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Abstract
This work is an extension of our recent work on joint activity reconstruction/
motion estimation (JRM) from positron emission tomography (PET) data. We 
performed JRM by maximization of the penalized log-likelihood in which the 
probabilistic model assumes that the same motion field affects both the activity 
distribution and the attenuation map. Our previous results showed that JRM 
can successfully reconstruct the activity distribution when the attenuation map 
is misaligned with the PET data, but converges slowly due to the significant 
cross-talk in the likelihood. In this paper, we utilize time-of-flight PET for 
JRM and demonstrate that the convergence speed is significantly improved 
compared to JRM with conventional PET data.

Keywords: attenuation correction, time-of-flight PET, motion estimation, 
attenuation mismatch, maximum-likelihood
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1. Introduction

Patient motion in positron emission tomography (PET) is a source of error due to possible 
mismatches between the PET data and the computed tomography (CT) attenuation map  
(μ-map) (Nyflot et al 2015). In Bousse et al (2016) we developed a motion compensated 
reconstruction scheme for gated PET data, namely joint reconstruction/motion estimation 
(JRM), to jointly estimate both the activity distribution and the motion field, by penalized like-
lihood maximization. Unlike previous works in this field (Jacobson and Fessler 2003, Blume 
et al 2010), our model assumed that both the activity distribution and the μ-map are affected 
by motion. This model led to the following result: the JRM-reconstructed PET gates are the 
same for any input μ-maps derived from deformations of a common μ-map. This is because 
the estimated motion automatically accounts for PET/μ-map misalignment. However, in case 
of large mismatches, our results in Bousse et al (2016) showed that JRM needs a high number 
of iterations due to the significant cross-talk in the joint-likelihood.

Recent work Rezaei et al (2012), (2014) demonstrated the potential of jointly reconstruct-
ing the activity distribution and the μ-map from time-of-flight (TOF) PET data. Since JRM 
with warped μ-map presents some similarities with joint activity/attenuation reconstruction 
from emission data, in the sense that the warped μ-map must match the PET projections at 
each gate, TOF PET can increase the JRM convergence rate—especially in situations where 
the input μ-map is misaligned with the PET data.

In this work we investigate the ability of JRM with TOF PET to deal with a misaligned 
μ-map. Section 2 presents the JRM optimization problem for TOF PET and non-TOF PET, 
and summarizes the algorithm. In section 3 we compare the convergence rate of JRM with 
TOF PET and non-TOF PET on a simulated end-expiration PET gate and a simulated end-
inhalation μ-map. Results are discussed in section 4.

2. Method

2.1. TOF maximum-likelihood for joint image reconstruction and motion estimation

In this section we use notations similar to Bousse et al (2016, sections II and III).

2.1.1. Motion-free model. The activity distribution and the attenuation map respectively take 
the form of 2 functions ∈ +Cf  and µ∈ +C , where +C  denotes the set of non-negative con-
tinuous functions defined on R3. The attenuation map μ is reconstructed independently from 
separate measurements such as x-ray CT or segmented MRI. TOF measured counts are repre-
sented by a collection ( )= ∈= ×Ng gi t i t

n n n n
, , 1

,b t b t. The subscripts { }∈ …i n1, , b  and { }∈ …t n1, , t  
are respectively the detector and the time bin indices. In absence of motion, gi,t follows a Pois-
son distribution of expectation ¯ ( )µg f ,i t, :

g f a f s, ,i t i i t i t, , ,¯ ( ) ( )µ τ µ= +H

with

⎛
⎝
⎜

⎞
⎠
⎟r r r r rf f h ad and exp di t i t i

L
, ,

i

( ) ( ) ( ) ( )∫ ∫µ µ−
Ω

� �H (1)

where → +R Rh :i t,
3  is the TOF PET system response function at detector/time bin (i, t), τ 

is the scanning time, Li is the segment connecting the detectors of bin i, si, t is the expected 
background events (random/scatter) at bin (i, t) and ⊂Ω R3 is a compact set representing the 
field of view.
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2.1.2. Model with motion. In practice, f and μ are affected by patient motion. For quasi-cyclic 
motion (respiratory, cardiac), acquired emission data are regrouped into ng gates, each of 
which corresponds to a patient state. Each TOF-PET data vector ( )= ∈= ×Ng gl i t l i t

n n n n
, , , 1

,b t b t, 
= …l n1, , g, corresponds to a single gate in which the patient is assumed to be static. The 

motion at gate l is represented by a diffeomorphism →ϕ R R:l
3 3 that deforms both the activ-

ity distribution f and the attenuation map μ. The deformed activities and μ-maps are f
lϕW  and 

µϕW l
, where →ϕ

+ +W C C:  is the warping operator defined as ϕ=ϕ �W h h  for all ∈ +Ch . The 
number of detected counts gi, t, l at bin (i, t), gate l is a Poisson random variable of expectation

¯ ( ) ( )ϕ µ τ µ +ϕ ϕ� W H Wg f a f s, , ,i t l l l i i t i t l, , , , ,l l (2)

where si, t, l is the expected number of background events at bin (i, t), gate l, τl is the duration 
of gate l and ai and Hi t,  are defined in (1).

2.1.3. Optimization problem. The log-likelihood of the TOF-PET data is

( ) ¯ ( ) ¯ ( )∑∑∑ϕ µ ϕ µ ϕ µ= −
= = =

L f g g f g f, , log , , , , ,
l

n

i

n

t

n

i t l i t l l i t l l
TOF

1 1 1
, , , , , ,

g b t

 (3)

where ( )ϕ ϕ =� l l
n

1
g . Similarly, the non-TOF PET log-likelihood is

( ) ¯ ( ) ¯ ( )∑∑ϕ µ ϕ µ ϕ µ= −
= =

L f g g f g f, , log , , , , ,
l

n

i

n

i l i l l i l l
PET

1 1
, , ,

g b

with = ∑ =g gi l t
n

i t l, 1 , ,
t  and ¯ ( ) ¯ ( )ϕ µ ϕ µ= ∑ =g f g f, , , ,i l l t

n
i t l l, 1 , ,

t .
Maximum-likelihood joint image reconstruction/motion estimation (JRM) in TOF PET 

and non-TOP PET consists of solving the following optimization problem

( ˆ ˆ ) ( )ϕ ϕ µ=
ϕ∈ ∈+ DC

f L f, arg max , ,
f ,

 (4)

where L is either LTOF or LPET, =D Dng and D denotes the set of diffeorphism on R3. Solving 
(4) returns a single image f reconstructed from all gates gl, = …l n1, , g. The reconstructed 

activity image at gate l is f f ll
ˆ ˆ ˆˆ ϕ=ϕ �W .

It should be noted that (2) and therefore (3) depend on f and μ only via ϕW f
l

 and µϕW l
. 

The activity distribution f corresponds to an unobserved state consistent with μ (but not nec-
essarily with any gl). This led to a theoretical result for JRM in non-TOF PET in Bousse 
et al (2016, proposition 1), that can be naturally extended to TOF PET: if µ1 and µ2 are 2 
different attenuation maps such that 2 1µ µ ψ= �  for some ψ∈D, then there exists a bijec-
tion between the maximizers (when they exist) of ( ) ( )ϕ ϕ µ�f L f, , , 1  and the maximizers 
of ( ) ( )ϕ ϕ µ�f L f, , , 2  such that each pair of maximizers ( ˆ ˆ )ϕf ,1

1 –( ˆ ˆ )ϕf ,2
2 , defined by this 

bijection, satisfies ˆ ˆ
ˆ ˆ=ϕ ϕW Wf f1 2l l

1 2  and ˆ ˆµ µ=ϕ ϕW W1 2l l
1 2 .

Proposition 1 in Bousse et al (2016) does not claim the existence and uniqueness of a 
maximizer for ( ) ( )ϕ ϕ µ�f L f, , , . However, if f ,1

1( ˆ ˆ )ϕ  is a likely candidate to maximize 
( ) ( )ϕ ϕ µ�f L f, , , 1 , then there exists f ,2

2( ˆ ˆ )ϕ ∈ ×+ DC  that is an equally likely candidate 

to maximize ( ) ( )ϕ ϕ µ�f L f, , , 2  such that ˆ ˆ
ˆ ˆ=ϕ ϕW Wf f1 2l l

1 2  and 1 2l l
1 2ˆ ˆµ µ=ϕ ϕW W . Results 

from Bousse et al (2016) demonstrated that JRM with µ1 and µ µ ψ= �2 1  returns similar 

reconstructed gates, and more specifically, JRM can be performed with a μ-map misaligned 
with each gate, provided this misaligned results from some diffeomorphism. Moreover, the 
estimated motion realigns the μ-maps to the data at each gate l.
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When μ is aligned with one gate gl0
, f can be initialized by maximizing the log-likelihood 

at gate l0 with ϕ = Idl0
. If μ is misaligned with every gate, there is no consistent data to obtain 

a good initial estimate of f, thus rendering the optimization problem (4) more difficult. For 
example, in non-TOF PET (see (Bousse et al (2016, section IV.B)), it takes 50 to 100 itera-
tions to solve (4) with a misaligned μ-map. The objective of this work is to see if TOF PET 
can facilitate the optimization.

2.2. Joint reconstruction scheme

2.2.1. Discretization. We used the same discretization scheme as in Bousse et al (2016), ini-
tially introduced in Jacobson and Fessler (2003) and Jacobson (2006). ( )RMn m,  denotes the 
space of real ×n m matrices. The activity distribution and attenuation map are respectively 
represented by ∈ +Rf nv and µ∈ +Rnv, where nv denotes the total number of voxels. A deforma-
tion ϕ is parametrized by a B-spline coefficient vector ( )α α α α= ∈ ×R, ,X Y Z n3 c, where nc 
denotes the number of B-spline control points. The warping operator ϕW  becomes a square 
matrix ( )∈α RW Mn n,v v , defined by the voxel interpolating functions, the B-spline coefficients 
α and the B-spline basis. The B-spline coefficient corresponding to the motion ϕl at gate l is 
denoted αl. The entire collection of B-spline coefficients is denoted ( )θ α= =l l

n
1

g .

The TOF operator Hi t,  takes the form of a system matrix H Mn n n,b t v( )R∈ ×  where 

[ ]( )− + �H pi n t j i j t1 , , ,t  is the probability that an annihilation occurring at voxel j is detected in bin 
(i, t). The expected number of counts is redefined as

f W HW fg a s, , ,i t l l i i n t i t l, , 1 , ,l l t¯ ( ) ( )[ ]( )α µ µτ +α α − +� (5)

where ( ) ( [ ] )µ µ−� La expi i  and the line integral matrix L Mn n,b v( )R∈  is defined by [ ] = �L i j i j, ,  
where �i j,  is the length of the intersection of Li with voxel j.

2.2.2. Optimization method. The discrete TOF log-likelihood is derived from (3):

f f fL g g g, , log , , , , .
l

n

i

n

t

n

i t l i t l l i t l l
TOF

1 1 1
, , , , , ,

g b t

( ) ¯ ( ) ¯ ( )∑∑∑θ µ α µ α µ= −
= = =

 (6)

In comparison, the non-TOF PET discrete log-likelihood is

( ) ¯ ( ) ¯ ( )∑∑θ µ α µ α µ−
= =

�f f fL g g g, , log , , , ,
l

n

i

n

i l i l l i l l
PET

1 1
, , ,

g b

 (7)

with = ∑ =g gi l t
n

i t l, 1 , ,
t  and f fg g, , , ,i l l t

n
i t l l, 1 , ,

t¯ ( ) ¯ ( )α µ α µ= ∑ = .
To enforce image and motion smoothness, 2 penalty terms fU( ) and ( )θV  are added to 

LTOF and LPET (quadratic penalties, see Bousse et al (2016)). The discrete JRM formulation 
is formulated as

f f, arg max , ,
f 0

TOF TOF

,

TOF( )ˆ ˆ ( )
⩾

θ θ µ= Φ
θ

 (8)

f f, arg max , ,
f 0

PET PET

,

PET( )ˆ ˆ ( )
⩾

θ θ µ= Φ
θ

 (9)

with f f fL U V, , , ,TOF TOF( ) ( ) ( ) ( )θ µ θ µ θβ γΦ = − − , ( ) ( ) ( )θ µ θ µ βΦ = − −f f fL U, , , ,PET PET  

( )θγV . The JRM-reconstructed activity images corresponding to gate l are ˆ
α̂W f

TOF

l
TOF  for TOF 

PET and ˆ
α̂W f

PET

l
PET  for non-TOF PET.
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We solve (8) and (9) by alternating maximization in f  and θ. We proceed as in Bousse  
et al (2016): a complete iteration consists of a maximization in θ—performed with a limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) quasi-Newton (QN) line-search 
algorithm (Nocedal and Wright 2006, chapter 7)—and a maximization in f—performed 
with a motion compensated (MC) modified maximum-likelihood expectation-maximization 
(MMLEM) (De Pierro 1995) reconstruction from the gated data ( ) =gl l

n
1

g  using the current esti-
mated motion parameter θ.

The gradient of LTOF in αl is similar to the PET case described in Bousse et al (2016) with 
a summation over the time index t:

( ) ( ¯ ( ))
¯ ( )∑θ µ α µ

α µ
∇ = −α α

=

�
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟f J g f

g

g f
L 1, , , ,

, ,t

n

t l l
t l

t l l1
:, ,

:, ,

:, ,
l l

t

with ( ) {( ( )) }α µ µ= α =A Wa, diagl i i
n

1l
b , ( )= =g gt l i t l i

n
:, , , , 1

b , ¯ ( ) ( ¯ ( ))α µ α µ= =g f fg, , , ,t l l i t l l i
n

:, , , , 1
b , 

( )∈ RH Mt n n,b v  defined by [ ] =H pt i j i j t, , , , and

J g f A HW f LJ W HJ W f, , , diag .t l l l t t:, ,l l l l l l( ¯ ( )) ( )( { } ( ) ( ))α µ α µ µτ= − +α α α α α α
 

(10)

The Jacobian matrices ( )α αJ W f  and ( )µα αJ W  are derived in Bousse et al (2016).
The overall scheme is briefly summarized in algorithm 1, for Φ = ΦTOF or Φ = ΦPET. 

Each sub-maximization algorithm (MC-MMLEM and L-LBFGS) is run until convergence. A 
detailed version of the scheme can be found in Bousse et al (2016).

2.2.3. Alternative approach for the single gate case. When the task is to reconstruct from a 
single gate l0 only, the projection model (5) can be simplified by ignoring the motion on the 
activity and warp the μ-map only, i.e. using a Poisson model with expectation

ˇ ( ) ( )[ ]( )α µ µτ +α − +�g f W Hfa s, ,i t l l i i n t i t, , 1 , ,l l0 0 0 t 0

so that the Jacobian (10) expression is simplified. The reconstructed activity f̂  matches the data 
gl0

 without the need of being warped. This problem was addressed in Rezaei and Nuyts (2013). 
However, the generalization of this model to the multi gate case requires to estimate one activity 
image f̂  per gate, as opposed to JRM which only reconstruct one image f , warped to each gate.

3. Experiments on simulated data

For this experiment we used only one gate, i.e. =n 1g . The sums over l in the log- likelihood 
(6) and (7) are dropped. We only reconstruct from a single TOF PET dataset ∈ ×Ng n nb t, 

Algorithm 1: Summary of JRM

Input:  TOF PET gated data ( ) =gl l
n

1
g , attenuation map µ (also image and motion 

smoothing priors weights β and γ).
Output: Activity image f , B-spline motion parameter θ

←θ 0 ;
← ( )f gMMLEM 1  (reconstruction from gate 1 w/o motion compensation) ;

for = …n n1, , max do
   ← ( )θ θ µΦθ farg max , ,  (with L-BFGS QN line-search) ;
   ← ( )θf gMC-MMLEM ,  ;
end

Phys. Med. Biol. 61 (2016) L11
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[ ] =g gi t i t, , . The motion parameter θ reduces to a single α. The aim is to reconstruct a single 
activity image with a misaligned μ-map. The estimated deformation corresponds to the mis-
alignment between the input μ-map and g.

Each MC-MMLEM sub-optimimization was performed with 100 iterations which in our 
experiments was sufficient for convergence (no stopping rule was used), using the current 
α estimate. Prior to each MC-MMLEM sub-optimimization, the image f  was reinitial-
ized to a blank image to avoid attenuation artifacts due to incomplete motion estimation in 
the previous iteration. We used the Fortran implementation proposed in Zhu et al (1997) 
for each L-BFGS sub-optimimization, with 80 iterations (sufficient for convergence in our 
experiments).

3.1. Simulation set-up

Our simulation set-up is similar to Bousse et al (2016, section IV.B) with Poisson noise. We 
used the XCAT phantom to generate ground truth end-expiration activity �f  and attenua-
tion map µ� ( × ×160 160 42 volumes with 3.125 mm edge cubic voxels, corresponding to a 
500 mm field of view, see figures 1(a) and (b)). We used a = × ×n 53 53 16c  B-spline grid 
to parametrize the motion. A misaligned end-inhalation μ-map, µ̃ (figure 1(c)), was also 
generated.

The spatial resolution of the PET was set to 6 mm FWHM and the temporal TOF resolu-
tion set to 500 ps FWHM. We used 10 TOF bins (332 ps width). The line integral operator L 
was adjusted to match the spatial resolution of the PET. We generated TOF and non-TOF data 
Poisson random vectors from �f  and µ� as:

( ) ∑∼ =
=

�g g g gPoisson and ,i t i t i
t

n

i t, ,
1

,

t

with

( )[ ]( )µτ= +− +
� � �Hfg a s .i t i i n t i t, 1 ,t

( )ˆ ˆα f,TOF TOF
 and ( )ˆ ˆα f,PET PET

 were obtained with JRM using the misaligned attenuation map 

µ̃, i.e. by maximizing f f, , ,TOF( ) ( ˜ )α α µΦ�  and f f, , ,PET( ) ( ˜ )α α µΦ�  using algorithm 1.
JRM reconstructs the activity distribution f  in the µ̃-space, which does not correspond to the 

observed PET gate, and αW  warps it to the observed gate. Therefore, we displayed the warped 
images W f̂α̂ , in order to be compared with the activity phantom �f —used to generate the data.

We chose two different values of the image smoothness parameter β for ΦTOF and ΦPET. The 
image variance was estimated by reconstructing several noise replicates for different values 
of β, as in Bousse et al (2016), and the 2 values of β were chosen such that the variance in the 
output images ˆ

α̂W f
PET

PET  and W f
TOF

TOF ˆ
α̂  were the same.

Figure 1. (a) �f : true activity ; (b) µ�: true μ-map ; µ̃: deep breath-in misaligned μ-map.

(a) (b) (c)
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3.2. Results

Figures 2 and 3 show the JRM reconstructed activities ˆ
α̂W f

PET
PET  and W f

TOF
TOF ˆ
α̂  at several 

iterations (iteration 0 corresponds to the first MMLEM reconstruction with no motion com-
pensation). It can be observed that PET JRM requires 50 to 100 iterations to reduce μ-map 
misalignment artifacts significantly whereas TOF JRM requires only 5. The relative differ-
ences ˜ˆ µ µ−α

�W PET  and ˜ˆ µ µ−α
�W TOF  are shown in figures 4 and 56. Results show that the 

warped μ-map using TOF JRM estimated motion, i.e., ˜ˆ µαW TOF , becomes similar to µ� in 5 
iterations, whereas it takes more than 50 iterations for the warped μ-map using non-TOF JRM 
estimated motion. Note that since TOF PET forward and back projections are computationally 

Figure 2. From top left to bottom right: ˆ
α̂W f

PET
PET  at iterations 0 (no motion 

compensation), 1, 10, 30, 50 and 100.

Figure 3. From left to right: ˆ
α̂W f

TOF
TOF  at iterations 0 (no motion compensation),  

1 and 5.

6 Note that figures 4(a) and 5(a) show the same image, i.e. µ̃ µ−α
�W  with α = 0.

Figure 4. From top left to bottom right: relative difference ˜ˆ µ µ−α
�W PET  at iterations 0 

(α̂ = 0), 1, 10, 30, 50 and 100.

Figure 5. From left to right: relative difference ˜ˆ µ µ−α
�W TOF  at iterations 0 (α̂ = 0), 

1 and 5.

Phys. Med. Biol. 61 (2016) L11
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more demanding, these observations should be put into perspective. Nevertheless, the reduc-
tion in number of iterations shows that using TOF PET significantly reduces the cross-talk in 
JRM as compared to non-TOF PET.

Quantitative assessment of the convergence rate of TOF JRM and non-TOF JRM is chal-
lenging because the objective functions to maximize are different, i.e., plotting the values of 

( )ˆ ˆ ˜α µΦ f , ,TOF TOF TOF  and f , ,PET PET PET( )ˆ ˆ ˜α µΦ  is not informative. We therefore relied on the 

mean square error (MSE), between the estimated activities, ˆ
α̂W f

TOF
TOF  and W f

PET
PET ˆ
α̂ , and 

the ground truth �f . The MSE is defined for all u, ∈Rv nv as

( ) ∥ ∥= −u v u v
n

MSE ,
1

.
v

2
2

The plots of W f fMSE ,
TOF

TOF( )ˆ
α̂

�  and ( )ˆ
α̂

�W f fMSE ,
PET

PET  are shown in figure 6. MSE 

results are consistent with the observations from figures 2 and 3: TOF JRM reaches a quasi-min-
imal MSE after 3 iterations whereas non-TOF JRM needs more than 30. The difference in MSE 
is due to the better conditioning of the TOF PET system matrix compared the non-TOF PET one.

4. Discussion and conclusion

This paper is an extension of our recent work Bousse et al (2016), and presents preliminary 
results on JRM with TOF PET data. Results from Rezaei et al (2012) and Rezaei et al (2014) 
demonstrated that TOF PET can significantly reduce the cross-talk in the joint-likelihood. Our 
experiments led to a similar observation: when the reconstructed attenuation is misaligned 
with the PET data, TOF JRM requires 10 to 20 times less iterations than non-TOF JRM. This 
demonstrates that TOF JRM significantly reduces the cross-talk compared to using non-TOF 
PET data, and extend its practicality to situations where the μ-map is severely misaligned with 
the PET.

Figure 6. W f fMSE ,
PET

PET( )ˆ
α̂

�  and ( )ˆ
α̂

�W f fMSE ,
TOF

TOF  VS iteration number.

iteration number
0 10 20 30 40 50

M
SE

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
non-TOF PET
TOF PET
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