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1. INTRODUCTION

Starting from Strotz (1956), choice problems with dynamically inconsistent prefer-

ences have been studied extensively1. There is a small but growing literature that

studies the properties of competitive equilibrium models with dynamically incon-

sistent preferences2. The representative agent economy is a particularly simple (and

widely used) model in macroeconomics and finance where both issues of optimiza-

tion and market clearing arise3. This paper shows the robust non existence of com-

petitive equilibria even in a simple deterministic three period representative agent

economy with dynamically inconsistent preferences.

We distinguish between a naive and sophisticated representative agent. We for-

mulate the decision problem of a sophisticated representative agent as an intra-

personal game at given prices. In our simple exchange economy there is only one

candidate market clearing allocation, namely one in which the representative agent

consumes his endowments. We show, via a robust example, that there are no prices

such that, at the solution of the intra-personal game, the representative agent con-

sumes his endowments.

The models of Barro (1999), Kocherlakota (2001) and Luttmer and Mariotti (2003)

allow for the possibility of quasi-hyperbolic discounting: under the key assump-

tion that agents have identical discount functions and identical CRRA period utility

functions, whether discounting is quasi-hyperbolic is irrelevant and existence is not

an issue. Closer to the work reported here, Luttmer and Mariotti (2006), Herings

and Rohde (2006), Luttmer and Mariotti (2007) have shown that equilibria exist with

general classes of dynamically inconsistent preferences4.

1Pollak (1968), Blackorby, Nissen, Primont, and Russell (1973), Peleg and Yaari
(1973), Goldman (1980), Harris and Laibson (2001), Caplin and Leahy (2006) among
others.
2Barro (1999), Kocherlakota (2001), Luttmer and Mariotti (2003), Luttmer and Mar-
iotti (2006), Herings and Rohde (2006), Luttmer and Mariotti (2007), Herings and
Rohde (2008).
3Caplin and Leahy (2001), Kocherlakota (2001), Luttmer and Mariotti (2003), among
others, introduce dynamically inconsistent preferences in the representative agent
economy.
4Observe that the preferences studied in Luttmer and Mariotti (2006) and Luttmer
and Mariotti (2007) satisfy quasi-hyperbolic discounting (Laibson (1997)) and are,
by construction, time separable. In Herings and Rohde (2006), preferences are inde-
pendent of past consumption (like the preferences studied by us here) but, unlike us,
they study existence in a market structure that is not sequentially complete.
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In our example the dynamically inconsistent preferences that we study do not

satisfy the assumption of time separability5 and result in induced preferences over

choices in first period markets that are non convex and satiated. At given prices, in

our example, such induced preferences display satiation because the amount con-

sumed by the second period “self”is a decreasing function of the amount saved by

the first period “self”. Further, at given prices, the induced preferences over first

period choices fail to be convex as anticipated second and third period consumption

are no longer concave functions of first period savings. We show that the market

clearing allocation does not lie in the convex hull of demand even allowing for neg-

ative prices and hence the non-existence result.6 Finally, with a naive representative

agent, we show that perfect foresight is incompatible with market clearing and indi-

vidual optimization.

The rest of the paper is structured as follows. In section 2 we introduce the three

period representative agent economy, in section 3 we present the non existence ex-

ample with a sophisticated representative agent, while in section 4 we study exis-

tence with a naive representative agent.

2. THE ECONOMY

We consider a simple representative agent economy over three periods, labeled by

t, t = 1, 2, 3. There is a single asset (the tree) which delivers units of a consumption

good (dividends or fruit) in every period. The consumption good is non storable,

hence the asset provides the only way to transfer wealth across periods. Let ct denote

consumption in period t, t = 1, 2, 3. Let θt+1 denote the amount of the asset held by

the representative agent at the beginning of period t + 1. Then θt+1dt+1 denotes the

amount of the consumption good available for consumption at t + 1.

5See Caplin and Leahy (2001). Among other specific properties, their model features
both uncertainty and non-time separable preferences in an intrinsic way. As our
analysis is limited to the deterministic case, we focus on the implications of non-
time separable preferences that such a model may have. Time separability will also
be violated in models of habit persistence although we do not explicitly focus on this
case in this paper.
6Luttmer and Mariotti (2006), Herings and Rohde (2006), Luttmer and Mariotti (2007)
deal only with potential non convexities, but not with satiation. Herings and Rohde
(2006) prove existence in the case in which induced preferences are convex by as-
sumption. Luttmer and Mariotti (2006) and Luttmer and Mariotti (2007) prove ex-
istence in a large economy by proving that there exist prices such that the market
clearing allocation lies in the convex hull of demand.
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We assume the representative agent is a price taker for both the consumption good

and the asset. We normalize prices so that the price of the consumption good is fixed

at 1 in each period, with pt denoting the relative price of the asset in period t. The

model is completely deterministic and the values of all fundamentals are known

from the beginning by the agent. At the beginning of period 1, the agent is endowed

with the entire asset (θ1 = 1) and the entire paid dividend d1.

At each t, we assume that the agent has preferences ranking non negative com-

modity bundles. We assume that at each t, t = 1, 2, the preferences of the representa-

tive agent over consumption are represented by the utility function ut(ct, ..., c3). We

assume that at each t, t = 1, 2 ut(ct, ..., c3)
7 is smooth, strictly increasing and strictly

quasi-concave.

We say preferences are dynamically inconsistent if given some non-negative c1 the

projection of preferences of the representative agent at t = 1 over (c2, c3) ∈ R
2
+ are

different from his preferences at t = 2 over (c2, c3) ∈ R
2
+, or equivalently, for some

non-negative c1,
∂u1

∂c3
(c1,c2,c3)

∂u1

∂c2
(c1,c2,c3)

6=
∂u2

∂c3
(c2,c3)

∂u2

∂c2
(c2,c3)

, (c2, c3)∈ R
2
+.8

In the remainder of the paper we assume that the preferences of the representative

agent are dynamically inconsistent.

We consider the case where the representative agent is sophisticated, i.e. correctly

anticipates that at t = 2 he will re-optimize, given his choices made at t = 1. At given

prices pt, t = 1, 2, the decision problem of the sophisticated representative agent is

described by the following intra-personal game:

Players: each period t, t = 1, 2, the representative agent is considered as a dis-

tinct autonomous player.

Actions: At = {(ct, θt+1) ∈ R
2
+ : ct + ptθt+1 ≤ (pt + dt)θt} constitutes the set of

actions available to player t.

Histories: the set of possible histories at t = 2 is H1 = A1, while the set of

histories at t = 1, H0 is a singleton.

Strategies: a strategy for the date t consumer is a Borel measurable function

γt : Ht−1 → ∆(At).

7Clearly, as u1(.) depends on c1, c2 and c3 but u2(.) depends on c2 and c3 but not c1,
the preferences studied here are consistent with anticipatory feelings but not with
habit persistence.
8As preferences are monotonic over consumption in each period, the optimal period
3 choice is to always choose maximum feasible consumption. It follows that the asset
price in period 3 is zero. In this 3 period economy our exclusive focus is on the time
inconsistency between periods 1 and 2.
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Definition 1. At prices p1, p2, a Sophisticated Solution (SS) γ is a Strotz (1956) solution

i.e. for each player t, γt induces a level of consumption which maximizes its own

utility given any feasible history of choices and the utility maximizing strategies of

the future.

Remark. From definition 1, at given prices, it follows that a SS is a subgame per-

fect Nash equilibrium of the intra-personal game, although, in general, the converse

does not hold. In general, the two solution concepts would not coincide if there are

multiple payoff maximizing consumption choices in some subgame for the period-2

consumer. However in our economy, as the second period utility is strictly quasi-

concave guaranteeing a unique solution in each subgame, the two solution concepts

coincide.

The market clearing condition for this economy is trivial: the agent must hold the

entire unit of the asset in each period (θ1 = θ2 = θ3 = 1) and consumption must be

equal to the entire dividend paid in each period (c1 = d1, c2 = d2, c3 = d3).

Definition 2. A competitive equilibrium with a sophisticated representative agent is a com-

bination of prices (p∗1, p
∗
2) and allocation (θ∗1, c

∗
1, θ

∗
2, c

∗
2, θ

∗
3, c

∗
3) such that:

(i) (θ∗1, c
∗
1, θ

∗
2, c

∗
2, θ

∗
3, c

∗
3) is the outcome of SS at prices (p∗1, p

∗
2);

(ii) (c∗1 = d1, θ
∗
2 = 1, c∗2 = d2, θ

∗
3 = 1, c∗3 = d3).

Note that by construction at a competitive equilibrium with a sophisticated repre-

sentative agent both selves of the representative agent face the same prices, i.e. the

sophisticated representative agent at t = 1 must correctly forecast the asset price at

t = 2. The definition of a competitive equilibrium with a sophisticated agent cor-

responds to the notion of a sophisticated equilibrium in Herrings and Rhode (2006)

and to the notion of a competitive equilibrium in Luttmer and Mariotti (2006).

A weaker definition of competitive equilibrium with a sophisticated representa-

tive agent would allow for the possibility that the market clearing allocation lies

in the convex hull of demand. To this end, at prices p1, p2, given a strategy γ,

we define the demand correspondence: D(p1, p2) = {(c1, θ2, c2, θ3, c3) ∈ ℜ5 : each

(c1, θ2, c2, θ3, c3) is an outcome of SS at prices (p1, p2)}. Even though preferences are

strictly quasi-concave, the demand correspondence can be multi-valued in our set-

ting as the induced preferences of the sophisticated representative agent at t = 1 may

fail to be convex. Let Conv(D(p1, p2)) denote the convex hull of the demand corre-

spondence i.e. the intersection of all convex sets containing D(p1, p2; γ). A weaker

notion of a competitive equilibrium follows:
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Definition 3. A weak competitive equilibrium with a sophisticated representative agent is

a combination of prices (p∗1, p
∗
2) such that:

(i) each (c1, θ2, c2, θ3, c3) ∈ D(p∗1, p
∗
2);

(ii) (c∗1 = d1, θ
∗
2 = 1, c∗2 = d2, θ

∗
3 = 1, c∗3 = d3) ∈ Conv(D(p∗1, p

∗
2)).

At a weak competitive equilibrium with a sophisticated representative agent, as

the market clearing allocation lies in the convex hull of the demand, market clear-

ing is only obtained in expectation (equivalently, market clearing obtains in a re-

interpretation of our model where the representative agent is a collection of a con-

tinuum of identical individuals).

Proposition 1. (Non existence). Not only does a competitive equilibrium with a sophisti-

cated representative agent not always exist but even a weak competitive equilibrium with a

sophisticated representative agent does not always exist.

In the following section we prove the proposition with a robust example.

3. AN EXAMPLE OF NON EXISTENCE

In this section we construct a robust example, where utility is increasing, smooth

and strictly quasi-concave, but where a competitive equilibrium with a sophisticated

representative agent does not exist. In this example at any fixed configuration of

asset prices, by backward induction, the representative agent at t = 1 anticipates

how the demand of his future self at t = 2 for θ3 varies as a function of the amount

of θ2 he chooses to hold. The resulting induced preferences over θ2 at t = 1 are non-

convex and satiated. We, then, show that there is no market clearing asset price at

t = 1 for such an induced preference.

The non-existence result is due to the fact that, in our example, consumption does

not always increase monotonically in wealth. In order to have a well behaved util-

ity function such that consumption may be an inferior good over certain ranges of

wealth, we use the addilog preferences which have been introduced by Houthakker

(1960).9

We begin by specifying the utility function at each t for the representative agent.

At t = 1 the utility function of the representative agent is:

(1) U1(c1, c2, c3) = c1 + b ln(c2) + c ln(c3),

9Concavity of the single period utility functions together with time separability im-
ply that every period consumption is a normal good. In our example this is not
always the case as the period 2 player’s preferences are not time separable.
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where b ∈ (0, 1), c ∈ (0, 1) and b > c.

We assume that the utility function of the representative agent at t = 2 generates

the following indirect addilog utility function:

(2) V2(p2, θ2) = α2
(θ2(p2 + d2))

β2

β2

+ α3
(d3θ2(p2 + d2)/p2)

β3

β3

,

where θ2(p2 + d2) is the wealth of the representative agent at t = 2 and p2/d3 is the

price of consumption at t = 3, c3 = θ3d3.10 This class of indirect utility functions

was introduced by Houthakker (1960). Expression (2) draws on the work of Murthy

(1982). Consistent with his assumptions we assume that the underlying preference

and wealth parameters take the following values:

(3) β2 = −0.5, β3 = 1, α2 = 0.2, α3 = 0.8, d1 = d2 = d3 = 1.

de Boer, Bröcker, Jensen, and van Daal (2006) formally prove that when the β ′s are

strictly greater than -1 and the α’s add up to 1 the indirect utility function satisfies

the following properties:

(i) homogeneous of degree zero in p2 and θ2,

(ii) non-increasing in p2 and nondecreasing in θ2,

(iii) strictly quasi-convex in p2,

(iv) differentiable in p2 and θ2.

The fact that the indirect utility function is strictly quasi-convex in prices implies

that the direct utility function, i.e. the dual of (2), is strictly quasi-concave by a well

known result in duality theory 11.

Next we compute the asset demand functions at t = 2. Given that the utility

function at t = 2 is strictly quasi-concave, we can apply Roy’s Lemma and obtain:

(4) c2 =
α2(θ2(p2 + d2))

β2+1

α2(θ2(p2 + d2))β2 + α3(θ2(p2 + d2)/p2)β3

.

It follows that as the period 2 budget constraint is satisfied with the equality, the

demand for θ3 at t = 2 as a function of θ2, p2 is

(5) θ3(θ2, p2) =
θ2(p2 + d2) − c2

p2
.

10Since the optimal period 3 choice is to always choose maximum feasible consump-
tion, without loss of generality, the asset price in period 3 is zero.
11See for example Mas-Colell, Whinston, and Green (1995), page 66.



8

Re-expressing c1, c2 and c3 through the three inter-temporal budget constraints (sat-

isfied in each case as an equality) and using d1 = d2 = d3 = 1, we obtain the period 1

indirect utility function:

(6) V1(p1, p2, θ2) = p1 − p1θ2 + b ln(p2θ2 − p2θ3(θ2, p2)) + c ln(θ3(θ2p2)).

Lemma 1. The market clearing price at t = 2 such that θ∗2 = θ∗3 = 1 is p∗2 = 18.7.

Proof. At the market clearing price vector it must be optimal for the representative

agent to demand θ∗2 = θ∗3 = 1.

Using equation (4), we look for the p2 such that the representative agent demands

the market clearing quantities c2 = d2, θ2 = 1. Given the specified values β2 =

−0.5, β3 = 1, α2 = 0.2, α3 = 0.8, d2 = 1 we obtain the following equation:

(7) (p∗2)
2(p∗2 + 1)−3/2 = α3/α2.

Given that the utility function of the representative agent at t = 2 is strongly mono-

tone, the market clearing price at t = 2 must be positive. There exists only one

positive solution to (7), namely p∗2 = 18.7 and this is the market clearing price at

t = 2. �

The preceding lemma computes the unique second period asset price that sup-

ports the market clearing allocation as the optimal choice of a period-2 consumer.

Lemma 2. There exists a K strictly positive such that whenever b/c > K then
∂V1(p1,p∗

2
,θ2)

∂θ2

<

0, θ2 ≥ 1 at each p1 ≥ 0.

Proof. Plugging the values of the parameters and p∗2 = 18.7 into (4) we can re-express

the demand for c2 at t = 2, given p∗2 = 18.7, as a function of θ2:

c2(θ2, p
∗
2) =

.88
√

θ2

.84θ2 + .04/
√

θ2

.

By computation note that
∂c2(θ2,p∗

2
)

∂θ2

= −hy
2

(θ
3/2

2
− 2z

y
)

(yθ
3/2

2
+z)2

, where h = .88,y = .84, z = .04.

Notice that hy is strictly positive as it is the denominator of the fraction, however as

2z < y, for θ2 ≥ 1, θ
3/2
2 − 2z

y
> 0. Hence, c2 is an inferior good at t = 2 over some

range of income.



9

Substituting the expression for c2(θ2, p
∗
2) into (5) and (6) we obtain the period 1

indirect utility as a function of p1 and θ2 alone:

(8) V1(p1, θ2) = p1 +1− p1θ2 + b ln(
.88

√
θ2

.84θ2 + .04/
√

θ2

)+ c ln(1.05θ2 −
.047

√
θ2

.84θ2 + .04/
√

θ2

).

Let

p1 + 1 − p1θ2 ≡ A,

b ln(
.88

√
θ2

.84θ2 + .04/
√

θ2

) ≡ b ln(
hθ2

yθ
3/2
2 + z

) ≡ B,

where h ≡ .88, y ≡ .84, z ≡ .04.

c ln(1.05θ2 −
.047

√
θ2

.84θ2 + .04/
√

θ2

) ≡ c ln(kθ2 −
xθ2

yθ
3/2
2 + z

) ≡ C,

where k ≡ 1.05, x ≡ .047, y ≡ .84, z ≡ .04.

By computation notice that as long as p1 ≥ 0, ∂A
∂θ2

= −p1 ≤ 0. Let

f(θ2) =
θ2

yθ
3/2
2 + z

> 0, θ2 ≥ 1.

Hence, B = b ln(hf(θ2)) and C = c ln(kθ2 − xf(θ2)). Now

f ′(θ2) =
−y(θ

3

2

2 − 2z
y
)

2
(

yθ
3/2
2 + z

)2 < 0, ∀ θ2 ≥ 1

and

∂B

∂θ2
= b

f ′(θ2)

f(θ2)
,

∂C

∂θ2
= c

(k − xf ′(θ2))

(kθ2 − xf(θ2))
.

Under the values of the parameters assumed so far, (k − xf ′(θ2)) > 0 and kθ2 −
xf(θ2) > 0 ∀ θ2 ≥ 1. Therefore, ∂B

∂θ2

< 0 and ∂C
∂θ2

> 0 for all θ2 ≥ 1 i.e. second period

consumption is an inferior good and third period consumption a normal good for

the period-1 consumer. Further,

∂(B + C)

∂θ2

< 0 ⇔ b
f ′(θ2)

f(θ2)
< −c

(k − xf ′(θ2))

(kθ2 − xf(θ2))

or equivalently,
b

c
> − f(θ2)

f ′(θ2)

(k − xf ′(θ2))

(kθ2 − xf(θ2))
> 0.
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By substitution and simplification, it follows that

∂(B + C)

∂θ2
< 0 iff

b

c
> K(θ2) =

k
(

yθ
3/2
2 + z

)2

+
(

xy
2

)

(θ
3

2

2 − 2z
y

)
[

k
(

yθ
3/2
2 + z

)

− x
]

(

y
2

)

(θ
3

2

2 − 2z
y
)
.

As long as θ2 ≥ 1, the denominator of K(θ2) is bounded away from zero so that for

any finite value of θ2 ≥ 1, K(θ2) is bounded. Let

K1(θ2) = k
(

yθ
3/2
2 + z

)2

+
(xy

2

)

(θ
3

2

2 − 2z

y
),

K2(θ2) =
[

k
(

yθ
3/2
2 + z

)

− x
] (y

2

)

(θ
3

2

2 − 2z

y
).

By computation,

K ′
1(θ2) =

3

2
θ

1/2
2

[

2k
(

yθ
3/2
2 + z

)

+
(xy

2

)]

,

K ′
2(θ2) =

(y

2

) 3

2
θ

1/2
2

[

ky(θ
3

2

2 − 2z

y
) +

(

k
(

yθ
3/2
2 + z

)

− x
)

]

As K ′
1(θ2) > 0 and K ′

2(θ2) > 0 for θ2 large enough, both limθ2→+∞ K1(θ2) = ∞ and

limθ2→+∞ K2(θ2) = ∞. By L’Hospital’s rule, limθ2→+∞ K(θ2) = limθ2→+∞
K ′

1
(θ2)

K ′

2
(θ2)

. Now,

lim
θ2→+∞

K ′
1(θ2)

K ′
2(θ2)

= lim
θ2→+∞

[

2k
(

yθ
3/2
2 + z

)

+
(

xy
2

)

]

(

y
2

)

[

ky(θ
3

2

2 − 2z
y
) +

(

k
(

yθ
3/2
2 + z

)

− x
)]

= lim
θ2→+∞

[

2 +
(xy

2
)

k
(

yθ
3/2

2
+z
)

]

(

y
2

)

[

y(θ
3

2

2
−

2z
y

)
(

yθ
3/2

2
+z
) +

(

1 − x

k
(

yθ
3/2

2
+z
)

)

] .
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Now, limθ2→+∞

[

2 +
(xy

2
)

k
(

yθ
3/2

2
+z
)

]

= 2 +

(

limθ2→+∞

(xy
2
)

k
(

yθ
3/2

2
+z
)

)

= 2 and

lim
θ2→+∞

(y

2

)





y(θ
3

2

2 − 2z
y
)

(

yθ
3/2
2 + z

) +



1 − x

k
(

yθ
3/2
2 + z

)









=
(y

2

)







 lim
θ2→+∞

y(θ
3

2

2 − 2z
y
)

(

yθ
3/2
2 + z

)



+



 lim
θ2→+∞



1 − x

k
(

yθ
3/2
2 + z

)













=
(y

2

)







 lim
θ2→+∞

y(θ
3

2

2 − 2z
y
)

(

yθ
3/2
2 + z

)



+ 1





= y

where the last equality follows as, by another application of L’Hospital’s rule, limθ2→+∞

y(θ
3

2

2
− 2z

y
)

(

yθ
3/2

2
+z
) =

limθ2→+∞
(3/2)yθ

1

2

2

(3/2)yθ
1

2

2

= 1. Therefore, limθ2→+∞ K(θ2) = limθ2→+∞
K ′

1
(θ2)

K ′

2
(θ2)

= 2
y

> 0. There-

fore, there exists a K > 0 such that sup
θ2≥1

K(θ2) ≤ K and ∂(B+C)
∂θ2

< 0 if b
c

> K. It follows

that there exists a K strictly positive, such that at any p1 ≥ 0, whenever b/c > K,
∂V1(p1,p∗

2
,θ2)

∂θ2

< 0, ∀ θ2 ≥ 1. �

The preceding lemma establishes that, at any positive first period asset price, the

(indirect) marginal utility of the period-1 consumer in θ2, evaluated at p∗2, is negative

whenever θ2 ≥ 1. Observe that we have to consider unbounded values of θ2 in

lemma 2 as we allow for the possibility that p2 = 0.

In the next lemma we will allow for a negative asset price at t = 1. Observe that

the reason for this is implicit in the calculations underlying lemma 2: it is that for

each p1 ≥ 0, V1(p1, θ2) attains a maximum at some value θ2 < 1. Note that in this case

with p1 < 0 the budget constraint at t = 1 is: θ2 ≥ 1 + d1/p1 − c1/p1, which imposes a

lower bound on θ2.

Lemma 3. There exists a K strictly positive such that whenever b/c > K, (a) there exists

p∗1 < 0 such that
∂V1(p∗1,p∗

2
,θ2=1)

∂θ2

= 0, however (b) lim
θ2→+∞

∂V1(p∗
1
,p∗

2
,θ2)

∂θ2

= −p∗1 > 0.

Proof. By computation observe that p∗1 = ∂(B+C)
∂θ2

|θ2=1 < 0. Moreover
∂V1(p∗

1
,p∗

2
,θ2)

∂θ2

=

−p∗1 + ∂(B+C)
∂θ2

. By lemma 2 ∂C
∂θ2

= c (k−xf ′(θ2))
(kθ2−xf(θ2))

≥ 0, θ2 ≥ 1. It follows that ∂B
∂θ2

≤
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∂(B+C)
∂θ2

< 0. Using the expressions derived in lemma 2,

lim
θ2→+∞

∂B

∂θ2
= lim

θ2→+∞
b
f ′(θ2)

f(θ2)

= −b



 lim
θ2→+∞

y(θ
3

2

2 − 2z
y
)

2θ2

(

yθ
3/2
2 + z

)





As the both the numerator and denominator of
y(θ

3

2

2
−

2x
y

)

2θ2

(

yθ
3/2

2
+z
) goes to +∞ as θ2 → +∞,

using L’Hospital’s rule

lim
θ2→+∞

y(θ
3

2

2 − 2x
y

)

2θ2

(

yθ
3/2
2 + z

) =
1

2

(

lim
θ2→+∞

y
(

3
2

)

θ
1/2
2

yθ
3/2
2 + z + θ2y

(

3
2

)

θ
1/2
2

)

=
1

2






lim

θ2→+∞

1

yθ
3/2

2
+z

y( 3

2
)θ

1/2

2

+ θ2






.

Now, lim
θ2→+∞

(

yθ
3/2

2
+z

y( 3

2
)θ

1/2

2

+ θ2

)

= lim
θ2→+∞

(

yθ
3/2

2
+z

y( 3

2
)θ

1/2

2

)

+ lim
θ2→+∞

θ2. Again, by using L’Hospital’s

rule

lim
θ2→+∞

(

yθ
3/2
2 + z

y
(

3
2

)

θ
1/2
2

)

= lim
θ2→+∞

(

y
(

3
2

)

θ
1/2
2

y
(

3
4

)

θ
−(1/2)
2

)

= lim
θ2→+∞

(2θ2)

so that lim
θ2→+∞

(

yθ
3/2

2
+z

y( 3

2
)θ

1/2

2

+ θ2

)

= ∞. Therefore lim
θ2→+∞

y(θ
3

2

2
− 2x

y
)

2θ2

(

yθ
3/2

2
+z
) = 0 which, in turn,

implies that lim
θ2→+∞

∂B
∂θ2

= 0− and hence lim
θ2→+∞

∂(B+C)
∂θ2

= 0−. Therefore lim
θ2→+∞

∂V1

∂θ2

(p∗1, p
∗
2, θ2) =

−p∗1 > 0. �

Lemma shows that at the unique period one asset price p∗1 (so that choosing θ2 = 1

satisfies the first-order condition characterizing an interior optima holds) also has the

property that the marginal (indirect) utility of holding an extra unit of the period one

asset is also strictly positive for large values of θ2. In the following lemma, we show

that that θ2 = 1 is never an optimal choice even allowing for a negative asset price

at t = 1. In addition we also show that θ2 = 1 does not belong to the convex hull of

demand even allowing for a negative asset price at t = 1. The latter statement implies

that, even if we re-interpret the model so that the representative agent is a collection

of a continuum of identical individuals, equilibrium existence is not restored.
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Lemma 4. Given lemmas 1, 2, 3, θ2 = 1 is not an element of the convex hull of demand even

allowing for a negative asset price at t = 1 so that neither a competitive equilibrium, nor a

weak competitive equilibrium, with a sophisticated representative agent exists.

Proof. Lemma 1 implies that with a sophisticated representative agent there is a

unique p∗2 candidate equilibrium price at period 2. For an equilibrium to exist, given

p∗2, there must be a p∗1 such that for the representative agent θ∗2 = 1 is a SS.

There are two cases to consider.

1. p1 ≥ 0: fix a (p1, p
∗
2), p1 ≥ 0, by lemma 2 θ2 = 1 is never an optimal solution.

Next, observe that a necessary condition for θ2 = 1 to be in the convex hull of indi-

vidual demand is that ∂V1

∂θ2

(p1, p
∗
2, θ

′
2) = 0 for some θ′2 < 1 and ∂V1

∂θ2

(p1, p
∗
2, θ

′′
2) = 0 for

some θ′′2 > 1, a possibility ruled out by lemma 2. It follows that θ2 = 1 is not in the

convex hull of individual demand.

2. p1 < 0: by lemma 3, in order to ensure that θ2 = 1 is chosen at t = 1 it nec-

essarily follows that the only candidate equilibrium price is p1 = p∗1. Further by

lemma 3 there exists θ2 > 1 such that for all θ2 > θ2, ∂V1

∂θ2

(p∗1, p
∗
2, θ2) > 0. Therefore

lim
θ2→+∞

V1(p
∗
1, p

∗
2, θ2) = lim

θ2→+∞

∫ θ2

θ
2

∂V1

∂θ2

(p∗1, p
∗
2, θ2)+V1(p

∗
1, p

∗
2, θ2) = +∞ as lim

θ2→+∞

∂V1

∂θ2

(p∗1, p
∗
2, θ2) =

−p∗1. It follows that at prices (p∗1, p
∗
2), θ2 = 1 cannot be an optimal choice for the rep-

resentative agent.

It remains to check that θ2 = 1 is not in the convex hull of demand when p1 <

0. By computation, observe that for any θ̂2 > 1, a necessary condition for θ̂2 to be

an optimal choice is that p1 = p∗1(θ̂2) = ∂(B+C)
∂θ2

|θ̂2
< 0. Moreover using arguments

analogous to lemma 3, it is verified that lim
θ2→+∞

∂V1(p∗
1
(θ̂2),p∗

2
,θ2)

∂θ2

= −p∗1(θ̂2) and hence

lim
θ2→+∞

V1(p
∗
1(θ̂2), p

∗
2, θ2) = +∞. Therefore, there is no p1 < 0 for which there is some

θ̂2 > 1 such that θ̂2 is an optimal choice. It follows that θ2 = 1 cannot be in the convex

hull of individual demand. �

Note that the above non existence result is robust to small variations in parameter

values by the continuity of the derivatives of the utility functions in these parame-

ters.

Remarks. The feature that implies the nonexistence result in our example is the fact

that period 2 consumption is an inferior good from the perspective of the period 2

decision maker, but it is a normal good from the perspective of the period 1 decision

maker and this implies that the period 1 consumer demand for period 2 wealth, i.e.

for θ2, is satiated. The papers of Luttmer and Mariotti (2006), Herings and Rohde
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(2006), Luttmer and Mariotti (2007) are able to prove existence because the issue of

inferior goods and satiation and does not arise in their papers. With sequentially

complete markets, concavity of the single period utility functions together with time

separability imply that both c2 and c3 are normal goods for the period 2 consumer

and this is enough to avoid satiation in period 1, because if both c2 and c3 increase

in θ2, then for the period 1 consumer utility monotonically increases in θ2. In such

a situation, the existence of an equilibrium price p∗1 such that the period 1 market

clearing quantity θ2 = 1 belongs to the convex hull of the demand correspondence

can be proved with a standard fixed point argument.12 A necessary condition to re-

establish the existence of the competitive equilibrium allowing for a large number of

identical consumers is that there is at least one optimal quantity θ′2 which is smaller

than the market clearing quantity θ2 = 1 and at least one optimal quantity θ′′2 which

is greater. In our example, allowing for a large large number of identical consumers

does not successfully reestablish the existence of a competitive equilibrium because,

for any positive p1, (8) decreases in θ2 for all θ2 ≥ 1 and this implies that θ2 = 1

cannot belong to the convex hull of the demand function. This happens because c2

is an inferior commodity for all θ2 ≥ 1 and, given the values of the discount factors

b and c, the cost of a marginal decrease in c2 is greater than the benefit of a marginal

increase in c3 for the period 1 decision maker.

Negative prices can generally reestablish the existence of a competitive equilib-

rium which fails to exist because of satiation, when free disposal is not allowed, as

it happens in our example. In the case of negative p1, the period 1 budget constraint

is: θ2 ≥ 1 + d1/p1 − c1/p1, i.e. with a negative p1 there is no upper bound on the

quantity of θ2 which the consumer can demand and there is instead a lower bound.

We have proved that any negative p1 cannot re-establish the competitive equilibrium

in our example showing that, given any negative p1, the unique optimal choice for

the period 1 consumer is to demand a quantity of θ2 which goes to +∞ implying

non-vanishing excess demand.

4. EQUILIBRIUM WITH NAIVE AGENTS

In this section we study equilibria with a naive representative agent.

12The convex hull of the individual excess of demand of the period 1 consumer is
convex (trivial) and has a closed graph (implied by the upper hemicontinuity and
compact-valuedness of the demand function and the monotonicity of the preference
for θ2).
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Fix pt, t = 1, 2. When the representative agent is naive at t = 1, he does not antic-

ipate that at t = 2 consumption and asset choices will be re-optimized. Therefore at

t = 1 the representative agent solves

max
(c1,c2,c3,θ2,θ3)

u1(c1, c2, c3)

subject to:(9)

c1 + p1θ2 ≤ p1 + d1,

c2 + p2θ3 ≤ (p2 + d2)θ2,

c3 = d3θ3.

Let ĉt(p1, p2), t = 1, 2, 3 and θ̂t(p1, p2), t = 2, 3 denote the unique solution (if it exists)

to the preceding maximization problem.

At t = 2 the representative agent solves

max
(c2,c3,θ3)

u2(c2, c3)

subject to:(10)

c2 + p2θ3 ≤ (p2 + d2)θ̂2,

c3 = d3θ3.

With a slight abuse of notation, the unique solution (if it exists) to the preceding max-

imization problem is denoted by c̃t(p2, θ̂2(p1, p2)) = c̃t(p1, p2), t = 2, 3 and θ̃3(p2, θ̂2(p1, p2)) =

θ̃3(p1, p2).

We say preferences are strongly dynamically inconsistent if for all non-negative c1

the preferences of the representative agent at t = 1 over (c2, c3) ∈ R
2
+ are different

from his preferences at t = 2 over (c2, c3) ∈ R
2
+, or equivalently, for all non-negative

c1,
∂u1

∂c3
(c1,c2,c3)

∂u1

∂c2
(c1,c2,c3)

6=
∂u2

∂c3
(c2,c3)

∂u2

∂c2
(c2,c3)

, (c2, c3)∈ R
2
+.13

The assumption that in every period the utility function is strictly monotone in

consumption implies that inter-temporal budget constraints are satisfied at equali-

ties in either maximization problem. As before, in a competitive equilibrium, it must

be optimal for both selves of the naive representative agent to hold the entire unit of

13An example of a utility function satisfying this stronger definition would be one
where there is a systematic shift in marginal rates of substitution between c2, c3 when
the representative agent enters period 2, for example, u1(c1, c2, c3) = log c1 + log c2 +
log c3 and u2(c2, c3) = 2 log c2 + log c3.
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the asset in each period (θ1 = θ2 = θ3 = 1) and consumption must be equal to the

entire paid dividend in each period (c1 = d1, c2 = d2, c3 = d3).

At this point we define two different notions of competitive equilibrium with a

naive representative agent.

Definition 4. A perfect foresight competitive equilibrium is a combination of prices (p′1, p
′
2)

and allocations (θ′1, c
′
1, θ

′
2, c

′
2, θ

′
3, c

′
3) such that c′1 = ĉ1(p

′
1, p

′
2), θ′2 = θ̂2(p

′
1, p

′
2), c′2 =

c̃2(p
′
1, p

′
2),θ

′
3 = θ̃3(p

′
1, p

′
2), c′3 = c̃3(p

′
1, p

′
2) and θ′1 = θ′2 = θ′3 = 1, c′1 = d1, c

′
2 = d2, c

′
3 = d3.

Definition 5. A temporary competitive equilibrium is a combination of prices (p′1, p
′
2, p

′′
2)

and allocations (θ′1, c
′
1, θ

′
2, c

′
2, θ

′
3, c

′
3) such that c′1 = ĉ1(p

′
1, p

′
2), θ′2 = θ̂2(p

′
1, p

′
2), c′2 =

c̃2(p
′
1, p

′′
2),θ

′
3 = θ̃3(p

′
1, p

′′
2), c′3 = c̃3(p

′
1, p

′′
2) and θ′1 = θ′2 = θ′3 = 1, c′1 = d1, c

′
2 = d2, c

′
3 = d3.

The definition of a perfect foresight competitive equilibrium with a naive agent is

new. The definition of a temporary competitive equilibrium corresponds to the no-

tion of a naive equilibrium in Herings and Rohde (2006). The following proposition

establishes that although a perfect foresight competitive equilibrium with a naive

representative agent does not exist, a temporary competitive equilibrium does.

Proposition 2. A perfect foresight competitive equilibrium with a naive representative agent

does not exists, however a temporary competitive equilibrium does.

Proof. At t = 1 as the utility function ut() of the representative agent is smooth and

strictly concave, θ̂2 = θ̂3 = 1 if and only if asset prices satisfy the following equations:

p′1 = (p′2 + d2)
∂u1

∂c1
(d1, d2, d3)

∂u1

∂c2
(d1, d2, d3)

,

p′2 = d3

∂u1

∂c3
(d1, d2, d3)

∂u1

∂c2
(d1, d2, d3)

.

Next, observe that at t = 2, θ̃3 = 1 if and only if asset prices satisfy the following

equations:

p′′2 = d3

∂u2

∂c3
(d2, d3)

∂u2

∂c2
(d2, d3)

.

As preferences are strongly dynamically inconsistent
∂u1

∂c3
(d1,d2,d3)

∂u1

∂c2
(d1,d2,d3)

6=
∂u2

∂c3
(d2,d3)

∂u2

∂c2
(d2,d3)

and

therefore p′2 6= p′′2 . Therefore market clearing and individual optimization with a

naive representative agent are mutually incompatible if the asset price in the spot

market at t = 2 is the same as the forecast asset price at t = 1. Finally observe that if
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the representative agent forecasts asset prices p′1,p′2 while the prevailing asset prices

at t = 2 is p′′2 , individual optimization and market clearing are mutually compati-

ble. �
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