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MATHEMATICS AND DIGITAL TECHNOLOGY: CHALLENGES AND 
EXAMPLES FROM DESIGN RESEARCH 
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Mathematics is a ubiquitous and vital substrate on which our culture is built.   Yet this fact is 
seldom fully exploited in educational contexts. The first step must, in our view, be to open the black 
box of invisible mathematics to more people, (see Hoyles, 2015). A key challenge for task design 
and an organising design principle is to exploit digital technology to reveal more of what 
mathematics actually is; first, by offering a glimpse of the mathematical models underlying a given 
(and carefully chosen) phenomenon; and second, by fostering an approach to mathematical tasks 
that transcends the purely procedural. We describe in this paper how we have attempted to address 
these challenges. 

BACKGROUND 

A common theme for research in task design with digital technologies is that learning evolves in 
ways that are contingent on design. We follow a programme of design research (Cobb, Confrey, 
diSessa, Lehrer, & Schauble, 2003) with a theoretical framework underpinning the design of the 
activities presented to the students, and the fine-grain HCI of the software. Our designs were driven 
by the theoretical framework of constructionism, which argues for learning by building with 
computer tools (Harel & Papert, 1991). But as we shall see, there is so much to elaborate about the 
complexities of the design process.  In Noss & Hoyles, 1996, we argued that there is a complex 
relationship and mutual influence of tool and knowledge.  We noted that digital tools – particularly 
those symbolically represented - shape mathematical learning as students ‘think with and through 
the tool’, constructing what we termed “situated abstractions”.  Reciprocally, the tools are 
themselves shaped by the context of mindful use (for a related discussion of the idea of mindful 
engagement with technologies, see Salomon, Perkins & Globerson, 1991). It is not only that digital 
technologies add new representations or link old ones; research is increasingly coming to recognise 
that digital representations change the epistemological map of what it is intended to teach and learn 
(Kaput & Roschelle, 1998). In a complementary strand of research, this process has been described 
as one of “instrumental genesis”, whereby artefacts are transformed into “instruments” - systems 
with which the user gains fluency and expressive competence (see Vérillon & Rabardel, 1995, 
Drijvers & Trouche, 2008). Our common vision is that computational tools are a means by which 
new mathematical meanings can be developed but in so doing the role of the tools in shaping the 
meanings must be acknowledged. Building on this framework, Olive et al. (2010) propose 
technology as a fourth vertex for Steinbring’s (2005) “didactic triangle”, in order to illustrate how 
the interactions among student, teacher, task and technology form the ‘space within which new 
mathematical knowledge and practices may emerge’ (ibid. p.169).  

Significant progress has been made in designing sets of digital tools (DTs) or “microworlds” 
embedded in activities through which to pursue mathematical learning goals, taking on board the 
framework of DR, where the iterative development of the microworld is considered as a piece of 
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DR in itself (see Hoyles & Noss, 2015). In this sense, microworld design is an incubator for 
developing and researching radical approaches to innovative mathematical learning. As Hoyles 
(1993) put it, a powerful way to think about the microworld idea is a vision in which “software 
tools and knowledge would grow together interactively in the pursuit of epistemologically rich 
goals” (ibid. p. 3).  

As well as the evolution of design research there has been a parallel evolution of task design 
research.  In her editorial for the recent ICMI book, (Watson & Ohtani, 2015), Watson makes the 
point that few studies justify task choice or identify what features of a task are essential and what 
features are irrelevant to the study. We agree. This is what, we presume, Papert had in mind when 
he criticised the more general field of mathematics education research for not allocating sufficient 
energy to consider the ‘what’ rather than merely the ‘how’ of teaching (keynote address to ICMI 
study group, Hoyles & Lagrange, 2009). 

By contrast, we note that in the domain of mathematics and DT, the task, its design and the software 
are all at the forefront of the collective design research effort, and highly visible. This is hardly 
surprising as the enterprise of the design of digital tools focuses closely on identifying and 
expressing mathematical concepts in novel ways, e.g. dynamically rather than statically. In this 
paper, we present some theoretical and practical exemplars arising from two design research 
projects that illustrate our approach. The first explores the role of programming in mathematical 
learning, based on our on-going experience of a large-scale design research study in England, the 
ScratchMaths1 project. The second derives the Cornerstone Maths project2, which seeks to exploit 
the dynamic and visual nature of DT to stimulate engagement with mathematical ways of thinking 
among students aged 11-14 years. In both projects, we designated some tasks as “landmark 
activities” to be used as a ‘framework for action” in the DR (Cobb et al. (2003) and as a focus for 
our data collection in the implementation phases of the DR.  

We provide a brief outline to the idea of landmark activity, and how it plays out in the context of 
design in terms of: 

• The anticipated learning goals; 

• How the task design is planned to exploit the affordances of the digital tools embedded in 
the activity; 

• Some preliminary observations on the degree of fidelity of resulting classroom 
implementations. 

THE RATIONALE FOR LANDMARK ACTIVITIES 

We define landmark activities as those designed to trigger a rethinking of mathematical ideas or an 
extension of previously held ideas – the ‘aha’ moments that indicate surprise. They can provide 
evidence of particular mathematical understandings of the concept, the anticipated learning goal. 
                                         
1 ScratchMaths is a 3-year research project funded by Education Endowment Foundation from Sep 2014: researchers Laura Benton, 
Ivan Kalas, Piers Saunders. 
2 The research reported in this paper was funded by the Nuffield Foundation (Award reference 91909): researcher Alison Clark-
Wilson. We gratefully acknowledge funding by the Li Ka Shing Foundation for the prior research developing Cornerstone Maths 
2010-13, a collaboration between the London Knowledge Lab, UCL Institute of Education and the Center for Technology in 
Learning, SRI International, Menlo Park, USA. 
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We surmise that disruptive but carefully designed technologies can lead to a ‘situation of non-
obviousness’ (Winograd & Flores 1986, p. 165), where established routines are ‘replaced by 
conflict, disagreement or doubt’. These moments, we conjecture, are particularly conducive to 
learning. Others have studied how underlying theories on how unanticipated classroom events can 
be instrumental in developing teachers’ epistemology and some have elaborated the underlying role 
of technology in such ‘disrupted’ processes, (or example, the notions of ‘hiccups’, Clark-Wilson, & 
Noss, 2015, and of ‘critical incidents’, Aldon, 2011). 

Our landmark activities by contrast, are planned for optimal engagement with the concepts at stake 
by means of the innovative mediational affordances of the embedded DT. Thus we take as read that 
in technology-enhanced mathematics classrooms, the use of DT can disrupt routine practices in a 
transformative sense, and ensuing breakdowns can promote further reflection and thinking again. 
Thus the selection and design of the landmark activities with this process in mind are the first stages 
of our design research. The next stage is one of implementation of the landmark activities in 
classrooms, with observations of teacher moves and student responses along with ‘post-lesson’ 
teacher and student interviews, with analyses of these data feeding into the next phase of the design 
in an iterative way. 

EXEMPLAR 1: THE SCRATCHMATHS PROJECT 

ScratchMaths (SM) is a 3-year research project involving a one-year iterative design phase followed 
by a 2-year implementation phase with students aged 9-11 years. The SM intervention is intended 
to comprise approximately 20 hours teaching time across each of the two school years, with the first 
year focusing on computational thinking (see, Wing, 2008) with an implicit mathematical 
component, and the second year foregrounding explicit investigations of key mathematical concepts 
using the programing tools. Thus the ambitious vision of ScratchMaths is to introduce students and 
teachers in the first year to a new representational infrastructure (based on Scratch) with which to 
express mathematical concepts and procedures, with the intention that these skills will be exploited 
the following year to explore key concepts through mathematical reasoning and problem solving. 
The intervention has been subject to cycles of iterative design research with the final quantitative 
outcome measure being the national standardised mathematics test scores, taken by all students in 
England at the end of primary school.  Here we focus on the early phases of design research.    

We designed tasks with clear learning outcomes and explicit guidance for implementation in written 
form and as part of professional development support for the teachers (face-to-face and online).  
One early outcome of the design research § was the emergence of the need for an explicit 
framework of pedagogy to help successful implementation of the different aspects of the SM 
intervention We devised a framework consisting of five unordered constructs, the 5Es, clearly based 
on a host of research into good practice in teaching mathematics, but also framed by findings 
emerging from early design workshops. The 5Es are: Explore: Investigate ideas, try things out for 
yourself and debug in response to feedback. Envisage: Have a goal in mind and predict what the 
outcome might be before trying out. Explain: Explain what you have done and articulate the 
reasons behind your approach to yourself, to peers and to the teacher. Exchange: Share different 
approaches, try to see a problem from another’s perspective as well as defend your own approach in 
comparison with others. bridgE: Make links between the programming work and the language of 
‘official’ mathematics and explore commonalities and differences.  
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The SM intervention comprises a host of investigations and exercises on and off the computer, to be 
undertaken individually or in pairs. We now turn to describe one landmark activity. The learning 
objectives were to explore how to move a sprite without dragging it, snap blocks together to create 
a script, and explain the script, debugging if necessary.  In addition, the mathematical goals 
included reasoning in steps, abstracting from immediate action, exploring angle as turn, and a total 
turn of 360 degrees.  

As preliminary work, students were given five existing Scratch blocks, (see Fig. 1), thus 
constraining activity merely to turning a given number of degrees, to ‘stamping’ the original tile, 
and ‘moving’ the tile in a straight line The students can click them together to build a script and 
observe the outcome.  This simple scenario hides a number of deep mathematical as well as 
computational concepts. From a computational point of view, the key concept is that a single block 
can have a repeatable outcome: and that putting blocks together leads to predictable results. This 
latter point, we found was surprisingly difficult for some students, and its mathematical corollary 
was a major stumbling block for many. The idea that mathematics is a game played with 
constrained rules, that algorithms have a rationale, that little pieces of knowledge can be brought 
together to represent larger ones, and that mathematical statements have consequences are all in 
some sense, deep. Furthermore, there is a major conceptual challenge that involves recognising the 
structure of the intended outcome, and predicting running the script in the future – in mathematics 
an analogy would be to envisage the output of a function for different values of the input. 

 
Figure 1.  ScrachMaths: Direct drive activity (left) and building simple scripts (right) 

The tension that had to be resolved was first between the tool and learning. Once students were 
familiar with the tool, it was observed that the ease of building scripts tended to encourage students 
to build extremely long scripts, by simply clicking blocks together: without, first envisaging the 
outcome.  Super long scripts appeared to have status as demonstrating a lot of ‘work’! In fact, in 
some classes, pupils went to great lengths to ensure that their scripts were longer than others’. The 
challenge is to establish a norm in which the aesthetic and pragmatic value of short scripts is 
recognised along with the appreciation that long scripts are hard to explain and to predict what they 
would do. Thus a key ‘rethinking’ promoted in SM classrooms entailed using definitions 
instantiated in ‘build your own block’, BYOB, in order to reduce complexity and aid readability. 
One last point highlights the relationship between learning outcomes and the affordances of the 
digital tools available. An earlier version of Scratch (1.4) did not allow the ‘user’ to build your own 
block (BYOB), and it is perhaps here that we find the reason for the ubiquity of the ‘longer is 
better’ preferences on the part of the pupils. At the very least, the advent of BYOB in version 2.0 
gave us as researchers a different and more powerful tool with which to promote mathematical 
description: write a program, give it a name, and reuse it. 

Similarly, introducing the repeat block into the landmark activity alongside the constraint in the 
activity of ‘no overlaps’, provoked the need for further reflection while opening the opportunity to 
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build connections between the computational and mathematical ideas. Again progress was varied in 
implementation with some students ‘seeing’ no connections, while others were observed calculating 
the value of the repeat block by dividing 360 by any chosen value in the turn block and iterating.  
Sometimes this resulted in a decimal number, e.g. 5.5, which they then inputted into the repeat 
block. Teachers used the 5E pedagogical framework along with “unplugged” activities (away from 
the computer) to promote and consolidate this new window through which to think about angle and 
turn. 

While one of our 5Es (Exchange) points to the pedagogical advantages of collaboration, it proved 
(perhaps unsurprisingly) to be challenging in SM classroom. It seemed to operate most effectively 
when teachers encouraged the ‘more able’ students to support the less able by ‘teaching’ them what 
they had already discovered for themselves and where individual discoveries could spread around 
the whole class with rather little teacher intervention, as students collectively monitored what their 
peers were working on. This is an interesting example of fidelity achieved in tandem with the 
evolution of the intervention; the intervention aligning itself with the ‘natural’ ecology of the 
classroom. More work is underway to explore this phenomenon further. 

EXEMPLAR 2: THE CORNERSTONE PROJECT 

The design foci of the Cornerstone Mathematics (CM) Project are several core mathematical 
concepts to be explored by middle school students (11-14 years) in ways that exploit the 
affordances of dynamic digital tools that can make links between key representations. The CM 
project began in 2010 as collaboration between research teams at SRI International, USA, and UCL 
Institute of Education, London. The project adopted a “design-based research” approach to increase 
student use of bespoke dynamic mathematical technology in lower secondary English mathematics 
classrooms (see, Hoyles, Noss, Vahey, & Roschelle, 2013; Clark-Wilson, Hoyles, Noss, Vahey, & 
Roschelle, 2015). The resulting web-based software, student materials, teacher support materials 
and mandatory professional development focus on topics known to be hard to teach and where the 
DT can clearly offer new ways to expore thematheamtics: linear functions, geometric similarity and 
algebraic patterns and expressions. In this project (and in an ongoing project with Alison Clarke-
Wilson), we again used the construct landmark activity to provide a focus not only for task design, 
but also to tease out the extent to which classroom practice aligns with the epistemic and learning 
goals of the CM materials and sheds light on learning (of teachers as well as students) that follows 
engagement with the activity. (Clark-Wilson, Hoyles, Noss, Vahey & Roschelle, 2015).  

In CM the process of identification of landmark activities went through several stages. First, the 
research team made their own selections from the student workbook based on past experience and 
theoretical concerns. Then they discussed their selections and agreed a list of activities that were 
highly aligned to the design principles of the CM curriculum unit under discussion, and which 
could reasonably function as landmarks, in relation to the three criteria outlined earlier. This 
process was repeated face-to-face with a focus group of three teachers, selected as they had 
provided thoughtful reflections to online surveys, and who provided their rationale for their choices. 

The following activity was selected as one landmark activity in the unit around linear functions.  
Fig 2 shows the software environment (the software was derived from Simcalc): it comprises a 
simulation (top right) performed by Shakey, a timer, play and editing (top left) and three ‘standard’ 
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mathematical representations of how distance varies with time; a graph, a table of values and an 
algebraic function. The anticipated learning goals were to identify speed as the gradient of the graph 
and link that to the coefficient of the function, and also to identify the starting point of Shakey with 
the intercept of the graph on the ‘distance’ axis and with the constant in the function.  

The aim of this activity was to explore the software, play the simulation, and watch the effects on 
the graph, the table of values and the function.  Then Shakey’s  ‘journey’ could be edited, either by 
changing the graph (making it steeper or adjusting its starting point,), by changing the function, or 
by manipulating the simulation itself or any combination of these, and then reflecting on the effects 
on the journey, while trying to tease out and explain how the different representations were linked. 
Note that the graph and the narrative – but not the table – can ‘drive’ the simulation in contrast to 
the usual situation in which a graph is a read-only representation of it. 

 
Figure 2. Cornerstone Maths Linear Functions: The software environment 

We anticipated that the focus on the dynamic representations and the links between them would be 
sufficiently novel to engage the students and teachers in rethinking what they knew about linear 
functions: all our prior work gave support to this, hence its selection as a landmark activity. Our 
early analyses indicated that the dynamic approach was successful in provoking a rethinking of the 
meaning of the graph and its relationship with the algebra although there was considerable variation 
in implementation. Here we report what might be a common mutation of the innovation in some 
classrooms.  

The teacher had fully bought in to the idea of establishing the link between the equation and the 
graph. But we noticed the generic manner of his approach, with little or no exploitation of the 
dynamic affordances of the digital tools.  For example, the task was presented on the interactive 
whiteboard and the teacher simply talked about it and described the different ‘windows’, reminding 
the class of their functionality, but only verbally – not by demonstrating. We noticed when students 
worked on the activity themselves (mainly in pairs), the teacher circulated giving advice, but again 
general advice: such as ‘try different things’  ‘you should be exploring’, and even ‘you need to 
establish the link between graph and equation’. He did not play with the simulation at any point.  
The researcher asked him if he would kindly do this and demonstrate, say, how to edit the graph. He 
was resistant as ‘he wanted them to explore’, but eventually agreed to do this and changed the 
steepness of the graph asking what “would happen to Shakey?”  Many could not find the words to 
describe their ideas – some made vague references to going faster, many did not know what to refer 
to.  But again, what was notable was the teacher still did not play the simulation to illustrate what 
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happened after editing or point to the key changes and the links between them. Unsurprisingly, 
rather few of the students could articulate the connections between the representations.  

We draw similarities with early research with computers, in which it was reported that teachers 
often felt they had no role: they wanted pupils to explore and sought to restrain themselves from 
telling answers (or funnelling towards them), but this was interpreted as an injunction against telling 
pupils anything at all! 

CONCLUDING REMARKS 

In this paper, we have presented the background and rationale for landmark activities, and 
illustrated how tasks were designed to exploit the affordances of the digital tools to achieve specific 
learning goals. We also sketched some observations from classroom implementations. At this early 
stage we can simply note how these were crucially shaped by the teachers’ appreciation of the new 
affordances for learning mathematics.  It is not just a matter of expertise in the use of the software 
but rather the conscious exploitation of the tools to promote a new window on the mathematical 
ideas at stake. 

While it is too early to draw generalised conclusions from these data, we might simply note the 
fragility of innovation fidelity, maybe especially for a computationally based innovation, and we 
conjecture for the following reasons. First the close tie between affordance – what the system 
invites the learner to do – and the relationship between this to what the teacher feels inclined to 
focus on. Second, the landmark construct gives teachers the opportunity to operationalise the notion 
of a window through which to gain insight into student meanings, but this may not be exploited. 
Third, and perhaps most significantly, the idea of landmarks brings some systematicity to the 
difficult and enduring methodological challenge of identifying what matters to teachers and 
students in the context of classrooms. By focusing on task design, we acknowledge the role of a 
learning ecology (Cobb et al., 2003) which depends centrally on ‘the tasks or problems that students 
are asked to solve”, as well as the tools and materials in use. From a methodological point of view, 
the landmark idea may help to tame the complexity of inter-relationships between the different 
elements that shape an intervention, all the more complex, of course, where digital technologies are 
involved. One possible new strand of the design research methodology might be to strengthen the 
’mixed-methods’ research framework by building an even stronger complementarity between 
qualitative and quantitative data analyses that harness emerging techniques of big data and learning 
analytics. 
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