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New Findings 

 

While SGLT2 inhibitors represent a promising treatment for patients suffering from 

diabetic nephropathy, the role of metabolic disruption on the expression and function 

of glucose transporters is largely unknown. 

 

In vivo models of metabolic disruption (Goto-kakizaki type II rat and junk-food diet) 

demonstrate increased expression of SGLT1, SGLT2 and GLUT2 in the proximal 

tubule brush-border.  In the type II model, this is accompanied by increased SGLT- 

and GLUT-mediated glucose uptake. A fasted model of metabolic disruption (high-fat 

diet) demonstrated increased GLUT2 expression only.  The differential alterations in 

glucose transporters in response to varying metabolic stress, offer insight into the 

therapeutic value of inhibitors. 
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Abstract  

 

Objective: SGLT2 inhibitors are now in clinical use to reduce hyperglycemia in type II 

diabetes. However, renal glucose reabsorption across the brush border membrane 

(BBM) is not completely understood in diabetes.  Increased consumption of a 

Western diet is strongly linked to type II diabetes.  This study aimed to investigate 

the adaptations that occur in renal glucose transporters in response to experimental 

models of diet-induced insulin resistance.      

Research Design and Methods: The study used Goto-Kakizaki type II diabetic rats 

and normal rats rendered insulin resistant using junk-food or high-fat (HFD) diets.  

Levels of PKC-βI, GLUT2, SGLT1 and 2 were determined by western blotting of 

purified renal BBM.  GLUT- and SGLT-mediated [3H]-glucose uptake by BBM 

vesicles was measured in the presence and absence of the SGLT inhibitor phlorizin. 

Results: GLUT- and SGLT-mediated glucose transport were elevated in type II 

diabetic rats, accompanied by increased expression of GLUT2, its upstream 

regulator PKC-βI, and SGLT1 protein.  Junk-food and HFD feeding also caused 

higher membrane expression of GLUT2 and its upstream regulator PKC-βI. 

However, the junk-food diet also increased SGLT1 and 2 levels at the proximal 

tubule BBM.  

Conclusions: Glucose reabsorption across the proximal tubule BBM, via GLUT2, 

SGLT1 and 2, is not solely dependent on glycemic status, but is also influenced by 

diet-induced changes in glucose metabolism.  We conclude that different metabolic 

disturbances result in complex adaptation in renal glucose transporter protein levels 

and function. 
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Introduction 

 

Diabetic nephropathy is a major complication of diabetes and a leading cause of 

end-stage renal disease. Chronic hyperglycemia is associated with tubulo-interstitial 

changes that accompany progressive renal dysfunction . While it has been difficult to 

show a clear cardiovascular benefit from tighter glycemic control in diabetes, at least 

in the short-term (Boot-Handford & Heath, 1981; Phillips et al., 1997), available 

evidence favors a long-term reduction in hyperglycemia as an important treatment 

goal in preventing nephropathy (Dluhy & McMahon, 2008; Duckworth et al., 2009). 

Thus, renal glucose reabsorption has been considered to have a pathophysiological 

role in diabetes (Debnam & Unwin, 1996). 

 

In euglycemic conditions, the majority of filtered glucose is reabsorbed by the high-

capacity transporter SGLT2 at the brush border membrane (BBM) of the early 

proximal convoluted tubule, while the remainder is scavenged by the high-affinity 

SGLT1 in the late proximal straight tubule (Turner & Silverman, 1977; Barfuss & 

Schafer, 1981; Cramer et al., 1992; Brown, 2000).  Adaptation of glucose transport 

at the BBM has been documented in diabetes; in particular, the facilitated 

transporter, GLUT2, is readily detectable at the BBM in animals 2-4 weeks after 

induction of type I diabetes (Marks et al., 2003). Indeed, expression of GLUT2 shows 

a positive correlation with blood glucose levels, and it has been proposed that 

increased renal GLUT2 expression at the BBM is mediated by PKC-βI, since levels 

of this signalling molecule also show a positive correlation with both expression of 
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GLUT2 and blood glucose levels (Goestemeyer et al., 2007).  While there are 

conflicting reports of the impact of diabetes on SGLT-mediated transport (Marks et 

al., 2003; Albertoni Borghese et al., 2009), inhibitors of SGLT2 have been 

demonstrated to increase glycosuria and reduce hyperglycemia in type II diabetes 

(Han et al., 2008).  Indeed, Dapagliflozin, Canaglifozin and Empaglifozin, chemical 

inhibitors of this renal-specific glucose transporter, have all been approved for use in 

Europe as insulin-independent treatments for type II diabetes.  However, the glucose 

transporters SGLT1 and GLUT2 also play a role in glucose reabsorption across the 

proximal tubule brush-border (Marks et al., 2003; Hummel et al., 2011), and may 

represent additional targets for the control of hyperglycemia in diabetes.  Consistent 

with this, studies under euglycemic conditions indicate that SGLT1-mediated renal 

glucose transport increases to compensate for SGLT2 knockdown (Rieg et al., 

2014).  Thus, the role of glucose transporters at the proximal tubule BBM in diabetes 

requires further study. 

 

Western diets have changed dramatically over the last 30 years with a significant 

increase in consumption of calorie-dense processed foods. There is a general 

consensus that the rising prevalence of obesity, type II diabetes, and its essential 

prerequisite, insulin resistance, is related to consumption of these processed and 

calorie-dense foods, rich in saturated fat and carbohydrates with a high glycemic 

index (Bayol et al., 2005; Fulgoni, 2008). Diet-induced obesity is a major risk factor 

for development of the metabolic syndrome, a disorder characterized by impaired 

glucose tolerance, hyperuricemia, hypertriglyceridemia, and hypertension, and which 

is considered to be pre-diabetic (Aguilar-Salinas et al., 2005; Junien & Nathanielsz, 

2007; AlSaraj et al., 2009). Increased consumption of saturated and trans-saturated 
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fats and carbohydrates has also been shown to adversely affect glucose metabolism 

and induce insulin resistance (Moeller et al., 2009).  Consumption of artificial 

sweeteners such as sucralose and saccharin, has also increased significantly in 

recent years (Mattes & Popkin, 2009; Yang, 2010).  Interestingly, both experimental 

studies and meta-analyses have linked the consumption of artificial sweeteners with 

the development of glucose intolerance (Pepino et al., 2013; Suez et al., 2014).  

Therefore, the Western diet likely contributes to the development of insulin 

resistance and type II diabetes through disturbances in glucose homeostasis that are 

determined more by its actual composition. 

 

Since the kidneys play a major role in glucose homeostasis, the aim of the present 

study was to characterize glucose transport at the proximal tubule BBM in 

experimental models associated with metabolic disturbance. Models of early type I 

diabetes, type II diabetes, diet-induced obesity and insulin resistance and exposure 

to artificial sweetener were utilized.  Studies on type II diabetes used Goto-Kakizaki 

(GK) rats, an established non-obese model of the condition characterized by glucose 

intolerance and impaired insulin secretion (Goto et al., 1976).  Since type II diabetes 

in man has been attributed to the high consumption of “junk-foods” in the Western 

diet (Hu et al., 2001), an earlier stage in type II diabetes pathogenesis was studied 

using rats maintained either on a cafeteria diet composed of processed foods or a 

defined high-fat diet. Finally, animals acutely exposed to the artificial sweetener 

saccharinwere compared.  Our studies demonstrate a differential expression profile 

of glucose transporters at the BBM in response to these various forms/stages of 

metabolic disease.  We propose that specific glucose transporters could be targeted 

at the proximal tubule BBM to attenuate glucose reabsorption and potentially lessen 
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hyperglycemia in diabetes or pre-diabetes, and may even provide eventual 

renoprotection. 
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Methods  

 

Ethical approval 

All procedures were carried out in accordance with the UK Animals (Scientific 

Procedures) Act, 1986 Amendment Regulations 2012. The protocol was approved 

by the University College London (Royal Free Campus) Comparative Biology Unit 

Animal Welfare and Ethical Review Body (AWERB) committee.   

 

Animal models 

Type I diabetes was induced by a single tail vein injection of streptozotocin (STZ) (55 

mg.kg-1) administered to male Sprague-Dawley rats (200-230 g) 7 days prior to 

experimentation. This protocol was chosen because hyperglycemia of at least 7 day 

duration is required for detection of increased GLUT2 expression at the BBM (data 

not shown). STZ was freshly prepared in 0.05 M citrate buffer and administered 

under light inhaled isofluorane anesthesia (2% isofluorane in 100% oxygen, non-

terminal). Control animals received an injection of citrate buffer. Type II diabetes was 

studied in 8-9 week old non-obese Goto-Kakizaki (GK) rats (Goto et al., 1976) 

purchased from Charles River, USA, and compared to Wistar controls.  

 

Type I and Type II diabetic animals were allowed ad libitum access to a standard rat 

chow (diet RM1, SDS Ltd, Witham, Essex, UK) and water. For ‘junk-food’ (‘cafeteria 

diet’) feeding studies, male Wistar rats were allowed ad libitium access to water and 

either a standard rat maintenance diet (Diet RM3, SDS Ltd) or chow supplemented 

with junk-food over an 8-week period (Rothwell & Stock, 1979; Bayol et al., 2005).  

The junk-food diet consisted of a choice of palatable, processed foods with high fat 
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and/or high sugar content, comprised of potato crisps (5.7% of consumed food), 

flapjacks (12.3% of consumed food), cheese (4.9% of consumed food), 

marshmallows (6.9% of consumed food), muffins (12.1% of consumed food), 

doughnut (19.8% of consumed food), biscuits (31.1% of consumed food) and 

chocolate bars (7.2% of consumed food). Daily energy consumption for chow fed 

and junk-food fed animals was 17.5 kcal (73.2 kJ) and 198 kcal (830.6 kJ), 

respectively. For the high-fat diet model, male Wistar rats (125-150 g) were 

purchased from Charles River (UK) and had ad libitum access to a 60% fat-as-

calories chow (R12492, Research Diets, New Brunswick, USA) over a 5-week period 

or maintenance diet. Rats maintained on a high-fat diet were fasted overnight prior to 

being euthanised by exposure to gradually increasing concentration of carbon 

dioxide.  At the end of the diabetic or junk feeding protocols, unfasted animals were 

terminally anesthetized with an intraperitoneal (i.p.) injection of pentobarbitone 

sodium (60 mg.kg-1) (Pentoject, Animalcare Ltd, York, UK).   Monitoring of the pedal 

and corneal reflex was undertaken to ensure deep anaesthesia was achieved before 

blood was taken by cardiac puncture, and the kidneys removed. Death after 

exsanguination was ensured by incising the heart. Cortical fragments were dissected 

at 4oC and either snap-frozen for BBM preparation for Western blotting studies or 

BBM vesicles were freshly prepared for glucose uptake studies. 

 

Plasma glucose concentration was measured using the glucose oxidase assay 

(Huggett & Nixon, 1957) and plasma insulin was quantified using a sandwich ELISA 

kit (Millipore, UK). 

 

Animal procedures - Infusion studies 
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For infusion experiments, 8-9 week old male Sprague-Dawley rats, allowed ad 

libitum access to RM1 diet containing 65% carbohydrate, were anesthetized with an 

i.p. injection of pentobarbitone sodium (60 mg.kg-1) and the jugular vein and bladder 

were cannulated.  Test animals were infused with 154 mM NaCl at 5.5 ml.h-1 for 1 h, 

followed by 1 mM saccharin in 154 mM NaCl for a further 2 h, while control animals 

continued to receive 154 mM NaCl. At the end of the infusion protocol blood was 

collected by cardiac puncture and the kidneys removed. Cortical fragments were 

dissected at 4oC and BBM vesicles immediately prepared for studies of glucose 

uptake.  

 

Preparation of renal BBM and glucose uptake studies 

 BBM vesicles were prepared from kidney cortex, using a double Mg2+ chelation 

protocol, as described previously (Marks et al., 2003).  Purity of the BBM preparation 

was confirmed by 6-8-fold enrichment of alkaline phosphatase.  Protein 

concentration was determined using a Bradford assay (Bradford, 1976).  Uptake 

studies were carried out as described previously (Marks et al., 2003). In brief, the 

transport process was initiated by mixing equal volumes of vesicle suspension and 

uptake buffer consisting of (mM) 200 NaSCN, 20 Hepes, 0.1 MgSO4 containing D-

[3H]glucose and such that the final concentration of glucose was 30-960 µM to 

determine the transport kinetics of SGLT-mediated glucose transport. Uptake was 

terminated after 4 s by the addition of 3 ml of 154 mM NaCl containing 0.5 

mM phlorizin, followed by vacuum filtration through 0.45 µm nitrocellulose filters 

(Sartorius, Germany). Three further washes were carried out. In order to assess 

GLUT-mediated transport, a higher glucose concentration (20 mM) was used in the 

presence of 1 mM phlorizin - this value is consistent with the low affinity of GLUT 
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transporters for glucose binding (Debnam & Unwin, 1996). The kinetic parameters of 

Vmax (maximum transport capacity) and Kt (glucose concentration at half Vmax) for 

phlorizin-sensitive uptake were derived using Lineweaver-Burk plot analysis of 

uptake date obtained using a glucose concentration in the µM range.. 

 

Western blotting 

Western blotting of BBM was carried out as previously described (Marks J, 2003, 

553, 137) using rabbit polyclonal antibodies raised against SGLT1 (a gift from Prof. 

G. Kellett, University of York, UK), SGLT2 (Santa Cruz Biotechnology, Santa Cruz, 

USA), GLUT2 (AbD Serotec, Kidlington, UK) and PKC-βI (Santa Cruz). Mouse 

monoclonal antibody for β-actin (Abcam, Cambridge, UK) was used as a loading 

control. Blots were visualized with enhanced chemiluminescence on a Fluor-S 

MultiImager system (BioRad, Hertfordshire, UK), and the abundance of each protein 

of interest was calculated relative to actin and expressed as a percentage of the 

control average. 

 

Statistics 

Values are expressed as mean ± S.E.M.; n values represent numbers per treatment 

group (i.e. 1 animal is equivalent to an n value). For each experiment, a comparison 

between metabolic-treatment group was made relative to control group.  Studies 

were performed to ensure that both control and metabolic-treatment group were 

studied in at the same time point. Differences between groups were tested by 

Student’s unpaired t test, with p<0.05 considered significant.  
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Results 

 

Type II diabetes increases SGLT- and GLUT-mediated transport of glucose 

across the BBM 

Long-term type I diabetes increases glucose transport across the proximal tubule 

BBM through enhanced levels of GLUT2 (Marks et al., 2003).  Our first aim was to 

assess the effect of experimental type II diabetes on renal glucose transport.  In 

keeping with previously published observations (Noll et al., 2011), at 8-9 weeks of 

age GK rats weighed significantly less than control Wistar rats and had an increased 

plasma glucose concentration (Table 1) and glycosuria (data not shown), however, 

the increase in plasma insulin levels in GK rats did not reach significance (Table 1). 

 

BBM vesicles isolated from the kidneys of Wistar control rats were enriched in 

alkaline phosphatase (6.26 ± 1.04-fold, n = 6) and type II diabetes had no significant 

effect on these values (6.26 ± 0.68-fold, n = 6). As previously reported, glucose 

uptake studies revealed the expected time dependent overshoot, which was blocked 

by phlorizin (data not shown) (Marks et al., 2003). Vesicle-trapped space, as 

determined by incubation of BBM vesicles with 100 mM 3H glucose for 15 min, was 

unaffected by type II diabetes (control: 2.84 ± 0.66 vs. GK: 3.60 ± 0.64 µl/mg protein, 

n = 6).  At increasing concentrations of glucose, uptake across the BBM was 

significantly higher in GK rats compared with control animals (Figure 1a).  The Vmax 

for SGLT-mediated glucose uptake was 66% greater in BBM prepared from kidneys 

from type II diabetic rats (control: 1426.1 ± 66.3 vs. GK: 2364.6 ± 433.2 pmol.mg 

protein-1, n = 6-8, P<0.05) and Kt increased by 80% (control: 147.1 ± 21.6 vs. GK: 

264.3 ± 46.1 µM, n = 6-8, P<0.05).  Phlorizin-insensitive, GLUT-mediated glucose 
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transport, measured at 20 mM, was 130% greater in BBM prepared from Type II 

diabetic animals (Figure 1b).  

 

Western blotting revealed higher levels of GLUT2, SGLT1, and PKC-βI in BBM 

vesicles prepared from GK rats (Figure 2a).  As previously demonstrated (Marks et 

al., 2003; Goestemeyer et al., 2007), exposure to streptozotocin induced 

hyperglycaemia (Table 1).  Interestingly, while GLUT2 and PKC-βI expression at the 

BBM was significantly increased, SGLT1 and SGLT2 levels were unaffected one 

week after STZ injection (Figure 2b).  Therefore our data demonstrate that renal 

glucose transport by SGLT1 and GLUT2 is upregulated at the BBM in a non-obese, 

hyperglycemic model of type II diabetes, but that there are differences in the 

adaptation of renal glucose transport induced in models of type I and type II 

diabetes.  

 

Differential expression profile of glucose transporters at the renal BBM in 

rodent models of diet-induced obesity and insulin resistance 

We next sought to examine whether diet-induced models of obesity and insulin 

resistance affect glucose transporter expression at the renal BBM using two well-

characterized models of diet-induced obesity (Bayol et al., 2005; Anderson et al., 

2009).  Both cafeteria diet and high-fat diet fed rats gained significantly more body 

weight and displayed elevated plasma glucose and insulin levels versus their chow-

fed control groups (Table 1).  Western blotting of BBM prepared from rats maintained 

on both the junk-food and high-fat diet revealed significantly higher GLUT2 levels 

compared with chow fed animals, which was accompanied by increased levels of 

PKC-βI (Figure 2c and d, respectively).  Interestingly, BBM protein levels of SGLT1 
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and 2 was significantly increased in animals fed the junk-food, but not high-fat, diet 

(Figure 1c and d, respectively).  These data demonstrate that expression of glucose 

transporters at the proximal tubule BBM is dependent on the model of diet-induced 

obesity used and is not solely regulated by glycemia or insulinemia. 

 

The artificial sweetener saccharin regulates SGLT-mediated glucose transport 

at the renal BBM 

Activation of sweet taste receptors, localized to the small intestine, have been 

proposed to regulate intestinal glucose transporter expression via activation of sweet 

taste receptors (Mace et al., 2007; Mace et al., 2009). Given the similarity in renal 

glucose handling in the intestine and kidney we wanted to establish whether short-

term i.v. infusion of the artificial sweetener, saccharin, influenced renal glucose 

transport. A 2 hour infusion of 1 mM saccharin had no effect on plasma glucose 

concentration (Table 1). As expected, BBM vesicles isolated from the kidneys of 

saline-infused rats and saccharin-infused rats were enriched in alkaline phosphatase 

(6.81 ± 0.61-fold, n = 6 and 6.64 ± 0.57-fold, n = 6 respectively) and vesicle-trapped 

space was also unaffected by saccharin (in µl/mg protein), saline: 1.49 ± 0.24 vs. 

saccharin: 1.44 ± 0.21, n = 6).  The Vmax for SGLT-mediated glucose uptake was 

143% greater in the renal BBM of saccharin infused rats (control: 959.4 ± 90.5 vs. 

saccharin: 2333 ± 447 pmole.mg protein-1, n = 5, P<0.05), whilst the Kt was 

unaffected (control: 947.4 ± 120.9 vs. saccharin: 1282.4 ± 329 µM, n = 5) (Figure 

3a).  Western blotting revealed that SGLT1, but not SGLT2, expression was 

significantly increased at the proximal tubule BBM (Figure 4).   Renal GLUT-

mediated glucose transport, measured using 20 mM glucose, was unaffected by 
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saccharin infusion (Figure 3b) and in keeping with this finding, protein levels of 

GLUT2 and its upstream regulator PKC-βI were also unchanged (Figure 4). 

 

To establish whether sweet taste receptors might mediate the effect of saccharin on 

SGLT1-dependent glucose transport, we next studied the mRNA expression of 

sweet taste receptors in the rat kidney.  Using RNA from rat small intestine as a 

positive control, qPCR revealed that T1R2, T1R3 and their downstream G-protein, 

alpha-gustducin, were not expressed in the rat kidney (data not shown). This finding 

is in keeping with RNA-seq data published by Lee et al, who, using microdissected 

tubular segments, were unable to demonstrate expression of these receptors in any 

part of the mouse kidney (Lee et al., 2015b). In conflict with this RNA data, the 

antibodies used by Mace et al (Mace et al., 2007; Mace et al., 2009) to investigate 

the effect of saccharin on intestinal taste receptor expression (purchased from Santa 

Cruz Biotechnology) were able to detect a strong signal in renal BBM vesicles. 

However the use of these antibodies in immunohistochemistry demonstrated that 

there was a high degree of non-specific binding, with no particular region of the 

kidney showing positive staining. Taken together our findings suggest a role for 

saccharin in enhancing renal BBM glucose transport through SGLT1, which unlike in 

the small intestine, appears to be independent of the sweet taste receptor T1R2/3. 

 

Discussion 

Diabetic nephropathy is an important late complication of diabetes, especially 

when glycaemic status has been poorly controlled. The use of SGLT2 inhibitors is 

a new treatment modality for maintaining glycemic control in patients with type II 

diabetes, and although it has been suggested that this approach may also limit the 
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long-term renal consequences of diabetic nephropathy, to date it has not been 

shown to provide unequivocal ‘renoprotection’ other than by improving blood sugar 

control. Lack of more direct renoprotection might be a consequence of adaptation 

in glucose transport mechanisms in response to SGLT2 inhibition. For example it 

is known that in healthy volunteers inhibiting SGLT2 reduces reabsorption of 

filtered glucose by only ~ 30–50% (Liu et al., 2012), which may be due to 

scavenging of the abnormally high glucose levels reaching the late proximal tubule 

by SGLT1 (Brown, 2000; Wright, 2001). However, this explanation is largely based 

on studies in non-diabetic mice and does not take account of the potential for 

additional adaptive changes in renal glucose transport that may occur in diabetes. 

In this context, it has also been shown by Vallon et al that although SGLT2 gene 

knockout reduces glycemia in experimental type I diabetes, lack of SGLT2 did not 

abrogate the effects of diabetes on renal growth or markers of renal injury, 

inflammation and fibrosis (Vallon et al., 2013); others have made similar findings 

for SGLT2 inhibition (O'Neill et al., 2015). Thus, understanding how glucose is 

transported across the renal BBM and how the process is upregulated in diabetes 

and pre-diabetes may offer new insights for reducing potential damaging effects of 

increased glucose load and transport on tubular function.  

 

The present study used animal models of diabetes and models of diet-induced 

obesity and insulin resistance of differing aetiology to assess the effects of insulin 

resistance and hyperglycaemia on expression of glucose transporters at the renal 

BBM. Our previous findings have shown that expression of GLUT2 and its regulator, 

PKC-βI, are increased in a model of established type I diabetes (Marks et al., 2003), 

and that their expression levels correlate with changes in glucose concentration 
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within the pathophysiological range (Goestemeyer et al., 2007). In keeping with 

these findings, we have demonstrated that expression of GLUT2 and PKC-βI at the 

renal BBM is higher in type II diabetes and after one week induction of type I 

diabetes. However, we also show increased levels of both GLUT2 and PKC-βI at the 

BBM in animals maintained on junk-food and high-fat diets, even though these 

animals demonstrated only mild elevations in plasma glucose.  The high renal 

GLUT2 expression in the absence of a pronounced glycemic stimulus suggests that 

increased glucose uptake across the BBM can occur in models of insulin resistance 

and impaired glucose tolerance (pre-diabetes), a state known to precede the onset 

of type II diabetes.   

 

Also in agreement with our previous studies using long-term type 1 diabetic rats 

(Marks et al., 2003), we observed no alteration in SGLT1 or SGLT2 expression at 

the renal BBM in response to recent induction of type I diabetes.  However, in the 

GK model of type II diabetes, the capacity for SGLT-mediated glucose transport was 

augmented and this was accompanied by a rise in the level of SGLT1, but not 

SGLT2, protein. Studies using exfoliated proximal tubular epithelial cells obtained 

from the urine of type 2 diabetic patients also show increased SGLT-mediated 

glucose transport, but this was attributed to an increase in SGLT2 activity as a result 

of enhanced mRNA and protein levels (Rahmoune et al., 2005). In addition, some 

studies in genetic mouse models of both type I (Akita mice) and type II (db/db mice) 

diabetes also report increased renal SGLT2 expression and SGLT activity 

respectively (Arakawa et al., 2001; Vallon et al., 2013).  However, it is important to 

note that numerous studies over the past 30 years have provided conflicting results 

on diabetes-induced changes in sodium-dependent glucose transport, and SGLT 
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transporter expression (Debnam & Unwin, 1996; Poulsen et al., 2015), with 

discrepancies being attributed to the dose of STZ used to induce type I diabetes, the 

use of chemical vs genetic models of diabetes, and the severity of the model being 

studied. The complexity of these changes in renal glucose transporter expression is 

also highlighted by the differing transporter expression profiles observed in our junk-

food and high-fat feed models. As with GLUT2, renal SGLT1 and SGLT2 expression 

does not follow a clear pattern with respect to plasma glucose concentrations or 

levels of insulin.  Furthermore, the differential effects of a junk-food or high-fat diet on 

expression of SGLTs and GLUT2 suggest that these transporters are not regulated 

by the same factor(s) in these different dietary models.  

 

At present the identity of this factor(s) is unknown; however, given the similarity 

between the process of glucose transport across enterocytes and renal tubular cells, 

parallels can be drawn over regulation of glucose transport and the possibility of 

glucose ‘sensing’ by the kidney. Sweet taste receptors are transmembrane G-protein-

coupled receptors formed by heterodimerisation of T1R2 and T1R3; this heterodimer 

is sensitive to a variety of different sweet taste molecules including sugars, artificial 

sweeteners and sweet proteins (Li et al., 2002).  Recent studies suggest that 

activation of sweet taste receptors in intestinal epithelium enhances both SGLT1 

expression and GLUT2 insertion into the BBM during carbohydrate digestion (Mace et 

al., 2007; Mace et al., 2009).  Intestinal sweet taste receptor activation by artificial 

sweeteners regulates glucose-dependent GLP1 secretion from L cells, but not GIP 

secretion from K cells (Jang et al., 2007; Parker et al., 2009).  Interestingly, although 

our studies demonstrate that the artificial sweetener saccharin enhances renal SGLT-

mediated glucose transport and SGLT1 protein expression, we were unable to detect 
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T1R2, T1R3 and the downstream signalling protein alpha-gustducin in the kidney by 

qPCR. While numerous sensory receptors have been reported to be expressed in the 

kidney (including taste receptors) (Rajkumar et al., 2014), recent RNAseq data using 

microdissected tubular segments was unable to demonstrate expression of these 

sweet taste receptors in any part of the mouse kidney (Lee et al., 2015b).  Thus it is 

unlikely that the proximal tubule response to saccharin results from ‘classical’ sweet 

taste sensing. 

 

An alternative glucose sensor, SGLT3, is expressed in the submucosal and myenteric 

plexuses of the small intestine (Diez-Sampedro et al., 2003) and duodenal 

enterochromaffin cells (Lee et al., 2015a). Recent studies have shown that SGLT3 is 

involved in the coordinated modulation of glucose absorption (via an increase in distal 

jejunal SGLT1 expression) and GLP-1 secretion (Lee et al., 2015a; Pal et al., 2015), 

with these effects occurring via a vagally-mediated pathway (Pal et al., 2015). 

However, although SGLT3 may play a significant role in glucose sensing in the 

intestine, it is unlikely to be responsible for the increased renal SGLT1 activity in 

response to artificial sweeteners, since, compared with intestinal SGLT3 expression, 

renal levels of SGLT3 mRNA are extremely low (Barcelona et al., 2012) or 

undetectable (Matus Sotak, personal communication).  

 

A potential mechanism through which glucose transporter expression is regulated at 

the proximal tubule BBM is through the local action of insulin.  The insulin receptor is 

present throughout the nephron, including in the proximal tubule, with higher 

expression at the basolateral membrane than at the BBM (Feraille et al., 1995).  The 

action of SGLT2 inhibitors on renal glucose handling is notably independent on insulin 
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action, but this is not the case for GLUT2 activity.  Lowered circulating level of insulin 

in type I diabetes might provide a stimulus for recruitment of GLUT2 to the BBM, an 

action of the hormone that has been noted in jejunal enterocytes (Tobin et al., 2008), 

but would not explain the raised GLUT2 levels at the BBM in the prediabetic state 

seen following feeding of junk-food or high-fat diet.  Therefore, GLUT2 expression at 

the renal BBM, like SGLT expression, is likely to be mediated through an insulin–

independent pathway in metabolic conditions.   

 

The composition of diets has been demonstrated to play a role in glucose transporter 

expression in the small intestine. Consumption of a high-starch/low-fat pellet diet, by 

rats, increases jejunal gene expression of SGLT1 and GLUT2 compared with a low-

starch/high-fat diet, and is likely to increase glucose transport across the intestinal 

brush-border (Inoue et al., 2015).  Interestingly, obese subjects who consume a high-

fat/low-carbohydrate diet display increased brush-border GLUT2 expression under 

fasting conditions (Ait-Omar et al., 2011).  Studies by Gai et al demonstrate that 2441 

genes are differentially expressed in renal tissue following chronic high-fat diet (Gai et 

al., 2014), however no studies focused on renal glucose transporter expression.  Our 

findings show that consumption of a high-fat diet chow elevates GLUT2 expression, 

whereas a diet high in fat and sugars (junk-food diet) increases SGLT1, SGLT2 and 

GLUT2.  It is possible that specific components of the diet, and the ratio of 

carbohydrate to fat, can play a role in renal glucose transporter expression to regulate 

glucose reabsorption.  

 

In conclusion, metabolic dysregulation associated with diabetes evokes changes in 

sodium-dependent and sodium–independent glucose transport across the renal BBM 
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that have the potential to worsen hyperglycaemia or cause diabetic renal injury.  

Although clearly SGLT2 plays a key role in glucose transport across the proximal 

tubule BBM, our data show that the kidney displays differential responses in glucose 

transporter expression depending on the severity and type of metabolic dysfunction 

present. These findings demonstrate the complexity of the adaptive response in renal 

tubular glucose transport in pre-diabetic syndromes and type II diabetes. Furthermore, 

the efficacy of the anti-hyperglycemic effect of SGLT2 inhibitors may vary with the 

progression of disease.  Further characterisation of the signalling pathways involved 

in renal glucose handling may allow a deeper understanding of the effect of SGLT2 

inhibitors in patients with type II diabetes and promote the development of further new 

therapies for the treatment of diabetes and associated kidney disease. 
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Table 1.  Body weight, plasma glucose and insulin levels in models of insulin 

resistance and diabetes.  Results are expressed as mean ± SEM, n=6-12. 

*P<0.05, **P<0.01, ***P<0.005, ****P<0.001 compared with the corresponding 

control rats. nd = not determined. #animals were fasted overnight before samples 

taken. n=6-8 for each disease model.  

 

  

 
Treatment 

group 

Body weight 

(g) 

Plasma glucose 

(mM) 

Plasma 

insulin 

(ng.ml-1) 

Artificial 

sweetener 

study 

Saline 397.7 ± 11.8 5.39 ± 0.2 nd 

Saccharin 409.7 ± 15.3 6.27 ± 0.8 nd 

     

Type I 

diabetes 

study 

Vehicle 268.5 ± 11.3 10.3 ± 0.9 nd 

Streptozotocin 244.4 ± 7.1 35.7 ± 3.4 **** nd 

     

Type II 

diabetes 

study 

Wistar rat 397 ± 7.4 13.3 ± 0.4 4.83 ± 1.12 

Goto-kakizaki 

rat 
316.6 ± 5.2**** 20.3 ± 1.3 **** 6.35 ± 1.38 

     

Diet-induced 

obesity 

study 

Control diet 367.7 ± 15.3 8.5 ± 0.30 2.15 ± 1.09 

Junk-food diet 429 ± 12.4*** 10.7 ± 0.4 *** 9.18 ± 1.51 ** 

    

Control diet# 392.8 ± 4.2 4.2 ± 0.1 4.91 ± 0.87 

High-fat diet# 417.6 ± 9.5* 4.7 ± 0.2 * 10.07 ± 1.76 * 
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Figure legends 

Figure 1 – Effect of type II diabetes on sodium-dependent and independent 

glucose transport across the proximal tubule BBM.  (a) Sodium-dependent 

glucose uptake across the BBM from control Wistar (solid line) and Goto-Kakizaki 

(dashed line) rats at different concentrations of glucose from 29.7 to 957 µM.  (b) 

Sodium-independent glucose transport was measured with or without phlorizin at 20 

mM glucose concentration.  Values are given as mean ± SEM. n=6, *p<0.05, 

***P<0.005 compared to saline infused controls. 

 

 

Figure 2 – Effects of diabetes and diet-induced metabolic disruption on 

expression of SGLT1, SGLT2, GLUT2 and PKC-βI at the proximal tubule BBM.  

Western blotting was performed on proximal tubule BBM from rats under control 

conditions or differing models of metabolic disruption; (a) Type II diabetes, (b) Type I 

diabetes, (c) junk-food diet and (d) high-fat diet. Representative blots (top panel) and 

protein levels of transporters (lower panel) are shown.  Band intensities for each 

transporter are normalised to those of β-actin, expressed as a percentage of the 

control average and are given as mean ± SEM, n=6-8. *P<0.05, **P<0.01, 

***P<0.005, ****P<0.001 compared to control animals.    

 

Figure 3 – Effect of saccharin infusion on sodium-dependent and independent 

glucose transport across the proximal tubule BBM.  (a) Sodium-dependent 

glucose uptake across the BBM from rats exposed to i.v. infusion of saline (solid line) 

and saccharin (dashed line) using concentrations of glucose from 29.7 to 957 µM.  

(b) Sodium-independent glucose transport was measured in the presence and 
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absence of phlorizin at 20 mM glucose concentration. Values are given as mean ± 

SEM. n=5, *p<0.05, ***P<0.005 compared to saline infused controls. 

 

 

Figure 4 – Effect of saccharin infusion on expression of SGLT1, SGLT2, GLUT2 

and PKC-βI at the proximal tubule BBM.  Western blotting was performed on 

proximal tubule BBM from rats exposed to i.v. infusion of saline (open bar) or 

saccharin (closed bar).  Representative blots are shown (top panel) and protein 

levels of transporters (lower panel) are shown. Band densities for each transporter 

are normalised relative to β-actin, expressed as a percentage of the control average 

and given as mean ± SEM, n=6-8. *P<0.05, ***P<0.005 compared to control animals.    
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Supplementary Figure 1 - Representative Western blots performed on proximal 

tubule BBM from rats under control conditions or differing models of metabolic 

disruption. 

Supplementary Figure 2 - Representative Western blots performed on proximal 

tubule BBM from rats exposed to i.v. infusion of saline or saccharin.  
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