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Abstract

This brief communication examines the fluid forces acting on a cylinder
free to move in the streamwise direction throughout its response regime. The
amplitude and phase of the unsteady drag coe�cient are estimated from the
displacement signals and a simple harmonic oscillator model. We examine
the counter-intuitive reduction in vibration amplitude observed in streamwise
vortex-induced vibrations (VIV) at resonance, which has remained one of the
most poorly understood aspects of VIV. Our results show that it is not caused
by a change in the phase of the fluid forcing with respect to the cylinder dis-
placement, as suggested by previous researchers; instead, we show that there
is a sudden decrease in the amplitude of the unsteady drag coe�cient in this
region. The possible cause of this result, relating to three-dimensionality in the
wake, is briefly discussed.

Keywords: Vortex-induced vibrations, Fluid forces, Fluid-structure
interaction

1. Introduction1

The problem of Vortex-Induced Vibration (VIV) of circular cylinders in2

crossflow is relevant to a wide range of industrial structures, such as tall chim-3

neys, bridges, heat exchangers, o↵-shore platforms and oil risers. It is a classical4

fluid-structure interaction problem; the vortices shed from the cylinder induce5

unsteady fluid forces, which cause the structure to vibrate; this motion in turn6

a↵ects the wake and the vortex-induced forces. This results in a complex feed-7

back loop between the flow field and the structure that is controlled by the fluid8

forces. When the predicted vortex-shedding frequency (the Strouhal frequency),9

fSt = StU0/D (where St is the Strouhal number, U0 is the freestream veloc-10

ity and D is the cylinder diameter) is close to the vibration frequency of the11

cylinder, f
x

, the cylinder motion can cause the vortex-shedding to occur at f
x
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Figure 1: Amplitude response of a cylinder undergoing streamwise VIV; Jauvtis and
Williamson (2003) (pivoted cylinder, m⇤ = 6.9, ⇣ = 0.0014, closed black circles); Aguirre
(1977) (m⇤ = 1.23, ⇣ = 0.0018, blue diamonds); Okajima et al. (2004) (m⇤⇣ = 0.195, red
triangles). These studies did not provide information on f⇤, which is here assumed to remain
equal to 1. The characteristic reduction in amplitude at U

r

St ⇡ 0.5 is clear.

or a sub-harmonic instead of the Strouhal frequency, a phenomenon known as13

‘lock-in’.14

The structural response, wake mode and the presence of lock-in are con-15

trolled by the so-called ‘true’ reduced velocity (Cagney and Balabani, 2013c;16

Govardhan and Williamson, 2000; Aguirre, 1977), U
r

St/f⇤, where U
r

= U0/fnD17

is the conventional reduced velocity, f
n

is the natural frequency measured in a18

still fluid, and f

⇤ = f

x

/f

n

is the frequency ratio. The ‘true’ reduced velocity19

(henceforth referred to simply as the reduced velocity) is equal to the ratio of20

the predicted shedding frequency to the actual response frequency, fSt/fx. As21

the fluctuating drag occurs at twice the shedding frequency, lock-in is expected22

to occur in the streamwise direction (i.e. parallel to the flow) at U
r

St/f⇤ = 0.5,23

and at U
r

St/f⇤ = 1 in the transverse direction (i.e. normal to the flow). This24

is typically associated with a change in the arrangement of vortices in the wake25

(the ‘wake mode’) and an increase in the vibration amplitude, A (Williamson26

and Roshko, 1988; Morse and Williamson, 2009). However, when the cylinder27

is free to move in the streamwise direction, the synchronisation between the28

unsteady drag force and the cylinder vibration coincides with a sudden reduc-29

tion in amplitude (Aguirre, 1977; Jauvtis and Williamson, 2003; Okajima et al.,30

2004). This paradoxical feature of VIV can be seen in Figure 1, which shows31

the results of three previous studies; the reduction in vibration amplitude at32

resonance is in contrast to almost all other forms of fluid-structure interaction33

and remains poorly understood (Konstantinidis, 2014).34

Nishihara et al. (2005) measured the fluid forces acting on a cylinder forced35
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to oscillate in the streamwise direction at A/D = 0.05 for a range of reduced36

velocities and found that near U
r

St/f⇤ = 0.5 the phase di↵erence between the37

cylinder displacement and the drag force changed such that energy was trans-38

ferred from the cylinder (i.e. it was a damping force), which they proposed to39

be the cause of the counter-intuitive reduction in amplitude in this region. A40

similar argument was presented by Konstantinidis et al. (2005) and Konstan-41

tinidis and Liang (2011), who examined the wake of a cylinder in pulsating flow42

and observed a change in the phase of the vortex-shedding near U
r

St/f⇤ = 0.5.43

However, Morse and Williamson (2009) showed that the fluid force will always44

provide negative excitation (i.e. a damping force) if the cylinder is forced to45

oscillate at an amplitude above which it would oscillate in the free-vibration46

case. Konstantinidis and Liang (2011) also note this issue, pointing out that47

the forced oscillation experiments do not take into account the fact that the48

phase of the drag force with respect to the cylinder displacement will depend on49

the vibration amplitude. In light of this, the findings of Nishihara et al. (2005)50

could be said to be known a priori and the cause of the reduction in A/D near51

U

r

St/f⇤ = 0.5 remains unclear.52

In order to fully understand the complex coupling between the wake in the53

structural motion, knowledge of the fluid forces acting on the cylinder is re-54

quired. However, it is often di�cult in practice to accurately measure the forces55

acting on a freely oscillating body; for many experimental configurations it may56

not be possible to attach strain gauges to the body or its supports, and the57

measurements may be inaccurate when the amplitude of the forces is low (Noca58

et al., 1999). Khalak and Williamson (1999) showed that by manipulating the59

equations of motion of a single degree of freedom cylinder, the amplitude and60

phase of the fluid forces can be expressed in terms of the displacement and the61

structural properties of the cylinder. This approach also captures the depen-62

dence of the phase di↵erence between the fluid forces and the cylinder motion63

on A/D, which is often neglected in forced oscillation experiments.64

This brief communication presents estimates of the fluid forces acting on a65

cylinder free to move only in the streamwise direction, using a similar approach66

to that of Khalak and Williamson (1999), in order to provide insight into the67

fluid excitation in streamwise vortex-induced vibrations. In particular, we seek68

to address the question of what causes the paradoxical reduction in vibration69

amplitude at resonance.70

2. Experimental Details71

2.1. Test Facilities72

The experiments were performed in a closed-loop water tunnel, which has73

been described in detail by Konstantinidis et al. (2003) and Cagney and Bala-74

bani (2013c). It contained a 72 mm ⇥ 72 mm test-section, which was made of75

Perspex, to allow optical access.76

In order to support the cylinder within the flow such that it was free to move77

only by translation in the streamwise direction, it was suspended at either end78
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using fishing wires. The wires were aligned normal to the cylinder axis and the79

flow direction, as shown in Figure 2. The cylinder was held in place along the80

wires using silicon sealant in order to prevent any transverse motion. Great care81

was taken to ensure that the sti↵ness in both wires was approximately equal,82

such that the supports were balanced and any non-translational motion (i.e.83

pitching) was negligible (see Cagney and Balabani (2013c) for more details).84

The frequency spectra of the cylinder displacement signals showed that any85

energy occurring at sub- or super-harmonics of the primary response frequency86

was negligible, indicating that the sti↵ness of the supports was essentially linear.87

Figure 2: Plan and elevation view of the test section used, including fishing wire supports and
PIV plane.

The cylinder had a diameter, D, and length, L, of 7.1 mm and 71 mm, respec-88

tively. It was made of solid Perspex and had a mass ratio,m⇤ = (vibrating mass)/(displaced fluid mass),89

of 1.17.90

A series of tap tests were performed in still water to identify the natural91

frequency and hydrodynamic damping ratio, and a further series of tests were92

performed in air to identify these values in the absence of significant added mass93

e↵ects (Sarpkaya, 2004). The natural frequency in water and air were f
n

= 23.794

Hz and f

n,a

= 33.11 Hz, respectively. In practice it is rarely possible to directly95

measure the structural damping (i.e. the damping caused by internal friction),96

which can only be found by performing tap tests in a vacuum (Sarpkaya, 2004).97

While the damping ratio measured in air, ⇣
a

, is often taken to represent the98

4



structural damping, the true value may be as much as an order of magnitude99

smaller (Sarpkaya, 2004). We therefore limit our discussion to noting that we100

found ⇣

a

= 0.0037, and the tap tests in water indicated that ⇣

w

= 0.02. Both101

values include the influence of the structural damping.102

2.2. PIV Measurements103

The flow field surrounding the cylinder was measured using Particle-Image104

Velocimetry in order to estimate the vortex-shedding frequency and the freestream105

velocity. The PIV system and experimental procedure is the same as that de-106

scribed in Cagney and Balabani (2013b). An Nd:Yag laser was used to illumi-107

nate the plane normal to the cylinder axis at its midspan, as shown in Figure 2.108

The flow was seeded using silver-coated hollow glass spheres that had a mean109

diameter of 10 µm, and image-pairs were acquired using a high-speed CMOS110

camera (IDT X-3) and the Dynamic Studio software package (Dantec Dynam-111

ics). For each reduced velocity examined, 1000 image-pairs were acquired at112

200 Hz, which corresponded to approximately 120 cylinder vibration cycles.113

The streamwise and transverse spans of the PIV fields were x/D = �1.4 to114

4.2 and y/D = �1.65 to 1.55, respectively, where the origin is defined as the115

mean cylinder position.116

The cylinder position and displacement signals were estimated directly from117

the PIV images, using a template-matching algorithm, which has been described118

elsewhere (Cagney and Balabani, 2013c). The method was applied to images of119

a cylinder undergoing known static displacements and to images which had been120

binned (compressed). Based on these tests, the method was found to be accurate121

to within 0.4 pixels, which corresponds to 0.2% of the cylinder diameter.122

The cylinder response frequency at each reduced velocity was estimated from123

the power-spectral-density of the displacement signal. The amplitude response124

was estimated from the displacement signals, which were band-pass filtered,125

with cut-o↵ frequencies of 10 Hz and 40 Hz, in order to reduce the e↵ects of126

noise and any low frequency oscillations that were not associated with VIV. The127

vibration amplitude was taken as the mean peak height of the filtered signal.128

The vortex-shedding frequency, f
v

, was estimated from the dominant fre-129

quency of the transverse velocity signal extracted directly from the PIV fields130

at (x/D, y/D) = (3, 0). The values of f
v

measured before the onset of lock-131

in (U
r

St/f⇤
< 0.37) were used to estimate the Strouhal number, St = 0.2.132

PIV measurements were acquired in the reduced velocity range U

r

St/f⇤ =133

0.19 � 0.62, which corresponded to a Reynolds number range (Re = U0D/⌫,134

where ⌫ is the kinematic viscosity) of 1150 - 5400.135

3. Force Estimation136

It is common to model a cylinder undergoing VIV in one direction as a simple137

harmonic oscillator in order to show the dependence of the vibration amplitude138

on various structural properties and the fluid forces (Bearman, 1984; Sarpkaya,139

2004; Williamson and Govardhan, 2004). Khalak and Williamson (1999) showed140
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that this approach can also be used to find information on the fluid forces acting141

on a freely oscillating cylinder if the cylinder displacement is measured.142

The cylinder is assumed to have the characteristic equation of motion:143

mẍ+ cẋ+ kx = f
F

x

(t), (1)

wherem is the mass of the cylinder, c is the damping coe�cient, k is the sti↵ness144

of the system, and f
F

x

(t) is the fluctuating drag force. This equation can be145

expressed in terms of the known structural properties by dividing both sides by146

m (and recalling that the natural frequency in air is given by f

n,a

=
p
k/m/2⇡147

and the damping ratio is equal to ⇣ = c/2
p
km);148

ẍ+ 2⇣ (2⇡f
n,a

) ẋ+ (2⇡f
n,a

)2 x =
2U2

0

Dm

⇤
f
C

D

(t), (2)

where f
C

D

= f
F

x

/0.5⇢U2
0DL is the unsteady drag coe�cient, ⇢ is the fluid density.149

This approach requires a choice of damping ratio and coe�cient. Khalak150

and Williamson (1997, 1999) used the damping measured in air, referring to it151

as the ‘structural damping’. However, as noted in Section 2.1, ⇣
a

may be larger152

than the true structural damping (which is not known), and neglects the role of153

viscous dissipation as the cylinder vibrates in water. The damping coe�cient154

which includes these viscous e↵ects can be found from the tap tests performed155

in water (which measure ⇣

w

and f

n

) as156

c

w

=
⇣

w

k

⇡f

n

. (3)

The damping ratio in equation 2 is therefore given by157

⇣ =
c

w

2
p
mk

. (4)

Combining these expressions we get:158

⇣ =

✓
f

n,a

f

n

◆
⇣

w

= 0.0277. (5)

The cylinder motion and unsteady drag coe�cient signals are assumed to be159

sinusoidal, separated by a phase lag, �:160

x(t) = A sin (2⇡f
x

t) , (6)

f
C

D

(t) = |fC
D

| sin (2⇡f
x

t+ �) . (7)

Only the component of the fluid forcing which occurs at the cylinder re-161

sponse frequency will a↵ect the steady-state response amplitude. Therefore, the162
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assumption in equation 7 that the forcing occurs at f

x

is less restrictive than163

it may at first appear; the forcing signal may contain components occurring at164

a range of frequencies, but |fC
D

| relates only to the amplitude of the compo-165

nent occurring at f
x

. Therefore, the analysis presented here is not restricted to166

cases in which the fluid forcing is locked-in to the cylinder motion, but is ap-167

plicable throughout the response regime. However, outside of the lock-in range,168

the estimates of the fluctuating drag will relate to the fluid forces caused by169

turbulent bu↵eting and the cylinder motion, rather than those caused by the170

vortex-shedding.171

Equation 6 can be di↵erentiated to find expressions for the cylinder velocity172

and acceleration. Inserting these expressions and the relations for x(t) and f
C

D

(t)173

into equation 2, and utilising various non-dimensional groups, the components of174

the unsteady drag coe�cient which are in phase with the cylinder displacement175

and velocity can be expressed as:176

|fC
D

| cos� = 2⇡3 A

D

m

⇤

U

2
r

✓
f

n,a

f

n

◆2 �
1� f

⇤2
a

�
, (8)

and177

|fC
D

| sin� = 2⇡3 A

D

m

⇤

U

2
r

✓
f

n,a

f

n

◆2

(2⇣f⇤
a

) , (9)

respectively, where f

⇤
a

= f

x

/f

n,a

.178

Equations 8 and 9 can be combined to produce expressions for the amplitude179

and phase of the fluid force:180

|fC
D

| = 2⇡3 A

D

m

⇤

U

2
r

✓
f

n,a

f

n

◆2 q
(2⇣f⇤

a

)2 + (1� f

⇤2
a

)2, (10)

� = tan�1

✓
2⇣f⇤

a

1� f

⇤2
a

◆
. (11)

Khalak and Williamson (1999) compared the estimates of the lift force acting181

on a transversely oscillating cylinder found from the cylinder displacement sig-182

nals to those directly measured using strain gauges, for two cylinders with mass183

ratios of 3.3 and 10.1, respectively. They found the method to be reasonably184

accurate for the low mass ratio cylinder, but the errors were quite large for the185

high m

⇤ case; the errors in the maximum root-mean-square (rms) values of the186

lift force were approximately 6% and 33%, respectively (see Figure 12 in Khalak187

and Williamson (1999)). They attributed this dependence of the accuracy on188

m

⇤ to the di�culty in accurately measuring the frequency ratio of structures189

with high mass ratios, which are only weakly a↵ected by the added-mass. In190

such cases f⇤ remains close to unity; small absolute errors in the measurement191
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of f
x

will therefore correspond to large relative errors if the formulations con-192

tain terms such as (1� f

⇤)2 in the denominator. The formulations presented193

in equations 10 and 11 are dependent on f

⇤
a

(rather than f

⇤), which does not194

tend to unity at low reduced velocities. This provides a further motivation for195

our use of the current formulations of these equations.196

The mass ratio of the present system is low (m⇤ = 1.17) and the changes197

in f

⇤
a

were found to be relatively large (f⇤
a

= 0.73 and 0.93 at the lowest and198

highest reduced velocities examined, respectively); therefore this method can199

be expected to perform reasonably well with an uncertainty comparable to that200

found by Khalak and Williamson for m⇤ = 3.3. However, the uncertainty may201

be slightly larger when f

⇤
a

is close to unity (i.e. at high reduced velocities).202

4. Results203

The variation in the amplitude of the cylinder vibrations throughout the204

streamwise response regime is shown in Figure 3(a). The closed symbols indicate205

the reduced velocities at which the vortex-shedding was found to be locked-in206

to the cylinder motion (i.e. the velocity fluctuations at (x/D, y/D) = (3, 0)207

occurred at f

x

/2). The cylinder response is characterised by two branches,208

separated by a low amplitude region slightly below U

r

St/f⇤ = 0.5, which is209

consistent with previous studies examining the response of cylinders with single210

and multiple degrees of freedom (Aguirre, 1977; Cagney and Balabani, 2013c;211

Okajima et al., 2004; Jauvtis and Williamson, 2004; Blevins and Coughran,212

2009). The lock-in range is U

r

St/f⇤ ⇡ 0.37 � 0.6, which corresponds to the213

peak of the first branch, the low amplitude region and the entirety of the second214

branch. The first branch occurs over the range U

r

St/f⇤ ⇡ 0.25� 0.45, and has215

a peak amplitude of A/D = 0.087. The second branch has a slightly lower peak216

amplitude (A/D = 0.55), and occurs over the range U

r

St/f⇤ ⇡ 0.5� 0.6.217

The peak of the first branch is characterised by both symmetric and alternate218

vortex-shedding, with the wake switching intermittently between the two modes.219

Instantaneous vorticity fields showing these modes at the peak of the first branch220

are presented in Figures 4(a) and 4(b). In the second branch, the vortices are221

also shed alternately, with no switching between modes, and the vortices forming222

close to the cylinder base (Figure 4(c)). See Cagney and Balabani (2013c,a,b) for223

a complete discussion of mode-switching and the variation in shedding patterns224

throughout the response regime.225

The variations in the estimated amplitude and phase of the fluctuating drag226

coe�cient found using equations 10 and 11 are shown in Figures 3(b) and 3(c),227

respectively. The amplitude of the fluctuating drag is large at low reduced ve-228

locities (U
r

St/f⇤ . 0.44). A local maximum occurs at U

r

St/f⇤ = 0.39, which229

approximately coincides with the peak of the first response branch and the230

onset of lock-in. Nishihara et al. (2005) also observed large amplitude fluctu-231

ating drag forces acting on a cylinder undergoing forced streamwise vibrations232

(A/D = 0.05) at low values of U
r

St/f⇤. This was also observed in the numeri-233

cal simulations of Marzouk and Nayfeh (2009). By decomposing the signal into234

components in phase with the cylinder displacement and velocity, they showed235
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Figure 3: Amplitude response of the cylinder (a), amplitude of the fluctuating drag coef-
ficient (b) and phase angle between the fluctuating drag and the cylinder displacement (c)
throughout the streamwise response regime. The results in (b) and (c) were calculated using
equations 10 and 11, respectively. The dashed red lines indicate the vibration amplitude and

the magnitude of |gC
D

| occurring at f
x

measured by Nishihara et al. (2005) for the case of a
cylinder undergoing forced oscillations at Re = 34, 000.
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Figure 4: Instantaneous vorticity fields showing the symmetric (a) and alternate (b) modes of
vortex shedding at the peak of the first response branch (U

r

St/f⇤ = 0.429), and the alternate
shedding mode at the start of the second branch (c), at U

r

St/f⇤ = 0.527.
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that the large amplitude drag was caused by an increase in the inertial forces236

associated with the cylinder motion. Figure 3(c) shows that the phase lag be-237

tween the forcing and the displacement is low for U
r

St/f⇤ . 0.25. This indicates238

that the fluid force acts in phase with the cylinder displacement and the inertial239

force acting on it (i.e. the d’Alembert force, �mẍ), in agreement with the re-240

sults of Nishihara et al. (2005) and Marzouk and Nayfeh (2009). The magnitude241

of the energy transferred to the cylinder is proportional to |fC
D

| sin� (Khalak242

and Williamson, 1999). Therefore, the low � value indicates that in spite of the243

large amplitude fluctuating drag in the region U

r

St/f⇤ . 0.44, the cylinder does244

not experience significant levels of fluid excitation, and the response amplitude245

remains low.246

For U
r

St/f⇤ . 0.3 the vortices are shed at the Strouhal frequency, and the247

cylinder does not exhibit significant vibrations. Despite the absence of lock-in,248

the cylinder experiences some excitation due to turbulent bu↵eting; therefore249

the cylinder response amplitude is non-zero, and Figure 3(c) indicates that the250

fluid is transferring some energy to the structure (which corresponds to � > 0).251

Post-lock-in, when the amplitude response is negligible (U
r

St/f⇤
> 0.6), the252

phase lag is larger, indicating a drop in the flow-induced inertial forces. As the253

inertial forces are low, the total amplitude of the fluctuating drag also drops to254

a very low value (Figure 3(b)).255

The dashed red line in Figure 3(b) indicates the force measurements of Nishi-256

hara et al. (2005), obtained for a cylinder forced to oscillate in the streamwise257

direction at a constant amplitude of A/D = 0.05. The shaded regions in Figure 3258

indicate the reduced velocities at which the non-dimensional vibration amplitude259

was within 0.01 of the value used by Nishihara et al. (i.e. 0.04  A/D  0.06).260

Nishihara et al. used gauges to measure the overall force acting on the oscillat-261

ing cylinder, and by cross-correlating the force and the cylinder displacement262

signals, found the magnitude of the component on the force acting at f

x

- i.e.263

the same quantity predicted by equation 10. The vibration amplitude will have264

a strong e↵ect on the magnitude of the fluid forces, and the estimates of |fC
D

|265

cannot be expected to match the measurements of Nishihara et al. when the266

di↵erences in A/D are large (i.e. outside the shaded regions). However, Figure267

3(b) shows that during the lock-in range the estimates are reasonably consistent268

with the measured values when A/D ⇡ 0.05, in spite of the di↵erences between269

the two studies (e.g. the use of forced/free oscillations, Re, aspect ratio etc.),270

indicating that the displacement-based method is reasonably e↵ective. The es-271

timates of |fC
D

| found using equation 10 are larger than the values measured272

by Nishihara et al. when the response amplitude in the current study is also273

larger (A/D > 0.05), and visa versa. This is also consistent with the equations274

of motion, which show that the unsteady drag coe�cient is dependent on the275

vibration amplitude, |fC
D

| / A/D (equation 10).276

The phase lag between the drag and the cylinder motion does not vary277

significantly between the peak of the first branch and the low amplitude region278

at U

r

St/f⇤ ⇡ 0.5. This indicates that the sudden decrease in the amplitude279

response in this region is not caused by a change in �, as has been previously280
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suggested (Nishihara et al., 2005; Konstantinidis et al., 2005). In fact, � has281

a very small local maximum at U

r

St/f⇤ = 0.47. However, there is a dramatic282

change in |fC
D

| over this range. At U

r

St/f⇤ = 0.47, |fC
D

| has approximately283

the same amplitude as observed post-lock-in, when A/D is also negligible. This284

indicates that the low amplitude observed in this region is caused by a reduction285

in the amplitude of the fluctuating drag force, rather than a change in its phase.286

This is discussed further in the following section.287

Within the second branch there is an increase in the amplitude of the un-288

steady drag coe�cient, although the peak amplitude observed, |fC
D

| = 0.13, is289

considerably lower than that observed in the first branch. However, Figure 3(c)290

indicates that the phase angle is larger in the second branch, which is associ-291

ated with increased levels of energy transfer to the cylinder and accounts for292

the reasonably large levels of A/D observed in this region.293

As noted in Section 3, we define the damping ratio in terms of the damping294

coe�cient measured in still water. In contrast, Khalak and Williamson (1997,295

1999) and Govardhan and Williamson (2000) chose to use an approximation of296

the structural damping, based on tests performed in air. In order to study the297

e↵ect of the choice of damping ratio on the estimates of the unsteady drag force,298

|fC
D

| and � were calculated for three di↵erent values of ⇣; the damping ratio299

measured in air (as chosen by Khalak and Williamson (1999) and Govardhan300

and Williamson (2000)), the damping ratio measured in water, and damping301

ratio given by equation 5.302

Figure 5(a) shows that the choice of ⇣ has little e↵ect on the estimates of303

the amplitude of the unsteady force coe�cient. This implies that the added304

mass term in equation 10 (i.e. (1 � f

⇤2
a

) in the square root) is dominant and305

the component due to damping (i.e. 2⇣f⇤
a

) is relatively insignificant. However,306

for high mass ratio cylinders, the added mass e↵ects are weaker and the choice307

of damping ratio is likely to have a significant e↵ect on the accuracy of the308

estimates.309

A change in the assumed value of ⇣ leads to a proportional increase in tan�310

(equation 11), which in turn causes a corresponding increase or decrease in the311

estimates shown in Figure 5(b). The increased values of � for ⇣ = (f
n,a

/f

n

) ⇣
w

312

(red triangles) relative to the ⇣
a

case (black circles) corresponds to the increased313

force that would be required to induce a cylinder to vibration in viscous water314

compared to a cylinder in a vacuum. In spite of the changes in the mean values315

of the phase angle for each of the cases shown in Figure 5(b), the choice of316

the damping ratio results in a uniform change in tan� throughout the response317

regime, and therefore does not a↵ect the general trend; i.e. the absence of a318

reduction in � at U
r

St/f⇤ ⇡ 0.5, as has been predicted in previous studies.319

5. Discussion and Conclusions320

The estimates of the unsteady drag force presented in the previous section do321

not support the arguments of Nishihara et al. (2005) and Konstantinidis et al.322

(2005) that the low amplitude region at U
r

St/f⇤ ⇡ 0.5 is caused by a reduction323

12



Figure 5: Amplitude (a) and phase (b) calculated throughout the response regime for three
di↵erent choices of damping ratio. Khalak and Williamson (1999) used the damping ratio
measured in air (black circles), while we take into account the e↵ect of viscous drag (red

triangles). The e↵ect on |gC
D

| is negligible, while the di↵erent damping ratios cause a shift in
�, but do not alter its qualitative variation throughout the response regime.
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in �, but instead show that this region coincides with a decrease in the forcing324

amplitude.325

It is clear from the equations of motion that the reduction in the vibration326

amplitude must coincide with a reduction in the phase or amplitude of the327

unsteady forcing, or both. Therefore, it is not su�cient to simply explain the328

counter-intuitive low amplitude region as being ‘caused’ by a change in |fC
D

|329

or �, which is known a priori ; rather the wake dynamics must be examined in330

order to explain what is causing the change in the fluid forcing.331

One such explanation was argued by Aguirre (1977) and Okajima et al.332

(2004), who showed that when a splitter plate was installed behind the cylinder333

the low amplitude region did not occur and the first response branch continued334

to higher reduced velocities. At low reduced velocities in the first branch, the335

vortices are shed symmetrically, but the shedding becomes alternate at the peak336

of the first branch and throughout the low amplitude region and second branch337

(Figure 4). Aguirre (1977) and Okajima et al. (2004) argued that the splitter338

plate prevented the alternate vortex-shedding and therefore the low amplitude339

region was caused by the wake transitioning to the alternate shedding mode.340

Cagney and Balabani (2013a, 2014) examined the vortex-shedding at the341

centre-span of cylinders with one and two degrees of freedom, respectively, and342

showed that at a constant reduced velocity the wake mode can switch intermit-343

tently between the symmetric and alternate shedding modes, but found that344

this does not cause any change in the streamwise or transverse vibration am-345

plitudes. The fact that the alternate mode does not produce a noticeable lift346

force is surprising given that the same mode is capable of inducing large VIV347

in the lift direction at other reduced velocities. Similarly, the experiments of348

Aguirre and Okajima et al. suggest that this change in wake mode should also349

result in a corresponding change in the streamwise response. These issues can350

be explained if the wake is highly three-dimensional in this reduced velocity351

range, and the shedding mode is not uniform along the cylinder span. If this is352

the case, the unsteady fluid forces induced by the vortex-shedding at di↵erent353

points along the span may destructively interfere, which may cause a reduction354

in |fC
D

| (which is averaged over the length of the cylinder) and ultimately to355

a reduction in A/D. In order to test this would require measurements of the356

three-dimensionality in the wake of a cylinder which is undergoing free or forced357

vibrations in the region U

r

St/f⇤ ⇡ 0.5.358
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