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Since von Helmholtz’s (1867) supposition
that the basis of perception is anchored in
unconscious inference, it has been widely
accepted that the brain uses a generative
model to predict sensory input using
learned statistical regularities about the
world. Any discrepancy between these
predictions and the sensory input pro-
duces a prediction error signal, which is
then passed up the cortical hierarchy to
update future expectations. In this way,
the brain can highlight novel or surprising
stimuli and efficiently allocate more re-
sources when needed. Theoretically, our
understanding of this predictive coding
framework is extensive. However, empir-
ical evidence highlighting the neural
mechanisms that underlie the integration
of prior information with sensory evi-
dence is limited. In a recent study, Brod-
ski, Paasch, et al. (2015) identified a
neurophysiological correlate of predic-
tion error during visual processing using a
paradigm in which prior information was
developed through lifelong experience.

Brodski, Paasch, and colleagues (2015)
recorded magnetoencephalography from
a sample of 48 subjects while the subjects
completed a Mooney face-detection task.
Subjects were presented with two-tone

stimuli of either faces or scrambled faces
and instructed to identify the faces. Previ-
ous data have shown that accurate repre-
sentations of two-tone objects can only
be extracted if the objects are familiar
(Moore and Cavanagh, 1998), and thus
require combining stored information
with sensory input to make inferences
about what the visual stimuli represent.
The authors highlight two lifelong priors
that influence the ability to identify faces
in this task: (1) an orientation prior, based
on the tendency for faces to appear in an
upright (UP) position; and (2) an illumi-
nation prior, based on the probability that
a scene is normally lit from the top (TP).
These priors were violated by using in-
verted faces (IN) and faces illuminated
from the bottom (BT) to induce predic-
tion errors. Thus stimuli fell into one of
four categories in which none, one, or
both priors were violated: UPTP, UPBT,
INTP and INBT.

When priors were violated, reaction
times (RT) increased and accuracy for
correctly identifying faces decreased. Per-
formance on the task worsened as more
priors were violated, suggesting that pre-
diction errors were successfully induced.
In addition, the orientation effect caused
greater behavioral disruption than the il-
lumination effect.

There are two possible explanations
for the greater effect of orientation than of
illumination on subjects’ behavior. First,
there is a greater difference between the
probability of seeing an upright face ver-
sus an inverted face than the probability of
seeing a face lit from the top versus from
the bottom. Thus, violation of the orien-

tation prior produces a greater prediction
error and a greater disruption to RT and
accuracy.

A second explanation expands upon this
first hypothesis by accounting for the vari-
ability of the sensory input. It has been sug-
gested that for a prediction error to be useful
in updating future predictions, it must be
precision-weighted, i.e., the influence of the
error signal on updating future expectations
is dependent on an estimate of the variabil-
ity of the sensory input (Friston and Kiebel,
2009). The underlying principle is analo-
gous to that of a t test: when comparing the
mean of two samples, an estimate of the
variance of each sample is essential for de-
termining whether there is a significant dif-
ference between the measures. Likewise, an
estimate of the variance of both the pre-
dicted and actual sensory input is essential
to determine whether the difference be-
tween these signals is surprising, and thus
meaningful. The behavioral results reported
by Brodski, Paasch, et al. (2015) can be
equally explained with regard to a precision-
weighted prediction error signal. Prior ex-
perience of faces illuminated from above or
below is highly variable among individuals
and easily altered with experience, whereas
faces are much less frequently viewed upside
down. Therefore, it could be argued that
changes in orientation have less variance
and thus a higher precision than changes in
illumination, which would lead to an in-
creased prediction error signal for a viola-
tion of the orientation prior. Precision and
prediction error cannot be dissociated
within Brodksi, Paasch, et al.’s (2015) cur-
rent paradigm; therefore, it is difficult to
conclude exactly what is causing the behav-
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ioral disruption and what the neurophysio-
logical correlate of the behavior is signaling.
Future research should aim to disambiguate
these measures to determine the contribu-
tion of this proposed estimate of variance on
the prediction error signal measured.

Because multiple studies have impli-
cated gamma band activity (GBA) in the
feedforward passing of prediction error
(Arnal and Giraud, 2012; Bauer et al.,
2014), Brodski, Paasch, et al. (2015) hy-
pothesized that the deviation between the
predicted and actual sensory input in their
study would be associated with an in-
crease in GBA in cortical areas in which
this comparison takes place. This would
be consistent with the common view that
the neural signal should be positively cor-
related with the magnitude of the predic-
tion error signal (Rao and Ballard, 1999).
For example, the BOLD response de-
creases with repeated presentations of ex-
pected faces, and this is thought to reflect
a reduction in the difference between the
predicted and actual sensory information
as the probability of the stimulus occur-
ring increases and predictions become
more accurate; consequently, when pre-
sented with an unexpected stimulus, there
is an increase in the BOLD response
(Summerfield et al., 2008). Indeed, Brod-
ski, Paasch, and colleagues (2015) found
that high-frequency GBA (68 –144 Hz)
was increased in early visual processing
areas specialized for contour recognition
when the orientation prior was violated
and thus the stimuli were unexpected. In
keeping with the temporal order in which
facial stimuli are recognized, an increase
in GBA in more frontal areas strongly in-
volved in processing 3D shape occurred 40
ms later when the illumination prior was vi-
olated. Moreover, these increases in GBA
positively correlated with RT. This fast-
evoked gamma response is indicative of pre-
diction error signaling described in
canonical microcircuits by Bastos et al.
(2012). It has been proposed that feedfor-
ward prediction errors received in granular
layer 4 are transmitted to superficial pyra-
midal cells via high-frequency oscillations,
such as gamma, and these cells send predic-
tions carried by low-frequency oscillations,
such as beta, alpha, or theta, in feedback
connections to deep pyramidal cells. The
findings of Brodski, Paasch, et al. (2015)
provide further support for this hypothesis.

In contrast to Brodski, Paasch, et al.’s
(2015) findings regarding increases in
GBA, several studies have found that in-
creasing prediction error signals are asso-
ciated with neural signal suppression.
When macaque monkeys are trained to

recognize novel geometric stimuli, the in-
cidence of neurons with receptive fields
for these specific complex objects in-
creases as they become more familiar
(Logothetis et al., 1995); this is in contrast
to the repetition suppression effect of the
BOLD response described above. In addi-
tion, increased GBA over the occipital
cortex has been found for familiar versus
novel stimuli (Herrmann et al., 2004).
However, these paradoxical findings may
be reconcilable. Brodski, Paasch, et al.
(2015) identified two opposing changes in
GBA when the illumination prior was vi-
olated: an increase in GBA in the superior
frontal gyrus, medial frontal cortex, and
anterior cingulate cortex (as described
above) at 120 ms poststimulus presenta-
tion; and a decrease in GBA in the right
supramarginal gyrus and inferior temporal
gyrus, a later part of the ventral stream, at
135 ms and 310 ms poststimulus presenta-
tion. In these later negative peaks, faces illu-
minated from the top, rather than the
bottom, showed higher gamma power com-
pared with baseline.

The authors suggest the contradicting
decrease in GBA for the violated illumi-
nation prior may reflect an attentional
mechanism to identify the mnemonic
representation of the more familiar stim-
ulus according to the attention to memory
hypothesis (Wagner et al., 2005). How-
ever, the difference in familiarity between
upright and inverted faces is far greater
than that of faces illuminated from above
and below; therefore, if this were the case,
there should be a greater decrease in GBA
for the orientation contrast (not found)
and even more for faces versus scrambled
faces (results not reported).

An alternative role of this attentional
mechanism may be to alter the precision-
weighting of the prediction error. It has
been proposed that attention can modu-
late the synaptic gain of superficial pyra-
midal cells in a top-down manner. These
cells are thought to report prediction er-
rors and thus modulating the cells’ sensi-
tivity could increase the precision of the
prediction error (Friston et al., 2015). In-
creased GBA to faces illuminated from the
top may reflect a positive modulation of
precision such that these prediction errors
have more influence over future predic-
tions than those from faces illuminated
from below. We can only postulate that
the reason this effect was not found for the
orientation contrast is because here the
prediction error may be more obvious
and immediate and thus not require
attentional modulation. Future experi-
ments specifically designed to investigate

how this attentional modulation of preci-
sion may be implemented in the brain are
necessary to test this hypothesis.

Brodski, Paasch, and colleagues
(2015) highlight that the integration of
prior information with sensory input
occurs at multiple time points and in a
distributed network throughout the
brain. In this highly powered study, the
authors demonstrate that, within the
same frequency, oscillations in different
areas may be working in parallel to
modulate this integration process.
However, their findings emphasize the
need to design experiments in which
each component of this process can be
truly disambiguated so that we can iden-
tify the neural mechanisms underlying
all faces of predictive coding.
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