would have been 

leaky to H+. LUCA’s proton–leaky membranes allowed it to exploit natural ion 

gradients such as those provided by alkaline hydrothermal vents. Modern membranes 

evolved later, after the origin of pumping and, predictably, also after the evolution of 

a sodium/proton antiporter (SPAP). This means that LUCA’s membranes could not 

have had a glycerol-phosphate backbone, which makes phospholipids much less 

permeable than simpler amphiphiles such as single fatty acids. This explains why the 

archaea and bacteria have different stereochemistries in their glycerol-phosphate 

backbones, and why the corresponding synthesising enzymes are unrelated: they 

evolved independently, and later, after the divergence of the ancestors of the two 

domains. 

This dichotomy in the glycerol phospholipid backbones points to a general 

underlying cause for the strong one-handedness, or homochirality, of terrestrial life, 

most notably in D-sugars and L-amino acids. But there is no great mystery in 

biochemical chirality: the very process of enzymatic catalysis implies that, at the 

atomic level, enantiomers (mirror images of otherwise the same molecule) are entirely 

different molecules, and an enzyme that becomes specific for a catalysis that involves 

one isomer need have no particular affinity for the other. The evolution of novel 

functions in biology is often dictated by contingency: gene duplications facilitate the 
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adaptation of gene products into new roles, but these new roles are inevitably 

constrained by the nature of the ancestral sequence. In terms of enzymatic catalysis, 

this means that stereochemical preferences will be preserved. Ultimately, 

homochirality arises inevitably because enzymes can only become efficient by picking 

a single orientation, and this has to be one of two in the case of the R/S symmetry of 

chiral carbon atoms or their pro-chiral precursors. More broadly, in the evolution of a 

biochemical pathway, a chiral choice at the origin of an early catalyst is inexorably 

imposed on the enzymes that evolve later. 

Long after the divergence of the two prokaryotic domains, a member of the 

bacteria established an endosymbiotic association inside a member of the archaea, 

giving rise to the eukaryotic cell. This meant that there were both archaeal and bacterial 

membranes in the first eukaryotic common ancestor (FECA), yet the fact that all 

modern eukaryotes have only bacterial membranes suggests that, by the time the last 

eukaryotic common ancestor (LECA) had evolved, the archaeal analogues had been 

largely lost. Since many duplicated functions were retained, it seems unlikely that 

genome-size pressures forced this loss, so it is possible that the reduction was due to 

deleterious interactions in a hybrid membrane. I suggest that bacterial lipids had to be 

kept because of their increasingly important association to bioenergetic proteins in the 

mitochondrial membrane. 

Membrane proteins are dramatically less conserved than water-soluble proteins, 

across all three domains in the tree of life. Given that trans-membrane proteins link the 

interior of the cell to their surrounding environment, they interact more frequently with 

the exterior, and are therefore more closely involved in environmental adaptation than 

are cytosolic proteins. Over time, this means that they evolve faster, particularly on 

the outside. More drastically, some membrane proteins will be of no use in a new 

environment, and may be lost due to genome reduction. This effect should be stronger 

in prokaryotes, weaker in unicellular eukaryotes (which have organellar membranes), 

and weakest in multicellular eukaryotes (with multiple levels of homeostasis); this is 

indeed the case. 

It is my hope that this thesis will serve to highlight the importance of membranes and 

particularly the disequilibria across them in the origin and evolution of life. 
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This sketch is most imperfect; but in so short a space I 

cannot make it better. Your imagination must fill up very 

wide blanks. 

Charles Darwin (1858) 


