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BACKGROUND Statins are first-line therapy for cardiovascular disease prevention, but their systemic effects across

lipoprotein subclasses, fatty acids, and circulating metabolites remain incompletely characterized.

OBJECTIVES This study sought to determine the molecular effects of statin therapy on multiple metabolic pathways.

METHODS Metabolic profiles based on serum nuclear magnetic resonance metabolomics were quantified at 2 time

points in 4 population-based cohorts from the United Kingdom and Finland (N ¼ 5,590; 2.5 to 23.0 years of follow-up).

Concentration changes in 80 lipid and metabolite measures during follow-up were compared between 716 individuals who

started statin therapy and 4,874 persistent nonusers. To further understand the pharmacological effects of statins, we used

Mendelian randomization to assess associations of a genetic variant known to mimic inhibition of HMG-CoA reductase

(the intended drug target) with the same lipids and metabolites for 27,914 individuals from 8 population-based cohorts.

RESULTS Starting statin therapy was associated with numerous lipoprotein and fatty acid changes, including substantial

lowering of remnant cholesterol (80% relative to low-density lipoprotein cholesterol [LDL-C]), but only modest lowering

of triglycerides (25% relative to LDL-C). Among fatty acids, omega-6 levels decreased the most (68% relative to LDL-C);

other fatty acids were only modestly affected. No robust changes were observed for circulating amino acids, ketones, or

glycolysis-related metabolites. The intricate metabolic changes associated with statin use closely matched the associa-

tion pattern with rs12916 in the HMGCR gene (R2 ¼ 0.94, slope 1.00 � 0.03).

CONCLUSIONS Statin use leads to extensive lipid changes beyond LDL-C and appears efficacious for lowering remnant

cholesterol.Metabolomic profiling, however, suggestedminimal effects on amino acids. The results exemplify howdetailed

metabolic characterization of genetic proxies for drug targets can inform indications, pleiotropic effects, and pharmaco-

logical mechanisms. (J Am Coll Cardiol 2016;67:1200–10) © 2016 The Authors. Published by Elsevier Inc. on behalf of the

American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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AB BR E V I A T I O N S

AND ACRONYM S

CVD = cardiovascular disease

HDL = high-density lipoprotein

HMGCR = HMG-CoA reductase

IDL = intermediate-density

lipoprotein

LDL-C = low-density

lipoprotein cholesterol

NMR = nuclear magnetic

resonance

VLDL = very-low-density

lipoprotein
H MG-CoA reductase (HMGCR) inhibitors,
commonly known as statins, reduce low-
density lipoprotein cholesterol (LDL-C)

levels leading to proportionate reduction in cardio-
vascular risk (1). Statins have become first-line ther-
apy for managing dyslipidemia and cardiovascular
disease (CVD) risk, making them the most widely pre-
scribed drug class worldwide. Nearly 30% of Ameri-
cans 45 years of age and older were receiving statins
from 2007 to 2010 (2), and many more are eligible
for treatment under the 2013 American College of Car-
diology/American Heart Association cardiovascular
prevention guidelines (3,4).
SEE PAGE 1211
Despite widespread use of statin therapy, their
effects on many lipids and other metabolic bio-
markers of cardiovascular risk, such as circulating
fatty acids and amino acids (5,6), have not been
assessed in large studies. Statins have been proposed
to possess various pleiotropic properties such as
reducing inflammation and improving endothelial
function (7,8), yet it remains unclear whether such
effects would manifest in the systemic metabolic
profile. Although the vascular event rate reduction
follows a linear relationship with LDL-C lowering (9),
the cardioprotective abilities of statins may also
partly be attributed to other lipids (10–12). Of
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particular importance are the effects on tri-
glycerides and remnant cholesterol, because
these measures have been causally linked
to the development of coronary heart dis-
ease (13–15). Direct assaying of remnant
cholesterol, that is, the cholesterol in
very-low-density lipoprotein (VLDL) and
intermediate-density lipoprotein (IDL) parti-
cles, has recently become feasible as part of
the lipoprotein subclass profiling provided by
nuclear magnetic resonance (NMR) metab-
olomics (16). This high-throughput profiling
simultaneously quantifies numerous other
biomarkers, which, in concert, provide a fine-

grained snapshot of systemic metabolism (5,17).

We aimed to determine comprehensive metabolic
effects of statin therapy by conducting metabolomic
profiling at 2 time points in 4 population-based
cohorts. To verify that the observed lipoprotein, fatty
acid, and metabolite changes are due to the effects of
statins, the results were corroborated via Mendelian
randomization by using a genetic variant in the
HMGCR gene as a proxy for the pharmacological
action of statins (18–20). Specifically, we examined
the metabolic effects of genetic variation in HMGCR
(19)—mimicking a very small dose of statin allocated
to rs12196-T carriers, and unaffected by confounding
due to the random assorting of alleles at conception
rsity of Oulu, Finland, Sigrid Juselius Foundation,

ndation, Paavo Nurmi Foundation, Yrjö Jahnsson

oundation, Finnish Foundation for Cardiovascular

l Integrative Epidemiology Unit (MC_UU_12013/1 and

ed by Academy of Finland (grants 286284, 134309,

n of Finland, Kuopio, Tampere and Turku University

n, Finnish Foundation of Cardiovascular Research,

Foundation. The UK Medical Research Council and

core support for ALSPAC. Data collection and meta-

itish Heart Foundation (SP/07/008/24066) and the

obtained through funding from the Wellcome Trust

23andMe. Dr. Lawlor is a National Health Research

nded at baseline by the Medical Research Council,

ust, British Heart Foundation, and the U.K. National

llege London Hospital. The Northern Finland Birth

and, University Hospital Oulu, Biocenter Oulu, Uni-

rd QLG1-CT-2000-01643, ENGAGE project and grant

n Regional Developmental Fund), EU H2020-PHC-

AMPEED program (1RL1MH083268-01), NIH/NIMH

and Wellcome Trust. The Whitehall II study is sup-

nal Institutes of Health (R01HL036310). Metabolite

ndation. The views expressed in this paper are those

n and Mr. Kangas are shareholders, board members,

ite profiling. Ms. Wang, Dr. Tynkkynen, Dr. Tiainen,

for Amgen, Sanofi, AstraZeneca, and Merck & Co. Dr.

rted that they have no relationships relevant to the

ally to this work. Drs. Kettunen and Ala-Korpela are

r 3, 2015, accepted December 22, 2015.



Würtz et al. J A C C V O L . 6 7 , N O . 1 0 , 2 0 1 6

Metabolomic Profiling of Statin Use M A R C H 1 5 , 2 0 1 6 : 1 2 0 0 – 1 0

1202
(18)—and compared the genetic association pattern
to the metabolic changes observed longitudinally.

METHODS

STUDY POPULATIONS. All study participants pro-
vided written informed consent, and study protocols
were approved by the local ethics committees. The
metabolic changes associated with starting statin
therapy were examined in 4 U.K.-based and Finnish
longitudinal cohorts with NMR-based metabolomics
data from overnight fasting samples at baseline and
a follow-up visit: the SABRE study (Southall and Brent
Revisited; 20 to 23 years of follow-up during 1988 to
2011; N ¼ 908) (5,21), the Pieksämäki Cohort (6-year
follow-up, 1997 to 2003; N ¼ 608) (22), the YFS (Car-
diovascular Risk in Young Finns Study; 4-year
follow-up, 2007 to 2011; N ¼ 1,562) (22,23), and the
mothers cohort of the ALSPAC study (Avon Longitu-
dinal Study of Parents and Children; 2.5-years of
follow-up, 2009 to 2011; N ¼ 2,452) (24). Details of
the cohorts are described in the Online Appendix. In-
formation on statin use was obtained from question-
naires. Data on specific statin type and dose were
generally not available. Individuals on non-statin lip-
id-lowering monotherapy (12 subjects) and pregnant
women were omitted from the analyses. Altogether
5,590 individuals with metabolomic profile measured
at both time points and free of statin medication at
baseline were included in the longitudinal analyses.

For Mendelian randomization, we analyzed rs12916
in the HMGCR gene, a genetic variant known to affect
hepatic HMGCR expression and circulating LDL-C
(13,19), in 8 population-based cohorts from the
United Kingdom and Finland with metabolomics data
from the same NMR platform: ALSPAC children
(n ¼ 2,456) (25) and mothers (n ¼ 3,137) (24), NFBC
(Northern Finland Birth Cohort) 1986 (N ¼ 4,145) (26)
and NFBC 1966 (N ¼ 4,920) (27), YFS (N ¼ 1,905) (23),
the FINRISK 1997 study (N ¼ 4,403) (5), the British
Women’s Heart and Health Study (N ¼ 3,030) (5), and
the Whitehall II study (N ¼ 3,918) (28) (detailed in the
Online Appendix). Pregnant women and individuals
on lipid-lowering treatment were excluded from an-
alyses. Altogether, 27,914 individuals with metab-
olomics data at a single time point and rs12916
genotype information were available for the Mende-
lian randomization analyses. We further confirmed
the metabolic association pattern with rs17238484 in
HMGCR, which is in low linkage disequilibrium
(R2 ¼ 0.37) with rs12916 but affects LDL-C to a similar
extent (19).

LIPOPROTEIN, FATTY ACID, AND METABOLITE

QUANTIFICATIONBYMETABOLOMICS. A high-throughput
NMR metabolomics platform (17,29) was used to
quantify 80 lipid and low-molecular-weight metabo-
lite measures from serum or plasma samples in 4
longitudinal cohorts at 2 time points and 8
population-based cohorts with HMGCR genotype in-
formation. This platform provided simultaneous
quantification of routine lipids, particle concentra-
tions of 14 lipoprotein subclasses; lipid concentra-
tions in major subfractions; and further abundant
fatty acids, amino acids, ketone bodies, and various
glycolysis- and gluconeogenesis-related metabolites
in absolute concentration units (Online Table 1)
(5,6,17,22,30,31). The NMR metabolomics platform
has been extensively used in epidemiological and
genetic studies (5,17,22,30,31), and the experimenta-
tion has been described elsewhere (17,29). NMR
spectral data from 3 molecular windows with anno-
tated metabolites are illustrated (Online Figure 1) for
a representative individual before and after starting
statin therapy; however, all statistical analyses of
statin effects were conducted on the quantitative
biomarker measures, and no analysis directly on the
spectral data was performed.
STATISTICAL ANALYSIS. The effects of statin ther-
apy were examined by comparing metabolic changes
for those who started statins during follow-up to the
changes observed for persistent nonusers. The mean
difference in metabolite concentration change be-
tween the statin-starter group and the nonuser group
was assessed by linear regression models adjusted for
age and sex. Analyses were conducted separately
for each cohort and meta-analyzed using inverse
variance–weighted fixed effects. To enable compari-
son of association magnitudes across measures with
different units and distinct relation to cardiovascular
risk, all lipid and metabolite concentrations were
scaled to baseline SD units. The differences in con-
centration change between statin starters and non-
users are therefore reported in SD units; the
corresponding absolute concentration changes are
listed in Online Table 1. To facilitate comparison with
the genetic analyses, longitudinal association mag-
nitudes are also shown scaled to the lowering effect
on LDL-C. The metabolic changes in percentage
relative to baseline concentrations were examined as
secondary analyses. Statistical significance was
denoted at p < 0.0006 to account for the testing of
80 metabolic measures.

For genetic analyses, lipid and metabolite con-
centrations were first adjusted for age, sex, and the
first 4 genomic principal components, and then
inverse normal transformed to enhance statistical
power (30). Subsequently, rs12916 in HMGCR was
tested for association with each metabolic measure as

http://dx.doi.org/10.1016/j.jacc.2015.12.060
http://dx.doi.org/10.1016/j.jacc.2015.12.060
http://dx.doi.org/10.1016/j.jacc.2015.12.060
http://dx.doi.org/10.1016/j.jacc.2015.12.060
http://dx.doi.org/10.1016/j.jacc.2015.12.060
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outcome using linear regression. Results were as-
sessed separately for each cohort and meta-analyzed
using inverse variance–weighted fixed effects. Effect
sizes are presented in SD units difference in concen-
tration per rs12916-T allele. For comparison with
longitudinal metabolic changes, the results are also
shown scaled to the effect of rs12916-T on LDL-C.
The overall match between genetic and longitudinal
associations was summarized by the linear fit of
the correspondence between metabolic association
patterns, with both scaled relative to the effect on
LDL-C (22). Statistical analyses were conducted using
R version 3.2 (R Foundation for Statistical Computing,
Vienna, Austria).

RESULTS

Among 5,590 participants from 4 population-based
cohorts with metabolomic profiling at 2 time points
(Table 1), 716 subjects started statin therapy during
follow-up. The metabolic effects of statin use were
quantified by comparing lipid and metabolite changes
between the statin starters and the persistent non-
users during follow-up. To obtain an unconfounded
assessment of the on-target effects of statins, we
further examined lipid and metabolite associations
with rs12916 in HMGCR for 27,914 individuals from
8 population-based cohorts (Online Table 2).

STATIN EFFECTS. The changes of 44 lipoprotein
measures associated with starting statin therapy and
the corresponding differences per rs12916-T allele are
shown (Figure 1). To facilitate comparison between
longitudinal and genetic effects, association magni-
tudes are shown scaled to the lowering effect on
LDL-C (1.65 SD for starting statins; 0.096 SD per
TABLE 1 Baseline Characteristics

Southall and Brent
REvisited (SABRE) Study

Nonusers
(n ¼ 372)

Starters
(n ¼ 536)

Follow-up time, yrs 20–23

Male 84 89

Age, yrs 48.5 � 6.1 50.3 � 6.3

BMI, kg/m2 25.1 � 3.1 26.3 � 3.6

Systolic blood pressure, mm Hg 117 � 15 124 � 16

Plasma glucose, mmol/l 5.3 (4.9–5.7) 5.5 (5.1–5.9) 5

HDL cholesterol, mmol/l 1.3 � 0.3 1.2 � 0.3

Friedewald LDL cholesterol, mmol/l 3.6 � 0.9 4.1 � 1.0

Total cholesterol, mmol/l 5.6 � 1.0 6.3 � 1.1

Triglycerides, mmol/l 1.2 (0.9–1.7) 1.7 (1.2–2.5) 1

Values are %, mean � SD, or median (interquartile range), unless otherwise indicated. C

BMI ¼ body mass index; HDL ¼ high-density lipoprotein; LDL ¼ low-density lipoprot
rs12916-T allele). The changes associated with start-
ing statins followed a strikingly similar pattern as
the associations with HMGCR genotype across all
lipoprotein measures. Starting statins was associated
with minor lowering of large- and medium-sized
VLDL particle concentrations (11% to 20% relative to
the LDL-C-lowering effect), whereas substantial
lowering of the smallest VLDL particles (71% relative
to LDL-C) was observed. The lowering of particle
concentrations was similar across LDL subclasses and
IDL (94% to 100%). Starting statins was associated
with a modest lowering of very large high-density
lipoprotein (HDL) particle concentrations, whereas
the concentration of small HDL particles was
modestly increased. Large- and medium-sized HDL
particle concentrations were essentially unaffected.
Total cholesterol, non–HDL-C, and IDL-C were low-
ered to a similar degree as LDL-C (92% to 100%);
lowering of VLDL-C was less (54%). Remnant
cholesterol was lowered to a similar extent as apoli-
poprotein B (80%). By contrast, statin use was asso-
ciated with modest lowering of VLDL and total
triglycerides (15% and 25%, respectively). More pro-
nounced lowering was observed for IDL and LDL
triglycerides (52% and 49%). Starting statin therapy
was only weakly associated with lipoprotein particle
size. All lipid and metabolite changes associated
with starting statin therapy are listed in absolute
concentration units (e.g., mmol/l) in Online Table 1.
The metabolic changes in percentage relative to
baseline concentrations are shown in Online Figure 2.

The changes in circulating fatty acid levels associ-
ated with starting statin therapy and the genetic
proxy of HMGCR inhibition displayed a matching
pattern (Figure 2), with similar magnitudes relative to
Pieksämäki Cohort Study
Cardiovascular Risk in
Young Finns Study

Avon Longitudinal Study of
Parents and Children

(Mothers)

Nonusers
(n ¼ 562)

Starters
(n ¼ 106)

Nonusers
(n ¼ 1,519)

Starters
(n ¼ 43)

Nonusers
(n ¼ 2,421)

Starters
(n ¼ 31)

6–7 4–5 2–3

41 43 44 63 0 0

45.4 � 6.2 48.5 � 5.4 37.9 � 5.0 40.7 � 4.0 48.2 � 4.3 50.7 � 4.8

26.1 � 4.1 27.9 � 6.2 25.8 � 4.6 28.9 � 5.9 26.0 � 4.9 28.2 � 4.5

134 � 18 138 � 18 120 � 14 129 � 13 118 � 12 128 � 17

.6 (5.3–6.0) 5.8 (5.5–6.3) 5.2 (4.9–5.6) 5.4 (5.2–5.8) 5.1 (4.9–5.4) 5.3 (5.1–5.8)

1.4 � 0.3 1.4 � 0.3 1.3 � 0.3 1.2 � 0.4 1.5 � 0.4 1.3 � 0.4

3.5 � 0.8 4.3 � 0.9 3.1 � 0.8 4.1 � 0.8 3.0 � 0.8 4.1 � 1.3

5.5 � 0.9 6.4 � 0.9 5.0 � 0.9 6.0 � 0.9 4.9 � 0.8 6.1 � 1.4

.1 (0.8–1.6) 1.4 (1.1–2.0) 1.1 (0.8–1.6) 1.6 (1.1–2.3) 0.8 (0.7–1.1) 1.3 (1.0–2.0)

haracteristics of the 8 population-based cohorts used for genetic analyses are shown in Online Table 2.

ein.
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FIGURE 1 Lipoprotein and Lipid Associations
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(Left) Lipoprotein and lipid changes associated with starting statin therapy (n ¼ 716) compared with the corresponding changes for persistent

nonusers (n ¼ 4,874) during follow-up. Associations were adjusted for age and sex, and meta-analyzed for 4 longitudinal cohorts. (Right)

Lipoprotein and lipid associations with rs12916 in HMGCR adjusted for age, sex, and population stratification meta-analyzed for 8 cohorts

(N ¼ 27,914). Error bars ¼ 95% confidence intervals (CI). Results are shown in SD-scaled concentration units (top axis) and relative to the

lowering effect on low-density lipoprotein (LDL) cholesterol (bottom axis). Changes in absolute concentration units are listed in Online Table 1,

and in percentage relative to baseline levels in Online Figure 2. C ¼ cholesterol; CI ¼ confidence interval; HDL ¼ high-density lipoprotein; IDL ¼
intermediate-density lipoprotein; LDL ¼ low-density lipoprotein; PL ¼ phospholipids; VLDL ¼ very-low-density lipoprotein; TG ¼ triglycerides.
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FIGURE 2 Fatty Acid Associations
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the extent of LDL-C lowering. The absolute concen-
trations of all assayed fatty acids were lowered in
the statin group compared to nonusers (18% to 77%
relative to the SD-scaled lowering of LDL-C), with
prominent differences between different fatty acid
types. Absolute levels of saturated and mono-
unsaturated fatty acids were lowered to a lesser
extent than total fatty acids (49% relative to LDL-C),
but only minor changes were observed in their
ratios to total fatty acids. Omega-6 fatty acids,
including linoleic acid, displayed the most pro-
nounced lowering associated with statin use, and the
ratio of these measures to total fatty acids was also
decreased. By contrast, statin use was only weakly
associated with lowering of omega-3 fatty acids,
including docosahexaenoic acid, which resulted in a
modest increase in their ratio to total fatty acids.

To assess potential nonlipid effects of statin use,
we examined the changes in circulating amino acids,
glycolysis and gluconeogenesis substrates and prod-
ucts, ketone bodies, and other metabolites quantified
by the high-throughput metabolomics platform
(Figure 3). Starting statins was only weakly or negli-
gibly associated with these metabolites (maximum
12% lowering to 14% increase, relative to the effect on
LDL-C). The corresponding associations of rs12916 in
HMGCR with these metabolites did not coherently
match the weak observational associations. The only
deviations from this pattern were a small decrease
in glycoprotein acetyl (GlycA) (a marker of low-
grade inflammation) (32,33), and acetate concentra-
tions, which decreased both observationally and
genetically.
GENETIC AND OBSERVATIONAL CONSISTENCY. The
overall match between the metabolic changes asso-
ciated with starting statins and the corresponding
associations with the HMGCR variant is illustrated in
Figure 4. The longitudinal and genetic association
magnitudes fell closely on a straight line (R2 ¼ 0.94);
the slope of the fit was 1.00 � 0.03 when both genetic
and longitudinal associations were scaled to the
lowering effect on LDL-C. The Central Illustration
further depicts use of a genetic variant to validate
the causal molecular effects of HMGCR inhibition
across multiple metabolic pathways.

The pattern of metabolic changes associated with
starting statins was similar if calculated in percentage
changes relative to baseline levels (Online Figure 2).
Despite substantial differences in follow-up time and
demographics across the 4 longitudinal cohorts, the
metabolic changes were consistent between the
studies (Online Figure 3). The results were essentially
unaltered when further adjusted for change in
body mass index during follow-up (Online Figure 4).
The results were also similar if adjusting for addi-
tional cardiovascular risk factors, including baseline

http://dx.doi.org/10.1016/j.jacc.2015.12.060
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FIGURE 3 Metabolite Associations
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(Left)Metabolite changes associated with starting statin therapy compared to the corresponding changes for persistent nonusers during follow-
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Würtz et al. J A C C V O L . 6 7 , N O . 1 0 , 2 0 1 6

Metabolomic Profiling of Statin Use M A R C H 1 5 , 2 0 1 6 : 1 2 0 0 – 1 0

1206
LDL-C (Online Figure 4). The genetic association
pattern was coherent across the 8 cohorts analyzed
(Online Figure 3). All lipid and metabolite associa-
tions were similar if using rs17238484 instead of
rs12916 as a proxy for HMGCR inhibition (Online
Figure 5).

DISCUSSION

Metabolomic profiling of statin use in longitudinal
cohorts uncovered an intricate association pattern of
circulating lipoprotein, fatty acid, and metabolite
changes, which adds to our understanding of the
LDL-C–independent effects of statins. Statin use was
associated with pronounced lowering of numerous
lipids and fatty acids consistent with the car-
dioprotective effects. By contrast, statin use did not
markedly affect the circulating levels of recently
identified biomarkers for cardiometabolic risk such as
amino acids, glycolysis- and glycogenesis-related
metabolites, or ketone bodies (5,6,21,31). The genetic
proxy for HMGCR inhibition gave rise to a strikingly
similar association pattern, providing unconfounded
evidence that the observed metabolic changes arise as
a consequence of the mechanism-based effect of
statins (Central Illustration). These insights into an
extensively studied therapeutic agent illustrate how
metabolomics, combined with genetic proxies
mimicking pharmacological action, can elucidate the
molecular effects of known targets, clarify treatment
indication, and potentially be used to inform drug
development (19,20,34).

Inhibition of HMGCR by statins leads to up-
regulated expression of LDL receptors in the liver,
which in turn increases the uptake of circulating LDL
particles. Using lipoprotein subclass profiling, statin
therapy also was shown to be associated with
considerable lowering of IDL and very small VLDL
particle concentrations, beyond the anticipated
decrease in LDL particles. These remnant lipoprotein

http://dx.doi.org/10.1016/j.jacc.2015.12.060
http://dx.doi.org/10.1016/j.jacc.2015.12.060
http://dx.doi.org/10.1016/j.jacc.2015.12.060
http://dx.doi.org/10.1016/j.jacc.2015.12.060


FIGURE 4 Correlation Between Metabolic Changes
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particles carry 20% to 30% of circulating cholesterol;
they are small enough to enter the arterial intima and,
therefore, possess the potential to cause atheroscle-
rosis (14). Because total triglyceride concentration is
highly correlated with the amount of IDL and small
VLDL particles and their cholesterol levels, the tri-
glyceride measure may partly reflect the cardiovas-
cular risk mediated by the atherogenic remnant
particles (14,15). Indeed, accumulating genetic evi-
dence suggests that triglyceride levels reflect causal
processes related to coronary heart disease (13–15);
however, the likely underpinning mechanism is the
remnant cholesterol carried in the IDL and VLDL
particles (14,15,35). Detailed lipoprotein profiling
demonstrated that statins are effective in lowering
remnant cholesterol, whereas triglycerides are only
modestly decreased by statin therapy. These results
suggest that statins are substantially more efficacious
for lowering remnant cholesterol than would be pro-
jected based on their ability to lower triglycerides. If
the cardiovascular risk reflected by triglycerides is
due to remnant cholesterol rather than triglycerides
per se (14,35), then our results indicate cardio-
protective benefits of statins beyond LDL-C lowering
and suggest broader indications for statins in treating
remnant hyperlipidemia.

The fatty acid composition of lipoprotein lipids
vary greatly depending on the abundance of choles-
teryl esters, triglycerides, and phospholipids (36). In
accordance with linoleic acid being the primary con-
stituent of cholesteryl esters—the dominant lipid in
LDL particles—statin therapy led to the greatest
lowering of this omega-6 fatty acid. Absolute levels of
omega-3 fatty acids were only modestly decreased, in
agreement with prior studies (12,37). These results are
consistent with omega-3 fatty acids being primarily
bound to the phospholipids, which only account for
some 30% of the lipids in LDL particles (36). Mono-
unsaturated and saturated fatty acids were decreased
to a broadly similar extent as total triglycerides and
phospholipids, respectively, which is coherent with
the main fatty acid compositions for these lipid clas-
ses (36). The changes in the relative fatty acid balance
due to statin therapy were modest. Although lower
levels of the ratio of omega-6 fatty acids to total fatty
acids have been associated with higher cardiovascular
risk (5,38), evidence for a causal relation is lacking.
The overall consistency between the genetic and
longitudinal association patterns indicate that the
various fatty acid modulations are on-target effects of
HMGCR inhibition rather than due to cholesterol-
independent properties of statins (37).

We also assessed whether statin therapy would
be associated with biomarkers in various nonlipid
pathways. GlycA, a measure of systemic inflammation
and a biomarker for CVD and all-cause mortality
(5,6,32,33,39), was modestly lowered, in accordance
with the proposed anti-inflammatory properties of
statins (7,8). However, both longitudinal and genetic
analyses provided no evidence for substantial effects
of statins on amino acids, glycolysis and gluconeo-
genesis metabolites, and ketone bodies. Several me-
tabolites in these pathways have recently been shown
to be risk markers for CVD and type 2 diabetes
(5,6,17,21,31). Although the potential causal roles of
these biomarkers remain unclear, our results sug-
gested that statin therapy would not be efficacious for
lowering the cardiometabolic risk associated with
these markers.
STUDY LIMITATIONS. The observational assessment
of the effects of statins may be confounded, in
particular by indication for treatment. However,
the comparisons of metabolic changes over 2 time
points reduced such confounding. Furthermore, the
Mendelian randomization approach to proxy the
metabolic effects of HMGCR inhibition is generally
free of this limitation (18,40). The rs12916-T allele in
HMGCR has previously been rigorously associated
with lower expression of HMGCR in the liver and
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lower circulating LDL-C levels (13,19), supporting the
validity of this common variant as a genetic instru-
ment. Information on statin type and dosage was
generally not available; however, results were
coherent across the 4 longitudinal cohorts despite
large differences in demographics and follow-up
time. The genetic analyses were also consistent
across 8 cohorts with a wide age span. The limited
statistical power and the predominantly young study
population preclude us from ruling out minor effects
of statins on nonlipid biomarkers. Nonetheless, the
results set upper limits for the effects of HMGCR
inhibition on multiple circulating biomarkers not
previously investigated.

CONCLUSIONS

High-throughput metabolomic profiling in large
cohorts with multiple time points and genetic infor-
mation elucidated the pharmacological effects
of statins on lipoprotein subclasses including their
lipid constituents and fatty acid composition. These
results suggest a more efficacious role of statins for
lowering remnant cholesterol levels than would be
expected based on the ability of statins to lower
circulating triglycerides. The absence of robust asso-
ciations of statin use with circulating amino acids,
glycolysis and gluconeogenesis metabolites, and ke-
tone bodies suggest minimal pleiotropic effects on
these nonlipid biomarkers. As a corollary, statin
therapy appears to have little or no efficacy on these
novel markers of cardiometabolic risk. The exquisite
match between the metabolic association patterns
from observational and genetic analyses serves as a
proof of concept, illustrating how the combination
of metabolomics and genetic proxies for drug mech-
anisms can facilitate the assessment of pharmaco-
logical action and on-target effects for known
therapies and novel drug targets.

Although Mendelian randomization of drug targets
has been used previously (19,20,34), our study was
the first to our knowledge to combine the concept
with observational results across a wide range of
cardiometabolic biomarkers. As extensive metab-
olomics and genetic data are increasingly becoming
available in large biobanks, such comprehensive
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molecular profiling can augment drug development
in both preclinical and clinical trial stages to elucidate
molecular mechanisms, clarify pleiotropic effects,
and inform treatment indication.
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APPENDIX For an expanded Methods section
as well as supplemental figures and tables,
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